xref: /freebsd/sys/kern/subr_witness.c (revision b4af4f93c682e445bf159f0d1ec90b636296c946)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 #define	LI_SLEEPABLE	0x00040000	/* Lock may be held while sleeping. */
135 
136 #ifndef WITNESS_COUNT
137 #define	WITNESS_COUNT 		1536
138 #endif
139 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
141 
142 /* Allocate 256 KB of stack data space */
143 #define	WITNESS_LO_DATA_COUNT	2048
144 
145 /* Prime, gives load factor of ~2 at full load */
146 #define	WITNESS_LO_HASH_SIZE	1021
147 
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define	LOCK_NCHILDREN	5
154 #define	LOCK_CHILDCOUNT	2048
155 
156 #define	MAX_W_NAME	64
157 
158 #define	FULLGRAPH_SBUF_SIZE	512
159 
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define	WITNESS_RELATED_MASK						\
172 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174 					  * observed. */
175 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178 
179 /* Descendant to ancestor flags */
180 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181 
182 /* Ancestor to descendant flags */
183 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184 
185 #define	WITNESS_INDEX_ASSERT(i)						\
186 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187 
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189 
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197 	struct lock_object	*li_lock;
198 	const char		*li_file;
199 	int			li_line;
200 	u_int			li_flags;
201 };
202 
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214 	struct lock_list_entry	*ll_next;
215 	struct lock_instance	ll_children[LOCK_NCHILDREN];
216 	u_int			ll_count;
217 };
218 
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224 	char  			w_name[MAX_W_NAME];
225 	uint32_t 		w_index;  /* Index in the relationship matrix */
226 	struct lock_class	*w_class;
227 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230 	const char		*w_file; /* File where last acquired */
231 	uint32_t 		w_line; /* Line where last acquired */
232 	uint32_t 		w_refcount;
233 	uint16_t 		w_num_ancestors; /* direct/indirect
234 						  * ancestor count */
235 	uint16_t 		w_num_descendants; /* direct/indirect
236 						    * descendant count */
237 	int16_t 		w_ddb_level;
238 	unsigned		w_displayed:1;
239 	unsigned		w_reversed:1;
240 };
241 
242 STAILQ_HEAD(witness_list, witness);
243 
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249 	struct witness	*wh_array[WITNESS_HASH_SIZE];
250 	uint32_t	wh_size;
251 	uint32_t	wh_count;
252 };
253 
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258 	uint16_t	from;
259 	uint16_t	to;
260 };
261 
262 struct witness_lock_order_data {
263 	struct stack			wlod_stack;
264 	struct witness_lock_order_key	wlod_key;
265 	struct witness_lock_order_data	*wlod_next;
266 };
267 
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data).
272  */
273 struct witness_lock_order_hash {
274 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275 	u_int	wloh_size;
276 	u_int	wloh_count;
277 };
278 
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 
284 struct witness_pendhelp {
285 	const char		*wh_type;
286 	struct lock_object	*wh_lock;
287 };
288 
289 struct witness_order_list_entry {
290 	const char		*w_name;
291 	struct lock_class	*w_class;
292 };
293 
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301 
302 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305 
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310 
311 	return (a->from == b->from && a->to == b->to);
312 }
313 
314 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
315 		    const char *fname);
316 static void	adopt(struct witness *parent, struct witness *child);
317 static int	blessed(struct witness *, struct witness *);
318 static void	depart(struct witness *w);
319 static struct witness	*enroll(const char *description,
320 			    struct lock_class *lock_class);
321 static struct lock_instance	*find_instance(struct lock_list_entry *list,
322 				    const struct lock_object *lock);
323 static int	isitmychild(struct witness *parent, struct witness *child);
324 static int	isitmydescendant(struct witness *parent, struct witness *child);
325 static void	itismychild(struct witness *parent, struct witness *child);
326 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void	witness_ddb_compute_levels(void);
333 static void	witness_ddb_display(int(*)(const char *fmt, ...));
334 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335 		    struct witness *, int indent);
336 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337 		    struct witness_list *list);
338 static void	witness_ddb_level_descendants(struct witness *parent, int l);
339 static void	witness_ddb_list(struct thread *td);
340 #endif
341 static void	witness_debugger(int cond, const char *msg);
342 static void	witness_free(struct witness *m);
343 static struct witness	*witness_get(void);
344 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
345 static struct witness	*witness_hash_get(const char *key);
346 static void	witness_hash_put(struct witness *w);
347 static void	witness_init_hash_tables(void);
348 static void	witness_increment_graph_generation(void);
349 static void	witness_lock_list_free(struct lock_list_entry *lle);
350 static struct lock_list_entry	*witness_lock_list_get(void);
351 static int	witness_lock_order_add(struct witness *parent,
352 		    struct witness *child);
353 static int	witness_lock_order_check(struct witness *parent,
354 		    struct witness *child);
355 static struct witness_lock_order_data	*witness_lock_order_get(
356 					    struct witness *parent,
357 					    struct witness *child);
358 static void	witness_list_lock(struct lock_instance *instance,
359 		    int (*prnt)(const char *fmt, ...));
360 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
361 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
362 static void	witness_setflag(struct lock_object *lock, int flag, int set);
363 
364 FEATURE(witness, "kernel has witness(9) support");
365 
366 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
367     "Witness Locking");
368 
369 /*
370  * If set to 0, lock order checking is disabled.  If set to -1,
371  * witness is completely disabled.  Otherwise witness performs full
372  * lock order checking for all locks.  At runtime, lock order checking
373  * may be toggled.  However, witness cannot be reenabled once it is
374  * completely disabled.
375  */
376 static int witness_watch = 1;
377 SYSCTL_PROC(_debug_witness, OID_AUTO, watch,
378     CTLFLAG_RWTUN | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
379     sysctl_debug_witness_watch, "I",
380     "witness is watching lock operations");
381 
382 #ifdef KDB
383 /*
384  * When KDB is enabled and witness_kdb is 1, it will cause the system
385  * to drop into kdebug() when:
386  *	- a lock hierarchy violation occurs
387  *	- locks are held when going to sleep.
388  */
389 #ifdef WITNESS_KDB
390 int	witness_kdb = 1;
391 #else
392 int	witness_kdb = 0;
393 #endif
394 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
395 #endif /* KDB */
396 
397 #if defined(DDB) || defined(KDB)
398 /*
399  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
400  * to print a stack trace:
401  *	- a lock hierarchy violation occurs
402  *	- locks are held when going to sleep.
403  */
404 int	witness_trace = 1;
405 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
406 #endif /* DDB || KDB */
407 
408 #ifdef WITNESS_SKIPSPIN
409 int	witness_skipspin = 1;
410 #else
411 int	witness_skipspin = 0;
412 #endif
413 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
414 
415 int badstack_sbuf_size;
416 
417 int witness_count = WITNESS_COUNT;
418 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
419     &witness_count, 0, "");
420 
421 /*
422  * Output channel for witness messages.  By default we print to the console.
423  */
424 enum witness_channel {
425 	WITNESS_CONSOLE,
426 	WITNESS_LOG,
427 	WITNESS_NONE,
428 };
429 
430 static enum witness_channel witness_channel = WITNESS_CONSOLE;
431 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel,
432     CTLTYPE_STRING | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, NULL, 0,
433     sysctl_debug_witness_channel, "A",
434     "Output channel for warnings");
435 
436 /*
437  * Call this to print out the relations between locks.
438  */
439 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph,
440     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
441     sysctl_debug_witness_fullgraph, "A",
442     "Show locks relation graphs");
443 
444 /*
445  * Call this to print out the witness faulty stacks.
446  */
447 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks,
448     CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
449     sysctl_debug_witness_badstacks, "A",
450     "Show bad witness stacks");
451 
452 static struct mtx w_mtx;
453 
454 /* w_list */
455 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
456 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
457 
458 /* w_typelist */
459 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
460 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
461 
462 /* lock list */
463 static struct lock_list_entry *w_lock_list_free = NULL;
464 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
465 static u_int pending_cnt;
466 
467 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
468 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
469 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
470 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
471     "");
472 
473 static struct witness *w_data;
474 static uint8_t **w_rmatrix;
475 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
476 static struct witness_hash w_hash;	/* The witness hash table. */
477 
478 /* The lock order data hash */
479 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
480 static struct witness_lock_order_data *w_lofree = NULL;
481 static struct witness_lock_order_hash w_lohash;
482 static int w_max_used_index = 0;
483 static unsigned int w_generation = 0;
484 static const char w_notrunning[] = "Witness not running\n";
485 static const char w_stillcold[] = "Witness is still cold\n";
486 #ifdef __i386__
487 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
488 #endif
489 
490 static struct witness_order_list_entry order_lists[] = {
491 	/*
492 	 * sx locks
493 	 */
494 	{ "proctree", &lock_class_sx },
495 	{ "allproc", &lock_class_sx },
496 	{ "allprison", &lock_class_sx },
497 	{ NULL, NULL },
498 	/*
499 	 * Various mutexes
500 	 */
501 	{ "Giant", &lock_class_mtx_sleep },
502 	{ "pipe mutex", &lock_class_mtx_sleep },
503 	{ "sigio lock", &lock_class_mtx_sleep },
504 	{ "process group", &lock_class_mtx_sleep },
505 #ifdef	HWPMC_HOOKS
506 	{ "pmc-sleep", &lock_class_mtx_sleep },
507 #endif
508 	{ "process lock", &lock_class_mtx_sleep },
509 	{ "session", &lock_class_mtx_sleep },
510 	{ "uidinfo hash", &lock_class_rw },
511 	{ "time lock", &lock_class_mtx_sleep },
512 	{ NULL, NULL },
513 	/*
514 	 * umtx
515 	 */
516 	{ "umtx lock", &lock_class_mtx_sleep },
517 	{ NULL, NULL },
518 	/*
519 	 * Sockets
520 	 */
521 	{ "accept", &lock_class_mtx_sleep },
522 	{ "so_snd", &lock_class_mtx_sleep },
523 	{ "so_rcv", &lock_class_mtx_sleep },
524 	{ "sellck", &lock_class_mtx_sleep },
525 	{ NULL, NULL },
526 	/*
527 	 * Routing
528 	 */
529 	{ "so_rcv", &lock_class_mtx_sleep },
530 	{ "radix node head", &lock_class_rm },
531 	{ "rtentry", &lock_class_mtx_sleep },
532 	{ "ifaddr", &lock_class_mtx_sleep },
533 	{ NULL, NULL },
534 	/*
535 	 * IPv4 multicast:
536 	 * protocol locks before interface locks, after UDP locks.
537 	 */
538 	{ "in_multi_sx", &lock_class_sx },
539 	{ "udpinp", &lock_class_rw },
540 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
541 	{ "igmp_mtx", &lock_class_mtx_sleep },
542 	{ "ifnet_rw", &lock_class_rw },
543 	{ "if_addr_lock", &lock_class_mtx_sleep },
544 	{ NULL, NULL },
545 	/*
546 	 * IPv6 multicast:
547 	 * protocol locks before interface locks, after UDP locks.
