xref: /freebsd/sys/kern/subr_witness.c (revision 7cd2dcf07629713e5a3d60472cfe4701b705a167)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114 
115 #include <machine/stdarg.h>
116 
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120 
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define	KTR_WITNESS	KTR_SUBSYS
124 #else
125 #define	KTR_WITNESS	0
126 #endif
127 
128 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131 
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134 
135 #define	WITNESS_COUNT 		1024
136 #define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138 #define	WITNESS_PENDLIST	768
139 
140 /* Allocate 256 KB of stack data space */
141 #define	WITNESS_LO_DATA_COUNT	2048
142 
143 /* Prime, gives load factor of ~2 at full load */
144 #define	WITNESS_LO_HASH_SIZE	1021
145 
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define	LOCK_NCHILDREN	5
152 #define	LOCK_CHILDCOUNT	2048
153 
154 #define	MAX_W_NAME	64
155 
156 #define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157 #define	FULLGRAPH_SBUF_SIZE	512
158 
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define	WITNESS_RELATED_MASK						\
171 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173 					  * observed. */
174 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177 
178 /* Descendant to ancestor flags */
179 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180 
181 /* Ancestor to descendant flags */
182 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183 
184 #define	WITNESS_INDEX_ASSERT(i)						\
185 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186 
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188 
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196 	struct lock_object	*li_lock;
197 	const char		*li_file;
198 	int			li_line;
199 	u_int			li_flags;
200 };
201 
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213 	struct lock_list_entry	*ll_next;
214 	struct lock_instance	ll_children[LOCK_NCHILDREN];
215 	u_int			ll_count;
216 };
217 
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223 	char  			w_name[MAX_W_NAME];
224 	uint32_t 		w_index;  /* Index in the relationship matrix */
225 	struct lock_class	*w_class;
226 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229 	const char		*w_file; /* File where last acquired */
230 	uint32_t 		w_line; /* Line where last acquired */
231 	uint32_t 		w_refcount;
232 	uint16_t 		w_num_ancestors; /* direct/indirect
233 						  * ancestor count */
234 	uint16_t 		w_num_descendants; /* direct/indirect
235 						    * descendant count */
236 	int16_t 		w_ddb_level;
237 	unsigned		w_displayed:1;
238 	unsigned		w_reversed:1;
239 };
240 
241 STAILQ_HEAD(witness_list, witness);
242 
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248 	struct witness	*wh_array[WITNESS_HASH_SIZE];
249 	uint32_t	wh_size;
250 	uint32_t	wh_count;
251 };
252 
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257 	uint16_t	from;
258 	uint16_t	to;
259 };
260 
261 struct witness_lock_order_data {
262 	struct stack			wlod_stack;
263 	struct witness_lock_order_key	wlod_key;
264 	struct witness_lock_order_data	*wlod_next;
265 };
266 
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data).
271  */
272 struct witness_lock_order_hash {
273 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274 	u_int	wloh_size;
275 	u_int	wloh_count;
276 };
277 
278 #ifdef BLESSING
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 #endif
284 
285 struct witness_pendhelp {
286 	const char		*wh_type;
287 	struct lock_object	*wh_lock;
288 };
289 
290 struct witness_order_list_entry {
291 	const char		*w_name;
292 	struct lock_class	*w_class;
293 };
294 
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302 
303 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306 
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310 
311 	return (key->from == 0 && key->to == 0);
312 }
313 
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318 
319 	return (a->from == b->from && a->to == b->to);
320 }
321 
322 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323 		    const char *fname);
324 #ifdef KDB
325 static void	_witness_debugger(int cond, const char *msg);
326 #endif
327 static void	adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int	blessed(struct witness *, struct witness *);
330 #endif
331 static void	depart(struct witness *w);
332 static struct witness	*enroll(const char *description,
333 			    struct lock_class *lock_class);
334 static struct lock_instance	*find_instance(struct lock_list_entry *list,
335 				    const struct lock_object *lock);
336 static int	isitmychild(struct witness *parent, struct witness *child);
337 static int	isitmydescendant(struct witness *parent, struct witness *child);
338 static void	itismychild(struct witness *parent, struct witness *child);
339 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void	witness_ddb_compute_levels(void);
345 static void	witness_ddb_display(int(*)(const char *fmt, ...));
346 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347 		    struct witness *, int indent);
348 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349 		    struct witness_list *list);
350 static void	witness_ddb_level_descendants(struct witness *parent, int l);
351 static void	witness_ddb_list(struct thread *td);
352 #endif
353 static void	witness_free(struct witness *m);
354 static struct witness	*witness_get(void);
355 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness	*witness_hash_get(const char *key);
357 static void	witness_hash_put(struct witness *w);
358 static void	witness_init_hash_tables(void);
359 static void	witness_increment_graph_generation(void);
360 static void	witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry	*witness_lock_list_get(void);
362 static int	witness_lock_order_add(struct witness *parent,
363 		    struct witness *child);
364 static int	witness_lock_order_check(struct witness *parent,
365 		    struct witness *child);
366 static struct witness_lock_order_data	*witness_lock_order_get(
367 					    struct witness *parent,
368 					    struct witness *child);
369 static void	witness_list_lock(struct lock_instance *instance,
370 		    int (*prnt)(const char *fmt, ...));
371 static void	witness_setflag(struct lock_object *lock, int flag, int set);
372 
373 #ifdef KDB
374 #define	witness_debugger(c)	_witness_debugger(c, __func__)
375 #else
376 #define	witness_debugger(c)
377 #endif
378 
379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
380     "Witness Locking");
381 
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393 
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *	- a lock hierarchy violation occurs
399  *	- locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int	witness_kdb = 1;
403 #else
404 int	witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408 
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *	- a lock hierarchy violation occurs
413  *	- locks are held when going to sleep.
414  */
415 int	witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419 
420 #ifdef WITNESS_SKIPSPIN
421 int	witness_skipspin = 1;
422 #else
423 int	witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428 
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434 
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440 
441 static struct mtx w_mtx;
442 
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446 
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450 
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455 
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461 
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;	/* The witness hash table. */
466 
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475 
476 
477 static struct witness_order_list_entry order_lists[] = {
478 	/*
479 	 * sx locks
480 	 */
481 	{ "proctree", &lock_class_sx },
482 	{ "allproc", &lock_class_sx },
483 	{ "allprison", &lock_class_sx },
484 	{ NULL, NULL },
485 	/*
486 	 * Various mutexes
487 	 */
488 	{ "Giant", &lock_class_mtx_sleep },
489 	{ "pipe mutex", &lock_class_mtx_sleep },
490 	{ "sigio lock", &lock_class_mtx_sleep },
491 	{ "process group", &lock_class_mtx_sleep },
492 	{ "process lock", &lock_class_mtx_sleep },
493 	{ "session", &lock_class_mtx_sleep },
494 	{ "uidinfo hash", &lock_class_rw },
495 #ifdef	HWPMC_HOOKS
496 	{ "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498 	{ "time lock", &lock_class_mtx_sleep },
499 	{ NULL, NULL },
500 	/*
501 	 * Sockets
502 	 */
503 	{ "accept", &lock_class_mtx_sleep },
504 	{ "so_snd", &lock_class_mtx_sleep },
505 	{ "so_rcv", &lock_class_mtx_sleep },
506 	{ "sellck", &lock_class_mtx_sleep },
507 	{ NULL, NULL },
508 	/*
509 	 * Routing
510 	 */
511 	{ "so_rcv", &lock_class_mtx_sleep },
512 	{ "radix node head", &lock_class_rw },
513 	{ "rtentry", &lock_class_mtx_sleep },
514 	{ "ifaddr", &lock_class_mtx_sleep },
515 	{ NULL, NULL },
516 	/*
517 	 * IPv4 multicast:
518 	 * protocol locks before interface locks, after UDP locks.
519 	 */
520 	{ "udpinp", &lock_class_rw },
521 	{ "in_multi_mtx", &lock_class_mtx_sleep },
522 	{ "igmp_mtx", &lock_class_mtx_sleep },
523 	{ "if_addr_lock", &lock_class_rw },
524 	{ NULL, NULL },
525 	/*
526 	 * IPv6 multicast:
527 	 * protocol locks before interface locks, after UDP locks.
