xref: /freebsd/sys/kern/subr_witness.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114 
115 #include <machine/stdarg.h>
116 
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120 
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define	KTR_WITNESS	KTR_SUBSYS
124 #else
125 #define	KTR_WITNESS	0
126 #endif
127 
128 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131 
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134 
135 #define	WITNESS_COUNT 		1024
136 #define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138 #define	WITNESS_PENDLIST	768
139 
140 /* Allocate 256 KB of stack data space */
141 #define	WITNESS_LO_DATA_COUNT	2048
142 
143 /* Prime, gives load factor of ~2 at full load */
144 #define	WITNESS_LO_HASH_SIZE	1021
145 
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define	LOCK_NCHILDREN	5
152 #define	LOCK_CHILDCOUNT	2048
153 
154 #define	MAX_W_NAME	64
155 
156 #define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157 #define	FULLGRAPH_SBUF_SIZE	512
158 
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define	WITNESS_RELATED_MASK						\
171 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173 					  * observed. */
174 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177 
178 /* Descendant to ancestor flags */
179 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180 
181 /* Ancestor to descendant flags */
182 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183 
184 #define	WITNESS_INDEX_ASSERT(i)						\
185 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186 
187 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188 
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196 	struct lock_object	*li_lock;
197 	const char		*li_file;
198 	int			li_line;
199 	u_int			li_flags;
200 };
201 
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213 	struct lock_list_entry	*ll_next;
214 	struct lock_instance	ll_children[LOCK_NCHILDREN];
215 	u_int			ll_count;
216 };
217 
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223 	char  			w_name[MAX_W_NAME];
224 	uint32_t 		w_index;  /* Index in the relationship matrix */
225 	struct lock_class	*w_class;
226 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229 	const char		*w_file; /* File where last acquired */
230 	uint32_t 		w_line; /* Line where last acquired */
231 	uint32_t 		w_refcount;
232 	uint16_t 		w_num_ancestors; /* direct/indirect
233 						  * ancestor count */
234 	uint16_t 		w_num_descendants; /* direct/indirect
235 						    * descendant count */
236 	int16_t 		w_ddb_level;
237 	unsigned		w_displayed:1;
238 	unsigned		w_reversed:1;
239 };
240 
241 STAILQ_HEAD(witness_list, witness);
242 
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248 	struct witness	*wh_array[WITNESS_HASH_SIZE];
249 	uint32_t	wh_size;
250 	uint32_t	wh_count;
251 };
252 
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257 	uint16_t	from;
258 	uint16_t	to;
259 };
260 
261 struct witness_lock_order_data {
262 	struct stack			wlod_stack;
263 	struct witness_lock_order_key	wlod_key;
264 	struct witness_lock_order_data	*wlod_next;
265 };
266 
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data).
271  */
272 struct witness_lock_order_hash {
273 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274 	u_int	wloh_size;
275 	u_int	wloh_count;
276 };
277 
278 #ifdef BLESSING
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 #endif
284 
285 struct witness_pendhelp {
286 	const char		*wh_type;
287 	struct lock_object	*wh_lock;
288 };
289 
290 struct witness_order_list_entry {
291 	const char		*w_name;
292 	struct lock_class	*w_class;
293 };
294 
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302 
303 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306 
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310 
311 	return (key->from == 0 && key->to == 0);
312 }
313 
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318 
319 	return (a->from == b->from && a->to == b->to);
320 }
321 
322 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323 		    const char *fname);
324 #ifdef KDB
325 static void	_witness_debugger(int cond, const char *msg);
326 #endif
327 static void	adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int	blessed(struct witness *, struct witness *);
330 #endif
331 static void	depart(struct witness *w);
332 static struct witness	*enroll(const char *description,
333 			    struct lock_class *lock_class);
334 static struct lock_instance	*find_instance(struct lock_list_entry *list,
335 				    struct lock_object *lock);
336 static int	isitmychild(struct witness *parent, struct witness *child);
337 static int	isitmydescendant(struct witness *parent, struct witness *child);
338 static void	itismychild(struct witness *parent, struct witness *child);
339 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void	witness_ddb_compute_levels(void);
345 static void	witness_ddb_display(int(*)(const char *fmt, ...));
346 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347 		    struct witness *, int indent);
348 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349 		    struct witness_list *list);
350 static void	witness_ddb_level_descendants(struct witness *parent, int l);
351 static void	witness_ddb_list(struct thread *td);
352 #endif
353 static void	witness_free(struct witness *m);
354 static struct witness	*witness_get(void);
355 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness	*witness_hash_get(const char *key);
357 static void	witness_hash_put(struct witness *w);
358 static void	witness_init_hash_tables(void);
359 static void	witness_increment_graph_generation(void);
360 static void	witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry	*witness_lock_list_get(void);
362 static int	witness_lock_order_add(struct witness *parent,
363 		    struct witness *child);
364 static int	witness_lock_order_check(struct witness *parent,
365 		    struct witness *child);
366 static struct witness_lock_order_data	*witness_lock_order_get(
367 					    struct witness *parent,
368 					    struct witness *child);
369 static void	witness_list_lock(struct lock_instance *instance,
370 		    int (*prnt)(const char *fmt, ...));
371 static void	witness_setflag(struct lock_object *lock, int flag, int set);
372 
373 #ifdef KDB
374 #define	witness_debugger(c)	_witness_debugger(c, __func__)
375 #else
376 #define	witness_debugger(c)
377 #endif
378 
379 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, "Witness Locking");
380 
381 /*
382  * If set to 0, lock order checking is disabled.  If set to -1,
383  * witness is completely disabled.  Otherwise witness performs full
384  * lock order checking for all locks.  At runtime, lock order checking
385  * may be toggled.  However, witness cannot be reenabled once it is
386  * completely disabled.
387  */
388 static int witness_watch = 1;
389 TUNABLE_INT("debug.witness.watch", &witness_watch);
390 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
391     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
392 
393 #ifdef KDB
394 /*
395  * When KDB is enabled and witness_kdb is 1, it will cause the system
396  * to drop into kdebug() when:
397  *	- a lock hierarchy violation occurs
398  *	- locks are held when going to sleep.
399  */
400 #ifdef WITNESS_KDB
401 int	witness_kdb = 1;
402 #else
403 int	witness_kdb = 0;
404 #endif
405 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
406 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
407 
408 /*
409  * When KDB is enabled and witness_trace is 1, it will cause the system
410  * to print a stack trace:
411  *	- a lock hierarchy violation occurs
412  *	- locks are held when going to sleep.
413  */
414 int	witness_trace = 1;
415 TUNABLE_INT("debug.witness.trace", &witness_trace);
416 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
417 #endif /* KDB */
418 
419 #ifdef WITNESS_SKIPSPIN
420 int	witness_skipspin = 1;
421 #else
422 int	witness_skipspin = 0;
423 #endif
424 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
425 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
426     0, "");
427 
428 /*
429  * Call this to print out the relations between locks.
430  */
431 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
432     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
433 
434 /*
435  * Call this to print out the witness faulty stacks.
436  */
437 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
438     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
439 
440 static struct mtx w_mtx;
441 
442 /* w_list */
443 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
444 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
445 
446 /* w_typelist */
447 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
448 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
449 
450 /* lock list */
451 static struct lock_list_entry *w_lock_list_free = NULL;
452 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
453 static u_int pending_cnt;
454 
455 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
456 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
457 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
459     "");
460 
461 static struct witness *w_data;
462 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
463 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
464 static struct witness_hash w_hash;	/* The witness hash table. */
465 
466 /* The lock order data hash */
467 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
468 static struct witness_lock_order_data *w_lofree = NULL;
469 static struct witness_lock_order_hash w_lohash;
470 static int w_max_used_index = 0;
471 static unsigned int w_generation = 0;
472 static const char w_notrunning[] = "Witness not running\n";
473 static const char w_stillcold[] = "Witness is still cold\n";
474 
475 
476 static struct witness_order_list_entry order_lists[] = {
477 	/*
478 	 * sx locks
479 	 */
480 	{ "proctree", &lock_class_sx },
481 	{ "allproc", &lock_class_sx },
482 	{ "allprison", &lock_class_sx },
483 	{ NULL, NULL },
484 	/*
485 	 * Various mutexes
486 	 */
487 	{ "Giant", &lock_class_mtx_sleep },
488 	{ "pipe mutex", &lock_class_mtx_sleep },
489 	{ "sigio lock", &lock_class_mtx_sleep },
490 	{ "process group", &lock_class_mtx_sleep },
491 	{ "process lock", &lock_class_mtx_sleep },
492 	{ "session", &lock_class_mtx_sleep },
493 	{ "uidinfo hash", &lock_class_rw },
494 #ifdef	HWPMC_HOOKS
495 	{ "pmc-sleep", &lock_class_mtx_sleep },
496 #endif
497 	{ "time lock", &lock_class_mtx_sleep },
498 	{ NULL, NULL },
499 	/*
500 	 * Sockets
501 	 */
502 	{ "accept", &lock_class_mtx_sleep },
503 	{ "so_snd", &lock_class_mtx_sleep },
504 	{ "so_rcv", &lock_class_mtx_sleep },
505 	{ "sellck", &lock_class_mtx_sleep },
506 	{ NULL, NULL },
507 	/*
508 	 * Routing
509 	 */
510 	{ "so_rcv", &lock_class_mtx_sleep },
511 	{ "radix node head", &lock_class_rw },
512 	{ "rtentry", &lock_class_mtx_sleep },
513 	{ "ifaddr", &lock_class_mtx_sleep },
514 	{ NULL, NULL },
515 	/*
516 	 * IPv4 multicast:
517 	 * protocol locks before interface locks, after UDP locks.
518 	 */
519 	{ "udpinp", &lock_class_rw },
520 	{ "in_multi_mtx", &lock_class_mtx_sleep },
521 	{ "igmp_mtx", &lock_class_mtx_sleep },
522 	{ "if_addr_mtx", &lock_class_mtx_sleep },
523 	{ NULL, NULL },
524 	/*
525 	 * IPv6 multicast:
526 	 * protocol locks before interface locks, after UDP locks.