548 	 */
549 	{ "in6_multi_sx", &lock_class_sx },
550 	{ "udpinp", &lock_class_rw },
551 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
552 	{ "mld_mtx", &lock_class_mtx_sleep },
553 	{ "ifnet_rw", &lock_class_rw },
554 	{ "if_addr_lock", &lock_class_mtx_sleep },
555 	{ NULL, NULL },
556 	/*
557 	 * UNIX Domain Sockets
558 	 */
559 	{ "unp_link_rwlock", &lock_class_rw },
560 	{ "unp_list_lock", &lock_class_mtx_sleep },
561 	{ "unp", &lock_class_mtx_sleep },
562 	{ "so_snd", &lock_class_mtx_sleep },
563 	{ NULL, NULL },
564 	/*
565 	 * UDP/IP
566 	 */
567 	{ "udp", &lock_class_mtx_sleep },
568 	{ "udpinp", &lock_class_rw },
569 	{ "so_snd", &lock_class_mtx_sleep },
570 	{ NULL, NULL },
571 	/*
572 	 * TCP/IP
573 	 */
574 	{ "tcp", &lock_class_mtx_sleep },
575 	{ "tcpinp", &lock_class_rw },
576 	{ "so_snd", &lock_class_mtx_sleep },
577 	{ NULL, NULL },
578 	/*
579 	 * BPF
580 	 */
581 	{ "bpf global lock", &lock_class_sx },
582 	{ "bpf cdev lock", &lock_class_mtx_sleep },
583 	{ NULL, NULL },
584 	/*
585 	 * NFS server
586 	 */
587 	{ "nfsd_mtx", &lock_class_mtx_sleep },
588 	{ "so_snd", &lock_class_mtx_sleep },
589 	{ NULL, NULL },
590 
591 	/*
592 	 * IEEE 802.11
593 	 */
594 	{ "802.11 com lock", &lock_class_mtx_sleep},
595 	{ NULL, NULL },
596 	/*
597 	 * Network drivers
598 	 */
599 	{ "network driver", &lock_class_mtx_sleep},
600 	{ NULL, NULL },
601 
602 	/*
603 	 * Netgraph
604 	 */
605 	{ "ng_node", &lock_class_mtx_sleep },
606 	{ "ng_worklist", &lock_class_mtx_sleep },
607 	{ NULL, NULL },
608 	/*
609 	 * CDEV
610 	 */
611 	{ "vm map (system)", &lock_class_mtx_sleep },
612 	{ "vnode interlock", &lock_class_mtx_sleep },
613 	{ "cdev", &lock_class_mtx_sleep },
614 	{ "devthrd", &lock_class_mtx_sleep },
615 	{ NULL, NULL },
616 	/*
617 	 * VM
618 	 */
619 	{ "vm map (user)", &lock_class_sx },
620 	{ "vm object", &lock_class_rw },
621 	{ "vm page", &lock_class_mtx_sleep },
622 	{ "pmap pv global", &lock_class_rw },
623 	{ "pmap", &lock_class_mtx_sleep },
624 	{ "pmap pv list", &lock_class_rw },
625 	{ "vm page free queue", &lock_class_mtx_sleep },
626 	{ "vm pagequeue", &lock_class_mtx_sleep },
627 	{ NULL, NULL },
628 	/*
629 	 * kqueue/VFS interaction
630 	 */
631 	{ "kqueue", &lock_class_mtx_sleep },
632 	{ "struct mount mtx", &lock_class_mtx_sleep },
633 	{ "vnode interlock", &lock_class_mtx_sleep },
634 	{ NULL, NULL },
635 	/*
636 	 * VFS namecache
637 	 */
638 	{ "ncvn", &lock_class_mtx_sleep },
639 	{ "ncbuc", &lock_class_rw },
640 	{ "vnode interlock", &lock_class_mtx_sleep },
641 	{ "ncneg", &lock_class_mtx_sleep },
642 	{ NULL, NULL },
643 	/*
644 	 * ZFS locking
645 	 */
646 	{ "dn->dn_mtx", &lock_class_sx },
647 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
648 	{ "db->db_mtx", &lock_class_sx },
649 	{ NULL, NULL },
650 	/*
651 	 * TCP log locks
652 	 */
653 	{ "TCP ID tree", &lock_class_rw },
654 	{ "tcp log id bucket", &lock_class_mtx_sleep },
655 	{ "tcpinp", &lock_class_rw },
656 	{ "TCP log expireq", &lock_class_mtx_sleep },
657 	{ NULL, NULL },
658 	/*
659 	 * spin locks
660 	 */
661 #ifdef SMP
662 	{ "ap boot", &lock_class_mtx_spin },
663 #endif
664 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
665 	{ "sio", &lock_class_mtx_spin },
666 #ifdef __i386__
667 	{ "cy", &lock_class_mtx_spin },
668 #endif
669 	{ "scc_hwmtx", &lock_class_mtx_spin },
670 	{ "uart_hwmtx", &lock_class_mtx_spin },
671 	{ "fast_taskqueue", &lock_class_mtx_spin },
672 	{ "intr table", &lock_class_mtx_spin },
673 	{ "process slock", &lock_class_mtx_spin },
674 	{ "syscons video lock", &lock_class_mtx_spin },
675 	{ "sleepq chain", &lock_class_mtx_spin },
676 	{ "rm_spinlock", &lock_class_mtx_spin },
677 	{ "turnstile chain", &lock_class_mtx_spin },
678 	{ "turnstile lock", &lock_class_mtx_spin },
679 	{ "sched lock", &lock_class_mtx_spin },
680 	{ "td_contested", &lock_class_mtx_spin },
681 	{ "callout", &lock_class_mtx_spin },
682 	{ "entropy harvest mutex", &lock_class_mtx_spin },
683 #ifdef SMP
684 	{ "smp rendezvous", &lock_class_mtx_spin },
685 #endif
686 #ifdef __powerpc__
687 	{ "tlb0", &lock_class_mtx_spin },
688 #endif
689 	{ NULL, NULL },
690 	{ "sched lock", &lock_class_mtx_spin },
691 #ifdef	HWPMC_HOOKS
692 	{ "pmc-per-proc", &lock_class_mtx_spin },
693 #endif
694 	{ NULL, NULL },
695 	/*
696 	 * leaf locks
697 	 */
698 	{ "intrcnt", &lock_class_mtx_spin },
699 	{ "icu", &lock_class_mtx_spin },
700 #ifdef __i386__
701 	{ "allpmaps", &lock_class_mtx_spin },
702 	{ "descriptor tables", &lock_class_mtx_spin },
703 #endif
704 	{ "clk", &lock_class_mtx_spin },
705 	{ "cpuset", &lock_class_mtx_spin },
706 	{ "mprof lock", &lock_class_mtx_spin },
707 	{ "zombie lock", &lock_class_mtx_spin },
708 	{ "ALD Queue", &lock_class_mtx_spin },
709 #if defined(__i386__) || defined(__amd64__)
710 	{ "pcicfg", &lock_class_mtx_spin },
711 	{ "NDIS thread lock", &lock_class_mtx_spin },
712 #endif
713 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
714 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
715 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
716 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
717 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
718 #ifdef	HWPMC_HOOKS
719 	{ "pmc-leaf", &lock_class_mtx_spin },
720 #endif
721 	{ "blocked lock", &lock_class_mtx_spin },
722 	{ NULL, NULL },
723 	{ NULL, NULL }
724 };
725 
726 /*
727  * Pairs of locks which have been blessed.  Witness does not complain about
728  * order problems with blessed lock pairs.  Please do not add an entry to the
729  * table without an explanatory comment.
730  */
731 static struct witness_blessed blessed_list[] = {
732 	/*
733 	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
734 	 * both lock orders, so a deadlock cannot happen as a result of this
735 	 * LOR.
736 	 */
737 	{ "dirhash",	"bufwait" },
738 
739 	/*
740 	 * A UFS vnode may be locked in vget() while a buffer belonging to the
741 	 * parent directory vnode is locked.
742 	 */
743 	{ "ufs",	"bufwait" },
744 };
745 
746 /*
747  * This global is set to 0 once it becomes safe to use the witness code.
748  */
749 static int witness_cold = 1;
750 
751 /*
752  * This global is set to 1 once the static lock orders have been enrolled
753  * so that a warning can be issued for any spin locks enrolled later.
754  */
755 static int witness_spin_warn = 0;
756 
757 /* Trim useless garbage from filenames. */
758 static const char *
759 fixup_filename(const char *file)
760 {
761 
762 	if (file == NULL)
763 		return (NULL);
764 	while (strncmp(file, "../", 3) == 0)
765 		file += 3;
766 	return (file);
767 }
768 
769 /*
770  * Calculate the size of early witness structures.
771  */
772 int
773 witness_startup_count(void)
774 {
775 	int sz;
776 
777 	sz = sizeof(struct witness) * witness_count;
778 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
779 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
780 	    (witness_count + 1);
781 
782 	return (sz);
783 }
784 
785 /*
786  * The WITNESS-enabled diagnostic code.  Note that the witness code does
787  * assume that the early boot is single-threaded at least until after this
788  * routine is completed.
789  */
790 void
791 witness_startup(void *mem)
792 {
793 	struct lock_object *lock;
794 	struct witness_order_list_entry *order;
795 	struct witness *w, *w1;
796 	uintptr_t p;
797 	int i;
798 
799 	p = (uintptr_t)mem;
800 	w_data = (void *)p;
801 	p += sizeof(struct witness) * witness_count;
802 
803 	w_rmatrix = (void *)p;
804 	p += sizeof(*w_rmatrix) * (witness_count + 1);
805 
806 	for (i = 0; i < witness_count + 1; i++) {
807 		w_rmatrix[i] = (void *)p;
808 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
809 	}
810 	badstack_sbuf_size = witness_count * 256;
811 
812 	/*
813 	 * We have to release Giant before initializing its witness
814 	 * structure so that WITNESS doesn't get confused.
815 	 */
816 	mtx_unlock(&Giant);
817 	mtx_assert(&Giant, MA_NOTOWNED);
818 
819 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
820 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
821 	    MTX_NOWITNESS | MTX_NOPROFILE);
822 	for (i = witness_count - 1; i >= 0; i--) {
823 		w = &w_data[i];
824 		memset(w, 0, sizeof(*w));
825 		w_data[i].w_index = i;	/* Witness index never changes. */
826 		witness_free(w);
827 	}
828 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
829 	    ("%s: Invalid list of free witness objects", __func__));
830 
831 	/* Witness with index 0 is not used to aid in debugging. */
832 	STAILQ_REMOVE_HEAD(&w_free, w_list);
833 	w_free_cnt--;
834 
835 	for (i = 0; i < witness_count; i++) {
836 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
837 		    (witness_count + 1));
838 	}
839 
840 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
841 		witness_lock_list_free(&w_locklistdata[i]);
842 	witness_init_hash_tables();
843 
844 	/* First add in all the specified order lists. */
845 	for (order = order_lists; order->w_name != NULL; order++) {
846 		w = enroll(order->w_name, order->w_class);
847 		if (w == NULL)
848 			continue;
849 		w->w_file = "order list";
850 		for (order++; order->w_name != NULL; order++) {
851 			w1 = enroll(order->w_name, order->w_class);
852 			if (w1 == NULL)
853 				continue;
854 			w1->w_file = "order list";
855 			itismychild(w, w1);
856 			w = w1;
857 		}
858 	}
859 	witness_spin_warn = 1;
860 
861 	/* Iterate through all locks and add them to witness. */
862 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
863 		lock = pending_locks[i].wh_lock;
864 		KASSERT(lock->lo_flags & LO_WITNESS,
865 		    ("%s: lock %s is on pending list but not LO_WITNESS",
866 		    __func__, lock->lo_name));
867 		lock->lo_witness = enroll(pending_locks[i].wh_type,
868 		    LOCK_CLASS(lock));
869 	}
870 
871 	/* Mark the witness code as being ready for use. */
872 	witness_cold = 0;
873 
874 	mtx_lock(&Giant);
875 }
876 
877 void
878 witness_init(struct lock_object *lock, const char *type)
879 {
880 	struct lock_class *class;
881 
882 	/* Various sanity checks. */
883 	class = LOCK_CLASS(lock);
884 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
885 	    (class->lc_flags & LC_RECURSABLE) == 0)
886 		kassert_panic("%s: lock (%s) %s can not be recursable",
887 		    __func__, class->lc_name, lock->lo_name);
888 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
889 	    (class->lc_flags & LC_SLEEPABLE) == 0)
890 		kassert_panic("%s: lock (%s) %s can not be sleepable",
891 		    __func__, class->lc_name, lock->lo_name);
892 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
893 	    (class->lc_flags & LC_UPGRADABLE) == 0)
894 		kassert_panic("%s: lock (%s) %s can not be upgradable",
895 		    __func__, class->lc_name, lock->lo_name);
896 
897 	/*
898 	 * If we shouldn't watch this lock, then just clear lo_witness.