528 	 */
529 	{ "udpinp", &lock_class_rw },
530 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
531 	{ "mld_mtx", &lock_class_mtx_sleep },
532 	{ "if_addr_lock", &lock_class_rw },
533 	{ NULL, NULL },
534 	/*
535 	 * UNIX Domain Sockets
536 	 */
537 	{ "unp_global_rwlock", &lock_class_rw },
538 	{ "unp_list_lock", &lock_class_mtx_sleep },
539 	{ "unp", &lock_class_mtx_sleep },
540 	{ "so_snd", &lock_class_mtx_sleep },
541 	{ NULL, NULL },
542 	/*
543 	 * UDP/IP
544 	 */
545 	{ "udp", &lock_class_rw },
546 	{ "udpinp", &lock_class_rw },
547 	{ "so_snd", &lock_class_mtx_sleep },
548 	{ NULL, NULL },
549 	/*
550 	 * TCP/IP
551 	 */
552 	{ "tcp", &lock_class_rw },
553 	{ "tcpinp", &lock_class_rw },
554 	{ "so_snd", &lock_class_mtx_sleep },
555 	{ NULL, NULL },
556 	/*
557 	 * netatalk
558 	 */
559 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
560 	{ "ddp_mtx", &lock_class_mtx_sleep },
561 	{ NULL, NULL },
562 	/*
563 	 * BPF
564 	 */
565 	{ "bpf global lock", &lock_class_mtx_sleep },
566 	{ "bpf interface lock", &lock_class_rw },
567 	{ "bpf cdev lock", &lock_class_mtx_sleep },
568 	{ NULL, NULL },
569 	/*
570 	 * NFS server
571 	 */
572 	{ "nfsd_mtx", &lock_class_mtx_sleep },
573 	{ "so_snd", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 
576 	/*
577 	 * IEEE 802.11
578 	 */
579 	{ "802.11 com lock", &lock_class_mtx_sleep},
580 	{ NULL, NULL },
581 	/*
582 	 * Network drivers
583 	 */
584 	{ "network driver", &lock_class_mtx_sleep},
585 	{ NULL, NULL },
586 
587 	/*
588 	 * Netgraph
589 	 */
590 	{ "ng_node", &lock_class_mtx_sleep },
591 	{ "ng_worklist", &lock_class_mtx_sleep },
592 	{ NULL, NULL },
593 	/*
594 	 * CDEV
595 	 */
596 	{ "vm map (system)", &lock_class_mtx_sleep },
597 	{ "vm page queue", &lock_class_mtx_sleep },
598 	{ "vnode interlock", &lock_class_mtx_sleep },
599 	{ "cdev", &lock_class_mtx_sleep },
600 	{ NULL, NULL },
601 	/*
602 	 * VM
603 	 */
604 	{ "vm map (user)", &lock_class_sx },
605 	{ "vm object", &lock_class_mtx_sleep },
606 	{ "vm page", &lock_class_mtx_sleep },
607 	{ "vm page queue", &lock_class_mtx_sleep },
608 	{ "pmap pv global", &lock_class_rw },
609 	{ "pmap", &lock_class_mtx_sleep },
610 	{ "pmap pv list", &lock_class_rw },
611 	{ "vm page free queue", &lock_class_mtx_sleep },
612 	{ NULL, NULL },
613 	/*
614 	 * kqueue/VFS interaction
615 	 */
616 	{ "kqueue", &lock_class_mtx_sleep },
617 	{ "struct mount mtx", &lock_class_mtx_sleep },
618 	{ "vnode interlock", &lock_class_mtx_sleep },
619 	{ NULL, NULL },
620 	/*
621 	 * ZFS locking
622 	 */
623 	{ "dn->dn_mtx", &lock_class_sx },
624 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
625 	{ "db->db_mtx", &lock_class_sx },
626 	{ NULL, NULL },
627 	/*
628 	 * spin locks
629 	 */
630 #ifdef SMP
631 	{ "ap boot", &lock_class_mtx_spin },
632 #endif
633 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
634 	{ "sio", &lock_class_mtx_spin },
635 	{ "scrlock", &lock_class_mtx_spin },
636 #ifdef __i386__
637 	{ "cy", &lock_class_mtx_spin },
638 #endif
639 #ifdef __sparc64__
640 	{ "pcib_mtx", &lock_class_mtx_spin },
641 	{ "rtc_mtx", &lock_class_mtx_spin },
642 #endif
643 	{ "scc_hwmtx", &lock_class_mtx_spin },
644 	{ "uart_hwmtx", &lock_class_mtx_spin },
645 	{ "fast_taskqueue", &lock_class_mtx_spin },
646 	{ "intr table", &lock_class_mtx_spin },
647 #ifdef	HWPMC_HOOKS
648 	{ "pmc-per-proc", &lock_class_mtx_spin },
649 #endif
650 	{ "process slock", &lock_class_mtx_spin },
651 	{ "sleepq chain", &lock_class_mtx_spin },
652 	{ "umtx lock", &lock_class_mtx_spin },
653 	{ "rm_spinlock", &lock_class_mtx_spin },
654 	{ "turnstile chain", &lock_class_mtx_spin },
655 	{ "turnstile lock", &lock_class_mtx_spin },
656 	{ "sched lock", &lock_class_mtx_spin },
657 	{ "td_contested", &lock_class_mtx_spin },
658 	{ "callout", &lock_class_mtx_spin },
659 	{ "entropy harvest mutex", &lock_class_mtx_spin },
660 	{ "syscons video lock", &lock_class_mtx_spin },
661 #ifdef SMP
662 	{ "smp rendezvous", &lock_class_mtx_spin },
663 #endif
664 #ifdef __powerpc__
665 	{ "tlb0", &lock_class_mtx_spin },
666 #endif
667 	/*
668 	 * leaf locks
669 	 */
670 	{ "intrcnt", &lock_class_mtx_spin },
671 	{ "icu", &lock_class_mtx_spin },
672 #ifdef __i386__
673 	{ "allpmaps", &lock_class_mtx_spin },
674 	{ "descriptor tables", &lock_class_mtx_spin },
675 #endif
676 	{ "clk", &lock_class_mtx_spin },
677 	{ "cpuset", &lock_class_mtx_spin },
678 	{ "mprof lock", &lock_class_mtx_spin },
679 	{ "zombie lock", &lock_class_mtx_spin },
680 	{ "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682 	{ "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685 	{ "pcicfg", &lock_class_mtx_spin },
686 	{ "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
689 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
690 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
691 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
692 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef	HWPMC_HOOKS
694 	{ "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696 	{ "blocked lock", &lock_class_mtx_spin },
697 	{ NULL, NULL },
698 	{ NULL, NULL }
699 };
700 
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709 	sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711 
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716 
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722 
723 /* Trim useless garbage from filenames. */
724 static const char *
725 fixup_filename(const char *file)
726 {
727 
728 	if (file == NULL)
729 		return (NULL);
730 	while (strncmp(file, "../", 3) == 0)
731 		file += 3;
732 	return (file);
733 }
734 
735 /*
736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
737  * assume that the early boot is single-threaded at least until after this
738  * routine is completed.
739  */
740 static void
741 witness_initialize(void *dummy __unused)
742 {
743 	struct lock_object *lock;
744 	struct witness_order_list_entry *order;
745 	struct witness *w, *w1;
746 	int i;
747 
748 	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749 	    M_NOWAIT | M_ZERO);
750 
751 	/*
752 	 * We have to release Giant before initializing its witness
753 	 * structure so that WITNESS doesn't get confused.
754 	 */
755 	mtx_unlock(&Giant);
756 	mtx_assert(&Giant, MA_NOTOWNED);
757 
758 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760 	    MTX_NOWITNESS | MTX_NOPROFILE);
761 	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762 		w = &w_data[i];
763 		memset(w, 0, sizeof(*w));
764 		w_data[i].w_index = i;	/* Witness index never changes. */
765 		witness_free(w);
766 	}
767 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768 	    ("%s: Invalid list of free witness objects", __func__));
769 
770 	/* Witness with index 0 is not used to aid in debugging. */
771 	STAILQ_REMOVE_HEAD(&w_free, w_list);
772 	w_free_cnt--;
773 
774 	memset(w_rmatrix, 0,
775 	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776 
777 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
778 		witness_lock_list_free(&w_locklistdata[i]);
779 	witness_init_hash_tables();
780 
781 	/* First add in all the specified order lists. */
782 	for (order = order_lists; order->w_name != NULL; order++) {
783 		w = enroll(order->w_name, order->w_class);
784 		if (w == NULL)
785 			continue;
786 		w->w_file = "order list";
787 		for (order++; order->w_name != NULL; order++) {
788 			w1 = enroll(order->w_name, order->w_class);
789 			if (w1 == NULL)
790 				continue;
791 			w1->w_file = "order list";
792 			itismychild(w, w1);
793 			w = w1;
794 		}
795 	}
796 	witness_spin_warn = 1;
797 
798 	/* Iterate through all locks and add them to witness. */
799 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800 		lock = pending_locks[i].wh_lock;
801 		KASSERT(lock->lo_flags & LO_WITNESS,
802 		    ("%s: lock %s is on pending list but not LO_WITNESS",
803 		    __func__, lock->lo_name));
804 		lock->lo_witness = enroll(pending_locks[i].wh_type,
805 		    LOCK_CLASS(lock));
806 	}
807 
808 	/* Mark the witness code as being ready for use. */
809 	witness_cold = 0;
810 
811 	mtx_lock(&Giant);
812 }
813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814     NULL);
815 
816 void
817 witness_init(struct lock_object *lock, const char *type)
818 {
819 	struct lock_class *class;
820 
821 	/* Various sanity checks. */
822 	class = LOCK_CLASS(lock);
823 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824 	    (class->lc_flags & LC_RECURSABLE) == 0)
825 		panic("%s: lock (%s) %s can not be recursable", __func__,
826 		    class->lc_name, lock->lo_name);
827 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828 	    (class->lc_flags & LC_SLEEPABLE) == 0)
829 		panic("%s: lock (%s) %s can not be sleepable", __func__,
830 		    class->lc_name, lock->lo_name);
831 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832 	    (class->lc_flags & LC_UPGRADABLE) == 0)
833 		panic("%s: lock (%s) %s can not be upgradable", __func__,
834 		    class->lc_name, lock->lo_name);
835 
836 	/*
837 	 * If we shouldn't watch this lock, then just clear lo_witness.
838 	 * Otherwise, if witness_cold is set, then it is too early to
839 	 * enroll this lock, so defer it to witness_initialize() by adding
840 	 * it to the pending_locks list.  If it is not too early, then enroll
841 	 * the lock now.
842 	 */
843 	if (witness_watch < 1 || panicstr != NULL ||
844 	    (lock->lo_flags & LO_WITNESS) == 0)
845 		lock->lo_witness = NULL;
846 	else if (witness_cold) {
847 		pending_locks[pending_cnt].wh_lock = lock;
848 		pending_locks[pending_cnt++].wh_type = type;
849 		if (pending_cnt > WITNESS_PENDLIST)
850 			panic("%s: pending locks list is too small, bump it\n",
851 			    __func__);
852 	} else
853 		lock->lo_witness = enroll(type, class);
854 }
855 
856 void
857 witness_destroy(struct lock_object *lock)
858 {
859 	struct lock_class *class;
860 	struct witness *w;
861 
862 	class = LOCK_CLASS(lock);
863 
864 	if (witness_cold)
865 		panic("lock (%s) %s destroyed while witness_cold",
866 		    class->lc_name, lock->lo_name);
867 
868 	/* XXX: need to verify that no one holds the lock */
869 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
870 		return;
871 	w = lock->lo_witness;
872 
873 	mtx_lock_spin(&w_mtx);
874 	MPASS(w->w_refcount > 0);
875 	w->w_refcount--;
876 
877 	if (w->w_refcount == 0)
878 		depart(w);
879 	mtx_unlock_spin(&w_mtx);
880 }
881 
882 #ifdef DDB
883 static void
884 witness_ddb_compute_levels(void)
885 {
886 	struct witness *w;
887 
888 	/*
889 	 * First clear all levels.
890 	 */
891 	STAILQ_FOREACH(w, &w_all, w_list)
892 		w->w_ddb_level = -1;
893 
894 	/*
895 	 * Look for locks with no parents and level all their descendants.