527 	 */
528 	{ "udpinp", &lock_class_rw },
529 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
530 	{ "mld_mtx", &lock_class_mtx_sleep },
531 	{ "if_addr_mtx", &lock_class_mtx_sleep },
532 	{ NULL, NULL },
533 	/*
534 	 * UNIX Domain Sockets
535 	 */
536 	{ "unp_global_rwlock", &lock_class_rw },
537 	{ "unp_list_lock", &lock_class_mtx_sleep },
538 	{ "unp", &lock_class_mtx_sleep },
539 	{ "so_snd", &lock_class_mtx_sleep },
540 	{ NULL, NULL },
541 	/*
542 	 * UDP/IP
543 	 */
544 	{ "udp", &lock_class_rw },
545 	{ "udpinp", &lock_class_rw },
546 	{ "so_snd", &lock_class_mtx_sleep },
547 	{ NULL, NULL },
548 	/*
549 	 * TCP/IP
550 	 */
551 	{ "tcp", &lock_class_rw },
552 	{ "tcpinp", &lock_class_rw },
553 	{ "so_snd", &lock_class_mtx_sleep },
554 	{ NULL, NULL },
555 	/*
556 	 * netatalk
557 	 */
558 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
559 	{ "ddp_mtx", &lock_class_mtx_sleep },
560 	{ NULL, NULL },
561 	/*
562 	 * BPF
563 	 */
564 	{ "bpf global lock", &lock_class_mtx_sleep },
565 	{ "bpf interface lock", &lock_class_mtx_sleep },
566 	{ "bpf cdev lock", &lock_class_mtx_sleep },
567 	{ NULL, NULL },
568 	/*
569 	 * NFS server
570 	 */
571 	{ "nfsd_mtx", &lock_class_mtx_sleep },
572 	{ "so_snd", &lock_class_mtx_sleep },
573 	{ NULL, NULL },
574 
575 	/*
576 	 * IEEE 802.11
577 	 */
578 	{ "802.11 com lock", &lock_class_mtx_sleep},
579 	{ NULL, NULL },
580 	/*
581 	 * Network drivers
582 	 */
583 	{ "network driver", &lock_class_mtx_sleep},
584 	{ NULL, NULL },
585 
586 	/*
587 	 * Netgraph
588 	 */
589 	{ "ng_node", &lock_class_mtx_sleep },
590 	{ "ng_worklist", &lock_class_mtx_sleep },
591 	{ NULL, NULL },
592 	/*
593 	 * CDEV
594 	 */
595 	{ "system map", &lock_class_mtx_sleep },
596 	{ "vm page queue mutex", &lock_class_mtx_sleep },
597 	{ "vnode interlock", &lock_class_mtx_sleep },
598 	{ "cdev", &lock_class_mtx_sleep },
599 	{ NULL, NULL },
600 	/*
601 	 * VM
602 	 *
603 	 */
604 	{ "vm object", &lock_class_mtx_sleep },
605 	{ "page lock", &lock_class_mtx_sleep },
606 	{ "vm page queue mutex", &lock_class_mtx_sleep },
607 	{ "pmap", &lock_class_mtx_sleep },
608 	{ NULL, NULL },
609 	/*
610 	 * kqueue/VFS interaction
611 	 */
612 	{ "kqueue", &lock_class_mtx_sleep },
613 	{ "struct mount mtx", &lock_class_mtx_sleep },
614 	{ "vnode interlock", &lock_class_mtx_sleep },
615 	{ NULL, NULL },
616 	/*
617 	 * ZFS locking
618 	 */
619 	{ "dn->dn_mtx", &lock_class_sx },
620 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
621 	{ "db->db_mtx", &lock_class_sx },
622 	{ NULL, NULL },
623 	/*
624 	 * spin locks
625 	 */
626 #ifdef SMP
627 	{ "ap boot", &lock_class_mtx_spin },
628 #endif
629 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
630 	{ "sio", &lock_class_mtx_spin },
631 	{ "scrlock", &lock_class_mtx_spin },
632 #ifdef __i386__
633 	{ "cy", &lock_class_mtx_spin },
634 #endif
635 #ifdef __sparc64__
636 	{ "pcib_mtx", &lock_class_mtx_spin },
637 	{ "rtc_mtx", &lock_class_mtx_spin },
638 #endif
639 	{ "scc_hwmtx", &lock_class_mtx_spin },
640 	{ "uart_hwmtx", &lock_class_mtx_spin },
641 	{ "fast_taskqueue", &lock_class_mtx_spin },
642 	{ "intr table", &lock_class_mtx_spin },
643 #ifdef	HWPMC_HOOKS
644 	{ "pmc-per-proc", &lock_class_mtx_spin },
645 #endif
646 	{ "process slock", &lock_class_mtx_spin },
647 	{ "sleepq chain", &lock_class_mtx_spin },
648 	{ "umtx lock", &lock_class_mtx_spin },
649 	{ "rm_spinlock", &lock_class_mtx_spin },
650 	{ "turnstile chain", &lock_class_mtx_spin },
651 	{ "turnstile lock", &lock_class_mtx_spin },
652 	{ "sched lock", &lock_class_mtx_spin },
653 	{ "td_contested", &lock_class_mtx_spin },
654 	{ "callout", &lock_class_mtx_spin },
655 	{ "entropy harvest mutex", &lock_class_mtx_spin },
656 	{ "syscons video lock", &lock_class_mtx_spin },
657 #ifdef SMP
658 	{ "smp rendezvous", &lock_class_mtx_spin },
659 #endif
660 #ifdef __powerpc__
661 	{ "tlb0", &lock_class_mtx_spin },
662 #endif
663 	/*
664 	 * leaf locks
665 	 */
666 	{ "intrcnt", &lock_class_mtx_spin },
667 	{ "icu", &lock_class_mtx_spin },
668 #if defined(SMP) && defined(__sparc64__)
669 	{ "ipi", &lock_class_mtx_spin },
670 #endif
671 #ifdef __i386__
672 	{ "allpmaps", &lock_class_mtx_spin },
673 	{ "descriptor tables", &lock_class_mtx_spin },
674 #endif
675 	{ "clk", &lock_class_mtx_spin },
676 	{ "cpuset", &lock_class_mtx_spin },
677 	{ "mprof lock", &lock_class_mtx_spin },
678 	{ "zombie lock", &lock_class_mtx_spin },
679 	{ "ALD Queue", &lock_class_mtx_spin },
680 #ifdef __ia64__
681 	{ "MCA spin lock", &lock_class_mtx_spin },
682 #endif
683 #if defined(__i386__) || defined(__amd64__)
684 	{ "pcicfg", &lock_class_mtx_spin },
685 	{ "NDIS thread lock", &lock_class_mtx_spin },
686 #endif
687 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
688 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
689 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
690 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
691 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
692 #ifdef	HWPMC_HOOKS
693 	{ "pmc-leaf", &lock_class_mtx_spin },
694 #endif
695 	{ "blocked lock", &lock_class_mtx_spin },
696 	{ NULL, NULL },
697 	{ NULL, NULL }
698 };
699 
700 #ifdef BLESSING
701 /*
702  * Pairs of locks which have been blessed
703  * Don't complain about order problems with blessed locks
704  */
705 static struct witness_blessed blessed_list[] = {
706 };
707 static int blessed_count =
708 	sizeof(blessed_list) / sizeof(struct witness_blessed);
709 #endif
710 
711 /*
712  * This global is set to 0 once it becomes safe to use the witness code.
713  */
714 static int witness_cold = 1;
715 
716 /*
717  * This global is set to 1 once the static lock orders have been enrolled
718  * so that a warning can be issued for any spin locks enrolled later.
719  */
720 static int witness_spin_warn = 0;
721 
722 /*
723  * The WITNESS-enabled diagnostic code.  Note that the witness code does
724  * assume that the early boot is single-threaded at least until after this
725  * routine is completed.
726  */
727 static void
728 witness_initialize(void *dummy __unused)
729 {
730 	struct lock_object *lock;
731 	struct witness_order_list_entry *order;
732 	struct witness *w, *w1;
733 	int i;
734 
735 	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
736 	    M_NOWAIT | M_ZERO);
737 
738 	/*
739 	 * We have to release Giant before initializing its witness
740 	 * structure so that WITNESS doesn't get confused.
741 	 */
742 	mtx_unlock(&Giant);
743 	mtx_assert(&Giant, MA_NOTOWNED);
744 
745 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
746 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
747 	    MTX_NOWITNESS | MTX_NOPROFILE);
748 	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
749 		w = &w_data[i];
750 		memset(w, 0, sizeof(*w));
751 		w_data[i].w_index = i;	/* Witness index never changes. */
752 		witness_free(w);
753 	}
754 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
755 	    ("%s: Invalid list of free witness objects", __func__));
756 
757 	/* Witness with index 0 is not used to aid in debugging. */
758 	STAILQ_REMOVE_HEAD(&w_free, w_list);
759 	w_free_cnt--;
760 
761 	memset(w_rmatrix, 0,
762 	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
763 
764 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
765 		witness_lock_list_free(&w_locklistdata[i]);
766 	witness_init_hash_tables();
767 
768 	/* First add in all the specified order lists. */
769 	for (order = order_lists; order->w_name != NULL; order++) {
770 		w = enroll(order->w_name, order->w_class);
771 		if (w == NULL)
772 			continue;
773 		w->w_file = "order list";
774 		for (order++; order->w_name != NULL; order++) {
775 			w1 = enroll(order->w_name, order->w_class);
776 			if (w1 == NULL)
777 				continue;
778 			w1->w_file = "order list";
779 			itismychild(w, w1);
780 			w = w1;
781 		}
782 	}
783 	witness_spin_warn = 1;
784 
785 	/* Iterate through all locks and add them to witness. */
786 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
787 		lock = pending_locks[i].wh_lock;
788 		KASSERT(lock->lo_flags & LO_WITNESS,
789 		    ("%s: lock %s is on pending list but not LO_WITNESS",
790 		    __func__, lock->lo_name));
791 		lock->lo_witness = enroll(pending_locks[i].wh_type,
792 		    LOCK_CLASS(lock));
793 	}
794 
795 	/* Mark the witness code as being ready for use. */
796 	witness_cold = 0;
797 
798 	mtx_lock(&Giant);
799 }
800 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
801     NULL);
802 
803 void
804 witness_init(struct lock_object *lock, const char *type)
805 {
806 	struct lock_class *class;
807 
808 	/* Various sanity checks. */
809 	class = LOCK_CLASS(lock);
810 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
811 	    (class->lc_flags & LC_RECURSABLE) == 0)
812 		panic("%s: lock (%s) %s can not be recursable", __func__,
813 		    class->lc_name, lock->lo_name);
814 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
815 	    (class->lc_flags & LC_SLEEPABLE) == 0)
816 		panic("%s: lock (%s) %s can not be sleepable", __func__,
817 		    class->lc_name, lock->lo_name);
818 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
819 	    (class->lc_flags & LC_UPGRADABLE) == 0)
820 		panic("%s: lock (%s) %s can not be upgradable", __func__,
821 		    class->lc_name, lock->lo_name);
822 
823 	/*
824 	 * If we shouldn't watch this lock, then just clear lo_witness.