899 	 * Otherwise, if witness_cold is set, then it is too early to
900 	 * enroll this lock, so defer it to witness_initialize() by adding
901 	 * it to the pending_locks list.  If it is not too early, then enroll
902 	 * the lock now.
903 	 */
904 	if (witness_watch < 1 || KERNEL_PANICKED() ||
905 	    (lock->lo_flags & LO_WITNESS) == 0)
906 		lock->lo_witness = NULL;
907 	else if (witness_cold) {
908 		pending_locks[pending_cnt].wh_lock = lock;
909 		pending_locks[pending_cnt++].wh_type = type;
910 		if (pending_cnt > WITNESS_PENDLIST)
911 			panic("%s: pending locks list is too small, "
912 			    "increase WITNESS_PENDLIST\n",
913 			    __func__);
914 	} else
915 		lock->lo_witness = enroll(type, class);
916 }
917 
918 void
919 witness_destroy(struct lock_object *lock)
920 {
921 	struct lock_class *class;
922 	struct witness *w;
923 
924 	class = LOCK_CLASS(lock);
925 
926 	if (witness_cold)
927 		panic("lock (%s) %s destroyed while witness_cold",
928 		    class->lc_name, lock->lo_name);
929 
930 	/* XXX: need to verify that no one holds the lock */
931 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
932 		return;
933 	w = lock->lo_witness;
934 
935 	mtx_lock_spin(&w_mtx);
936 	MPASS(w->w_refcount > 0);
937 	w->w_refcount--;
938 
939 	if (w->w_refcount == 0)
940 		depart(w);
941 	mtx_unlock_spin(&w_mtx);
942 }
943 
944 #ifdef DDB
945 static void
946 witness_ddb_compute_levels(void)
947 {
948 	struct witness *w;
949 
950 	/*
951 	 * First clear all levels.
952 	 */
953 	STAILQ_FOREACH(w, &w_all, w_list)
954 		w->w_ddb_level = -1;
955 
956 	/*
957 	 * Look for locks with no parents and level all their descendants.
958 	 */
959 	STAILQ_FOREACH(w, &w_all, w_list) {
960 
961 		/* If the witness has ancestors (is not a root), skip it. */
962 		if (w->w_num_ancestors > 0)
963 			continue;
964 		witness_ddb_level_descendants(w, 0);
965 	}
966 }
967 
968 static void
969 witness_ddb_level_descendants(struct witness *w, int l)
970 {
971 	int i;
972 
973 	if (w->w_ddb_level >= l)
974 		return;
975 
976 	w->w_ddb_level = l;
977 	l++;
978 
979 	for (i = 1; i <= w_max_used_index; i++) {
980 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
981 			witness_ddb_level_descendants(&w_data[i], l);
982 	}
983 }
984 
985 static void
986 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
987     struct witness *w, int indent)
988 {
989 	int i;
990 
991  	for (i = 0; i < indent; i++)
992  		prnt(" ");
993 	prnt("%s (type: %s, depth: %d, active refs: %d)",
994 	     w->w_name, w->w_class->lc_name,
995 	     w->w_ddb_level, w->w_refcount);
996  	if (w->w_displayed) {
997  		prnt(" -- (already displayed)\n");
998  		return;
999  	}
1000  	w->w_displayed = 1;
1001 	if (w->w_file != NULL && w->w_line != 0)
1002 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1003 		    w->w_line);
1004 	else
1005 		prnt(" -- never acquired\n");
1006 	indent++;
1007 	WITNESS_INDEX_ASSERT(w->w_index);
1008 	for (i = 1; i <= w_max_used_index; i++) {
1009 		if (db_pager_quit)
1010 			return;
1011 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1012 			witness_ddb_display_descendants(prnt, &w_data[i],
1013 			    indent);
1014 	}
1015 }
1016 
1017 static void
1018 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1019     struct witness_list *list)
1020 {
1021 	struct witness *w;
1022 
1023 	STAILQ_FOREACH(w, list, w_typelist) {
1024 		if (w->w_file == NULL || w->w_ddb_level > 0)
1025 			continue;
1026 
1027 		/* This lock has no anscestors - display its descendants. */
1028 		witness_ddb_display_descendants(prnt, w, 0);
1029 		if (db_pager_quit)
1030 			return;
1031 	}
1032 }
1033 
1034 static void
1035 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1036 {
1037 	struct witness *w;
1038 
1039 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1040 	witness_ddb_compute_levels();
1041 
1042 	/* Clear all the displayed flags. */
1043 	STAILQ_FOREACH(w, &w_all, w_list)
1044 		w->w_displayed = 0;
1045 
1046 	/*
1047 	 * First, handle sleep locks which have been acquired at least
1048 	 * once.
1049 	 */
1050 	prnt("Sleep locks:\n");
1051 	witness_ddb_display_list(prnt, &w_sleep);
1052 	if (db_pager_quit)
1053 		return;
1054 
1055 	/*
1056 	 * Now do spin locks which have been acquired at least once.
1057 	 */
1058 	prnt("\nSpin locks:\n");
1059 	witness_ddb_display_list(prnt, &w_spin);
1060 	if (db_pager_quit)
1061 		return;
1062 
1063 	/*
1064 	 * Finally, any locks which have not been acquired yet.
1065 	 */
1066 	prnt("\nLocks which were never acquired:\n");
1067 	STAILQ_FOREACH(w, &w_all, w_list) {
1068 		if (w->w_file != NULL || w->w_refcount == 0)
1069 			continue;
1070 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1071 		    w->w_class->lc_name, w->w_ddb_level);
1072 		if (db_pager_quit)
1073 			return;
1074 	}
1075 }
1076 #endif /* DDB */
1077 
1078 int
1079 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1080 {
1081 
1082 	if (witness_watch == -1 || KERNEL_PANICKED())
1083 		return (0);
1084 
1085 	/* Require locks that witness knows about. */
1086 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1087 	    lock2->lo_witness == NULL)
1088 		return (EINVAL);
1089 
1090 	mtx_assert(&w_mtx, MA_NOTOWNED);
1091 	mtx_lock_spin(&w_mtx);
1092 
1093 	/*
1094 	 * If we already have either an explicit or implied lock order that
1095 	 * is the other way around, then return an error.
1096 	 */
1097 	if (witness_watch &&
1098 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1099 		mtx_unlock_spin(&w_mtx);
1100 		return (EDOOFUS);
1101 	}
1102 
1103 	/* Try to add the new order. */
1104 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1105 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1106 	itismychild(lock1->lo_witness, lock2->lo_witness);
1107 	mtx_unlock_spin(&w_mtx);
1108 	return (0);
1109 }
1110 
1111 void
1112 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1113     int line, struct lock_object *interlock)
1114 {
1115 	struct lock_list_entry *lock_list, *lle;
1116 	struct lock_instance *lock1, *lock2, *plock;
1117 	struct lock_class *class, *iclass;
1118 	struct witness *w, *w1;
1119 	struct thread *td;
1120 	int i, j;
1121 
1122 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1123 	    KERNEL_PANICKED())
1124 		return;
1125 
1126 	w = lock->lo_witness;
1127 	class = LOCK_CLASS(lock);
1128 	td = curthread;
1129 
1130 	if (class->lc_flags & LC_SLEEPLOCK) {
1131 
1132 		/*
1133 		 * Since spin locks include a critical section, this check
1134 		 * implicitly enforces a lock order of all sleep locks before
1135 		 * all spin locks.
1136 		 */
1137 		if (td->td_critnest != 0 && !kdb_active)
1138 			kassert_panic("acquiring blockable sleep lock with "
1139 			    "spinlock or critical section held (%s) %s @ %s:%d",
1140 			    class->lc_name, lock->lo_name,
1141 			    fixup_filename(file), line);
1142 
1143 		/*
1144 		 * If this is the first lock acquired then just return as
1145 		 * no order checking is needed.
1146 		 */
1147 		lock_list = td->td_sleeplocks;
1148 		if (lock_list == NULL || lock_list->ll_count == 0)
1149 			return;
1150 	} else {
1151 
1152 		/*
1153 		 * If this is the first lock, just return as no order
1154 		 * checking is needed.  Avoid problems with thread
1155 		 * migration pinning the thread while checking if
1156 		 * spinlocks are held.  If at least one spinlock is held
1157 		 * the thread is in a safe path and it is allowed to
1158 		 * unpin it.
1159 		 */
1160 		sched_pin();
1161 		lock_list = PCPU_GET(spinlocks);
1162 		if (lock_list == NULL || lock_list->ll_count == 0) {
1163 			sched_unpin();
1164 			return;
1165 		}
1166 		sched_unpin();
1167 	}
1168 
1169 	/*
1170 	 * Check to see if we are recursing on a lock we already own.  If
1171 	 * so, make sure that we don't mismatch exclusive and shared lock
1172 	 * acquires.
1173 	 */
1174 	lock1 = find_instance(lock_list, lock);
1175 	if (lock1 != NULL) {
1176 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1177 		    (flags & LOP_EXCLUSIVE) == 0) {
1178 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1179 			    class->lc_name, lock->lo_name,
1180 			    fixup_filename(file), line);
1181 			witness_output("while exclusively locked from %s:%d\n",
1182 			    fixup_filename(lock1->li_file), lock1->li_line);
1183 			kassert_panic("excl->share");
1184 		}
1185 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1186 		    (flags & LOP_EXCLUSIVE) != 0) {
1187 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1188 			    class->lc_name, lock->lo_name,
1189 			    fixup_filename(file), line);
1190 			witness_output("while share locked from %s:%d\n",
1191 			    fixup_filename(lock1->li_file), lock1->li_line);
1192 			kassert_panic("share->excl");
1193 		}
1194 		return;
1195 	}
1196 
1197 	/* Warn if the interlock is not locked exactly once. */
1198 	if (interlock != NULL) {
1199 		iclass = LOCK_CLASS(interlock);
1200 		lock1 = find_instance(lock_list, interlock);
1201 		if (lock1 == NULL)
1202 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1203 			    iclass->lc_name, interlock->lo_name,
1204 			    fixup_filename(file), line);
1205 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1206 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1207 			    iclass->lc_name, interlock->lo_name,
1208 			    fixup_filename(file), line);
1209 	}
1210 
1211 	/*
1212 	 * Find the previously acquired lock, but ignore interlocks.
1213 	 */
1214 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1215 	if (interlock != NULL && plock->li_lock == interlock) {
1216 		if (lock_list->ll_count > 1)
1217 			plock =
1218 			    &lock_list->ll_children[lock_list->ll_count - 2];
1219 		else {
1220 			lle = lock_list->ll_next;
1221 
1222 			/*
1223 			 * The interlock is the only lock we hold, so
1224 			 * simply return.