896 	 */
897 	STAILQ_FOREACH(w, &w_all, w_list) {
898 
899 		/* If the witness has ancestors (is not a root), skip it. */
900 		if (w->w_num_ancestors > 0)
901 			continue;
902 		witness_ddb_level_descendants(w, 0);
903 	}
904 }
905 
906 static void
907 witness_ddb_level_descendants(struct witness *w, int l)
908 {
909 	int i;
910 
911 	if (w->w_ddb_level >= l)
912 		return;
913 
914 	w->w_ddb_level = l;
915 	l++;
916 
917 	for (i = 1; i <= w_max_used_index; i++) {
918 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
919 			witness_ddb_level_descendants(&w_data[i], l);
920 	}
921 }
922 
923 static void
924 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
925     struct witness *w, int indent)
926 {
927 	int i;
928 
929  	for (i = 0; i < indent; i++)
930  		prnt(" ");
931 	prnt("%s (type: %s, depth: %d, active refs: %d)",
932 	     w->w_name, w->w_class->lc_name,
933 	     w->w_ddb_level, w->w_refcount);
934  	if (w->w_displayed) {
935  		prnt(" -- (already displayed)\n");
936  		return;
937  	}
938  	w->w_displayed = 1;
939 	if (w->w_file != NULL && w->w_line != 0)
940 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
941 		    w->w_line);
942 	else
943 		prnt(" -- never acquired\n");
944 	indent++;
945 	WITNESS_INDEX_ASSERT(w->w_index);
946 	for (i = 1; i <= w_max_used_index; i++) {
947 		if (db_pager_quit)
948 			return;
949 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
950 			witness_ddb_display_descendants(prnt, &w_data[i],
951 			    indent);
952 	}
953 }
954 
955 static void
956 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
957     struct witness_list *list)
958 {
959 	struct witness *w;
960 
961 	STAILQ_FOREACH(w, list, w_typelist) {
962 		if (w->w_file == NULL || w->w_ddb_level > 0)
963 			continue;
964 
965 		/* This lock has no anscestors - display its descendants. */
966 		witness_ddb_display_descendants(prnt, w, 0);
967 		if (db_pager_quit)
968 			return;
969 	}
970 }
971 
972 static void
973 witness_ddb_display(int(*prnt)(const char *fmt, ...))
974 {
975 	struct witness *w;
976 
977 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
978 	witness_ddb_compute_levels();
979 
980 	/* Clear all the displayed flags. */
981 	STAILQ_FOREACH(w, &w_all, w_list)
982 		w->w_displayed = 0;
983 
984 	/*
985 	 * First, handle sleep locks which have been acquired at least
986 	 * once.
987 	 */
988 	prnt("Sleep locks:\n");
989 	witness_ddb_display_list(prnt, &w_sleep);
990 	if (db_pager_quit)
991 		return;
992 
993 	/*
994 	 * Now do spin locks which have been acquired at least once.
995 	 */
996 	prnt("\nSpin locks:\n");
997 	witness_ddb_display_list(prnt, &w_spin);
998 	if (db_pager_quit)
999 		return;
1000 
1001 	/*
1002 	 * Finally, any locks which have not been acquired yet.
1003 	 */
1004 	prnt("\nLocks which were never acquired:\n");
1005 	STAILQ_FOREACH(w, &w_all, w_list) {
1006 		if (w->w_file != NULL || w->w_refcount == 0)
1007 			continue;
1008 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1009 		    w->w_class->lc_name, w->w_ddb_level);
1010 		if (db_pager_quit)
1011 			return;
1012 	}
1013 }
1014 #endif /* DDB */
1015 
1016 int
1017 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1018 {
1019 
1020 	if (witness_watch == -1 || panicstr != NULL)
1021 		return (0);
1022 
1023 	/* Require locks that witness knows about. */
1024 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1025 	    lock2->lo_witness == NULL)
1026 		return (EINVAL);
1027 
1028 	mtx_assert(&w_mtx, MA_NOTOWNED);
1029 	mtx_lock_spin(&w_mtx);
1030 
1031 	/*
1032 	 * If we already have either an explicit or implied lock order that
1033 	 * is the other way around, then return an error.
1034 	 */
1035 	if (witness_watch &&
1036 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1037 		mtx_unlock_spin(&w_mtx);
1038 		return (EDOOFUS);
1039 	}
1040 
1041 	/* Try to add the new order. */
1042 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1043 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1044 	itismychild(lock1->lo_witness, lock2->lo_witness);
1045 	mtx_unlock_spin(&w_mtx);
1046 	return (0);
1047 }
1048 
1049 void
1050 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1051     int line, struct lock_object *interlock)
1052 {
1053 	struct lock_list_entry *lock_list, *lle;
1054 	struct lock_instance *lock1, *lock2, *plock;
1055 	struct lock_class *class;
1056 	struct witness *w, *w1;
1057 	struct thread *td;
1058 	int i, j;
1059 
1060 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1061 	    panicstr != NULL)
1062 		return;
1063 
1064 	w = lock->lo_witness;
1065 	class = LOCK_CLASS(lock);
1066 	td = curthread;
1067 
1068 	if (class->lc_flags & LC_SLEEPLOCK) {
1069 
1070 		/*
1071 		 * Since spin locks include a critical section, this check
1072 		 * implicitly enforces a lock order of all sleep locks before
1073 		 * all spin locks.
1074 		 */
1075 		if (td->td_critnest != 0 && !kdb_active)
1076 			panic("blockable sleep lock (%s) %s @ %s:%d",
1077 			    class->lc_name, lock->lo_name,
1078 			    fixup_filename(file), line);
1079 
1080 		/*
1081 		 * If this is the first lock acquired then just return as
1082 		 * no order checking is needed.
1083 		 */
1084 		lock_list = td->td_sleeplocks;
1085 		if (lock_list == NULL || lock_list->ll_count == 0)
1086 			return;
1087 	} else {
1088 
1089 		/*
1090 		 * If this is the first lock, just return as no order
1091 		 * checking is needed.  Avoid problems with thread
1092 		 * migration pinning the thread while checking if
1093 		 * spinlocks are held.  If at least one spinlock is held
1094 		 * the thread is in a safe path and it is allowed to
1095 		 * unpin it.
1096 		 */
1097 		sched_pin();
1098 		lock_list = PCPU_GET(spinlocks);
1099 		if (lock_list == NULL || lock_list->ll_count == 0) {
1100 			sched_unpin();
1101 			return;
1102 		}
1103 		sched_unpin();
1104 	}
1105 
1106 	/*
1107 	 * Check to see if we are recursing on a lock we already own.  If
1108 	 * so, make sure that we don't mismatch exclusive and shared lock
1109 	 * acquires.
1110 	 */
1111 	lock1 = find_instance(lock_list, lock);
1112 	if (lock1 != NULL) {
1113 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1114 		    (flags & LOP_EXCLUSIVE) == 0) {
1115 			printf("shared lock of (%s) %s @ %s:%d\n",
1116 			    class->lc_name, lock->lo_name,
1117 			    fixup_filename(file), line);
1118 			printf("while exclusively locked from %s:%d\n",
1119 			    fixup_filename(lock1->li_file), lock1->li_line);
1120 			panic("share->excl");
1121 		}
1122 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1123 		    (flags & LOP_EXCLUSIVE) != 0) {
1124 			printf("exclusive lock of (%s) %s @ %s:%d\n",
1125 			    class->lc_name, lock->lo_name,
1126 			    fixup_filename(file), line);
1127 			printf("while share locked from %s:%d\n",
1128 			    fixup_filename(lock1->li_file), lock1->li_line);
1129 			panic("excl->share");
1130 		}
1131 		return;
1132 	}
1133 
1134 	/*
1135 	 * Find the previously acquired lock, but ignore interlocks.
1136 	 */
1137 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1138 	if (interlock != NULL && plock->li_lock == interlock) {
1139 		if (lock_list->ll_count > 1)
1140 			plock =
1141 			    &lock_list->ll_children[lock_list->ll_count - 2];
1142 		else {
1143 			lle = lock_list->ll_next;
1144 
1145 			/*
1146 			 * The interlock is the only lock we hold, so
1147 			 * simply return.
1148 			 */
1149 			if (lle == NULL)
1150 				return;
1151 			plock = &lle->ll_children[lle->ll_count - 1];
1152 		}
1153 	}
1154 
1155 	/*
1156 	 * Try to perform most checks without a lock.  If this succeeds we
1157 	 * can skip acquiring the lock and return success.
1158 	 */
1159 	w1 = plock->li_lock->lo_witness;
1160 	if (witness_lock_order_check(w1, w))
1161 		return;
1162 
1163 	/*
1164 	 * Check for duplicate locks of the same type.  Note that we only
1165 	 * have to check for this on the last lock we just acquired.  Any
1166 	 * other cases will be caught as lock order violations.
1167 	 */
1168 	mtx_lock_spin(&w_mtx);
1169 	witness_lock_order_add(w1, w);
1170 	if (w1 == w) {
1171 		i = w->w_index;
1172 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1173 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1174 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1175 			w->w_reversed = 1;
1176 			mtx_unlock_spin(&w_mtx);
1177 			printf(
1178 			    "acquiring duplicate lock of same type: \"%s\"\n",
1179 			    w->w_name);
1180 			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1181 			    fixup_filename(plock->li_file), plock->li_line);
1182 			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1183 			    fixup_filename(file), line);
1184 			witness_debugger(1);
1185 		} else
1186 			mtx_unlock_spin(&w_mtx);
1187 		return;
1188 	}
1189 	mtx_assert(&w_mtx, MA_OWNED);
1190 
1191 	/*
1192 	 * If we know that the lock we are acquiring comes after
1193 	 * the lock we most recently acquired in the lock order tree,
1194 	 * then there is no need for any further checks.
1195 	 */
1196 	if (isitmychild(w1, w))
1197 		goto out;
1198 
1199 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1200 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1201 
1202 			MPASS(j < WITNESS_COUNT);
1203 			lock1 = &lle->ll_children[i];
1204 
1205 			/*
1206 			 * Ignore the interlock the first time we see it.
1207 			 */
1208 			if (interlock != NULL && interlock == lock1->li_lock) {
1209 				interlock = NULL;
1210 				continue;
1211 			}
1212 
1213 			/*
1214 			 * If this lock doesn't undergo witness checking,
1215 			 * then skip it.