825 	 * Otherwise, if witness_cold is set, then it is too early to
826 	 * enroll this lock, so defer it to witness_initialize() by adding
827 	 * it to the pending_locks list.  If it is not too early, then enroll
828 	 * the lock now.
829 	 */
830 	if (witness_watch < 1 || panicstr != NULL ||
831 	    (lock->lo_flags & LO_WITNESS) == 0)
832 		lock->lo_witness = NULL;
833 	else if (witness_cold) {
834 		pending_locks[pending_cnt].wh_lock = lock;
835 		pending_locks[pending_cnt++].wh_type = type;
836 		if (pending_cnt > WITNESS_PENDLIST)
837 			panic("%s: pending locks list is too small, bump it\n",
838 			    __func__);
839 	} else
840 		lock->lo_witness = enroll(type, class);
841 }
842 
843 void
844 witness_destroy(struct lock_object *lock)
845 {
846 	struct lock_class *class;
847 	struct witness *w;
848 
849 	class = LOCK_CLASS(lock);
850 
851 	if (witness_cold)
852 		panic("lock (%s) %s destroyed while witness_cold",
853 		    class->lc_name, lock->lo_name);
854 
855 	/* XXX: need to verify that no one holds the lock */
856 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
857 		return;
858 	w = lock->lo_witness;
859 
860 	mtx_lock_spin(&w_mtx);
861 	MPASS(w->w_refcount > 0);
862 	w->w_refcount--;
863 
864 	if (w->w_refcount == 0)
865 		depart(w);
866 	mtx_unlock_spin(&w_mtx);
867 }
868 
869 #ifdef DDB
870 static void
871 witness_ddb_compute_levels(void)
872 {
873 	struct witness *w;
874 
875 	/*
876 	 * First clear all levels.
877 	 */
878 	STAILQ_FOREACH(w, &w_all, w_list)
879 		w->w_ddb_level = -1;
880 
881 	/*
882 	 * Look for locks with no parents and level all their descendants.
883 	 */
884 	STAILQ_FOREACH(w, &w_all, w_list) {
885 
886 		/* If the witness has ancestors (is not a root), skip it. */
887 		if (w->w_num_ancestors > 0)
888 			continue;
889 		witness_ddb_level_descendants(w, 0);
890 	}
891 }
892 
893 static void
894 witness_ddb_level_descendants(struct witness *w, int l)
895 {
896 	int i;
897 
898 	if (w->w_ddb_level >= l)
899 		return;
900 
901 	w->w_ddb_level = l;
902 	l++;
903 
904 	for (i = 1; i <= w_max_used_index; i++) {
905 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
906 			witness_ddb_level_descendants(&w_data[i], l);
907 	}
908 }
909 
910 static void
911 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
912     struct witness *w, int indent)
913 {
914 	int i;
915 
916  	for (i = 0; i < indent; i++)
917  		prnt(" ");
918 	prnt("%s (type: %s, depth: %d, active refs: %d)",
919 	     w->w_name, w->w_class->lc_name,
920 	     w->w_ddb_level, w->w_refcount);
921  	if (w->w_displayed) {
922  		prnt(" -- (already displayed)\n");
923  		return;
924  	}
925  	w->w_displayed = 1;
926 	if (w->w_file != NULL && w->w_line != 0)
927 		prnt(" -- last acquired @ %s:%d\n", w->w_file,
928 		    w->w_line);
929 	else
930 		prnt(" -- never acquired\n");
931 	indent++;
932 	WITNESS_INDEX_ASSERT(w->w_index);
933 	for (i = 1; i <= w_max_used_index; i++) {
934 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
935 			witness_ddb_display_descendants(prnt, &w_data[i],
936 			    indent);
937 	}
938 }
939 
940 static void
941 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
942     struct witness_list *list)
943 {
944 	struct witness *w;
945 
946 	STAILQ_FOREACH(w, list, w_typelist) {
947 		if (w->w_file == NULL || w->w_ddb_level > 0)
948 			continue;
949 
950 		/* This lock has no anscestors - display its descendants. */
951 		witness_ddb_display_descendants(prnt, w, 0);
952 	}
953 }
954 
955 static void
956 witness_ddb_display(int(*prnt)(const char *fmt, ...))
957 {
958 	struct witness *w;
959 
960 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
961 	witness_ddb_compute_levels();
962 
963 	/* Clear all the displayed flags. */
964 	STAILQ_FOREACH(w, &w_all, w_list)
965 		w->w_displayed = 0;
966 
967 	/*
968 	 * First, handle sleep locks which have been acquired at least
969 	 * once.
970 	 */
971 	prnt("Sleep locks:\n");
972 	witness_ddb_display_list(prnt, &w_sleep);
973 
974 	/*
975 	 * Now do spin locks which have been acquired at least once.
976 	 */
977 	prnt("\nSpin locks:\n");
978 	witness_ddb_display_list(prnt, &w_spin);
979 
980 	/*
981 	 * Finally, any locks which have not been acquired yet.
982 	 */
983 	prnt("\nLocks which were never acquired:\n");
984 	STAILQ_FOREACH(w, &w_all, w_list) {
985 		if (w->w_file != NULL || w->w_refcount == 0)
986 			continue;
987 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
988 		    w->w_class->lc_name, w->w_ddb_level);
989 	}
990 }
991 #endif /* DDB */
992 
993 /* Trim useless garbage from filenames. */
994 static const char *
995 fixup_filename(const char *file)
996 {
997 
998 	if (file == NULL)
999 		return (NULL);
1000 	while (strncmp(file, "../", 3) == 0)
1001 		file += 3;
1002 	return (file);
1003 }
1004 
1005 int
1006 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1007 {
1008 
1009 	if (witness_watch == -1 || panicstr != NULL)
1010 		return (0);
1011 
1012 	/* Require locks that witness knows about. */
1013 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1014 	    lock2->lo_witness == NULL)
1015 		return (EINVAL);
1016 
1017 	mtx_assert(&w_mtx, MA_NOTOWNED);
1018 	mtx_lock_spin(&w_mtx);
1019 
1020 	/*
1021 	 * If we already have either an explicit or implied lock order that
1022 	 * is the other way around, then return an error.
1023 	 */
1024 	if (witness_watch &&
1025 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1026 		mtx_unlock_spin(&w_mtx);
1027 		return (EDOOFUS);
1028 	}
1029 
1030 	/* Try to add the new order. */
1031 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1032 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1033 	itismychild(lock1->lo_witness, lock2->lo_witness);
1034 	mtx_unlock_spin(&w_mtx);
1035 	return (0);
1036 }
1037 
1038 void
1039 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1040     int line, struct lock_object *interlock)
1041 {
1042 	struct lock_list_entry *lock_list, *lle;
1043 	struct lock_instance *lock1, *lock2, *plock;
1044 	struct lock_class *class;
1045 	struct witness *w, *w1;
1046 	struct thread *td;
1047 	int i, j;
1048 
1049 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1050 	    panicstr != NULL)
1051 		return;
1052 
1053 	w = lock->lo_witness;
1054 	class = LOCK_CLASS(lock);
1055 	td = curthread;
1056 	file = fixup_filename(file);
1057 
1058 	if (class->lc_flags & LC_SLEEPLOCK) {
1059 
1060 		/*
1061 		 * Since spin locks include a critical section, this check
1062 		 * implicitly enforces a lock order of all sleep locks before
1063 		 * all spin locks.
1064 		 */
1065 		if (td->td_critnest != 0 && !kdb_active)
1066 			panic("blockable sleep lock (%s) %s @ %s:%d",
1067 			    class->lc_name, lock->lo_name, file, line);
1068 
1069 		/*
1070 		 * If this is the first lock acquired then just return as
1071 		 * no order checking is needed.
1072 		 */
1073 		lock_list = td->td_sleeplocks;
1074 		if (lock_list == NULL || lock_list->ll_count == 0)
1075 			return;
1076 	} else {
1077 
1078 		/*
1079 		 * If this is the first lock, just return as no order
1080 		 * checking is needed.  Avoid problems with thread
1081 		 * migration pinning the thread while checking if
1082 		 * spinlocks are held.  If at least one spinlock is held
1083 		 * the thread is in a safe path and it is allowed to
1084 		 * unpin it.
1085 		 */
1086 		sched_pin();
1087 		lock_list = PCPU_GET(spinlocks);
1088 		if (lock_list == NULL || lock_list->ll_count == 0) {
1089 			sched_unpin();
1090 			return;
1091 		}
1092 		sched_unpin();
1093 	}
1094 
1095 	/*
1096 	 * Check to see if we are recursing on a lock we already own.  If
1097 	 * so, make sure that we don't mismatch exclusive and shared lock
1098 	 * acquires.
1099 	 */
1100 	lock1 = find_instance(lock_list, lock);
1101 	if (lock1 != NULL) {
1102 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1103 		    (flags & LOP_EXCLUSIVE) == 0) {
1104 			printf("shared lock of (%s) %s @ %s:%d\n",
1105 			    class->lc_name, lock->lo_name, file, line);
1106 			printf("while exclusively locked from %s:%d\n",
1107 			    lock1->li_file, lock1->li_line);
1108 			panic("share->excl");
1109 		}
1110 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1111 		    (flags & LOP_EXCLUSIVE) != 0) {
1112 			printf("exclusive lock of (%s) %s @ %s:%d\n",
1113 			    class->lc_name, lock->lo_name, file, line);
1114 			printf("while share locked from %s:%d\n",
1115 			    lock1->li_file, lock1->li_line);
1116 			panic("excl->share");
1117 		}
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * Find the previously acquired lock, but ignore interlocks.
1123 	 */
1124 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1125 	if (interlock != NULL && plock->li_lock == interlock) {
1126 		if (lock_list->ll_count > 1)
1127 			plock =
1128 			    &lock_list->ll_children[lock_list->ll_count - 2];
1129 		else {
1130 			lle = lock_list->ll_next;
1131 
1132 			/*
1133 			 * The interlock is the only lock we hold, so
1134 			 * simply return.
1135 			 */
1136 			if (lle == NULL)
1137 				return;
1138 			plock = &lle->ll_children[lle->ll_count - 1];
1139 		}
1140 	}
1141 
1142 	/*
1143 	 * Try to perform most checks without a lock.  If this succeeds we
1144 	 * can skip acquiring the lock and return success.