1225 			 */
1226 			if (lle == NULL)
1227 				return;
1228 			plock = &lle->ll_children[lle->ll_count - 1];
1229 		}
1230 	}
1231 
1232 	/*
1233 	 * Try to perform most checks without a lock.  If this succeeds we
1234 	 * can skip acquiring the lock and return success.  Otherwise we redo
1235 	 * the check with the lock held to handle races with concurrent updates.
1236 	 */
1237 	w1 = plock->li_lock->lo_witness;
1238 	if (witness_lock_order_check(w1, w))
1239 		return;
1240 
1241 	mtx_lock_spin(&w_mtx);
1242 	if (witness_lock_order_check(w1, w)) {
1243 		mtx_unlock_spin(&w_mtx);
1244 		return;
1245 	}
1246 	witness_lock_order_add(w1, w);
1247 
1248 	/*
1249 	 * Check for duplicate locks of the same type.  Note that we only
1250 	 * have to check for this on the last lock we just acquired.  Any
1251 	 * other cases will be caught as lock order violations.
1252 	 */
1253 	if (w1 == w) {
1254 		i = w->w_index;
1255 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1256 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1257 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1258 			w->w_reversed = 1;
1259 			mtx_unlock_spin(&w_mtx);
1260 			witness_output(
1261 			    "acquiring duplicate lock of same type: \"%s\"\n",
1262 			    w->w_name);
1263 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1264 			    fixup_filename(plock->li_file), plock->li_line);
1265 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1266 			    fixup_filename(file), line);
1267 			witness_debugger(1, __func__);
1268 		} else
1269 			mtx_unlock_spin(&w_mtx);
1270 		return;
1271 	}
1272 	mtx_assert(&w_mtx, MA_OWNED);
1273 
1274 	/*
1275 	 * If we know that the lock we are acquiring comes after
1276 	 * the lock we most recently acquired in the lock order tree,
1277 	 * then there is no need for any further checks.
1278 	 */
1279 	if (isitmychild(w1, w))
1280 		goto out;
1281 
1282 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1283 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1284 
1285 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1286 			lock1 = &lle->ll_children[i];
1287 
1288 			/*
1289 			 * Ignore the interlock.
1290 			 */
1291 			if (interlock == lock1->li_lock)
1292 				continue;
1293 
1294 			/*
1295 			 * If this lock doesn't undergo witness checking,
1296 			 * then skip it.
1297 			 */
1298 			w1 = lock1->li_lock->lo_witness;
1299 			if (w1 == NULL) {
1300 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1301 				    ("lock missing witness structure"));
1302 				continue;
1303 			}
1304 
1305 			/*
1306 			 * If we are locking Giant and this is a sleepable
1307 			 * lock, then skip it.
1308 			 */
1309 			if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1310 			    lock == &Giant.lock_object)
1311 				continue;
1312 
1313 			/*
1314 			 * If we are locking a sleepable lock and this lock
1315 			 * is Giant, then skip it.
1316 			 */
1317 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1318 			    (flags & LOP_NOSLEEP) == 0 &&
1319 			    lock1->li_lock == &Giant.lock_object)
1320 				continue;
1321 
1322 			/*
1323 			 * If we are locking a sleepable lock and this lock
1324 			 * isn't sleepable, we want to treat it as a lock
1325 			 * order violation to enfore a general lock order of
1326 			 * sleepable locks before non-sleepable locks.
1327 			 */
1328 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1329 			    (flags & LOP_NOSLEEP) == 0 &&
1330 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1331 				goto reversal;
1332 
1333 			/*
1334 			 * If we are locking Giant and this is a non-sleepable
1335 			 * lock, then treat it as a reversal.
1336 			 */
1337 			if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1338 			    lock == &Giant.lock_object)
1339 				goto reversal;
1340 
1341 			/*
1342 			 * Check the lock order hierarchy for a reveresal.
1343 			 */
1344 			if (!isitmydescendant(w, w1))
1345 				continue;
1346 		reversal:
1347 
1348 			/*
1349 			 * We have a lock order violation, check to see if it
1350 			 * is allowed or has already been yelled about.
1351 			 */
1352 
1353 			/* Bail if this violation is known */
1354 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1355 				goto out;
1356 
1357 			/* Record this as a violation */
1358 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1359 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1360 			w->w_reversed = w1->w_reversed = 1;
1361 			witness_increment_graph_generation();
1362 
1363 			/*
1364 			 * If the lock order is blessed, bail before logging
1365 			 * anything.  We don't look for other lock order
1366 			 * violations though, which may be a bug.
1367 			 */
1368 			if (blessed(w, w1))
1369 				goto out;
1370 			mtx_unlock_spin(&w_mtx);
1371 
1372 #ifdef WITNESS_NO_VNODE
1373 			/*
1374 			 * There are known LORs between VNODE locks. They are
1375 			 * not an indication of a bug. VNODE locks are flagged
1376 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1377 			 * is between 2 VNODE locks.
1378 			 */
1379 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1380 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1381 				return;
1382 #endif
1383 
1384 			/*
1385 			 * Ok, yell about it.
1386 			 */
1387 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1388 			    (flags & LOP_NOSLEEP) == 0 &&
1389 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1390 				witness_output(
1391 		"lock order reversal: (sleepable after non-sleepable)\n");
1392 			else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1393 			    && lock == &Giant.lock_object)
1394 				witness_output(
1395 		"lock order reversal: (Giant after non-sleepable)\n");
1396 			else
1397 				witness_output("lock order reversal:\n");
1398 
1399 			/*
1400 			 * Try to locate an earlier lock with
1401 			 * witness w in our list.
1402 			 */
1403 			do {
1404 				lock2 = &lle->ll_children[i];
1405 				MPASS(lock2->li_lock != NULL);
1406 				if (lock2->li_lock->lo_witness == w)
1407 					break;
1408 				if (i == 0 && lle->ll_next != NULL) {
1409 					lle = lle->ll_next;
1410 					i = lle->ll_count - 1;
1411 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1412 				} else
1413 					i--;
1414 			} while (i >= 0);
1415 			if (i < 0) {
1416 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1417 				    lock1->li_lock, lock1->li_lock->lo_name,
1418 				    w1->w_name, fixup_filename(lock1->li_file),
1419 				    lock1->li_line);
1420 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1421 				    lock->lo_name, w->w_name,
1422 				    fixup_filename(file), line);
1423 			} else {
1424 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1425 				    lock2->li_lock, lock2->li_lock->lo_name,
1426 				    lock2->li_lock->lo_witness->w_name,
1427 				    fixup_filename(lock2->li_file),
1428 				    lock2->li_line);
1429 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1430 				    lock1->li_lock, lock1->li_lock->lo_name,
1431 				    w1->w_name, fixup_filename(lock1->li_file),
1432 				    lock1->li_line);
1433 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1434 				    lock->lo_name, w->w_name,
1435 				    fixup_filename(file), line);
1436 			}
1437 			witness_debugger(1, __func__);
1438 			return;
1439 		}
1440 	}
1441 
1442 	/*
1443 	 * If requested, build a new lock order.  However, don't build a new
1444 	 * relationship between a sleepable lock and Giant if it is in the
1445 	 * wrong direction.  The correct lock order is that sleepable locks
1446 	 * always come before Giant.
1447 	 */
1448 	if (flags & LOP_NEWORDER &&
1449 	    !(plock->li_lock == &Giant.lock_object &&
1450 	    (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1451 	    (flags & LOP_NOSLEEP) == 0)) {
1452 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1453 		    w->w_name, plock->li_lock->lo_witness->w_name);
1454 		itismychild(plock->li_lock->lo_witness, w);
1455 	}
1456 out:
1457 	mtx_unlock_spin(&w_mtx);
1458 }
1459 
1460 void
1461 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1462 {
1463 	struct lock_list_entry **lock_list, *lle;
1464 	struct lock_instance *instance;
1465 	struct witness *w;
1466 	struct thread *td;
1467 
1468 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1469 	    KERNEL_PANICKED())
1470 		return;
1471 	w = lock->lo_witness;
1472 	td = curthread;
1473 
1474 	/* Determine lock list for this lock. */
1475 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1476 		lock_list = &td->td_sleeplocks;
1477 	else
1478 		lock_list = PCPU_PTR(spinlocks);
1479 
1480 	/* Check to see if we are recursing on a lock we already own. */
1481 	instance = find_instance(*lock_list, lock);
1482 	if (instance != NULL) {
1483 		instance->li_flags++;
1484 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1485 		    td->td_proc->p_pid, lock->lo_name,
1486 		    instance->li_flags & LI_RECURSEMASK);
1487 		instance->li_file = file;
1488 		instance->li_line = line;
1489 		return;
1490 	}
1491 
1492 	/* Update per-witness last file and line acquire. */
1493 	w->w_file = file;
1494 	w->w_line = line;
1495 
1496 	/* Find the next open lock instance in the list and fill it. */
1497 	lle = *lock_list;
1498 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1499 		lle = witness_lock_list_get();
1500 		if (lle == NULL)
1501 			return;
1502 		lle->ll_next = *lock_list;
1503 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1504 		    td->td_proc->p_pid, lle);
1505 		*lock_list = lle;
1506 	}
1507 	instance = &lle->ll_children[lle->ll_count++];
1508 	instance->li_lock = lock;
1509 	instance->li_line = line;
1510 	instance->li_file = file;
1511 	instance->li_flags = 0;
1512 	if ((flags & LOP_EXCLUSIVE) != 0)
1513 		instance->li_flags |= LI_EXCLUSIVE;
1514 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1515 		instance->li_flags |= LI_SLEEPABLE;
1516 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1517 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1518 }
1519 
1520 void
1521 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1522 {
1523 	struct lock_instance *instance;
1524 	struct lock_class *class;
1525 
1526 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1527 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1528 		return;
1529 	class = LOCK_CLASS(lock);
1530 	if (witness_watch) {
1531 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1532 			kassert_panic(
1533 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1534 			    class->lc_name, lock->lo_name,
1535 			    fixup_filename(file), line);
1536 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1537 			kassert_panic(
1538 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1539 			    class->lc_name, lock->lo_name,
1540 			    fixup_filename(file), line);
1541 	}
1542 	instance = find_instance(curthread->td_sleeplocks, lock);
1543 	if (instance == NULL) {
1544 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1545 		    class->lc_name, lock->lo_name,
1546 		    fixup_filename(file), line);
1547 		return;
1548 	}
1549 	if (witness_watch) {
1550 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1551 			kassert_panic(
1552 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1553 			    class->lc_name, lock->lo_name,
1554 			    fixup_filename(file), line);
1555 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1556 			kassert_panic(
1557 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1558 			    class->lc_name, lock->lo_name,
1559 			    instance->li_flags & LI_RECURSEMASK,
1560 			    fixup_filename(file), line);
1561 	}
1562 	instance->li_flags |= LI_EXCLUSIVE;
1563 }
1564 
1565 void
1566 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1567     int line)
1568 {
1569 	struct lock_instance *instance;
1570 	struct lock_class *class;
1571 
1572 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1573 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1574 		return;
1575 	class = LOCK_CLASS(lock);
1576 	if (witness_watch) {
1577 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1578 			kassert_panic(
1579 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1580 			    class->lc_name, lock->lo_name,
1581 			    fixup_filename(file), line);
1582 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1583 			kassert_panic(
1584 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1585 			    class->lc_name, lock->lo_name,
1586 			    fixup_filename(file), line);
1587 	}
1588 	instance = find_instance(curthread->td_sleeplocks, lock);
1589 	if (instance == NULL) {
1590 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1591 		    class->lc_name, lock->lo_name,
1592 		    fixup_filename(file), line);
1593 		return;
1594 	}
1595 	if (witness_watch) {
1596 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1597 			kassert_panic(
1598 			    "downgrade of shared lock (%s) %s @ %s:%d",
1599 			    class->lc_name, lock->lo_name,
1600 			    fixup_filename(file), line);
1601 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1602 			kassert_panic(
1603 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1604 			    class->lc_name, lock->lo_name,
1605 			    instance->li_flags & LI_RECURSEMASK,
1606 			    fixup_filename(file), line);
1607 	}
1608 	instance->li_flags &= ~LI_EXCLUSIVE;
1609 }
1610 
1611 void
1612 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1613 {
1614 	struct lock_list_entry **lock_list, *lle;
1615 	struct lock_instance *instance;
1616 	struct lock_class *class;
1617 	struct thread *td;
1618 	register_t s;
1619 	int i, j;
1620 
1621 	if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1622 		return;
1623 	td = curthread;
1624 	class = LOCK_CLASS(lock);
1625 
1626 	/* Find lock instance associated with this lock. */
1627 	if (class->lc_flags & LC_SLEEPLOCK)
1628 		lock_list = &td->td_sleeplocks;
1629 	else
1630 		lock_list = PCPU_PTR(spinlocks);
1631 	lle = *lock_list;
1632 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1633 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1634 			instance = &(*lock_list)->ll_children[i];
1635 			if (instance->li_lock == lock)
1636 				goto found;
1637 		}
1638 
1639 	/*
1640 	 * When disabling WITNESS through witness_watch we could end up in
1641 	 * having registered locks in the td_sleeplocks queue.