1216 			 */
1217 			w1 = lock1->li_lock->lo_witness;
1218 			if (w1 == NULL) {
1219 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1220 				    ("lock missing witness structure"));
1221 				continue;
1222 			}
1223 
1224 			/*
1225 			 * If we are locking Giant and this is a sleepable
1226 			 * lock, then skip it.
1227 			 */
1228 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1229 			    lock == &Giant.lock_object)
1230 				continue;
1231 
1232 			/*
1233 			 * If we are locking a sleepable lock and this lock
1234 			 * is Giant, then skip it.
1235 			 */
1236 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1237 			    lock1->li_lock == &Giant.lock_object)
1238 				continue;
1239 
1240 			/*
1241 			 * If we are locking a sleepable lock and this lock
1242 			 * isn't sleepable, we want to treat it as a lock
1243 			 * order violation to enfore a general lock order of
1244 			 * sleepable locks before non-sleepable locks.
1245 			 */
1246 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1247 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1248 				goto reversal;
1249 
1250 			/*
1251 			 * If we are locking Giant and this is a non-sleepable
1252 			 * lock, then treat it as a reversal.
1253 			 */
1254 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1255 			    lock == &Giant.lock_object)
1256 				goto reversal;
1257 
1258 			/*
1259 			 * Check the lock order hierarchy for a reveresal.
1260 			 */
1261 			if (!isitmydescendant(w, w1))
1262 				continue;
1263 		reversal:
1264 
1265 			/*
1266 			 * We have a lock order violation, check to see if it
1267 			 * is allowed or has already been yelled about.
1268 			 */
1269 #ifdef BLESSING
1270 
1271 			/*
1272 			 * If the lock order is blessed, just bail.  We don't
1273 			 * look for other lock order violations though, which
1274 			 * may be a bug.
1275 			 */
1276 			if (blessed(w, w1))
1277 				goto out;
1278 #endif
1279 
1280 			/* Bail if this violation is known */
1281 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1282 				goto out;
1283 
1284 			/* Record this as a violation */
1285 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1286 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1287 			w->w_reversed = w1->w_reversed = 1;
1288 			witness_increment_graph_generation();
1289 			mtx_unlock_spin(&w_mtx);
1290 
1291 			/*
1292 			 * Ok, yell about it.
1293 			 */
1294 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1295 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1296 				printf(
1297 		"lock order reversal: (sleepable after non-sleepable)\n");
1298 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1299 			    && lock == &Giant.lock_object)
1300 				printf(
1301 		"lock order reversal: (Giant after non-sleepable)\n");
1302 			else
1303 				printf("lock order reversal:\n");
1304 
1305 			/*
1306 			 * Try to locate an earlier lock with
1307 			 * witness w in our list.
1308 			 */
1309 			do {
1310 				lock2 = &lle->ll_children[i];
1311 				MPASS(lock2->li_lock != NULL);
1312 				if (lock2->li_lock->lo_witness == w)
1313 					break;
1314 				if (i == 0 && lle->ll_next != NULL) {
1315 					lle = lle->ll_next;
1316 					i = lle->ll_count - 1;
1317 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1318 				} else
1319 					i--;
1320 			} while (i >= 0);
1321 			if (i < 0) {
1322 				printf(" 1st %p %s (%s) @ %s:%d\n",
1323 				    lock1->li_lock, lock1->li_lock->lo_name,
1324 				    w1->w_name, fixup_filename(lock1->li_file),
1325 				    lock1->li_line);
1326 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1327 				    lock->lo_name, w->w_name,
1328 				    fixup_filename(file), line);
1329 			} else {
1330 				printf(" 1st %p %s (%s) @ %s:%d\n",
1331 				    lock2->li_lock, lock2->li_lock->lo_name,
1332 				    lock2->li_lock->lo_witness->w_name,
1333 				    fixup_filename(lock2->li_file),
1334 				    lock2->li_line);
1335 				printf(" 2nd %p %s (%s) @ %s:%d\n",
1336 				    lock1->li_lock, lock1->li_lock->lo_name,
1337 				    w1->w_name, fixup_filename(lock1->li_file),
1338 				    lock1->li_line);
1339 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1340 				    lock->lo_name, w->w_name,
1341 				    fixup_filename(file), line);
1342 			}
1343 			witness_debugger(1);
1344 			return;
1345 		}
1346 	}
1347 
1348 	/*
1349 	 * If requested, build a new lock order.  However, don't build a new
1350 	 * relationship between a sleepable lock and Giant if it is in the
1351 	 * wrong direction.  The correct lock order is that sleepable locks
1352 	 * always come before Giant.
1353 	 */
1354 	if (flags & LOP_NEWORDER &&
1355 	    !(plock->li_lock == &Giant.lock_object &&
1356 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1357 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1358 		    w->w_name, plock->li_lock->lo_witness->w_name);
1359 		itismychild(plock->li_lock->lo_witness, w);
1360 	}
1361 out:
1362 	mtx_unlock_spin(&w_mtx);
1363 }
1364 
1365 void
1366 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1367 {
1368 	struct lock_list_entry **lock_list, *lle;
1369 	struct lock_instance *instance;
1370 	struct witness *w;
1371 	struct thread *td;
1372 
1373 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1374 	    panicstr != NULL)
1375 		return;
1376 	w = lock->lo_witness;
1377 	td = curthread;
1378 
1379 	/* Determine lock list for this lock. */
1380 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1381 		lock_list = &td->td_sleeplocks;
1382 	else
1383 		lock_list = PCPU_PTR(spinlocks);
1384 
1385 	/* Check to see if we are recursing on a lock we already own. */
1386 	instance = find_instance(*lock_list, lock);
1387 	if (instance != NULL) {
1388 		instance->li_flags++;
1389 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1390 		    td->td_proc->p_pid, lock->lo_name,
1391 		    instance->li_flags & LI_RECURSEMASK);
1392 		instance->li_file = file;
1393 		instance->li_line = line;
1394 		return;
1395 	}
1396 
1397 	/* Update per-witness last file and line acquire. */
1398 	w->w_file = file;
1399 	w->w_line = line;
1400 
1401 	/* Find the next open lock instance in the list and fill it. */
1402 	lle = *lock_list;
1403 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1404 		lle = witness_lock_list_get();
1405 		if (lle == NULL)
1406 			return;
1407 		lle->ll_next = *lock_list;
1408 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1409 		    td->td_proc->p_pid, lle);
1410 		*lock_list = lle;
1411 	}
1412 	instance = &lle->ll_children[lle->ll_count++];
1413 	instance->li_lock = lock;
1414 	instance->li_line = line;
1415 	instance->li_file = file;
1416 	if ((flags & LOP_EXCLUSIVE) != 0)
1417 		instance->li_flags = LI_EXCLUSIVE;
1418 	else
1419 		instance->li_flags = 0;
1420 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1421 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1422 }
1423 
1424 void
1425 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1426 {
1427 	struct lock_instance *instance;
1428 	struct lock_class *class;
1429 
1430 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1431 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1432 		return;
1433 	class = LOCK_CLASS(lock);
1434 	if (witness_watch) {
1435 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1436 			panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1437 			    class->lc_name, lock->lo_name,
1438 			    fixup_filename(file), line);
1439 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1440 			panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1441 			    class->lc_name, lock->lo_name,
1442 			    fixup_filename(file), line);
1443 	}
1444 	instance = find_instance(curthread->td_sleeplocks, lock);
1445 	if (instance == NULL)
1446 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1447 		    class->lc_name, lock->lo_name,
1448 		    fixup_filename(file), line);
1449 	if (witness_watch) {
1450 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1451 			panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1452 			    class->lc_name, lock->lo_name,
1453 			    fixup_filename(file), line);
1454 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1455 			panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1456 			    class->lc_name, lock->lo_name,
1457 			    instance->li_flags & LI_RECURSEMASK,
1458 			    fixup_filename(file), line);
1459 	}
1460 	instance->li_flags |= LI_EXCLUSIVE;
1461 }
1462 
1463 void
1464 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1465     int line)
1466 {
1467 	struct lock_instance *instance;
1468 	struct lock_class *class;
1469 
1470 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1471 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1472 		return;
1473 	class = LOCK_CLASS(lock);
1474 	if (witness_watch) {
1475 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1476 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1477 			    class->lc_name, lock->lo_name,
1478 			    fixup_filename(file), line);
1479 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1480 			panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1481 			    class->lc_name, lock->lo_name,
1482 			    fixup_filename(file), line);
1483 	}
1484 	instance = find_instance(curthread->td_sleeplocks, lock);
1485 	if (instance == NULL)
1486 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1487 		    class->lc_name, lock->lo_name,
1488 		    fixup_filename(file), line);
1489 	if (witness_watch) {
1490 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1491 			panic("downgrade of shared lock (%s) %s @ %s:%d",
1492 			    class->lc_name, lock->lo_name,
1493 			    fixup_filename(file), line);
1494 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1495 			panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1496 			    class->lc_name, lock->lo_name,
1497 			    instance->li_flags & LI_RECURSEMASK,
1498 			    fixup_filename(file), line);
1499 	}
1500 	instance->li_flags &= ~LI_EXCLUSIVE;
1501 }
1502 
1503 void
1504 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1505 {
1506 	struct lock_list_entry **lock_list, *lle;
1507 	struct lock_instance *instance;
1508 	struct lock_class *class;
1509 	struct thread *td;
1510 	register_t s;
1511 	int i, j;
1512 
1513 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1514 		return;
1515 	td = curthread;
1516 	class = LOCK_CLASS(lock);
1517 
1518 	/* Find lock instance associated with this lock. */
1519 	if (class->lc_flags & LC_SLEEPLOCK)
1520 		lock_list = &td->td_sleeplocks;
1521 	else
1522 		lock_list = PCPU_PTR(spinlocks);
1523 	lle = *lock_list;
1524 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1525 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1526 			instance = &(*lock_list)->ll_children[i];
1527 			if (instance->li_lock == lock)
1528 				goto found;
1529 		}
1530 
1531 	/*
1532 	 * When disabling WITNESS through witness_watch we could end up in
1533 	 * having registered locks in the td_sleeplocks queue.
1534 	 * We have to make sure we flush these queues, so just search for
1535 	 * eventual register locks and remove them.