1145 	 */
1146 	w1 = plock->li_lock->lo_witness;
1147 	if (witness_lock_order_check(w1, w))
1148 		return;
1149 
1150 	/*
1151 	 * Check for duplicate locks of the same type.  Note that we only
1152 	 * have to check for this on the last lock we just acquired.  Any
1153 	 * other cases will be caught as lock order violations.
1154 	 */
1155 	mtx_lock_spin(&w_mtx);
1156 	witness_lock_order_add(w1, w);
1157 	if (w1 == w) {
1158 		i = w->w_index;
1159 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1160 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1161 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1162 			w->w_reversed = 1;
1163 			mtx_unlock_spin(&w_mtx);
1164 			printf(
1165 			    "acquiring duplicate lock of same type: \"%s\"\n",
1166 			    w->w_name);
1167 			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1168 			       plock->li_file, plock->li_line);
1169 			printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
1170 			witness_debugger(1);
1171 		    } else
1172 			    mtx_unlock_spin(&w_mtx);
1173 		return;
1174 	}
1175 	mtx_assert(&w_mtx, MA_OWNED);
1176 
1177 	/*
1178 	 * If we know that the lock we are acquiring comes after
1179 	 * the lock we most recently acquired in the lock order tree,
1180 	 * then there is no need for any further checks.
1181 	 */
1182 	if (isitmychild(w1, w))
1183 		goto out;
1184 
1185 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1186 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1187 
1188 			MPASS(j < WITNESS_COUNT);
1189 			lock1 = &lle->ll_children[i];
1190 
1191 			/*
1192 			 * Ignore the interlock the first time we see it.
1193 			 */
1194 			if (interlock != NULL && interlock == lock1->li_lock) {
1195 				interlock = NULL;
1196 				continue;
1197 			}
1198 
1199 			/*
1200 			 * If this lock doesn't undergo witness checking,
1201 			 * then skip it.
1202 			 */
1203 			w1 = lock1->li_lock->lo_witness;
1204 			if (w1 == NULL) {
1205 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1206 				    ("lock missing witness structure"));
1207 				continue;
1208 			}
1209 
1210 			/*
1211 			 * If we are locking Giant and this is a sleepable
1212 			 * lock, then skip it.
1213 			 */
1214 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1215 			    lock == &Giant.lock_object)
1216 				continue;
1217 
1218 			/*
1219 			 * If we are locking a sleepable lock and this lock
1220 			 * is Giant, then skip it.
1221 			 */
1222 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1223 			    lock1->li_lock == &Giant.lock_object)
1224 				continue;
1225 
1226 			/*
1227 			 * If we are locking a sleepable lock and this lock
1228 			 * isn't sleepable, we want to treat it as a lock
1229 			 * order violation to enfore a general lock order of
1230 			 * sleepable locks before non-sleepable locks.
1231 			 */
1232 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1233 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1234 				goto reversal;
1235 
1236 			/*
1237 			 * If we are locking Giant and this is a non-sleepable
1238 			 * lock, then treat it as a reversal.
1239 			 */
1240 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1241 			    lock == &Giant.lock_object)
1242 				goto reversal;
1243 
1244 			/*
1245 			 * Check the lock order hierarchy for a reveresal.
1246 			 */
1247 			if (!isitmydescendant(w, w1))
1248 				continue;
1249 		reversal:
1250 
1251 			/*
1252 			 * We have a lock order violation, check to see if it
1253 			 * is allowed or has already been yelled about.
1254 			 */
1255 #ifdef BLESSING
1256 
1257 			/*
1258 			 * If the lock order is blessed, just bail.  We don't
1259 			 * look for other lock order violations though, which
1260 			 * may be a bug.
1261 			 */
1262 			if (blessed(w, w1))
1263 				goto out;
1264 #endif
1265 
1266 			/* Bail if this violation is known */
1267 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1268 				goto out;
1269 
1270 			/* Record this as a violation */
1271 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1272 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1273 			w->w_reversed = w1->w_reversed = 1;
1274 			witness_increment_graph_generation();
1275 			mtx_unlock_spin(&w_mtx);
1276 
1277 			/*
1278 			 * Ok, yell about it.
1279 			 */
1280 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1281 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1282 				printf(
1283 		"lock order reversal: (sleepable after non-sleepable)\n");
1284 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1285 			    && lock == &Giant.lock_object)
1286 				printf(
1287 		"lock order reversal: (Giant after non-sleepable)\n");
1288 			else
1289 				printf("lock order reversal:\n");
1290 
1291 			/*
1292 			 * Try to locate an earlier lock with
1293 			 * witness w in our list.
1294 			 */
1295 			do {
1296 				lock2 = &lle->ll_children[i];
1297 				MPASS(lock2->li_lock != NULL);
1298 				if (lock2->li_lock->lo_witness == w)
1299 					break;
1300 				if (i == 0 && lle->ll_next != NULL) {
1301 					lle = lle->ll_next;
1302 					i = lle->ll_count - 1;
1303 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1304 				} else
1305 					i--;
1306 			} while (i >= 0);
1307 			if (i < 0) {
1308 				printf(" 1st %p %s (%s) @ %s:%d\n",
1309 				    lock1->li_lock, lock1->li_lock->lo_name,
1310 				    w1->w_name, lock1->li_file, lock1->li_line);
1311 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1312 				    lock->lo_name, w->w_name, file, line);
1313 			} else {
1314 				printf(" 1st %p %s (%s) @ %s:%d\n",
1315 				    lock2->li_lock, lock2->li_lock->lo_name,
1316 				    lock2->li_lock->lo_witness->w_name,
1317 				    lock2->li_file, lock2->li_line);
1318 				printf(" 2nd %p %s (%s) @ %s:%d\n",
1319 				    lock1->li_lock, lock1->li_lock->lo_name,
1320 				    w1->w_name, lock1->li_file, lock1->li_line);
1321 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1322 				    lock->lo_name, w->w_name, file, line);
1323 			}
1324 			witness_debugger(1);
1325 			return;
1326 		}
1327 	}
1328 
1329 	/*
1330 	 * If requested, build a new lock order.  However, don't build a new
1331 	 * relationship between a sleepable lock and Giant if it is in the
1332 	 * wrong direction.  The correct lock order is that sleepable locks
1333 	 * always come before Giant.
1334 	 */
1335 	if (flags & LOP_NEWORDER &&
1336 	    !(plock->li_lock == &Giant.lock_object &&
1337 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1338 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1339 		    w->w_name, plock->li_lock->lo_witness->w_name);
1340 		itismychild(plock->li_lock->lo_witness, w);
1341 	}
1342 out:
1343 	mtx_unlock_spin(&w_mtx);
1344 }
1345 
1346 void
1347 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1348 {
1349 	struct lock_list_entry **lock_list, *lle;
1350 	struct lock_instance *instance;
1351 	struct witness *w;
1352 	struct thread *td;
1353 
1354 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1355 	    panicstr != NULL)
1356 		return;
1357 	w = lock->lo_witness;
1358 	td = curthread;
1359 	file = fixup_filename(file);
1360 
1361 	/* Determine lock list for this lock. */
1362 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1363 		lock_list = &td->td_sleeplocks;
1364 	else
1365 		lock_list = PCPU_PTR(spinlocks);
1366 
1367 	/* Check to see if we are recursing on a lock we already own. */
1368 	instance = find_instance(*lock_list, lock);
1369 	if (instance != NULL) {
1370 		instance->li_flags++;
1371 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1372 		    td->td_proc->p_pid, lock->lo_name,
1373 		    instance->li_flags & LI_RECURSEMASK);
1374 		instance->li_file = file;
1375 		instance->li_line = line;
1376 		return;
1377 	}
1378 
1379 	/* Update per-witness last file and line acquire. */
1380 	w->w_file = file;
1381 	w->w_line = line;
1382 
1383 	/* Find the next open lock instance in the list and fill it. */
1384 	lle = *lock_list;
1385 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1386 		lle = witness_lock_list_get();
1387 		if (lle == NULL)
1388 			return;
1389 		lle->ll_next = *lock_list;
1390 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1391 		    td->td_proc->p_pid, lle);
1392 		*lock_list = lle;
1393 	}
1394 	instance = &lle->ll_children[lle->ll_count++];
1395 	instance->li_lock = lock;
1396 	instance->li_line = line;
1397 	instance->li_file = file;
1398 	if ((flags & LOP_EXCLUSIVE) != 0)
1399 		instance->li_flags = LI_EXCLUSIVE;
1400 	else
1401 		instance->li_flags = 0;
1402 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1403 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1404 }
1405 
1406 void
1407 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1408 {
1409 	struct lock_instance *instance;
1410 	struct lock_class *class;
1411 
1412 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1413 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1414 		return;
1415 	class = LOCK_CLASS(lock);
1416 	file = fixup_filename(file);
1417 	if (witness_watch) {
1418 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1419 			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1420 			    class->lc_name, lock->lo_name, file, line);
1421 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1422 			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1423 			    class->lc_name, lock->lo_name, file, line);
1424 	}
1425 	instance = find_instance(curthread->td_sleeplocks, lock);
1426 	if (instance == NULL)
1427 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1428 		    class->lc_name, lock->lo_name, file, line);
1429 	if (witness_watch) {
1430 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1431 			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1432 			    class->lc_name, lock->lo_name, file, line);
1433 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1434 			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1435 			    class->lc_name, lock->lo_name,
1436 			    instance->li_flags & LI_RECURSEMASK, file, line);
1437 	}
1438 	instance->li_flags |= LI_EXCLUSIVE;
1439 }
1440 
1441 void
1442 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1443     int line)
1444 {
1445 	struct lock_instance *instance;
1446 	struct lock_class *class;
1447 
1448 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1449 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1450 		return;
1451 	class = LOCK_CLASS(lock);
1452 	file = fixup_filename(file);
1453 	if (witness_watch) {
1454 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1455 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1456 			    class->lc_name, lock->lo_name, file, line);
1457 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1458 			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1459 			    class->lc_name, lock->lo_name, file, line);
1460 	}
1461 	instance = find_instance(curthread->td_sleeplocks, lock);
1462 	if (instance == NULL)
1463 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1464 		    class->lc_name, lock->lo_name, file, line);
1465 	if (witness_watch) {
1466 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1467 			panic("downgrade of shared lock (%s) %s @ %s:%d",
1468 			    class->lc_name, lock->lo_name, file, line);
1469 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1470 			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1471 			    class->lc_name, lock->lo_name,
1472 			    instance->li_flags & LI_RECURSEMASK, file, line);
1473 	}
1474 	instance->li_flags &= ~LI_EXCLUSIVE;
1475 }
1476 
1477 void
1478 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1479 {
1480 	struct lock_list_entry **lock_list, *lle;
1481 	struct lock_instance *instance;
1482 	struct lock_class *class;
1483 	struct thread *td;
1484 	register_t s;
1485 	int i, j;
1486 
1487 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1488 		return;
1489 	td = curthread;
1490 	class = LOCK_CLASS(lock);
1491 	file = fixup_filename(file);
1492 
1493 	/* Find lock instance associated with this lock. */
1494 	if (class->lc_flags & LC_SLEEPLOCK)
1495 		lock_list = &td->td_sleeplocks;
1496 	else
1497 		lock_list = PCPU_PTR(spinlocks);
1498 	lle = *lock_list;
1499 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1500 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1501 			instance = &(*lock_list)->ll_children[i];
1502 			if (instance->li_lock == lock)
1503 				goto found;
1504 		}
1505 
1506 	/*
1507 	 * When disabling WITNESS through witness_watch we could end up in
1508 	 * having registered locks in the td_sleeplocks queue.