1642 	 * We have to make sure we flush these queues, so just search for
1643 	 * eventual register locks and remove them.
1644 	 */
1645 	if (witness_watch > 0) {
1646 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1647 		    lock->lo_name, fixup_filename(file), line);
1648 		return;
1649 	} else {
1650 		return;
1651 	}
1652 found:
1653 
1654 	/* First, check for shared/exclusive mismatches. */
1655 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1656 	    (flags & LOP_EXCLUSIVE) == 0) {
1657 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1658 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1659 		witness_output("while exclusively locked from %s:%d\n",
1660 		    fixup_filename(instance->li_file), instance->li_line);
1661 		kassert_panic("excl->ushare");
1662 	}
1663 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1664 	    (flags & LOP_EXCLUSIVE) != 0) {
1665 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1666 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1667 		witness_output("while share locked from %s:%d\n",
1668 		    fixup_filename(instance->li_file),
1669 		    instance->li_line);
1670 		kassert_panic("share->uexcl");
1671 	}
1672 	/* If we are recursed, unrecurse. */
1673 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1674 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1675 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1676 		    instance->li_flags);
1677 		instance->li_flags--;
1678 		return;
1679 	}
1680 	/* The lock is now being dropped, check for NORELEASE flag */
1681 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1682 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1683 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1684 		kassert_panic("lock marked norelease");
1685 	}
1686 
1687 	/* Otherwise, remove this item from the list. */
1688 	s = intr_disable();
1689 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1690 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1691 	    (*lock_list)->ll_count - 1);
1692 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1693 		(*lock_list)->ll_children[j] =
1694 		    (*lock_list)->ll_children[j + 1];
1695 	(*lock_list)->ll_count--;
1696 	intr_restore(s);
1697 
1698 	/*
1699 	 * In order to reduce contention on w_mtx, we want to keep always an
1700 	 * head object into lists so that frequent allocation from the
1701 	 * free witness pool (and subsequent locking) is avoided.
1702 	 * In order to maintain the current code simple, when the head
1703 	 * object is totally unloaded it means also that we do not have
1704 	 * further objects in the list, so the list ownership needs to be
1705 	 * hand over to another object if the current head needs to be freed.
1706 	 */
1707 	if ((*lock_list)->ll_count == 0) {
1708 		if (*lock_list == lle) {
1709 			if (lle->ll_next == NULL)
1710 				return;
1711 		} else
1712 			lle = *lock_list;
1713 		*lock_list = lle->ll_next;
1714 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1715 		    td->td_proc->p_pid, lle);
1716 		witness_lock_list_free(lle);
1717 	}
1718 }
1719 
1720 void
1721 witness_thread_exit(struct thread *td)
1722 {
1723 	struct lock_list_entry *lle;
1724 	int i, n;
1725 
1726 	lle = td->td_sleeplocks;
1727 	if (lle == NULL || KERNEL_PANICKED())
1728 		return;
1729 	if (lle->ll_count != 0) {
1730 		for (n = 0; lle != NULL; lle = lle->ll_next)
1731 			for (i = lle->ll_count - 1; i >= 0; i--) {
1732 				if (n == 0)
1733 					witness_output(
1734 		    "Thread %p exiting with the following locks held:\n", td);
1735 				n++;
1736 				witness_list_lock(&lle->ll_children[i],
1737 				    witness_output);
1738 
1739 			}
1740 		kassert_panic(
1741 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1742 	}
1743 	witness_lock_list_free(lle);
1744 }
1745 
1746 /*
1747  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1748  * exempt Giant and sleepable locks from the checks as well.  If any
1749  * non-exempt locks are held, then a supplied message is printed to the
1750  * output channel along with a list of the offending locks.  If indicated in the
1751  * flags then a failure results in a panic as well.
1752  */
1753 int
1754 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1755 {
1756 	struct lock_list_entry *lock_list, *lle;
1757 	struct lock_instance *lock1;
1758 	struct thread *td;
1759 	va_list ap;
1760 	int i, n;
1761 
1762 	if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1763 		return (0);
1764 	n = 0;
1765 	td = curthread;
1766 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1767 		for (i = lle->ll_count - 1; i >= 0; i--) {
1768 			lock1 = &lle->ll_children[i];
1769 			if (lock1->li_lock == lock)
1770 				continue;
1771 			if (flags & WARN_GIANTOK &&
1772 			    lock1->li_lock == &Giant.lock_object)
1773 				continue;
1774 			if (flags & WARN_SLEEPOK &&
1775 			    (lock1->li_flags & LI_SLEEPABLE) != 0)
1776 				continue;
1777 			if (n == 0) {
1778 				va_start(ap, fmt);
1779 				vprintf(fmt, ap);
1780 				va_end(ap);
1781 				printf(" with the following %slocks held:\n",
1782 				    (flags & WARN_SLEEPOK) != 0 ?
1783 				    "non-sleepable " : "");
1784 			}
1785 			n++;
1786 			witness_list_lock(lock1, printf);
1787 		}
1788 
1789 	/*
1790 	 * Pin the thread in order to avoid problems with thread migration.
1791 	 * Once that all verifies are passed about spinlocks ownership,
1792 	 * the thread is in a safe path and it can be unpinned.
1793 	 */
1794 	sched_pin();
1795 	lock_list = PCPU_GET(spinlocks);
1796 	if (lock_list != NULL && lock_list->ll_count != 0) {
1797 		sched_unpin();
1798 
1799 		/*
1800 		 * We should only have one spinlock and as long as
1801 		 * the flags cannot match for this locks class,
1802 		 * check if the first spinlock is the one curthread
1803 		 * should hold.
1804 		 */
1805 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1806 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1807 		    lock1->li_lock == lock && n == 0)
1808 			return (0);
1809 
1810 		va_start(ap, fmt);
1811 		vprintf(fmt, ap);
1812 		va_end(ap);
1813 		printf(" with the following %slocks held:\n",
1814 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1815 		n += witness_list_locks(&lock_list, printf);
1816 	} else
1817 		sched_unpin();
1818 	if (flags & WARN_PANIC && n)
1819 		kassert_panic("%s", __func__);
1820 	else
1821 		witness_debugger(n, __func__);
1822 	return (n);
1823 }
1824 
1825 const char *
1826 witness_file(struct lock_object *lock)
1827 {
1828 	struct witness *w;
1829 
1830 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1831 		return ("?");
1832 	w = lock->lo_witness;
1833 	return (w->w_file);
1834 }
1835 
1836 int
1837 witness_line(struct lock_object *lock)
1838 {
1839 	struct witness *w;
1840 
1841 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1842 		return (0);
1843 	w = lock->lo_witness;
1844 	return (w->w_line);
1845 }
1846 
1847 static struct witness *
1848 enroll(const char *description, struct lock_class *lock_class)
1849 {
1850 	struct witness *w;
1851 
1852 	MPASS(description != NULL);
1853 
1854 	if (witness_watch == -1 || KERNEL_PANICKED())
1855 		return (NULL);
1856 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1857 		if (witness_skipspin)
1858 			return (NULL);
1859 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1860 		kassert_panic("lock class %s is not sleep or spin",
1861 		    lock_class->lc_name);
1862 		return (NULL);
1863 	}
1864 
1865 	mtx_lock_spin(&w_mtx);
1866 	w = witness_hash_get(description);
1867 	if (w)
1868 		goto found;
1869 	if ((w = witness_get()) == NULL)
1870 		return (NULL);
1871 	MPASS(strlen(description) < MAX_W_NAME);
1872 	strcpy(w->w_name, description);
1873 	w->w_class = lock_class;
1874 	w->w_refcount = 1;
1875 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1876 	if (lock_class->lc_flags & LC_SPINLOCK) {
1877 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1878 		w_spin_cnt++;
1879 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1880 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1881 		w_sleep_cnt++;
1882 	}
1883 
1884 	/* Insert new witness into the hash */
1885 	witness_hash_put(w);
1886 	witness_increment_graph_generation();
1887 	mtx_unlock_spin(&w_mtx);
1888 	return (w);
1889 found:
1890 	w->w_refcount++;
1891 	if (w->w_refcount == 1)
1892 		w->w_class = lock_class;
1893 	mtx_unlock_spin(&w_mtx);
1894 	if (lock_class != w->w_class)
1895 		kassert_panic(
1896 		    "lock (%s) %s does not match earlier (%s) lock",
1897 		    description, lock_class->lc_name,
1898 		    w->w_class->lc_name);
1899 	return (w);
1900 }
1901 
1902 static void
1903 depart(struct witness *w)
1904 {
1905 
1906 	MPASS(w->w_refcount == 0);
1907 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1908 		w_sleep_cnt--;
1909 	} else {
1910 		w_spin_cnt--;
1911 	}
1912 	/*
1913 	 * Set file to NULL as it may point into a loadable module.
1914 	 */
1915 	w->w_file = NULL;
1916 	w->w_line = 0;
1917 	witness_increment_graph_generation();
1918 }
1919 
1920 static void
1921 adopt(struct witness *parent, struct witness *child)
1922 {
1923 	int pi, ci, i, j;
1924 
1925 	if (witness_cold == 0)
1926 		mtx_assert(&w_mtx, MA_OWNED);
1927 
1928 	/* If the relationship is already known, there's no work to be done. */
1929 	if (isitmychild(parent, child))
1930 		return;
1931 
1932 	/* When the structure of the graph changes, bump up the generation. */
1933 	witness_increment_graph_generation();
1934 
1935 	/*
1936 	 * The hard part ... create the direct relationship, then propagate all
1937 	 * indirect relationships.
1938 	 */
1939 	pi = parent->w_index;
1940 	ci = child->w_index;
1941 	WITNESS_INDEX_ASSERT(pi);
1942 	WITNESS_INDEX_ASSERT(ci);
1943 	MPASS(pi != ci);
1944 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1945 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1946 
1947 	/*
1948 	 * If parent was not already an ancestor of child,
1949 	 * then we increment the descendant and ancestor counters.