1536 	 */
1537 	if (witness_watch > 0)
1538 		panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1539 		    lock->lo_name, fixup_filename(file), line);
1540 	else
1541 		return;
1542 found:
1543 
1544 	/* First, check for shared/exclusive mismatches. */
1545 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1546 	    (flags & LOP_EXCLUSIVE) == 0) {
1547 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1548 		    lock->lo_name, fixup_filename(file), line);
1549 		printf("while exclusively locked from %s:%d\n",
1550 		    fixup_filename(instance->li_file), instance->li_line);
1551 		panic("excl->ushare");
1552 	}
1553 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1554 	    (flags & LOP_EXCLUSIVE) != 0) {
1555 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1556 		    lock->lo_name, fixup_filename(file), line);
1557 		printf("while share locked from %s:%d\n",
1558 		    fixup_filename(instance->li_file),
1559 		    instance->li_line);
1560 		panic("share->uexcl");
1561 	}
1562 	/* If we are recursed, unrecurse. */
1563 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1564 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1565 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1566 		    instance->li_flags);
1567 		instance->li_flags--;
1568 		return;
1569 	}
1570 	/* The lock is now being dropped, check for NORELEASE flag */
1571 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1572 		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1573 		    lock->lo_name, fixup_filename(file), line);
1574 		panic("lock marked norelease");
1575 	}
1576 
1577 	/* Otherwise, remove this item from the list. */
1578 	s = intr_disable();
1579 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1580 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1581 	    (*lock_list)->ll_count - 1);
1582 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1583 		(*lock_list)->ll_children[j] =
1584 		    (*lock_list)->ll_children[j + 1];
1585 	(*lock_list)->ll_count--;
1586 	intr_restore(s);
1587 
1588 	/*
1589 	 * In order to reduce contention on w_mtx, we want to keep always an
1590 	 * head object into lists so that frequent allocation from the
1591 	 * free witness pool (and subsequent locking) is avoided.
1592 	 * In order to maintain the current code simple, when the head
1593 	 * object is totally unloaded it means also that we do not have
1594 	 * further objects in the list, so the list ownership needs to be
1595 	 * hand over to another object if the current head needs to be freed.
1596 	 */
1597 	if ((*lock_list)->ll_count == 0) {
1598 		if (*lock_list == lle) {
1599 			if (lle->ll_next == NULL)
1600 				return;
1601 		} else
1602 			lle = *lock_list;
1603 		*lock_list = lle->ll_next;
1604 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1605 		    td->td_proc->p_pid, lle);
1606 		witness_lock_list_free(lle);
1607 	}
1608 }
1609 
1610 void
1611 witness_thread_exit(struct thread *td)
1612 {
1613 	struct lock_list_entry *lle;
1614 	int i, n;
1615 
1616 	lle = td->td_sleeplocks;
1617 	if (lle == NULL || panicstr != NULL)
1618 		return;
1619 	if (lle->ll_count != 0) {
1620 		for (n = 0; lle != NULL; lle = lle->ll_next)
1621 			for (i = lle->ll_count - 1; i >= 0; i--) {
1622 				if (n == 0)
1623 		printf("Thread %p exiting with the following locks held:\n",
1624 					    td);
1625 				n++;
1626 				witness_list_lock(&lle->ll_children[i], printf);
1627 
1628 			}
1629 		panic("Thread %p cannot exit while holding sleeplocks\n", td);
1630 	}
1631 	witness_lock_list_free(lle);
1632 }
1633 
1634 /*
1635  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1636  * exempt Giant and sleepable locks from the checks as well.  If any
1637  * non-exempt locks are held, then a supplied message is printed to the
1638  * console along with a list of the offending locks.  If indicated in the
1639  * flags then a failure results in a panic as well.
1640  */
1641 int
1642 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1643 {
1644 	struct lock_list_entry *lock_list, *lle;
1645 	struct lock_instance *lock1;
1646 	struct thread *td;
1647 	va_list ap;
1648 	int i, n;
1649 
1650 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1651 		return (0);
1652 	n = 0;
1653 	td = curthread;
1654 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1655 		for (i = lle->ll_count - 1; i >= 0; i--) {
1656 			lock1 = &lle->ll_children[i];
1657 			if (lock1->li_lock == lock)
1658 				continue;
1659 			if (flags & WARN_GIANTOK &&
1660 			    lock1->li_lock == &Giant.lock_object)
1661 				continue;
1662 			if (flags & WARN_SLEEPOK &&
1663 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1664 				continue;
1665 			if (n == 0) {
1666 				va_start(ap, fmt);
1667 				vprintf(fmt, ap);
1668 				va_end(ap);
1669 				printf(" with the following");
1670 				if (flags & WARN_SLEEPOK)
1671 					printf(" non-sleepable");
1672 				printf(" locks held:\n");
1673 			}
1674 			n++;
1675 			witness_list_lock(lock1, printf);
1676 		}
1677 
1678 	/*
1679 	 * Pin the thread in order to avoid problems with thread migration.
1680 	 * Once that all verifies are passed about spinlocks ownership,
1681 	 * the thread is in a safe path and it can be unpinned.
1682 	 */
1683 	sched_pin();
1684 	lock_list = PCPU_GET(spinlocks);
1685 	if (lock_list != NULL && lock_list->ll_count != 0) {
1686 		sched_unpin();
1687 
1688 		/*
1689 		 * We should only have one spinlock and as long as
1690 		 * the flags cannot match for this locks class,
1691 		 * check if the first spinlock is the one curthread
1692 		 * should hold.
1693 		 */
1694 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1695 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1696 		    lock1->li_lock == lock && n == 0)
1697 			return (0);
1698 
1699 		va_start(ap, fmt);
1700 		vprintf(fmt, ap);
1701 		va_end(ap);
1702 		printf(" with the following");
1703 		if (flags & WARN_SLEEPOK)
1704 			printf(" non-sleepable");
1705 		printf(" locks held:\n");
1706 		n += witness_list_locks(&lock_list, printf);
1707 	} else
1708 		sched_unpin();
1709 	if (flags & WARN_PANIC && n)
1710 		panic("%s", __func__);
1711 	else
1712 		witness_debugger(n);
1713 	return (n);
1714 }
1715 
1716 const char *
1717 witness_file(struct lock_object *lock)
1718 {
1719 	struct witness *w;
1720 
1721 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1722 		return ("?");
1723 	w = lock->lo_witness;
1724 	return (w->w_file);
1725 }
1726 
1727 int
1728 witness_line(struct lock_object *lock)
1729 {
1730 	struct witness *w;
1731 
1732 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1733 		return (0);
1734 	w = lock->lo_witness;
1735 	return (w->w_line);
1736 }
1737 
1738 static struct witness *
1739 enroll(const char *description, struct lock_class *lock_class)
1740 {
1741 	struct witness *w;
1742 	struct witness_list *typelist;
1743 
1744 	MPASS(description != NULL);
1745 
1746 	if (witness_watch == -1 || panicstr != NULL)
1747 		return (NULL);
1748 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1749 		if (witness_skipspin)
1750 			return (NULL);
1751 		else
1752 			typelist = &w_spin;
1753 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK))
1754 		typelist = &w_sleep;
1755 	else
1756 		panic("lock class %s is not sleep or spin",
1757 		    lock_class->lc_name);
1758 
1759 	mtx_lock_spin(&w_mtx);
1760 	w = witness_hash_get(description);
1761 	if (w)
1762 		goto found;
1763 	if ((w = witness_get()) == NULL)
1764 		return (NULL);
1765 	MPASS(strlen(description) < MAX_W_NAME);
1766 	strcpy(w->w_name, description);
1767 	w->w_class = lock_class;
1768 	w->w_refcount = 1;
1769 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1770 	if (lock_class->lc_flags & LC_SPINLOCK) {
1771 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1772 		w_spin_cnt++;
1773 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1774 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1775 		w_sleep_cnt++;
1776 	}
1777 
1778 	/* Insert new witness into the hash */
1779 	witness_hash_put(w);
1780 	witness_increment_graph_generation();
1781 	mtx_unlock_spin(&w_mtx);
1782 	return (w);
1783 found:
1784 	w->w_refcount++;
1785 	mtx_unlock_spin(&w_mtx);
1786 	if (lock_class != w->w_class)
1787 		panic(
1788 			"lock (%s) %s does not match earlier (%s) lock",
1789 			description, lock_class->lc_name,
1790 			w->w_class->lc_name);
1791 	return (w);
1792 }
1793 
1794 static void
1795 depart(struct witness *w)
1796 {
1797 	struct witness_list *list;
1798 
1799 	MPASS(w->w_refcount == 0);
1800 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1801 		list = &w_sleep;
1802 		w_sleep_cnt--;
1803 	} else {
1804 		list = &w_spin;
1805 		w_spin_cnt--;
1806 	}
1807 	/*
1808 	 * Set file to NULL as it may point into a loadable module.
1809 	 */
1810 	w->w_file = NULL;
1811 	w->w_line = 0;
1812 	witness_increment_graph_generation();
1813 }
1814 
1815 
1816 static void
1817 adopt(struct witness *parent, struct witness *child)
1818 {
1819 	int pi, ci, i, j;
1820 
1821 	if (witness_cold == 0)
1822 		mtx_assert(&w_mtx, MA_OWNED);
1823 
1824 	/* If the relationship is already known, there's no work to be done. */
1825 	if (isitmychild(parent, child))
1826 		return;
1827 
1828 	/* When the structure of the graph changes, bump up the generation. */
1829 	witness_increment_graph_generation();
1830 
1831 	/*
1832 	 * The hard part ... create the direct relationship, then propagate all
1833 	 * indirect relationships.
1834 	 */
1835 	pi = parent->w_index;
1836 	ci = child->w_index;
1837 	WITNESS_INDEX_ASSERT(pi);
1838 	WITNESS_INDEX_ASSERT(ci);
1839 	MPASS(pi != ci);
1840 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1841 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1842 
1843 	/*
1844 	 * If parent was not already an ancestor of child,
1845 	 * then we increment the descendant and ancestor counters.
1846 	 */
1847 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1848 		parent->w_num_descendants++;
1849 		child->w_num_ancestors++;
1850 	}
1851 
1852 	/*
1853 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1854 	 * an ancestor of 'pi' during this loop.
1855 	 */
1856 	for (i = 1; i <= w_max_used_index; i++) {
1857 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1858 		    (i != pi))
1859 			continue;
1860 
1861 		/* Find each descendant of 'i' and mark it as a descendant. */
1862 		for (j = 1; j <= w_max_used_index; j++) {
1863 
1864 			/*
1865 			 * Skip children that are already marked as
1866 			 * descendants of 'i'.