1509 	 * We have to make sure we flush these queues, so just search for
1510 	 * eventual register locks and remove them.
1511 	 */
1512 	if (witness_watch > 0)
1513 		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1514 		    lock->lo_name, file, line);
1515 	else
1516 		return;
1517 found:
1518 
1519 	/* First, check for shared/exclusive mismatches. */
1520 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1521 	    (flags & LOP_EXCLUSIVE) == 0) {
1522 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1523 		    lock->lo_name, file, line);
1524 		printf("while exclusively locked from %s:%d\n",
1525 		    instance->li_file, instance->li_line);
1526 		panic("excl->ushare");
1527 	}
1528 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1529 	    (flags & LOP_EXCLUSIVE) != 0) {
1530 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1531 		    lock->lo_name, file, line);
1532 		printf("while share locked from %s:%d\n", instance->li_file,
1533 		    instance->li_line);
1534 		panic("share->uexcl");
1535 	}
1536 	/* If we are recursed, unrecurse. */
1537 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1538 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1539 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1540 		    instance->li_flags);
1541 		instance->li_flags--;
1542 		return;
1543 	}
1544 	/* The lock is now being dropped, check for NORELEASE flag */
1545 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1546 		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1547 		    lock->lo_name, file, line);
1548 		panic("lock marked norelease");
1549 	}
1550 
1551 	/* Otherwise, remove this item from the list. */
1552 	s = intr_disable();
1553 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1554 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1555 	    (*lock_list)->ll_count - 1);
1556 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1557 		(*lock_list)->ll_children[j] =
1558 		    (*lock_list)->ll_children[j + 1];
1559 	(*lock_list)->ll_count--;
1560 	intr_restore(s);
1561 
1562 	/*
1563 	 * In order to reduce contention on w_mtx, we want to keep always an
1564 	 * head object into lists so that frequent allocation from the
1565 	 * free witness pool (and subsequent locking) is avoided.
1566 	 * In order to maintain the current code simple, when the head
1567 	 * object is totally unloaded it means also that we do not have
1568 	 * further objects in the list, so the list ownership needs to be
1569 	 * hand over to another object if the current head needs to be freed.
1570 	 */
1571 	if ((*lock_list)->ll_count == 0) {
1572 		if (*lock_list == lle) {
1573 			if (lle->ll_next == NULL)
1574 				return;
1575 		} else
1576 			lle = *lock_list;
1577 		*lock_list = lle->ll_next;
1578 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1579 		    td->td_proc->p_pid, lle);
1580 		witness_lock_list_free(lle);
1581 	}
1582 }
1583 
1584 void
1585 witness_thread_exit(struct thread *td)
1586 {
1587 	struct lock_list_entry *lle;
1588 	int i, n;
1589 
1590 	lle = td->td_sleeplocks;
1591 	if (lle == NULL || panicstr != NULL)
1592 		return;
1593 	if (lle->ll_count != 0) {
1594 		for (n = 0; lle != NULL; lle = lle->ll_next)
1595 			for (i = lle->ll_count - 1; i >= 0; i--) {
1596 				if (n == 0)
1597 		printf("Thread %p exiting with the following locks held:\n",
1598 					    td);
1599 				n++;
1600 				witness_list_lock(&lle->ll_children[i], printf);
1601 
1602 			}
1603 		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1604 	}
1605 	witness_lock_list_free(lle);
1606 }
1607 
1608 /*
1609  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1610  * exempt Giant and sleepable locks from the checks as well.  If any
1611  * non-exempt locks are held, then a supplied message is printed to the
1612  * console along with a list of the offending locks.  If indicated in the
1613  * flags then a failure results in a panic as well.
1614  */
1615 int
1616 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1617 {
1618 	struct lock_list_entry *lock_list, *lle;
1619 	struct lock_instance *lock1;
1620 	struct thread *td;
1621 	va_list ap;
1622 	int i, n;
1623 
1624 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1625 		return (0);
1626 	n = 0;
1627 	td = curthread;
1628 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1629 		for (i = lle->ll_count - 1; i >= 0; i--) {
1630 			lock1 = &lle->ll_children[i];
1631 			if (lock1->li_lock == lock)
1632 				continue;
1633 			if (flags & WARN_GIANTOK &&
1634 			    lock1->li_lock == &Giant.lock_object)
1635 				continue;
1636 			if (flags & WARN_SLEEPOK &&
1637 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1638 				continue;
1639 			if (n == 0) {
1640 				va_start(ap, fmt);
1641 				vprintf(fmt, ap);
1642 				va_end(ap);
1643 				printf(" with the following");
1644 				if (flags & WARN_SLEEPOK)
1645 					printf(" non-sleepable");
1646 				printf(" locks held:\n");
1647 			}
1648 			n++;
1649 			witness_list_lock(lock1, printf);
1650 		}
1651 
1652 	/*
1653 	 * Pin the thread in order to avoid problems with thread migration.
1654 	 * Once that all verifies are passed about spinlocks ownership,
1655 	 * the thread is in a safe path and it can be unpinned.
1656 	 */
1657 	sched_pin();
1658 	lock_list = PCPU_GET(spinlocks);
1659 	if (lock_list != NULL && lock_list->ll_count != 0) {
1660 		sched_unpin();
1661 
1662 		/*
1663 		 * We should only have one spinlock and as long as
1664 		 * the flags cannot match for this locks class,
1665 		 * check if the first spinlock is the one curthread
1666 		 * should hold.
1667 		 */
1668 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1669 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1670 		    lock1->li_lock == lock && n == 0)
1671 			return (0);
1672 
1673 		va_start(ap, fmt);
1674 		vprintf(fmt, ap);
1675 		va_end(ap);
1676 		printf(" with the following");
1677 		if (flags & WARN_SLEEPOK)
1678 			printf(" non-sleepable");
1679 		printf(" locks held:\n");
1680 		n += witness_list_locks(&lock_list, printf);
1681 	} else
1682 		sched_unpin();
1683 	if (flags & WARN_PANIC && n)
1684 		panic("%s", __func__);
1685 	else
1686 		witness_debugger(n);
1687 	return (n);
1688 }
1689 
1690 const char *
1691 witness_file(struct lock_object *lock)
1692 {
1693 	struct witness *w;
1694 
1695 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1696 		return ("?");
1697 	w = lock->lo_witness;
1698 	return (w->w_file);
1699 }
1700 
1701 int
1702 witness_line(struct lock_object *lock)
1703 {
1704 	struct witness *w;
1705 
1706 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1707 		return (0);
1708 	w = lock->lo_witness;
1709 	return (w->w_line);
1710 }
1711 
1712 static struct witness *
1713 enroll(const char *description, struct lock_class *lock_class)
1714 {
1715 	struct witness *w;
1716 	struct witness_list *typelist;
1717 
1718 	MPASS(description != NULL);
1719 
1720 	if (witness_watch == -1 || panicstr != NULL)
1721 		return (NULL);
1722 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1723 		if (witness_skipspin)
1724 			return (NULL);
1725 		else
1726 			typelist = &w_spin;
1727 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1728 		typelist = &w_sleep;
1729 	else
1730 		panic("lock class %s is not sleep or spin",
1731 		    lock_class->lc_name);
1732 
1733 	mtx_lock_spin(&w_mtx);
1734 	w = witness_hash_get(description);
1735 	if (w)
1736 		goto found;
1737 	if ((w = witness_get()) == NULL)
1738 		return (NULL);
1739 	MPASS(strlen(description) < MAX_W_NAME);
1740 	strcpy(w->w_name, description);
1741 	w->w_class = lock_class;
1742 	w->w_refcount = 1;
1743 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1744 	if (lock_class->lc_flags & LC_SPINLOCK) {
1745 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1746 		w_spin_cnt++;
1747 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1748 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1749 		w_sleep_cnt++;
1750 	}
1751 
1752 	/* Insert new witness into the hash */
1753 	witness_hash_put(w);
1754 	witness_increment_graph_generation();
1755 	mtx_unlock_spin(&w_mtx);
1756 	return (w);
1757 found:
1758 	w->w_refcount++;
1759 	mtx_unlock_spin(&w_mtx);
1760 	if (lock_class != w->w_class)
1761 		panic(
1762 			"lock (%s) %s does not match earlier (%s) lock",
1763 			description, lock_class->lc_name,
1764 			w->w_class->lc_name);
1765 	return (w);
1766 }
1767 
1768 static void
1769 depart(struct witness *w)
1770 {
1771 	struct witness_list *list;
1772 
1773 	MPASS(w->w_refcount == 0);
1774 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1775 		list = &w_sleep;
1776 		w_sleep_cnt--;
1777 	} else {
1778 		list = &w_spin;
1779 		w_spin_cnt--;
1780 	}
1781 	/*
1782 	 * Set file to NULL as it may point into a loadable module.
1783 	 */
1784 	w->w_file = NULL;
1785 	w->w_line = 0;
1786 	witness_increment_graph_generation();
1787 }
1788 
1789 
1790 static void
1791 adopt(struct witness *parent, struct witness *child)
1792 {
1793 	int pi, ci, i, j;
1794 
1795 	if (witness_cold == 0)
1796 		mtx_assert(&w_mtx, MA_OWNED);
1797 
1798 	/* If the relationship is already known, there's no work to be done. */
1799 	if (isitmychild(parent, child))
1800 		return;
1801 
1802 	/* When the structure of the graph changes, bump up the generation. */
1803 	witness_increment_graph_generation();
1804 
1805 	/*
1806 	 * The hard part ... create the direct relationship, then propagate all
1807 	 * indirect relationships.