1950 	 */
1951 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1952 		parent->w_num_descendants++;
1953 		child->w_num_ancestors++;
1954 	}
1955 
1956 	/*
1957 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1958 	 * an ancestor of 'pi' during this loop.
1959 	 */
1960 	for (i = 1; i <= w_max_used_index; i++) {
1961 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1962 		    (i != pi))
1963 			continue;
1964 
1965 		/* Find each descendant of 'i' and mark it as a descendant. */
1966 		for (j = 1; j <= w_max_used_index; j++) {
1967 
1968 			/*
1969 			 * Skip children that are already marked as
1970 			 * descendants of 'i'.
1971 			 */
1972 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1973 				continue;
1974 
1975 			/*
1976 			 * We are only interested in descendants of 'ci'. Note
1977 			 * that 'ci' itself is counted as a descendant of 'ci'.
1978 			 */
1979 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1980 			    (j != ci))
1981 				continue;
1982 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1983 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1984 			w_data[i].w_num_descendants++;
1985 			w_data[j].w_num_ancestors++;
1986 
1987 			/*
1988 			 * Make sure we aren't marking a node as both an
1989 			 * ancestor and descendant. We should have caught
1990 			 * this as a lock order reversal earlier.
1991 			 */
1992 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1993 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1994 				printf("witness rmatrix paradox! [%d][%d]=%d "
1995 				    "both ancestor and descendant\n",
1996 				    i, j, w_rmatrix[i][j]);
1997 				kdb_backtrace();
1998 				printf("Witness disabled.\n");
1999 				witness_watch = -1;
2000 			}
2001 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2002 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2003 				printf("witness rmatrix paradox! [%d][%d]=%d "
2004 				    "both ancestor and descendant\n",
2005 				    j, i, w_rmatrix[j][i]);
2006 				kdb_backtrace();
2007 				printf("Witness disabled.\n");
2008 				witness_watch = -1;
2009 			}
2010 		}
2011 	}
2012 }
2013 
2014 static void
2015 itismychild(struct witness *parent, struct witness *child)
2016 {
2017 	int unlocked;
2018 
2019 	MPASS(child != NULL && parent != NULL);
2020 	if (witness_cold == 0)
2021 		mtx_assert(&w_mtx, MA_OWNED);
2022 
2023 	if (!witness_lock_type_equal(parent, child)) {
2024 		if (witness_cold == 0) {
2025 			unlocked = 1;
2026 			mtx_unlock_spin(&w_mtx);
2027 		} else {
2028 			unlocked = 0;
2029 		}
2030 		kassert_panic(
2031 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2032 		    "the same lock type", __func__, parent->w_name,
2033 		    parent->w_class->lc_name, child->w_name,
2034 		    child->w_class->lc_name);
2035 		if (unlocked)
2036 			mtx_lock_spin(&w_mtx);
2037 	}
2038 	adopt(parent, child);
2039 }
2040 
2041 /*
2042  * Generic code for the isitmy*() functions. The rmask parameter is the
2043  * expected relationship of w1 to w2.
2044  */
2045 static int
2046 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2047 {
2048 	unsigned char r1, r2;
2049 	int i1, i2;
2050 
2051 	i1 = w1->w_index;
2052 	i2 = w2->w_index;
2053 	WITNESS_INDEX_ASSERT(i1);
2054 	WITNESS_INDEX_ASSERT(i2);
2055 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2056 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2057 
2058 	/* The flags on one better be the inverse of the flags on the other */
2059 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2060 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2061 		/* Don't squawk if we're potentially racing with an update. */
2062 		if (!mtx_owned(&w_mtx))
2063 			return (0);
2064 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2065 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2066 		    "w_rmatrix[%d][%d] == %hhx\n",
2067 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2068 		    i2, i1, r2);
2069 		kdb_backtrace();
2070 		printf("Witness disabled.\n");
2071 		witness_watch = -1;
2072 	}
2073 	return (r1 & rmask);
2074 }
2075 
2076 /*
2077  * Checks if @child is a direct child of @parent.
2078  */
2079 static int
2080 isitmychild(struct witness *parent, struct witness *child)
2081 {
2082 
2083 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2084 }
2085 
2086 /*
2087  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2088  */
2089 static int
2090 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2091 {
2092 
2093 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2094 	    __func__));
2095 }
2096 
2097 static int
2098 blessed(struct witness *w1, struct witness *w2)
2099 {
2100 	int i;
2101 	struct witness_blessed *b;
2102 
2103 	for (i = 0; i < nitems(blessed_list); i++) {
2104 		b = &blessed_list[i];
2105 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2106 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2107 				return (1);
2108 			continue;
2109 		}
2110 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2111 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2112 				return (1);
2113 	}
2114 	return (0);
2115 }
2116 
2117 static struct witness *
2118 witness_get(void)
2119 {
2120 	struct witness *w;
2121 	int index;
2122 
2123 	if (witness_cold == 0)
2124 		mtx_assert(&w_mtx, MA_OWNED);
2125 
2126 	if (witness_watch == -1) {
2127 		mtx_unlock_spin(&w_mtx);
2128 		return (NULL);
2129 	}
2130 	if (STAILQ_EMPTY(&w_free)) {
2131 		witness_watch = -1;
2132 		mtx_unlock_spin(&w_mtx);
2133 		printf("WITNESS: unable to allocate a new witness object\n");
2134 		return (NULL);
2135 	}
2136 	w = STAILQ_FIRST(&w_free);
2137 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2138 	w_free_cnt--;
2139 	index = w->w_index;
2140 	MPASS(index > 0 && index == w_max_used_index+1 &&
2141 	    index < witness_count);
2142 	bzero(w, sizeof(*w));
2143 	w->w_index = index;
2144 	if (index > w_max_used_index)
2145 		w_max_used_index = index;
2146 	return (w);
2147 }
2148 
2149 static void
2150 witness_free(struct witness *w)
2151 {
2152 
2153 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2154 	w_free_cnt++;
2155 }
2156 
2157 static struct lock_list_entry *
2158 witness_lock_list_get(void)
2159 {
2160 	struct lock_list_entry *lle;
2161 
2162 	if (witness_watch == -1)
2163 		return (NULL);
2164 	mtx_lock_spin(&w_mtx);
2165 	lle = w_lock_list_free;
2166 	if (lle == NULL) {
2167 		witness_watch = -1;
2168 		mtx_unlock_spin(&w_mtx);
2169 		printf("%s: witness exhausted\n", __func__);
2170 		return (NULL);
2171 	}
2172 	w_lock_list_free = lle->ll_next;
2173 	mtx_unlock_spin(&w_mtx);
2174 	bzero(lle, sizeof(*lle));
2175 	return (lle);
2176 }
2177 
2178 static void
2179 witness_lock_list_free(struct lock_list_entry *lle)
2180 {
2181 
2182 	mtx_lock_spin(&w_mtx);
2183 	lle->ll_next = w_lock_list_free;
2184 	w_lock_list_free = lle;
2185 	mtx_unlock_spin(&w_mtx);
2186 }
2187 
2188 static struct lock_instance *
2189 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2190 {
2191 	struct lock_list_entry *lle;
2192 	struct lock_instance *instance;
2193 	int i;
2194 
2195 	for (lle = list; lle != NULL; lle = lle->ll_next)
2196 		for (i = lle->ll_count - 1; i >= 0; i--) {
2197 			instance = &lle->ll_children[i];
2198 			if (instance->li_lock == lock)
2199 				return (instance);
2200 		}
2201 	return (NULL);
2202 }
2203 
2204 static void
2205 witness_list_lock(struct lock_instance *instance,
2206     int (*prnt)(const char *fmt, ...))
2207 {
2208 	struct lock_object *lock;
2209 
2210 	lock = instance->li_lock;
2211 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2212 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2213 	if (lock->lo_witness->w_name != lock->lo_name)
2214 		prnt(" (%s)", lock->lo_witness->w_name);
2215 	prnt(" r = %d (%p) locked @ %s:%d\n",
2216 	    instance->li_flags & LI_RECURSEMASK, lock,
2217 	    fixup_filename(instance->li_file), instance->li_line);
2218 }
2219 
2220 static int
2221 witness_output(const char *fmt, ...)
2222 {
2223 	va_list ap;
2224 	int ret;
2225 
2226 	va_start(ap, fmt);
2227 	ret = witness_voutput(fmt, ap);
2228 	va_end(ap);
2229 	return (ret);
2230 }
2231 
2232 static int
2233 witness_voutput(const char *fmt, va_list ap)
2234 {
2235 	int ret;
2236 
2237 	ret = 0;
2238 	switch (witness_channel) {
2239 	case WITNESS_CONSOLE:
2240 		ret = vprintf(fmt, ap);
2241 		break;
2242 	case WITNESS_LOG:
2243 		vlog(LOG_NOTICE, fmt, ap);
2244 		break;
2245 	case WITNESS_NONE:
2246 		break;
2247 	}
2248 	return (ret);
2249 }
2250 
2251 #ifdef DDB
2252 static int
2253 witness_thread_has_locks(struct thread *td)
2254 {
2255 
2256 	if (td->td_sleeplocks == NULL)
2257 		return (0);
2258 	return (td->td_sleeplocks->ll_count != 0);
2259 }
2260 
2261 static int
2262 witness_proc_has_locks(struct proc *p)
2263 {
2264 	struct thread *td;
2265 
2266 	FOREACH_THREAD_IN_PROC(p, td) {
2267 		if (witness_thread_has_locks(td))
2268 			return (1);
2269 	}
2270 	return (0);
2271 }
2272 #endif
2273 
2274 int
2275 witness_list_locks(struct lock_list_entry **lock_list,
2276     int (*prnt)(const char *fmt, ...))
2277 {
2278 	struct lock_list_entry *lle;
2279 	int i, nheld;
2280 
2281 	nheld = 0;
2282 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2283 		for (i = lle->ll_count - 1; i >= 0; i--) {
2284 			witness_list_lock(&lle->ll_children[i], prnt);
2285 			nheld++;
2286 		}
2287 	return (nheld);
2288 }
2289 
2290 /*
2291  * This is a bit risky at best.  We call this function when we have timed
2292  * out acquiring a spin lock, and we assume that the other CPU is stuck
2293  * with this lock held.  So, we go groveling around in the other CPU's
2294  * per-cpu data to try to find the lock instance for this spin lock to
2295  * see when it was last acquired.
2296  */
2297 void
2298 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2299     int (*prnt)(const char *fmt, ...))
2300 {
2301 	struct lock_instance *instance;
2302 	struct pcpu *pc;
2303 
2304 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2305 		return;
2306 	pc = pcpu_find(owner->td_oncpu);
2307 	instance = find_instance(pc->pc_spinlocks, lock);
2308 	if (instance != NULL)
2309 		witness_list_lock(instance, prnt);
2310 }
2311 
2312 void
2313 witness_save(struct lock_object *lock, const char **filep, int *linep)
2314 {
2315 	struct lock_list_entry *lock_list;
2316 	struct lock_instance *instance;
2317 	struct lock_class *class;
2318 
2319 	/*
2320 	 * This function is used independently in locking code to deal with
2321 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2322 	 * is gone.