1867 			 */
1868 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1869 				continue;
1870 
1871 			/*
1872 			 * We are only interested in descendants of 'ci'. Note
1873 			 * that 'ci' itself is counted as a descendant of 'ci'.
1874 			 */
1875 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1876 			    (j != ci))
1877 				continue;
1878 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1879 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1880 			w_data[i].w_num_descendants++;
1881 			w_data[j].w_num_ancestors++;
1882 
1883 			/*
1884 			 * Make sure we aren't marking a node as both an
1885 			 * ancestor and descendant. We should have caught
1886 			 * this as a lock order reversal earlier.
1887 			 */
1888 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1889 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1890 				printf("witness rmatrix paradox! [%d][%d]=%d "
1891 				    "both ancestor and descendant\n",
1892 				    i, j, w_rmatrix[i][j]);
1893 				kdb_backtrace();
1894 				printf("Witness disabled.\n");
1895 				witness_watch = -1;
1896 			}
1897 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1898 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1899 				printf("witness rmatrix paradox! [%d][%d]=%d "
1900 				    "both ancestor and descendant\n",
1901 				    j, i, w_rmatrix[j][i]);
1902 				kdb_backtrace();
1903 				printf("Witness disabled.\n");
1904 				witness_watch = -1;
1905 			}
1906 		}
1907 	}
1908 }
1909 
1910 static void
1911 itismychild(struct witness *parent, struct witness *child)
1912 {
1913 
1914 	MPASS(child != NULL && parent != NULL);
1915 	if (witness_cold == 0)
1916 		mtx_assert(&w_mtx, MA_OWNED);
1917 
1918 	if (!witness_lock_type_equal(parent, child)) {
1919 		if (witness_cold == 0)
1920 			mtx_unlock_spin(&w_mtx);
1921 		panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1922 		    "the same lock type", __func__, parent->w_name,
1923 		    parent->w_class->lc_name, child->w_name,
1924 		    child->w_class->lc_name);
1925 	}
1926 	adopt(parent, child);
1927 }
1928 
1929 /*
1930  * Generic code for the isitmy*() functions. The rmask parameter is the
1931  * expected relationship of w1 to w2.
1932  */
1933 static int
1934 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1935 {
1936 	unsigned char r1, r2;
1937 	int i1, i2;
1938 
1939 	i1 = w1->w_index;
1940 	i2 = w2->w_index;
1941 	WITNESS_INDEX_ASSERT(i1);
1942 	WITNESS_INDEX_ASSERT(i2);
1943 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
1944 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
1945 
1946 	/* The flags on one better be the inverse of the flags on the other */
1947 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
1948 		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
1949 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
1950 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
1951 		    "w_rmatrix[%d][%d] == %hhx\n",
1952 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
1953 		    i2, i1, r2);
1954 		kdb_backtrace();
1955 		printf("Witness disabled.\n");
1956 		witness_watch = -1;
1957 	}
1958 	return (r1 & rmask);
1959 }
1960 
1961 /*
1962  * Checks if @child is a direct child of @parent.
1963  */
1964 static int
1965 isitmychild(struct witness *parent, struct witness *child)
1966 {
1967 
1968 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
1969 }
1970 
1971 /*
1972  * Checks if @descendant is a direct or inderect descendant of @ancestor.
1973  */
1974 static int
1975 isitmydescendant(struct witness *ancestor, struct witness *descendant)
1976 {
1977 
1978 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
1979 	    __func__));
1980 }
1981 
1982 #ifdef BLESSING
1983 static int
1984 blessed(struct witness *w1, struct witness *w2)
1985 {
1986 	int i;
1987 	struct witness_blessed *b;
1988 
1989 	for (i = 0; i < blessed_count; i++) {
1990 		b = &blessed_list[i];
1991 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1992 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1993 				return (1);
1994 			continue;
1995 		}
1996 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1997 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1998 				return (1);
1999 	}
2000 	return (0);
2001 }
2002 #endif
2003 
2004 static struct witness *
2005 witness_get(void)
2006 {
2007 	struct witness *w;
2008 	int index;
2009 
2010 	if (witness_cold == 0)
2011 		mtx_assert(&w_mtx, MA_OWNED);
2012 
2013 	if (witness_watch == -1) {
2014 		mtx_unlock_spin(&w_mtx);
2015 		return (NULL);
2016 	}
2017 	if (STAILQ_EMPTY(&w_free)) {
2018 		witness_watch = -1;
2019 		mtx_unlock_spin(&w_mtx);
2020 		printf("WITNESS: unable to allocate a new witness object\n");
2021 		return (NULL);
2022 	}
2023 	w = STAILQ_FIRST(&w_free);
2024 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2025 	w_free_cnt--;
2026 	index = w->w_index;
2027 	MPASS(index > 0 && index == w_max_used_index+1 &&
2028 	    index < WITNESS_COUNT);
2029 	bzero(w, sizeof(*w));
2030 	w->w_index = index;
2031 	if (index > w_max_used_index)
2032 		w_max_used_index = index;
2033 	return (w);
2034 }
2035 
2036 static void
2037 witness_free(struct witness *w)
2038 {
2039 
2040 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2041 	w_free_cnt++;
2042 }
2043 
2044 static struct lock_list_entry *
2045 witness_lock_list_get(void)
2046 {
2047 	struct lock_list_entry *lle;
2048 
2049 	if (witness_watch == -1)
2050 		return (NULL);
2051 	mtx_lock_spin(&w_mtx);
2052 	lle = w_lock_list_free;
2053 	if (lle == NULL) {
2054 		witness_watch = -1;
2055 		mtx_unlock_spin(&w_mtx);
2056 		printf("%s: witness exhausted\n", __func__);
2057 		return (NULL);
2058 	}
2059 	w_lock_list_free = lle->ll_next;
2060 	mtx_unlock_spin(&w_mtx);
2061 	bzero(lle, sizeof(*lle));
2062 	return (lle);
2063 }
2064 
2065 static void
2066 witness_lock_list_free(struct lock_list_entry *lle)
2067 {
2068 
2069 	mtx_lock_spin(&w_mtx);
2070 	lle->ll_next = w_lock_list_free;
2071 	w_lock_list_free = lle;
2072 	mtx_unlock_spin(&w_mtx);
2073 }
2074 
2075 static struct lock_instance *
2076 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2077 {
2078 	struct lock_list_entry *lle;
2079 	struct lock_instance *instance;
2080 	int i;
2081 
2082 	for (lle = list; lle != NULL; lle = lle->ll_next)
2083 		for (i = lle->ll_count - 1; i >= 0; i--) {
2084 			instance = &lle->ll_children[i];
2085 			if (instance->li_lock == lock)
2086 				return (instance);
2087 		}
2088 	return (NULL);
2089 }
2090 
2091 static void
2092 witness_list_lock(struct lock_instance *instance,
2093     int (*prnt)(const char *fmt, ...))
2094 {
2095 	struct lock_object *lock;
2096 
2097 	lock = instance->li_lock;
2098 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2099 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2100 	if (lock->lo_witness->w_name != lock->lo_name)
2101 		prnt(" (%s)", lock->lo_witness->w_name);
2102 	prnt(" r = %d (%p) locked @ %s:%d\n",
2103 	    instance->li_flags & LI_RECURSEMASK, lock,
2104 	    fixup_filename(instance->li_file), instance->li_line);
2105 }
2106 
2107 #ifdef DDB
2108 static int
2109 witness_thread_has_locks(struct thread *td)
2110 {
2111 
2112 	if (td->td_sleeplocks == NULL)
2113 		return (0);
2114 	return (td->td_sleeplocks->ll_count != 0);
2115 }
2116 
2117 static int
2118 witness_proc_has_locks(struct proc *p)
2119 {
2120 	struct thread *td;
2121 
2122 	FOREACH_THREAD_IN_PROC(p, td) {
2123 		if (witness_thread_has_locks(td))
2124 			return (1);
2125 	}
2126 	return (0);
2127 }
2128 #endif
2129 
2130 int
2131 witness_list_locks(struct lock_list_entry **lock_list,
2132     int (*prnt)(const char *fmt, ...))
2133 {
2134 	struct lock_list_entry *lle;
2135 	int i, nheld;
2136 
2137 	nheld = 0;
2138 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2139 		for (i = lle->ll_count - 1; i >= 0; i--) {
2140 			witness_list_lock(&lle->ll_children[i], prnt);
2141 			nheld++;
2142 		}
2143 	return (nheld);
2144 }
2145 
2146 /*
2147  * This is a bit risky at best.  We call this function when we have timed
2148  * out acquiring a spin lock, and we assume that the other CPU is stuck
2149  * with this lock held.  So, we go groveling around in the other CPU's
2150  * per-cpu data to try to find the lock instance for this spin lock to
2151  * see when it was last acquired.
2152  */
2153 void
2154 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2155     int (*prnt)(const char *fmt, ...))
2156 {
2157 	struct lock_instance *instance;
2158 	struct pcpu *pc;
2159 
2160 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2161 		return;
2162 	pc = pcpu_find(owner->td_oncpu);
2163 	instance = find_instance(pc->pc_spinlocks, lock);
2164 	if (instance != NULL)
2165 		witness_list_lock(instance, prnt);
2166 }
2167 
2168 void
2169 witness_save(struct lock_object *lock, const char **filep, int *linep)
2170 {
2171 	struct lock_list_entry *lock_list;
2172 	struct lock_instance *instance;
2173 	struct lock_class *class;
2174 
2175 	/*
2176 	 * This function is used independently in locking code to deal with
2177 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2178 	 * is gone.
2179 	 */
2180 	if (SCHEDULER_STOPPED())
2181 		return;
2182 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2183 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2184 		return;
2185 	class = LOCK_CLASS(lock);
2186 	if (class->lc_flags & LC_SLEEPLOCK)
2187 		lock_list = curthread->td_sleeplocks;
2188 	else {
2189 		if (witness_skipspin)
2190 			return;
2191 		lock_list = PCPU_GET(spinlocks);
2192 	}
2193 	instance = find_instance(lock_list, lock);
2194 	if (instance == NULL)
2195 		panic("%s: lock (%s) %s not locked", __func__,
2196 		    class->lc_name, lock->lo_name);
2197 	*filep = instance->li_file;
2198 	*linep = instance->li_line;
2199 }
2200 
2201 void
2202 witness_restore(struct lock_object *lock, const char *file, int line)
2203 {
2204 	struct lock_list_entry *lock_list;
2205 	struct lock_instance *instance;
2206 	struct lock_class *class;
2207 
2208 	/*
2209 	 * This function is used independently in locking code to deal with
2210 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2211 	 * is gone.