1808 	 */
1809 	pi = parent->w_index;
1810 	ci = child->w_index;
1811 	WITNESS_INDEX_ASSERT(pi);
1812 	WITNESS_INDEX_ASSERT(ci);
1813 	MPASS(pi != ci);
1814 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1815 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1816 
1817 	/*
1818 	 * If parent was not already an ancestor of child,
1819 	 * then we increment the descendant and ancestor counters.
1820 	 */
1821 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1822 		parent->w_num_descendants++;
1823 		child->w_num_ancestors++;
1824 	}
1825 
1826 	/*
1827 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1828 	 * an ancestor of 'pi' during this loop.
1829 	 */
1830 	for (i = 1; i <= w_max_used_index; i++) {
1831 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1832 		    (i != pi))
1833 			continue;
1834 
1835 		/* Find each descendant of 'i' and mark it as a descendant. */
1836 		for (j = 1; j <= w_max_used_index; j++) {
1837 
1838 			/*
1839 			 * Skip children that are already marked as
1840 			 * descendants of 'i'.
1841 			 */
1842 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1843 				continue;
1844 
1845 			/*
1846 			 * We are only interested in descendants of 'ci'. Note
1847 			 * that 'ci' itself is counted as a descendant of 'ci'.
1848 			 */
1849 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1850 			    (j != ci))
1851 				continue;
1852 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1853 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1854 			w_data[i].w_num_descendants++;
1855 			w_data[j].w_num_ancestors++;
1856 
1857 			/*
1858 			 * Make sure we aren't marking a node as both an
1859 			 * ancestor and descendant. We should have caught
1860 			 * this as a lock order reversal earlier.
1861 			 */
1862 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1863 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1864 				printf("witness rmatrix paradox! [%d][%d]=%d "
1865 				    "both ancestor and descendant\n",
1866 				    i, j, w_rmatrix[i][j]);
1867 				kdb_backtrace();
1868 				printf("Witness disabled.\n");
1869 				witness_watch = -1;
1870 			}
1871 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1872 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1873 				printf("witness rmatrix paradox! [%d][%d]=%d "
1874 				    "both ancestor and descendant\n",
1875 				    j, i, w_rmatrix[j][i]);
1876 				kdb_backtrace();
1877 				printf("Witness disabled.\n");
1878 				witness_watch = -1;
1879 			}
1880 		}
1881 	}
1882 }
1883 
1884 static void
1885 itismychild(struct witness *parent, struct witness *child)
1886 {
1887 
1888 	MPASS(child != NULL && parent != NULL);
1889 	if (witness_cold == 0)
1890 		mtx_assert(&w_mtx, MA_OWNED);
1891 
1892 	if (!witness_lock_type_equal(parent, child)) {
1893 		if (witness_cold == 0)
1894 			mtx_unlock_spin(&w_mtx);
1895 		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1896 		    "the same lock type", __func__, parent->w_name,
1897 		    parent->w_class->lc_name, child->w_name,
1898 		    child->w_class->lc_name);
1899 	}
1900 	adopt(parent, child);
1901 }
1902 
1903 /*
1904  * Generic code for the isitmy*() functions. The rmask parameter is the
1905  * expected relationship of w1 to w2.
1906  */
1907 static int
1908 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1909 {
1910 	unsigned char r1, r2;
1911 	int i1, i2;
1912 
1913 	i1 = w1->w_index;
1914 	i2 = w2->w_index;
1915 	WITNESS_INDEX_ASSERT(i1);
1916 	WITNESS_INDEX_ASSERT(i2);
1917 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1918 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1919 
1920 	/* The flags on one better be the inverse of the flags on the other */
1921 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1922 		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1923 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1924 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1925 		    "w_rmatrix[%d][%d] == %hhx\n",
1926 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1927 		    i2, i1, r2);
1928 		kdb_backtrace();
1929 		printf("Witness disabled.\n");
1930 		witness_watch = -1;
1931 	}
1932 	return (r1 & rmask);
1933 }
1934 
1935 /*
1936  * Checks if @child is a direct child of @parent.
1937  */
1938 static int
1939 isitmychild(struct witness *parent, struct witness *child)
1940 {
1941 
1942 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1943 }
1944 
1945 /*
1946  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1947  */
1948 static int
1949 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1950 {
1951 
1952 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1953 	    __func__));
1954 }
1955 
1956 #ifdef BLESSING
1957 static int
1958 blessed(struct witness *w1, struct witness *w2)
1959 {
1960 	int i;
1961 	struct witness_blessed *b;
1962 
1963 	for (i = 0; i < blessed_count; i++) {
1964 		b = &blessed_list[i];
1965 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1966 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1967 				return (1);
1968 			continue;
1969 		}
1970 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1971 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1972 				return (1);
1973 	}
1974 	return (0);
1975 }
1976 #endif
1977 
1978 static struct witness *
1979 witness_get(void)
1980 {
1981 	struct witness *w;
1982 	int index;
1983 
1984 	if (witness_cold == 0)
1985 		mtx_assert(&w_mtx, MA_OWNED);
1986 
1987 	if (witness_watch == -1) {
1988 		mtx_unlock_spin(&w_mtx);
1989 		return (NULL);
1990 	}
1991 	if (STAILQ_EMPTY(&w_free)) {
1992 		witness_watch = -1;
1993 		mtx_unlock_spin(&w_mtx);
1994 		printf("WITNESS: unable to allocate a new witness object\n");
1995 		return (NULL);
1996 	}
1997 	w = STAILQ_FIRST(&w_free);
1998 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1999 	w_free_cnt--;
2000 	index = w->w_index;
2001 	MPASS(index > 0 && index == w_max_used_index+1 &&
2002 	    index < WITNESS_COUNT);
2003 	bzero(w, sizeof(*w));
2004 	w->w_index = index;
2005 	if (index > w_max_used_index)
2006 		w_max_used_index = index;
2007 	return (w);
2008 }
2009 
2010 static void
2011 witness_free(struct witness *w)
2012 {
2013 
2014 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2015 	w_free_cnt++;
2016 }
2017 
2018 static struct lock_list_entry *
2019 witness_lock_list_get(void)
2020 {
2021 	struct lock_list_entry *lle;
2022 
2023 	if (witness_watch == -1)
2024 		return (NULL);
2025 	mtx_lock_spin(&w_mtx);
2026 	lle = w_lock_list_free;
2027 	if (lle == NULL) {
2028 		witness_watch = -1;
2029 		mtx_unlock_spin(&w_mtx);
2030 		printf("%s: witness exhausted\n", __func__);
2031 		return (NULL);
2032 	}
2033 	w_lock_list_free = lle->ll_next;
2034 	mtx_unlock_spin(&w_mtx);
2035 	bzero(lle, sizeof(*lle));
2036 	return (lle);
2037 }
2038 
2039 static void
2040 witness_lock_list_free(struct lock_list_entry *lle)
2041 {
2042 
2043 	mtx_lock_spin(&w_mtx);
2044 	lle->ll_next = w_lock_list_free;
2045 	w_lock_list_free = lle;
2046 	mtx_unlock_spin(&w_mtx);
2047 }
2048 
2049 static struct lock_instance *
2050 find_instance(struct lock_list_entry *list, struct lock_object *lock)
2051 {
2052 	struct lock_list_entry *lle;
2053 	struct lock_instance *instance;
2054 	int i;
2055 
2056 	for (lle = list; lle != NULL; lle = lle->ll_next)
2057 		for (i = lle->ll_count - 1; i >= 0; i--) {
2058 			instance = &lle->ll_children[i];
2059 			if (instance->li_lock == lock)
2060 				return (instance);
2061 		}
2062 	return (NULL);
2063 }
2064 
2065 static void
2066 witness_list_lock(struct lock_instance *instance,
2067     int (*prnt)(const char *fmt, ...))
2068 {
2069 	struct lock_object *lock;
2070 
2071 	lock = instance->li_lock;
2072 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2073 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2074 	if (lock->lo_witness->w_name != lock->lo_name)
2075 		prnt(" (%s)", lock->lo_witness->w_name);
2076 	prnt(" r = %d (%p) locked @ %s:%d\n",
2077 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
2078 	    instance->li_line);
2079 }
2080 
2081 #ifdef DDB
2082 static int
2083 witness_thread_has_locks(struct thread *td)
2084 {
2085 
2086 	if (td->td_sleeplocks == NULL)
2087 		return (0);
2088 	return (td->td_sleeplocks->ll_count != 0);
2089 }
2090 
2091 static int
2092 witness_proc_has_locks(struct proc *p)
2093 {
2094 	struct thread *td;
2095 
2096 	FOREACH_THREAD_IN_PROC(p, td) {
2097 		if (witness_thread_has_locks(td))
2098 			return (1);
2099 	}
2100 	return (0);
2101 }
2102 #endif
2103 
2104 int
2105 witness_list_locks(struct lock_list_entry **lock_list,
2106     int (*prnt)(const char *fmt, ...))
2107 {
2108 	struct lock_list_entry *lle;
2109 	int i, nheld;
2110 
2111 	nheld = 0;
2112 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2113 		for (i = lle->ll_count - 1; i >= 0; i--) {
2114 			witness_list_lock(&lle->ll_children[i], prnt);
2115 			nheld++;
2116 		}
2117 	return (nheld);
2118 }
2119 
2120 /*
2121  * This is a bit risky at best.  We call this function when we have timed
2122  * out acquiring a spin lock, and we assume that the other CPU is stuck
2123  * with this lock held.  So, we go groveling around in the other CPU's
2124  * per-cpu data to try to find the lock instance for this spin lock to
2125  * see when it was last acquired.
2126  */
2127 void
2128 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2129     int (*prnt)(const char *fmt, ...))