2323 	 */
2324 	if (SCHEDULER_STOPPED())
2325 		return;
2326 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2327 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2328 		return;
2329 	class = LOCK_CLASS(lock);
2330 	if (class->lc_flags & LC_SLEEPLOCK)
2331 		lock_list = curthread->td_sleeplocks;
2332 	else {
2333 		if (witness_skipspin)
2334 			return;
2335 		lock_list = PCPU_GET(spinlocks);
2336 	}
2337 	instance = find_instance(lock_list, lock);
2338 	if (instance == NULL) {
2339 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2340 		    class->lc_name, lock->lo_name);
2341 		return;
2342 	}
2343 	*filep = instance->li_file;
2344 	*linep = instance->li_line;
2345 }
2346 
2347 void
2348 witness_restore(struct lock_object *lock, const char *file, int line)
2349 {
2350 	struct lock_list_entry *lock_list;
2351 	struct lock_instance *instance;
2352 	struct lock_class *class;
2353 
2354 	/*
2355 	 * This function is used independently in locking code to deal with
2356 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2357 	 * is gone.
2358 	 */
2359 	if (SCHEDULER_STOPPED())
2360 		return;
2361 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2362 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2363 		return;
2364 	class = LOCK_CLASS(lock);
2365 	if (class->lc_flags & LC_SLEEPLOCK)
2366 		lock_list = curthread->td_sleeplocks;
2367 	else {
2368 		if (witness_skipspin)
2369 			return;
2370 		lock_list = PCPU_GET(spinlocks);
2371 	}
2372 	instance = find_instance(lock_list, lock);
2373 	if (instance == NULL)
2374 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2375 		    class->lc_name, lock->lo_name);
2376 	lock->lo_witness->w_file = file;
2377 	lock->lo_witness->w_line = line;
2378 	if (instance == NULL)
2379 		return;
2380 	instance->li_file = file;
2381 	instance->li_line = line;
2382 }
2383 
2384 void
2385 witness_assert(const struct lock_object *lock, int flags, const char *file,
2386     int line)
2387 {
2388 #ifdef INVARIANT_SUPPORT
2389 	struct lock_instance *instance;
2390 	struct lock_class *class;
2391 
2392 	if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2393 		return;
2394 	class = LOCK_CLASS(lock);
2395 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2396 		instance = find_instance(curthread->td_sleeplocks, lock);
2397 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2398 		instance = find_instance(PCPU_GET(spinlocks), lock);
2399 	else {
2400 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2401 		    class->lc_name, lock->lo_name);
2402 		return;
2403 	}
2404 	switch (flags) {
2405 	case LA_UNLOCKED:
2406 		if (instance != NULL)
2407 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2408 			    class->lc_name, lock->lo_name,
2409 			    fixup_filename(file), line);
2410 		break;
2411 	case LA_LOCKED:
2412 	case LA_LOCKED | LA_RECURSED:
2413 	case LA_LOCKED | LA_NOTRECURSED:
2414 	case LA_SLOCKED:
2415 	case LA_SLOCKED | LA_RECURSED:
2416 	case LA_SLOCKED | LA_NOTRECURSED:
2417 	case LA_XLOCKED:
2418 	case LA_XLOCKED | LA_RECURSED:
2419 	case LA_XLOCKED | LA_NOTRECURSED:
2420 		if (instance == NULL) {
2421 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2422 			    class->lc_name, lock->lo_name,
2423 			    fixup_filename(file), line);
2424 			break;
2425 		}
2426 		if ((flags & LA_XLOCKED) != 0 &&
2427 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2428 			kassert_panic(
2429 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2430 			    class->lc_name, lock->lo_name,
2431 			    fixup_filename(file), line);
2432 		if ((flags & LA_SLOCKED) != 0 &&
2433 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2434 			kassert_panic(
2435 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2436 			    class->lc_name, lock->lo_name,
2437 			    fixup_filename(file), line);
2438 		if ((flags & LA_RECURSED) != 0 &&
2439 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2440 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2441 			    class->lc_name, lock->lo_name,
2442 			    fixup_filename(file), line);
2443 		if ((flags & LA_NOTRECURSED) != 0 &&
2444 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2445 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2446 			    class->lc_name, lock->lo_name,
2447 			    fixup_filename(file), line);
2448 		break;
2449 	default:
2450 		kassert_panic("Invalid lock assertion at %s:%d.",
2451 		    fixup_filename(file), line);
2452 
2453 	}
2454 #endif	/* INVARIANT_SUPPORT */
2455 }
2456 
2457 static void
2458 witness_setflag(struct lock_object *lock, int flag, int set)
2459 {
2460 	struct lock_list_entry *lock_list;
2461 	struct lock_instance *instance;
2462 	struct lock_class *class;
2463 
2464 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2465 		return;
2466 	class = LOCK_CLASS(lock);
2467 	if (class->lc_flags & LC_SLEEPLOCK)
2468 		lock_list = curthread->td_sleeplocks;
2469 	else {
2470 		if (witness_skipspin)
2471 			return;
2472 		lock_list = PCPU_GET(spinlocks);
2473 	}
2474 	instance = find_instance(lock_list, lock);
2475 	if (instance == NULL) {
2476 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2477 		    class->lc_name, lock->lo_name);
2478 		return;
2479 	}
2480 
2481 	if (set)
2482 		instance->li_flags |= flag;
2483 	else
2484 		instance->li_flags &= ~flag;
2485 }
2486 
2487 void
2488 witness_norelease(struct lock_object *lock)
2489 {
2490 
2491 	witness_setflag(lock, LI_NORELEASE, 1);
2492 }
2493 
2494 void
2495 witness_releaseok(struct lock_object *lock)
2496 {
2497 
2498 	witness_setflag(lock, LI_NORELEASE, 0);
2499 }
2500 
2501 #ifdef DDB
2502 static void
2503 witness_ddb_list(struct thread *td)
2504 {
2505 
2506 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2507 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2508 
2509 	if (witness_watch < 1)
2510 		return;
2511 
2512 	witness_list_locks(&td->td_sleeplocks, db_printf);
2513 
2514 	/*
2515 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2516 	 * if td is currently executing on some other CPU and holds spin locks
2517 	 * as we won't display those locks.  If we had a MI way of getting
2518 	 * the per-cpu data for a given cpu then we could use
2519 	 * td->td_oncpu to get the list of spinlocks for this thread
2520 	 * and "fix" this.
2521 	 *
2522 	 * That still wouldn't really fix this unless we locked the scheduler
2523 	 * lock or stopped the other CPU to make sure it wasn't changing the
2524 	 * list out from under us.  It is probably best to just not try to
2525 	 * handle threads on other CPU's for now.
2526 	 */
2527 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2528 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2529 }
2530 
2531 DB_SHOW_COMMAND(locks, db_witness_list)
2532 {
2533 	struct thread *td;
2534 
2535 	if (have_addr)
2536 		td = db_lookup_thread(addr, true);
2537 	else
2538 		td = kdb_thread;
2539 	witness_ddb_list(td);
2540 }
2541 
2542 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2543 {
2544 	struct thread *td;
2545 	struct proc *p;
2546 
2547 	/*
2548 	 * It would be nice to list only threads and processes that actually
2549 	 * held sleep locks, but that information is currently not exported
2550 	 * by WITNESS.
2551 	 */
2552 	FOREACH_PROC_IN_SYSTEM(p) {
2553 		if (!witness_proc_has_locks(p))
2554 			continue;
2555 		FOREACH_THREAD_IN_PROC(p, td) {
2556 			if (!witness_thread_has_locks(td))
2557 				continue;
2558 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2559 			    p->p_comm, td, td->td_tid);
2560 			witness_ddb_list(td);
2561 			if (db_pager_quit)
2562 				return;
2563 		}
2564 	}
2565 }
2566 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2567 
2568 DB_SHOW_COMMAND(witness, db_witness_display)
2569 {
2570 
2571 	witness_ddb_display(db_printf);
2572 }
2573 #endif
2574 
2575 static void
2576 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2577 {
2578 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2579 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2580 	int generation, i, j;
2581 
2582 	tmp_data1 = NULL;
2583 	tmp_data2 = NULL;
2584 	tmp_w1 = NULL;
2585 	tmp_w2 = NULL;
2586 
2587 	/* Allocate and init temporary storage space. */
2588 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2589 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2590 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2591 	    M_WAITOK | M_ZERO);
2592 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2593 	    M_WAITOK | M_ZERO);
2594 	stack_zero(&tmp_data1->wlod_stack);
2595 	stack_zero(&tmp_data2->wlod_stack);
2596 
2597 restart:
2598 	mtx_lock_spin(&w_mtx);
2599 	generation = w_generation;
2600 	mtx_unlock_spin(&w_mtx);
2601 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2602 	    w_lohash.wloh_count);
2603 	for (i = 1; i < w_max_used_index; i++) {
2604 		mtx_lock_spin(&w_mtx);
2605 		if (generation != w_generation) {
2606 			mtx_unlock_spin(&w_mtx);
2607 
2608 			/* The graph has changed, try again. */
2609 			*oldidx = 0;
2610 			sbuf_clear(sb);
2611 			goto restart;
2612 		}
2613 
2614 		w1 = &w_data[i];
2615 		if (w1->w_reversed == 0) {
2616 			mtx_unlock_spin(&w_mtx);
2617 			continue;
2618 		}
2619 
2620 		/* Copy w1 locally so we can release the spin lock. */
2621 		*tmp_w1 = *w1;
2622 		mtx_unlock_spin(&w_mtx);
2623 
2624 		if (tmp_w1->w_reversed == 0)
2625 			continue;
2626 		for (j = 1; j < w_max_used_index; j++) {
2627 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2628 				continue;
2629 
2630 			mtx_lock_spin(&w_mtx);
2631 			if (generation != w_generation) {
2632 				mtx_unlock_spin(&w_mtx);
2633 
2634 				/* The graph has changed, try again. */
2635 				*oldidx = 0;
2636 				sbuf_clear(sb);
2637 				goto restart;
2638 			}
2639 
2640 			w2 = &w_data[j];
2641 			data1 = witness_lock_order_get(w1, w2);
2642 			data2 = witness_lock_order_get(w2, w1);
2643 
2644 			/*
2645 			 * Copy information locally so we can release the
2646 			 * spin lock.
2647 			 */
2648 			*tmp_w2 = *w2;
2649 
2650 			if (data1) {
2651 				stack_zero(&tmp_data1->wlod_stack);
2652 				stack_copy(&data1->wlod_stack,
2653 				    &tmp_data1->wlod_stack);
2654 			}
2655 			if (data2 && data2 != data1) {
2656 				stack_zero(&tmp_data2->wlod_stack);
2657 				stack_copy(&data2->wlod_stack,
2658 				    &tmp_data2->wlod_stack);
2659 			}
2660 			mtx_unlock_spin(&w_mtx);
2661 
2662 			if (blessed(tmp_w1, tmp_w2))
2663 				continue;
2664 
2665 			sbuf_printf(sb,
2666 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2667 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2668 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2669 			if (data1) {
2670 				sbuf_printf(sb,
2671 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2672 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2673 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2674 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2675 				sbuf_printf(sb, "\n");
2676 			}
2677 			if (data2 && data2 != data1) {
2678 				sbuf_printf(sb,
2679 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2680 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2681 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2682 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2683 				sbuf_printf(sb, "\n");
2684 			}
2685 		}
2686 	}
2687 	mtx_lock_spin(&w_mtx);
2688 	if (generation != w_generation) {
2689 		mtx_unlock_spin(&w_mtx);
2690 
2691 		/*
2692 		 * The graph changed while we were printing stack data,
2693 		 * try again.