2212 	 */
2213 	if (SCHEDULER_STOPPED())
2214 		return;
2215 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2216 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2217 		return;
2218 	class = LOCK_CLASS(lock);
2219 	if (class->lc_flags & LC_SLEEPLOCK)
2220 		lock_list = curthread->td_sleeplocks;
2221 	else {
2222 		if (witness_skipspin)
2223 			return;
2224 		lock_list = PCPU_GET(spinlocks);
2225 	}
2226 	instance = find_instance(lock_list, lock);
2227 	if (instance == NULL)
2228 		panic("%s: lock (%s) %s not locked", __func__,
2229 		    class->lc_name, lock->lo_name);
2230 	lock->lo_witness->w_file = file;
2231 	lock->lo_witness->w_line = line;
2232 	instance->li_file = file;
2233 	instance->li_line = line;
2234 }
2235 
2236 void
2237 witness_assert(const struct lock_object *lock, int flags, const char *file,
2238     int line)
2239 {
2240 #ifdef INVARIANT_SUPPORT
2241 	struct lock_instance *instance;
2242 	struct lock_class *class;
2243 
2244 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2245 		return;
2246 	class = LOCK_CLASS(lock);
2247 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2248 		instance = find_instance(curthread->td_sleeplocks, lock);
2249 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2250 		instance = find_instance(PCPU_GET(spinlocks), lock);
2251 	else {
2252 		panic("Lock (%s) %s is not sleep or spin!",
2253 		    class->lc_name, lock->lo_name);
2254 	}
2255 	switch (flags) {
2256 	case LA_UNLOCKED:
2257 		if (instance != NULL)
2258 			panic("Lock (%s) %s locked @ %s:%d.",
2259 			    class->lc_name, lock->lo_name,
2260 			    fixup_filename(file), line);
2261 		break;
2262 	case LA_LOCKED:
2263 	case LA_LOCKED | LA_RECURSED:
2264 	case LA_LOCKED | LA_NOTRECURSED:
2265 	case LA_SLOCKED:
2266 	case LA_SLOCKED | LA_RECURSED:
2267 	case LA_SLOCKED | LA_NOTRECURSED:
2268 	case LA_XLOCKED:
2269 	case LA_XLOCKED | LA_RECURSED:
2270 	case LA_XLOCKED | LA_NOTRECURSED:
2271 		if (instance == NULL) {
2272 			panic("Lock (%s) %s not locked @ %s:%d.",
2273 			    class->lc_name, lock->lo_name,
2274 			    fixup_filename(file), line);
2275 			break;
2276 		}
2277 		if ((flags & LA_XLOCKED) != 0 &&
2278 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2279 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
2280 			    class->lc_name, lock->lo_name,
2281 			    fixup_filename(file), line);
2282 		if ((flags & LA_SLOCKED) != 0 &&
2283 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2284 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
2285 			    class->lc_name, lock->lo_name,
2286 			    fixup_filename(file), line);
2287 		if ((flags & LA_RECURSED) != 0 &&
2288 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2289 			panic("Lock (%s) %s not recursed @ %s:%d.",
2290 			    class->lc_name, lock->lo_name,
2291 			    fixup_filename(file), line);
2292 		if ((flags & LA_NOTRECURSED) != 0 &&
2293 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2294 			panic("Lock (%s) %s recursed @ %s:%d.",
2295 			    class->lc_name, lock->lo_name,
2296 			    fixup_filename(file), line);
2297 		break;
2298 	default:
2299 		panic("Invalid lock assertion at %s:%d.",
2300 		    fixup_filename(file), line);
2301 
2302 	}
2303 #endif	/* INVARIANT_SUPPORT */
2304 }
2305 
2306 static void
2307 witness_setflag(struct lock_object *lock, int flag, int set)
2308 {
2309 	struct lock_list_entry *lock_list;
2310 	struct lock_instance *instance;
2311 	struct lock_class *class;
2312 
2313 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2314 		return;
2315 	class = LOCK_CLASS(lock);
2316 	if (class->lc_flags & LC_SLEEPLOCK)
2317 		lock_list = curthread->td_sleeplocks;
2318 	else {
2319 		if (witness_skipspin)
2320 			return;
2321 		lock_list = PCPU_GET(spinlocks);
2322 	}
2323 	instance = find_instance(lock_list, lock);
2324 	if (instance == NULL)
2325 		panic("%s: lock (%s) %s not locked", __func__,
2326 		    class->lc_name, lock->lo_name);
2327 
2328 	if (set)
2329 		instance->li_flags |= flag;
2330 	else
2331 		instance->li_flags &= ~flag;
2332 }
2333 
2334 void
2335 witness_norelease(struct lock_object *lock)
2336 {
2337 
2338 	witness_setflag(lock, LI_NORELEASE, 1);
2339 }
2340 
2341 void
2342 witness_releaseok(struct lock_object *lock)
2343 {
2344 
2345 	witness_setflag(lock, LI_NORELEASE, 0);
2346 }
2347 
2348 #ifdef DDB
2349 static void
2350 witness_ddb_list(struct thread *td)
2351 {
2352 
2353 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2354 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2355 
2356 	if (witness_watch < 1)
2357 		return;
2358 
2359 	witness_list_locks(&td->td_sleeplocks, db_printf);
2360 
2361 	/*
2362 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2363 	 * if td is currently executing on some other CPU and holds spin locks
2364 	 * as we won't display those locks.  If we had a MI way of getting
2365 	 * the per-cpu data for a given cpu then we could use
2366 	 * td->td_oncpu to get the list of spinlocks for this thread
2367 	 * and "fix" this.
2368 	 *
2369 	 * That still wouldn't really fix this unless we locked the scheduler
2370 	 * lock or stopped the other CPU to make sure it wasn't changing the
2371 	 * list out from under us.  It is probably best to just not try to
2372 	 * handle threads on other CPU's for now.
2373 	 */
2374 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2375 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2376 }
2377 
2378 DB_SHOW_COMMAND(locks, db_witness_list)
2379 {
2380 	struct thread *td;
2381 
2382 	if (have_addr)
2383 		td = db_lookup_thread(addr, TRUE);
2384 	else
2385 		td = kdb_thread;
2386 	witness_ddb_list(td);
2387 }
2388 
2389 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2390 {
2391 	struct thread *td;
2392 	struct proc *p;
2393 
2394 	/*
2395 	 * It would be nice to list only threads and processes that actually
2396 	 * held sleep locks, but that information is currently not exported
2397 	 * by WITNESS.
2398 	 */
2399 	FOREACH_PROC_IN_SYSTEM(p) {
2400 		if (!witness_proc_has_locks(p))
2401 			continue;
2402 		FOREACH_THREAD_IN_PROC(p, td) {
2403 			if (!witness_thread_has_locks(td))
2404 				continue;
2405 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2406 			    p->p_comm, td, td->td_tid);
2407 			witness_ddb_list(td);
2408 			if (db_pager_quit)
2409 				return;
2410 		}
2411 	}
2412 }
2413 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2414 
2415 DB_SHOW_COMMAND(witness, db_witness_display)
2416 {
2417 
2418 	witness_ddb_display(db_printf);
2419 }
2420 #endif
2421 
2422 static int
2423 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2424 {
2425 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2426 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2427 	struct sbuf *sb;
2428 	u_int w_rmatrix1, w_rmatrix2;
2429 	int error, generation, i, j;
2430 
2431 	tmp_data1 = NULL;
2432 	tmp_data2 = NULL;
2433 	tmp_w1 = NULL;
2434 	tmp_w2 = NULL;
2435 	if (witness_watch < 1) {
2436 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2437 		return (error);
2438 	}
2439 	if (witness_cold) {
2440 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2441 		return (error);
2442 	}
2443 	error = 0;
2444 	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2445 	if (sb == NULL)
2446 		return (ENOMEM);
2447 
2448 	/* Allocate and init temporary storage space. */
2449 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2450 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2451 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2452 	    M_WAITOK | M_ZERO);
2453 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2454 	    M_WAITOK | M_ZERO);
2455 	stack_zero(&tmp_data1->wlod_stack);
2456 	stack_zero(&tmp_data2->wlod_stack);
2457 
2458 restart:
2459 	mtx_lock_spin(&w_mtx);
2460 	generation = w_generation;
2461 	mtx_unlock_spin(&w_mtx);
2462 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2463 	    w_lohash.wloh_count);
2464 	for (i = 1; i < w_max_used_index; i++) {
2465 		mtx_lock_spin(&w_mtx);
2466 		if (generation != w_generation) {
2467 			mtx_unlock_spin(&w_mtx);
2468 
2469 			/* The graph has changed, try again. */
2470 			req->oldidx = 0;
2471 			sbuf_clear(sb);
2472 			goto restart;
2473 		}
2474 
2475 		w1 = &w_data[i];
2476 		if (w1->w_reversed == 0) {
2477 			mtx_unlock_spin(&w_mtx);
2478 			continue;
2479 		}
2480 
2481 		/* Copy w1 locally so we can release the spin lock. */
2482 		*tmp_w1 = *w1;
2483 		mtx_unlock_spin(&w_mtx);
2484 
2485 		if (tmp_w1->w_reversed == 0)
2486 			continue;
2487 		for (j = 1; j < w_max_used_index; j++) {
2488 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2489 				continue;
2490 
2491 			mtx_lock_spin(&w_mtx);
2492 			if (generation != w_generation) {
2493 				mtx_unlock_spin(&w_mtx);
2494 
2495 				/* The graph has changed, try again. */
2496 				req->oldidx = 0;
2497 				sbuf_clear(sb);
2498 				goto restart;
2499 			}
2500 
2501 			w2 = &w_data[j];
2502 			data1 = witness_lock_order_get(w1, w2);
2503 			data2 = witness_lock_order_get(w2, w1);
2504 
2505 			/*
2506 			 * Copy information locally so we can release the
2507 			 * spin lock.