2130 {
2131 	struct lock_instance *instance;
2132 	struct pcpu *pc;
2133 
2134 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2135 		return;
2136 	pc = pcpu_find(owner->td_oncpu);
2137 	instance = find_instance(pc->pc_spinlocks, lock);
2138 	if (instance != NULL)
2139 		witness_list_lock(instance, prnt);
2140 }
2141 
2142 void
2143 witness_save(struct lock_object *lock, const char **filep, int *linep)
2144 {
2145 	struct lock_list_entry *lock_list;
2146 	struct lock_instance *instance;
2147 	struct lock_class *class;
2148 
2149 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2150 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2151 		return;
2152 	class = LOCK_CLASS(lock);
2153 	if (class->lc_flags & LC_SLEEPLOCK)
2154 		lock_list = curthread->td_sleeplocks;
2155 	else {
2156 		if (witness_skipspin)
2157 			return;
2158 		lock_list = PCPU_GET(spinlocks);
2159 	}
2160 	instance = find_instance(lock_list, lock);
2161 	if (instance == NULL)
2162 		panic("%s: lock (%s) %s not locked", __func__,
2163 		    class->lc_name, lock->lo_name);
2164 	*filep = instance->li_file;
2165 	*linep = instance->li_line;
2166 }
2167 
2168 void
2169 witness_restore(struct lock_object *lock, const char *file, int line)
2170 {
2171 	struct lock_list_entry *lock_list;
2172 	struct lock_instance *instance;
2173 	struct lock_class *class;
2174 
2175 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2176 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2177 		return;
2178 	class = LOCK_CLASS(lock);
2179 	if (class->lc_flags & LC_SLEEPLOCK)
2180 		lock_list = curthread->td_sleeplocks;
2181 	else {
2182 		if (witness_skipspin)
2183 			return;
2184 		lock_list = PCPU_GET(spinlocks);
2185 	}
2186 	instance = find_instance(lock_list, lock);
2187 	if (instance == NULL)
2188 		panic("%s: lock (%s) %s not locked", __func__,
2189 		    class->lc_name, lock->lo_name);
2190 	lock->lo_witness->w_file = file;
2191 	lock->lo_witness->w_line = line;
2192 	instance->li_file = file;
2193 	instance->li_line = line;
2194 }
2195 
2196 void
2197 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
2198 {
2199 #ifdef INVARIANT_SUPPORT
2200 	struct lock_instance *instance;
2201 	struct lock_class *class;
2202 
2203 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2204 		return;
2205 	class = LOCK_CLASS(lock);
2206 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2207 		instance = find_instance(curthread->td_sleeplocks, lock);
2208 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2209 		instance = find_instance(PCPU_GET(spinlocks), lock);
2210 	else {
2211 		panic("Lock (%s) %s is not sleep or spin!",
2212 		    class->lc_name, lock->lo_name);
2213 	}
2214 	file = fixup_filename(file);
2215 	switch (flags) {
2216 	case LA_UNLOCKED:
2217 		if (instance != NULL)
2218 			panic("Lock (%s) %s locked @ %s:%d.",
2219 			    class->lc_name, lock->lo_name, file, line);
2220 		break;
2221 	case LA_LOCKED:
2222 	case LA_LOCKED | LA_RECURSED:
2223 	case LA_LOCKED | LA_NOTRECURSED:
2224 	case LA_SLOCKED:
2225 	case LA_SLOCKED | LA_RECURSED:
2226 	case LA_SLOCKED | LA_NOTRECURSED:
2227 	case LA_XLOCKED:
2228 	case LA_XLOCKED | LA_RECURSED:
2229 	case LA_XLOCKED | LA_NOTRECURSED:
2230 		if (instance == NULL) {
2231 			panic("Lock (%s) %s not locked @ %s:%d.",
2232 			    class->lc_name, lock->lo_name, file, line);
2233 			break;
2234 		}
2235 		if ((flags & LA_XLOCKED) != 0 &&
2236 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2237 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2238 			    class->lc_name, lock->lo_name, file, line);
2239 		if ((flags & LA_SLOCKED) != 0 &&
2240 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2241 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2242 			    class->lc_name, lock->lo_name, file, line);
2243 		if ((flags & LA_RECURSED) != 0 &&
2244 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2245 			panic("Lock (%s) %s not recursed @ %s:%d.",
2246 			    class->lc_name, lock->lo_name, file, line);
2247 		if ((flags & LA_NOTRECURSED) != 0 &&
2248 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2249 			panic("Lock (%s) %s recursed @ %s:%d.",
2250 			    class->lc_name, lock->lo_name, file, line);
2251 		break;
2252 	default:
2253 		panic("Invalid lock assertion at %s:%d.", file, line);
2254 
2255 	}
2256 #endif	/* INVARIANT_SUPPORT */
2257 }
2258 
2259 static void
2260 witness_setflag(struct lock_object *lock, int flag, int set)
2261 {
2262 	struct lock_list_entry *lock_list;
2263 	struct lock_instance *instance;
2264 	struct lock_class *class;
2265 
2266 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2267 		return;
2268 	class = LOCK_CLASS(lock);
2269 	if (class->lc_flags & LC_SLEEPLOCK)
2270 		lock_list = curthread->td_sleeplocks;
2271 	else {
2272 		if (witness_skipspin)
2273 			return;
2274 		lock_list = PCPU_GET(spinlocks);
2275 	}
2276 	instance = find_instance(lock_list, lock);
2277 	if (instance == NULL)
2278 		panic("%s: lock (%s) %s not locked", __func__,
2279 		    class->lc_name, lock->lo_name);
2280 
2281 	if (set)
2282 		instance->li_flags |= flag;
2283 	else
2284 		instance->li_flags &= ~flag;
2285 }
2286 
2287 void
2288 witness_norelease(struct lock_object *lock)
2289 {
2290 
2291 	witness_setflag(lock, LI_NORELEASE, 1);
2292 }
2293 
2294 void
2295 witness_releaseok(struct lock_object *lock)
2296 {
2297 
2298 	witness_setflag(lock, LI_NORELEASE, 0);
2299 }
2300 
2301 #ifdef DDB
2302 static void
2303 witness_ddb_list(struct thread *td)
2304 {
2305 
2306 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2307 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2308 
2309 	if (witness_watch < 1)
2310 		return;
2311 
2312 	witness_list_locks(&td->td_sleeplocks, db_printf);
2313 
2314 	/*
2315 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2316 	 * if td is currently executing on some other CPU and holds spin locks
2317 	 * as we won't display those locks.  If we had a MI way of getting
2318 	 * the per-cpu data for a given cpu then we could use
2319 	 * td->td_oncpu to get the list of spinlocks for this thread
2320 	 * and "fix" this.
2321 	 *
2322 	 * That still wouldn't really fix this unless we locked the scheduler
2323 	 * lock or stopped the other CPU to make sure it wasn't changing the
2324 	 * list out from under us.  It is probably best to just not try to
2325 	 * handle threads on other CPU's for now.
2326 	 */
2327 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2328 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2329 }
2330 
2331 DB_SHOW_COMMAND(locks, db_witness_list)
2332 {
2333 	struct thread *td;
2334 
2335 	if (have_addr)
2336 		td = db_lookup_thread(addr, TRUE);
2337 	else
2338 		td = kdb_thread;
2339 	witness_ddb_list(td);
2340 }
2341 
2342 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2343 {
2344 	struct thread *td;
2345 	struct proc *p;
2346 
2347 	/*
2348 	 * It would be nice to list only threads and processes that actually
2349 	 * held sleep locks, but that information is currently not exported
2350 	 * by WITNESS.
2351 	 */
2352 	FOREACH_PROC_IN_SYSTEM(p) {
2353 		if (!witness_proc_has_locks(p))
2354 			continue;
2355 		FOREACH_THREAD_IN_PROC(p, td) {
2356 			if (!witness_thread_has_locks(td))
2357 				continue;
2358 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2359 			    p->p_comm, td, td->td_tid);
2360 			witness_ddb_list(td);
2361 		}
2362 	}
2363 }
2364 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2365 
2366 DB_SHOW_COMMAND(witness, db_witness_display)
2367 {
2368 
2369 	witness_ddb_display(db_printf);
2370 }
2371 #endif
2372 
2373 static int
2374 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2375 {
2376 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2377 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2378 	struct sbuf *sb;
2379 	u_int w_rmatrix1, w_rmatrix2;
2380 	int error, generation, i, j;
2381 
2382 	tmp_data1 = NULL;
2383 	tmp_data2 = NULL;
2384 	tmp_w1 = NULL;
2385 	tmp_w2 = NULL;
2386 	if (witness_watch < 1) {
2387 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2388 		return (error);
2389 	}
2390 	if (witness_cold) {
2391 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2392 		return (error);
2393 	}
2394 	error = 0;
2395 	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2396 	if (sb == NULL)
2397 		return (ENOMEM);
2398 
2399 	/* Allocate and init temporary storage space. */
2400 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2401 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2402 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2403 	    M_WAITOK | M_ZERO);
2404 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2405 	    M_WAITOK | M_ZERO);
2406 	stack_zero(&tmp_data1->wlod_stack);
2407 	stack_zero(&tmp_data2->wlod_stack);
2408 
2409 restart:
2410 	mtx_lock_spin(&w_mtx);
2411 	generation = w_generation;
2412 	mtx_unlock_spin(&w_mtx);
2413 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2414 	    w_lohash.wloh_count);
2415 	for (i = 1; i < w_max_used_index; i++) {
2416 		mtx_lock_spin(&w_mtx);
2417 		if (generation != w_generation) {
2418 			mtx_unlock_spin(&w_mtx);
2419 
2420 			/* The graph has changed, try again. */
2421 			req->oldidx = 0;
2422 			sbuf_clear(sb);
2423 			goto restart;
2424 		}
2425 
2426 		w1 = &w_data[i];
2427 		if (w1->w_reversed == 0) {
2428 			mtx_unlock_spin(&w_mtx);
2429 			continue;
2430 		}
2431 
2432 		/* Copy w1 locally so we can release the spin lock. */
2433 		*tmp_w1 = *w1;
2434 		mtx_unlock_spin(&w_mtx);
2435 
2436 		if (tmp_w1->w_reversed == 0)
2437 			continue;
2438 		for (j = 1; j < w_max_used_index; j++) {
2439 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2440 				continue;
2441 
2442 			mtx_lock_spin(&w_mtx);
2443 			if (generation != w_generation) {
2444 				mtx_unlock_spin(&w_mtx);
2445 
2446 				/* The graph has changed, try again. */
2447 				req->oldidx = 0;
2448 				sbuf_clear(sb);
2449 				goto restart;
2450 			}
2451 
2452 			w2 = &w_data[j];
2453 			data1 = witness_lock_order_get(w1, w2);
2454 			data2 = witness_lock_order_get(w2, w1);
2455 
2456 			/*
2457 			 * Copy information locally so we can release the
2458 			 * spin lock.