2694 		 */
2695 		*oldidx = 0;
2696 		sbuf_clear(sb);
2697 		goto restart;
2698 	}
2699 	mtx_unlock_spin(&w_mtx);
2700 
2701 	/* Free temporary storage space. */
2702 	free(tmp_data1, M_TEMP);
2703 	free(tmp_data2, M_TEMP);
2704 	free(tmp_w1, M_TEMP);
2705 	free(tmp_w2, M_TEMP);
2706 }
2707 
2708 static int
2709 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2710 {
2711 	struct sbuf *sb;
2712 	int error;
2713 
2714 	if (witness_watch < 1) {
2715 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2716 		return (error);
2717 	}
2718 	if (witness_cold) {
2719 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2720 		return (error);
2721 	}
2722 	error = 0;
2723 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2724 	if (sb == NULL)
2725 		return (ENOMEM);
2726 
2727 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2728 
2729 	sbuf_finish(sb);
2730 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2731 	sbuf_delete(sb);
2732 
2733 	return (error);
2734 }
2735 
2736 #ifdef DDB
2737 static int
2738 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2739 {
2740 
2741 	return (db_printf("%.*s", len, data));
2742 }
2743 
2744 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2745 {
2746 	struct sbuf sb;
2747 	char buffer[128];
2748 	size_t dummy;
2749 
2750 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2751 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2752 	sbuf_print_witness_badstacks(&sb, &dummy);
2753 	sbuf_finish(&sb);
2754 }
2755 #endif
2756 
2757 static int
2758 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2759 {
2760 	static const struct {
2761 		enum witness_channel channel;
2762 		const char *name;
2763 	} channels[] = {
2764 		{ WITNESS_CONSOLE, "console" },
2765 		{ WITNESS_LOG, "log" },
2766 		{ WITNESS_NONE, "none" },
2767 	};
2768 	char buf[16];
2769 	u_int i;
2770 	int error;
2771 
2772 	buf[0] = '\0';
2773 	for (i = 0; i < nitems(channels); i++)
2774 		if (witness_channel == channels[i].channel) {
2775 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2776 			break;
2777 		}
2778 
2779 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2780 	if (error != 0 || req->newptr == NULL)
2781 		return (error);
2782 
2783 	error = EINVAL;
2784 	for (i = 0; i < nitems(channels); i++)
2785 		if (strcmp(channels[i].name, buf) == 0) {
2786 			witness_channel = channels[i].channel;
2787 			error = 0;
2788 			break;
2789 		}
2790 	return (error);
2791 }
2792 
2793 static int
2794 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2795 {
2796 	struct witness *w;
2797 	struct sbuf *sb;
2798 	int error;
2799 
2800 #ifdef __i386__
2801 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2802 	return (error);
2803 #endif
2804 
2805 	if (witness_watch < 1) {
2806 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2807 		return (error);
2808 	}
2809 	if (witness_cold) {
2810 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2811 		return (error);
2812 	}
2813 	error = 0;
2814 
2815 	error = sysctl_wire_old_buffer(req, 0);
2816 	if (error != 0)
2817 		return (error);
2818 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2819 	if (sb == NULL)
2820 		return (ENOMEM);
2821 	sbuf_printf(sb, "\n");
2822 
2823 	mtx_lock_spin(&w_mtx);
2824 	STAILQ_FOREACH(w, &w_all, w_list)
2825 		w->w_displayed = 0;
2826 	STAILQ_FOREACH(w, &w_all, w_list)
2827 		witness_add_fullgraph(sb, w);
2828 	mtx_unlock_spin(&w_mtx);
2829 
2830 	/*
2831 	 * Close the sbuf and return to userland.
2832 	 */
2833 	error = sbuf_finish(sb);
2834 	sbuf_delete(sb);
2835 
2836 	return (error);
2837 }
2838 
2839 static int
2840 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2841 {
2842 	int error, value;
2843 
2844 	value = witness_watch;
2845 	error = sysctl_handle_int(oidp, &value, 0, req);
2846 	if (error != 0 || req->newptr == NULL)
2847 		return (error);
2848 	if (value > 1 || value < -1 ||
2849 	    (witness_watch == -1 && value != witness_watch))
2850 		return (EINVAL);
2851 	witness_watch = value;
2852 	return (0);
2853 }
2854 
2855 static void
2856 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2857 {
2858 	int i;
2859 
2860 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2861 		return;
2862 	w->w_displayed = 1;
2863 
2864 	WITNESS_INDEX_ASSERT(w->w_index);
2865 	for (i = 1; i <= w_max_used_index; i++) {
2866 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2867 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2868 			    w_data[i].w_name);
2869 			witness_add_fullgraph(sb, &w_data[i]);
2870 		}
2871 	}
2872 }
2873 
2874 /*
2875  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2876  * interprets the key as a string and reads until the null
2877  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2878  * hash value computed from the key.
2879  */
2880 static uint32_t
2881 witness_hash_djb2(const uint8_t *key, uint32_t size)
2882 {
2883 	unsigned int hash = 5381;
2884 	int i;
2885 
2886 	/* hash = hash * 33 + key[i] */
2887 	if (size)
2888 		for (i = 0; i < size; i++)
2889 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2890 	else
2891 		for (i = 0; key[i] != 0; i++)
2892 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2893 
2894 	return (hash);
2895 }
2896 
2897 /*
2898  * Initializes the two witness hash tables. Called exactly once from
2899  * witness_initialize().
2900  */
2901 static void
2902 witness_init_hash_tables(void)
2903 {
2904 	int i;
2905 
2906 	MPASS(witness_cold);
2907 
2908 	/* Initialize the hash tables. */
2909 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2910 		w_hash.wh_array[i] = NULL;
2911 
2912 	w_hash.wh_size = WITNESS_HASH_SIZE;
2913 	w_hash.wh_count = 0;
2914 
2915 	/* Initialize the lock order data hash. */
2916 	w_lofree = NULL;
2917 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2918 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2919 		w_lodata[i].wlod_next = w_lofree;
2920 		w_lofree = &w_lodata[i];
2921 	}
2922 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2923 	w_lohash.wloh_count = 0;
2924 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2925 		w_lohash.wloh_array[i] = NULL;
2926 }
2927 
2928 static struct witness *
2929 witness_hash_get(const char *key)
2930 {
2931 	struct witness *w;
2932 	uint32_t hash;
2933 
2934 	MPASS(key != NULL);
2935 	if (witness_cold == 0)
2936 		mtx_assert(&w_mtx, MA_OWNED);
2937 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2938 	w = w_hash.wh_array[hash];
2939 	while (w != NULL) {
2940 		if (strcmp(w->w_name, key) == 0)
2941 			goto out;
2942 		w = w->w_hash_next;
2943 	}
2944 
2945 out:
2946 	return (w);
2947 }
2948 
2949 static void
2950 witness_hash_put(struct witness *w)
2951 {
2952 	uint32_t hash;
2953 
2954 	MPASS(w != NULL);
2955 	MPASS(w->w_name != NULL);
2956 	if (witness_cold == 0)
2957 		mtx_assert(&w_mtx, MA_OWNED);
2958 	KASSERT(witness_hash_get(w->w_name) == NULL,
2959 	    ("%s: trying to add a hash entry that already exists!", __func__));
2960 	KASSERT(w->w_hash_next == NULL,
2961 	    ("%s: w->w_hash_next != NULL", __func__));
2962 
2963 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2964 	w->w_hash_next = w_hash.wh_array[hash];
2965 	w_hash.wh_array[hash] = w;
2966 	w_hash.wh_count++;
2967 }
2968 
2969 static struct witness_lock_order_data *
2970 witness_lock_order_get(struct witness *parent, struct witness *child)
2971 {
2972 	struct witness_lock_order_data *data = NULL;
2973 	struct witness_lock_order_key key;
2974 	unsigned int hash;
2975 
2976 	MPASS(parent != NULL && child != NULL);
2977 	key.from = parent->w_index;
2978 	key.to = child->w_index;
2979 	WITNESS_INDEX_ASSERT(key.from);
2980 	WITNESS_INDEX_ASSERT(key.to);
2981 	if ((w_rmatrix[parent->w_index][child->w_index]
2982 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2983 		goto out;
2984 
2985 	hash = witness_hash_djb2((const char*)&key,
2986 	    sizeof(key)) % w_lohash.wloh_size;
2987 	data = w_lohash.wloh_array[hash];
2988 	while (data != NULL) {
2989 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2990 			break;
2991 		data = data->wlod_next;
2992 	}
2993 
2994 out:
2995 	return (data);
2996 }
2997 
2998 /*
2999  * Verify that parent and child have a known relationship, are not the same,
3000  * and child is actually a child of parent.  This is done without w_mtx
3001  * to avoid contention in the common case.
3002  */
3003 static int
3004 witness_lock_order_check(struct witness *parent, struct witness *child)
3005 {
3006 
3007 	if (parent != child &&
3008 	    w_rmatrix[parent->w_index][child->w_index]
3009 	    & WITNESS_LOCK_ORDER_KNOWN &&
3010 	    isitmychild(parent, child))
3011 		return (1);
3012 
3013 	return (0);
3014 }
3015 
3016 static int
3017 witness_lock_order_add(struct witness *parent, struct witness *child)
3018 {
3019 	struct witness_lock_order_data *data = NULL;
3020 	struct witness_lock_order_key key;
3021 	unsigned int hash;
3022 
3023 	MPASS(parent != NULL && child != NULL);
3024 	key.from = parent->w_index;
3025 	key.to = child->w_index;
3026 	WITNESS_INDEX_ASSERT(key.from);
3027 	WITNESS_INDEX_ASSERT(key.to);
3028 	if (w_rmatrix[parent->w_index][child->w_index]
3029 	    & WITNESS_LOCK_ORDER_KNOWN)
3030 		return (1);
3031 
3032 	hash = witness_hash_djb2((const char*)&key,
3033 	    sizeof(key)) % w_lohash.wloh_size;
3034 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3035 	data = w_lofree;
3036 	if (data == NULL)
3037 		return (0);
3038 	w_lofree = data->wlod_next;
3039 	data->wlod_next = w_lohash.wloh_array[hash];
3040 	data->wlod_key = key;
3041 	w_lohash.wloh_array[hash] = data;
3042 	w_lohash.wloh_count++;
3043 	stack_zero(&data->wlod_stack);
3044 	stack_save(&data->wlod_stack);
3045 	return (1);
3046 }
3047 
3048 /* Call this whenever the structure of the witness graph changes. */
3049 static void
3050 witness_increment_graph_generation(void)
3051 {
3052 
3053 	if (witness_cold == 0)
3054 		mtx_assert(&w_mtx, MA_OWNED);
3055 	w_generation++;
3056 }
3057 
3058 static int
3059 witness_output_drain(void *arg __unused, const char *data, int len)
3060 {
3061 
3062 	witness_output("%.*s", len, data);
3063 	return (len);
3064 }
3065 
3066 static void
3067 witness_debugger(int cond, const char *msg)
3068 {
3069 	char buf[32];
3070 	struct sbuf sb;
3071 	struct stack st;
3072 
3073 	if (!cond)
3074 		return;
3075 
3076 	if (witness_trace) {
3077 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3078 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3079 
3080 		stack_zero(&st);
3081 		stack_save(&st);
3082 		witness_output("stack backtrace:\n");
3083 		stack_sbuf_print_ddb(&sb, &st);
3084 
3085 		sbuf_finish(&sb);
3086 	}
3087 
3088 #ifdef KDB
3089 	if (witness_kdb)
3090 		kdb_enter(KDB_WHY_WITNESS, msg);
3091 #endif
3092 }
3093