2508 			 */
2509 			*tmp_w2 = *w2;
2510 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2511 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2512 
2513 			if (data1) {
2514 				stack_zero(&tmp_data1->wlod_stack);
2515 				stack_copy(&data1->wlod_stack,
2516 				    &tmp_data1->wlod_stack);
2517 			}
2518 			if (data2 && data2 != data1) {
2519 				stack_zero(&tmp_data2->wlod_stack);
2520 				stack_copy(&data2->wlod_stack,
2521 				    &tmp_data2->wlod_stack);
2522 			}
2523 			mtx_unlock_spin(&w_mtx);
2524 
2525 			sbuf_printf(sb,
2526 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2527 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2528 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2529 #if 0
2530  			sbuf_printf(sb,
2531 			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2532  			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2533  			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2534 #endif
2535 			if (data1) {
2536 				sbuf_printf(sb,
2537 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2538 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2539 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2540 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2541 				sbuf_printf(sb, "\n");
2542 			}
2543 			if (data2 && data2 != data1) {
2544 				sbuf_printf(sb,
2545 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2546 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2547 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2548 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2549 				sbuf_printf(sb, "\n");
2550 			}
2551 		}
2552 	}
2553 	mtx_lock_spin(&w_mtx);
2554 	if (generation != w_generation) {
2555 		mtx_unlock_spin(&w_mtx);
2556 
2557 		/*
2558 		 * The graph changed while we were printing stack data,
2559 		 * try again.
2560 		 */
2561 		req->oldidx = 0;
2562 		sbuf_clear(sb);
2563 		goto restart;
2564 	}
2565 	mtx_unlock_spin(&w_mtx);
2566 
2567 	/* Free temporary storage space. */
2568 	free(tmp_data1, M_TEMP);
2569 	free(tmp_data2, M_TEMP);
2570 	free(tmp_w1, M_TEMP);
2571 	free(tmp_w2, M_TEMP);
2572 
2573 	sbuf_finish(sb);
2574 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2575 	sbuf_delete(sb);
2576 
2577 	return (error);
2578 }
2579 
2580 static int
2581 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2582 {
2583 	struct witness *w;
2584 	struct sbuf *sb;
2585 	int error;
2586 
2587 	if (witness_watch < 1) {
2588 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2589 		return (error);
2590 	}
2591 	if (witness_cold) {
2592 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2593 		return (error);
2594 	}
2595 	error = 0;
2596 
2597 	error = sysctl_wire_old_buffer(req, 0);
2598 	if (error != 0)
2599 		return (error);
2600 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2601 	if (sb == NULL)
2602 		return (ENOMEM);
2603 	sbuf_printf(sb, "\n");
2604 
2605 	mtx_lock_spin(&w_mtx);
2606 	STAILQ_FOREACH(w, &w_all, w_list)
2607 		w->w_displayed = 0;
2608 	STAILQ_FOREACH(w, &w_all, w_list)
2609 		witness_add_fullgraph(sb, w);
2610 	mtx_unlock_spin(&w_mtx);
2611 
2612 	/*
2613 	 * Close the sbuf and return to userland.
2614 	 */
2615 	error = sbuf_finish(sb);
2616 	sbuf_delete(sb);
2617 
2618 	return (error);
2619 }
2620 
2621 static int
2622 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2623 {
2624 	int error, value;
2625 
2626 	value = witness_watch;
2627 	error = sysctl_handle_int(oidp, &value, 0, req);
2628 	if (error != 0 || req->newptr == NULL)
2629 		return (error);
2630 	if (value > 1 || value < -1 ||
2631 	    (witness_watch == -1 && value != witness_watch))
2632 		return (EINVAL);
2633 	witness_watch = value;
2634 	return (0);
2635 }
2636 
2637 static void
2638 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2639 {
2640 	int i;
2641 
2642 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2643 		return;
2644 	w->w_displayed = 1;
2645 
2646 	WITNESS_INDEX_ASSERT(w->w_index);
2647 	for (i = 1; i <= w_max_used_index; i++) {
2648 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2649 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2650 			    w_data[i].w_name);
2651 			witness_add_fullgraph(sb, &w_data[i]);
2652 		}
2653 	}
2654 }
2655 
2656 /*
2657  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2658  * interprets the key as a string and reads until the null
2659  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2660  * hash value computed from the key.
2661  */
2662 static uint32_t
2663 witness_hash_djb2(const uint8_t *key, uint32_t size)
2664 {
2665 	unsigned int hash = 5381;
2666 	int i;
2667 
2668 	/* hash = hash * 33 + key[i] */
2669 	if (size)
2670 		for (i = 0; i < size; i++)
2671 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2672 	else
2673 		for (i = 0; key[i] != 0; i++)
2674 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2675 
2676 	return (hash);
2677 }
2678 
2679 
2680 /*
2681  * Initializes the two witness hash tables. Called exactly once from
2682  * witness_initialize().
2683  */
2684 static void
2685 witness_init_hash_tables(void)
2686 {
2687 	int i;
2688 
2689 	MPASS(witness_cold);
2690 
2691 	/* Initialize the hash tables. */
2692 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2693 		w_hash.wh_array[i] = NULL;
2694 
2695 	w_hash.wh_size = WITNESS_HASH_SIZE;
2696 	w_hash.wh_count = 0;
2697 
2698 	/* Initialize the lock order data hash. */
2699 	w_lofree = NULL;
2700 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2701 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2702 		w_lodata[i].wlod_next = w_lofree;
2703 		w_lofree = &w_lodata[i];
2704 	}
2705 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2706 	w_lohash.wloh_count = 0;
2707 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2708 		w_lohash.wloh_array[i] = NULL;
2709 }
2710 
2711 static struct witness *
2712 witness_hash_get(const char *key)
2713 {
2714 	struct witness *w;
2715 	uint32_t hash;
2716 
2717 	MPASS(key != NULL);
2718 	if (witness_cold == 0)
2719 		mtx_assert(&w_mtx, MA_OWNED);
2720 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2721 	w = w_hash.wh_array[hash];
2722 	while (w != NULL) {
2723 		if (strcmp(w->w_name, key) == 0)
2724 			goto out;
2725 		w = w->w_hash_next;
2726 	}
2727 
2728 out:
2729 	return (w);
2730 }
2731 
2732 static void
2733 witness_hash_put(struct witness *w)
2734 {
2735 	uint32_t hash;
2736 
2737 	MPASS(w != NULL);
2738 	MPASS(w->w_name != NULL);
2739 	if (witness_cold == 0)
2740 		mtx_assert(&w_mtx, MA_OWNED);
2741 	KASSERT(witness_hash_get(w->w_name) == NULL,
2742 	    ("%s: trying to add a hash entry that already exists!", __func__));
2743 	KASSERT(w->w_hash_next == NULL,
2744 	    ("%s: w->w_hash_next != NULL", __func__));
2745 
2746 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2747 	w->w_hash_next = w_hash.wh_array[hash];
2748 	w_hash.wh_array[hash] = w;
2749 	w_hash.wh_count++;
2750 }
2751 
2752 
2753 static struct witness_lock_order_data *
2754 witness_lock_order_get(struct witness *parent, struct witness *child)
2755 {
2756 	struct witness_lock_order_data *data = NULL;
2757 	struct witness_lock_order_key key;
2758 	unsigned int hash;
2759 
2760 	MPASS(parent != NULL && child != NULL);
2761 	key.from = parent->w_index;
2762 	key.to = child->w_index;
2763 	WITNESS_INDEX_ASSERT(key.from);
2764 	WITNESS_INDEX_ASSERT(key.to);
2765 	if ((w_rmatrix[parent->w_index][child->w_index]
2766 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2767 		goto out;
2768 
2769 	hash = witness_hash_djb2((const char*)&key,
2770 	    sizeof(key)) % w_lohash.wloh_size;
2771 	data = w_lohash.wloh_array[hash];
2772 	while (data != NULL) {
2773 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2774 			break;
2775 		data = data->wlod_next;
2776 	}
2777 
2778 out:
2779 	return (data);
2780 }
2781 
2782 /*
2783  * Verify that parent and child have a known relationship, are not the same,
2784  * and child is actually a child of parent.  This is done without w_mtx
2785  * to avoid contention in the common case.
2786  */
2787 static int
2788 witness_lock_order_check(struct witness *parent, struct witness *child)
2789 {
2790 
2791 	if (parent != child &&
2792 	    w_rmatrix[parent->w_index][child->w_index]
2793 	    & WITNESS_LOCK_ORDER_KNOWN &&
2794 	    isitmychild(parent, child))
2795 		return (1);
2796 
2797 	return (0);
2798 }
2799 
2800 static int
2801 witness_lock_order_add(struct witness *parent, struct witness *child)
2802 {
2803 	struct witness_lock_order_data *data = NULL;
2804 	struct witness_lock_order_key key;
2805 	unsigned int hash;
2806 
2807 	MPASS(parent != NULL && child != NULL);
2808 	key.from = parent->w_index;
2809 	key.to = child->w_index;
2810 	WITNESS_INDEX_ASSERT(key.from);
2811 	WITNESS_INDEX_ASSERT(key.to);
2812 	if (w_rmatrix[parent->w_index][child->w_index]
2813 	    & WITNESS_LOCK_ORDER_KNOWN)
2814 		return (1);
2815 
2816 	hash = witness_hash_djb2((const char*)&key,
2817 	    sizeof(key)) % w_lohash.wloh_size;
2818 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2819 	data = w_lofree;
2820 	if (data == NULL)
2821 		return (0);
2822 	w_lofree = data->wlod_next;
2823 	data->wlod_next = w_lohash.wloh_array[hash];
2824 	data->wlod_key = key;
2825 	w_lohash.wloh_array[hash] = data;
2826 	w_lohash.wloh_count++;
2827 	stack_zero(&data->wlod_stack);
2828 	stack_save(&data->wlod_stack);
2829 	return (1);
2830 }
2831 
2832 /* Call this whenver the structure of the witness graph changes. */
2833 static void
2834 witness_increment_graph_generation(void)
2835 {
2836 
2837 	if (witness_cold == 0)
2838 		mtx_assert(&w_mtx, MA_OWNED);
2839 	w_generation++;
2840 }
2841 
2842 #ifdef KDB
2843 static void
2844 _witness_debugger(int cond, const char *msg)
2845 {
2846 
2847 	if (witness_trace && cond)
2848 		kdb_backtrace();
2849 	if (witness_kdb && cond)
2850 		kdb_enter(KDB_WHY_WITNESS, msg);
2851 }
2852 #endif
2853