2459 			 */
2460 			*tmp_w2 = *w2;
2461 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2462 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2463 
2464 			if (data1) {
2465 				stack_zero(&tmp_data1->wlod_stack);
2466 				stack_copy(&data1->wlod_stack,
2467 				    &tmp_data1->wlod_stack);
2468 			}
2469 			if (data2 && data2 != data1) {
2470 				stack_zero(&tmp_data2->wlod_stack);
2471 				stack_copy(&data2->wlod_stack,
2472 				    &tmp_data2->wlod_stack);
2473 			}
2474 			mtx_unlock_spin(&w_mtx);
2475 
2476 			sbuf_printf(sb,
2477 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2478 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2479 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2480 #if 0
2481  			sbuf_printf(sb,
2482 			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2483  			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2484  			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2485 #endif
2486 			if (data1) {
2487 				sbuf_printf(sb,
2488 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2489 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2490 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2491 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2492 				sbuf_printf(sb, "\n");
2493 			}
2494 			if (data2 && data2 != data1) {
2495 				sbuf_printf(sb,
2496 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2497 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2498 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2499 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2500 				sbuf_printf(sb, "\n");
2501 			}
2502 		}
2503 	}
2504 	mtx_lock_spin(&w_mtx);
2505 	if (generation != w_generation) {
2506 		mtx_unlock_spin(&w_mtx);
2507 
2508 		/*
2509 		 * The graph changed while we were printing stack data,
2510 		 * try again.
2511 		 */
2512 		req->oldidx = 0;
2513 		sbuf_clear(sb);
2514 		goto restart;
2515 	}
2516 	mtx_unlock_spin(&w_mtx);
2517 
2518 	/* Free temporary storage space. */
2519 	free(tmp_data1, M_TEMP);
2520 	free(tmp_data2, M_TEMP);
2521 	free(tmp_w1, M_TEMP);
2522 	free(tmp_w2, M_TEMP);
2523 
2524 	sbuf_finish(sb);
2525 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2526 	sbuf_delete(sb);
2527 
2528 	return (error);
2529 }
2530 
2531 static int
2532 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2533 {
2534 	struct witness *w;
2535 	struct sbuf *sb;
2536 	int error;
2537 
2538 	if (witness_watch < 1) {
2539 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2540 		return (error);
2541 	}
2542 	if (witness_cold) {
2543 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2544 		return (error);
2545 	}
2546 	error = 0;
2547 
2548 	error = sysctl_wire_old_buffer(req, 0);
2549 	if (error != 0)
2550 		return (error);
2551 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2552 	if (sb == NULL)
2553 		return (ENOMEM);
2554 	sbuf_printf(sb, "\n");
2555 
2556 	mtx_lock_spin(&w_mtx);
2557 	STAILQ_FOREACH(w, &w_all, w_list)
2558 		w->w_displayed = 0;
2559 	STAILQ_FOREACH(w, &w_all, w_list)
2560 		witness_add_fullgraph(sb, w);
2561 	mtx_unlock_spin(&w_mtx);
2562 
2563 	/*
2564 	 * Close the sbuf and return to userland.
2565 	 */
2566 	error = sbuf_finish(sb);
2567 	sbuf_delete(sb);
2568 
2569 	return (error);
2570 }
2571 
2572 static int
2573 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2574 {
2575 	int error, value;
2576 
2577 	value = witness_watch;
2578 	error = sysctl_handle_int(oidp, &value, 0, req);
2579 	if (error != 0 || req->newptr == NULL)
2580 		return (error);
2581 	if (value > 1 || value < -1 ||
2582 	    (witness_watch == -1 && value != witness_watch))
2583 		return (EINVAL);
2584 	witness_watch = value;
2585 	return (0);
2586 }
2587 
2588 static void
2589 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2590 {
2591 	int i;
2592 
2593 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2594 		return;
2595 	w->w_displayed = 1;
2596 
2597 	WITNESS_INDEX_ASSERT(w->w_index);
2598 	for (i = 1; i <= w_max_used_index; i++) {
2599 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2600 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2601 			    w_data[i].w_name);
2602 			witness_add_fullgraph(sb, &w_data[i]);
2603 		}
2604 	}
2605 }
2606 
2607 /*
2608  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2609  * interprets the key as a string and reads until the null
2610  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2611  * hash value computed from the key.
2612  */
2613 static uint32_t
2614 witness_hash_djb2(const uint8_t *key, uint32_t size)
2615 {
2616 	unsigned int hash = 5381;
2617 	int i;
2618 
2619 	/* hash = hash * 33 + key[i] */
2620 	if (size)
2621 		for (i = 0; i < size; i++)
2622 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2623 	else
2624 		for (i = 0; key[i] != 0; i++)
2625 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2626 
2627 	return (hash);
2628 }
2629 
2630 
2631 /*
2632  * Initializes the two witness hash tables. Called exactly once from
2633  * witness_initialize().
2634  */
2635 static void
2636 witness_init_hash_tables(void)
2637 {
2638 	int i;
2639 
2640 	MPASS(witness_cold);
2641 
2642 	/* Initialize the hash tables. */
2643 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2644 		w_hash.wh_array[i] = NULL;
2645 
2646 	w_hash.wh_size = WITNESS_HASH_SIZE;
2647 	w_hash.wh_count = 0;
2648 
2649 	/* Initialize the lock order data hash. */
2650 	w_lofree = NULL;
2651 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2652 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2653 		w_lodata[i].wlod_next = w_lofree;
2654 		w_lofree = &w_lodata[i];
2655 	}
2656 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2657 	w_lohash.wloh_count = 0;
2658 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2659 		w_lohash.wloh_array[i] = NULL;
2660 }
2661 
2662 static struct witness *
2663 witness_hash_get(const char *key)
2664 {
2665 	struct witness *w;
2666 	uint32_t hash;
2667 
2668 	MPASS(key != NULL);
2669 	if (witness_cold == 0)
2670 		mtx_assert(&w_mtx, MA_OWNED);
2671 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2672 	w = w_hash.wh_array[hash];
2673 	while (w != NULL) {
2674 		if (strcmp(w->w_name, key) == 0)
2675 			goto out;
2676 		w = w->w_hash_next;
2677 	}
2678 
2679 out:
2680 	return (w);
2681 }
2682 
2683 static void
2684 witness_hash_put(struct witness *w)
2685 {
2686 	uint32_t hash;
2687 
2688 	MPASS(w != NULL);
2689 	MPASS(w->w_name != NULL);
2690 	if (witness_cold == 0)
2691 		mtx_assert(&w_mtx, MA_OWNED);
2692 	KASSERT(witness_hash_get(w->w_name) == NULL,
2693 	    ("%s: trying to add a hash entry that already exists!", __func__));
2694 	KASSERT(w->w_hash_next == NULL,
2695 	    ("%s: w->w_hash_next != NULL", __func__));
2696 
2697 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2698 	w->w_hash_next = w_hash.wh_array[hash];
2699 	w_hash.wh_array[hash] = w;
2700 	w_hash.wh_count++;
2701 }
2702 
2703 
2704 static struct witness_lock_order_data *
2705 witness_lock_order_get(struct witness *parent, struct witness *child)
2706 {
2707 	struct witness_lock_order_data *data = NULL;
2708 	struct witness_lock_order_key key;
2709 	unsigned int hash;
2710 
2711 	MPASS(parent != NULL && child != NULL);
2712 	key.from = parent->w_index;
2713 	key.to = child->w_index;
2714 	WITNESS_INDEX_ASSERT(key.from);
2715 	WITNESS_INDEX_ASSERT(key.to);
2716 	if ((w_rmatrix[parent->w_index][child->w_index]
2717 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2718 		goto out;
2719 
2720 	hash = witness_hash_djb2((const char*)&key,
2721 	    sizeof(key)) % w_lohash.wloh_size;
2722 	data = w_lohash.wloh_array[hash];
2723 	while (data != NULL) {
2724 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2725 			break;
2726 		data = data->wlod_next;
2727 	}
2728 
2729 out:
2730 	return (data);
2731 }
2732 
2733 /*
2734  * Verify that parent and child have a known relationship, are not the same,
2735  * and child is actually a child of parent.  This is done without w_mtx
2736  * to avoid contention in the common case.
2737  */
2738 static int
2739 witness_lock_order_check(struct witness *parent, struct witness *child)
2740 {
2741 
2742 	if (parent != child &&
2743 	    w_rmatrix[parent->w_index][child->w_index]
2744 	    & WITNESS_LOCK_ORDER_KNOWN &&
2745 	    isitmychild(parent, child))
2746 		return (1);
2747 
2748 	return (0);
2749 }
2750 
2751 static int
2752 witness_lock_order_add(struct witness *parent, struct witness *child)
2753 {
2754 	struct witness_lock_order_data *data = NULL;
2755 	struct witness_lock_order_key key;
2756 	unsigned int hash;
2757 
2758 	MPASS(parent != NULL && child != NULL);
2759 	key.from = parent->w_index;
2760 	key.to = child->w_index;
2761 	WITNESS_INDEX_ASSERT(key.from);
2762 	WITNESS_INDEX_ASSERT(key.to);
2763 	if (w_rmatrix[parent->w_index][child->w_index]
2764 	    & WITNESS_LOCK_ORDER_KNOWN)
2765 		return (1);
2766 
2767 	hash = witness_hash_djb2((const char*)&key,
2768 	    sizeof(key)) % w_lohash.wloh_size;
2769 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2770 	data = w_lofree;
2771 	if (data == NULL)
2772 		return (0);
2773 	w_lofree = data->wlod_next;
2774 	data->wlod_next = w_lohash.wloh_array[hash];
2775 	data->wlod_key = key;
2776 	w_lohash.wloh_array[hash] = data;
2777 	w_lohash.wloh_count++;
2778 	stack_zero(&data->wlod_stack);
2779 	stack_save(&data->wlod_stack);
2780 	return (1);
2781 }
2782 
2783 /* Call this whenver the structure of the witness graph changes. */
2784 static void
2785 witness_increment_graph_generation(void)
2786 {
2787 
2788 	if (witness_cold == 0)
2789 		mtx_assert(&w_mtx, MA_OWNED);
2790 	w_generation++;
2791 }
2792 
2793 #ifdef KDB
2794 static void
2795 _witness_debugger(int cond, const char *msg)
2796 {
2797 
2798 	if (witness_trace && cond)
2799 		kdb_backtrace();
2800 	if (witness_kdb && cond)
2801 		kdb_enter(KDB_WHY_WITNESS, msg);
2802 }
2803 #endif
2804