1 /*- 2 * Copyright (c) 2008 Isilon Systems, Inc. 3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 4 * Copyright (c) 1998 Berkeley Software Design, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Berkeley Software Design Inc's name may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 33 */ 34 35 /* 36 * Implementation of the `witness' lock verifier. Originally implemented for 37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 38 * classes in FreeBSD. 39 */ 40 41 /* 42 * Main Entry: witness 43 * Pronunciation: 'wit-n&s 44 * Function: noun 45 * Etymology: Middle English witnesse, from Old English witnes knowledge, 46 * testimony, witness, from 2wit 47 * Date: before 12th century 48 * 1 : attestation of a fact or event : TESTIMONY 49 * 2 : one that gives evidence; specifically : one who testifies in 50 * a cause or before a judicial tribunal 51 * 3 : one asked to be present at a transaction so as to be able to 52 * testify to its having taken place 53 * 4 : one who has personal knowledge of something 54 * 5 a : something serving as evidence or proof : SIGN 55 * b : public affirmation by word or example of usually 56 * religious faith or conviction <the heroic witness to divine 57 * life -- Pilot> 58 * 6 capitalized : a member of the Jehovah's Witnesses 59 */ 60 61 /* 62 * Special rules concerning Giant and lock orders: 63 * 64 * 1) Giant must be acquired before any other mutexes. Stated another way, 65 * no other mutex may be held when Giant is acquired. 66 * 67 * 2) Giant must be released when blocking on a sleepable lock. 68 * 69 * This rule is less obvious, but is a result of Giant providing the same 70 * semantics as spl(). Basically, when a thread sleeps, it must release 71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 72 * 2). 73 * 74 * 3) Giant may be acquired before or after sleepable locks. 75 * 76 * This rule is also not quite as obvious. Giant may be acquired after 77 * a sleepable lock because it is a non-sleepable lock and non-sleepable 78 * locks may always be acquired while holding a sleepable lock. The second 79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 83 * execute. Thus, acquiring Giant both before and after a sleepable lock 84 * will not result in a lock order reversal. 85 */ 86 87 #include <sys/cdefs.h> 88 __FBSDID("$FreeBSD$"); 89 90 #include "opt_ddb.h" 91 #include "opt_hwpmc_hooks.h" 92 #include "opt_stack.h" 93 #include "opt_witness.h" 94 95 #include <sys/param.h> 96 #include <sys/bus.h> 97 #include <sys/kdb.h> 98 #include <sys/kernel.h> 99 #include <sys/ktr.h> 100 #include <sys/lock.h> 101 #include <sys/malloc.h> 102 #include <sys/mutex.h> 103 #include <sys/priv.h> 104 #include <sys/proc.h> 105 #include <sys/sbuf.h> 106 #include <sys/sched.h> 107 #include <sys/stack.h> 108 #include <sys/sysctl.h> 109 #include <sys/systm.h> 110 111 #ifdef DDB 112 #include <ddb/ddb.h> 113 #endif 114 115 #include <machine/stdarg.h> 116 117 #if !defined(DDB) && !defined(STACK) 118 #error "DDB or STACK options are required for WITNESS" 119 #endif 120 121 /* Note that these traces do not work with KTR_ALQ. */ 122 #if 0 123 #define KTR_WITNESS KTR_SUBSYS 124 #else 125 #define KTR_WITNESS 0 126 #endif 127 128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 131 132 /* Define this to check for blessed mutexes */ 133 #undef BLESSING 134 135 #define WITNESS_COUNT 1024 136 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 137 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 138 #define WITNESS_PENDLIST 768 139 140 /* Allocate 256 KB of stack data space */ 141 #define WITNESS_LO_DATA_COUNT 2048 142 143 /* Prime, gives load factor of ~2 at full load */ 144 #define WITNESS_LO_HASH_SIZE 1021 145 146 /* 147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 148 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 149 * probably be safe for the most part, but it's still a SWAG. 150 */ 151 #define LOCK_NCHILDREN 5 152 #define LOCK_CHILDCOUNT 2048 153 154 #define MAX_W_NAME 64 155 156 #define BADSTACK_SBUF_SIZE (256 * WITNESS_COUNT) 157 #define FULLGRAPH_SBUF_SIZE 512 158 159 /* 160 * These flags go in the witness relationship matrix and describe the 161 * relationship between any two struct witness objects. 162 */ 163 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 164 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 165 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 166 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 167 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 168 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 169 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 170 #define WITNESS_RELATED_MASK \ 171 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 172 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 173 * observed. */ 174 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 175 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 176 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 177 178 /* Descendant to ancestor flags */ 179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 180 181 /* Ancestor to descendant flags */ 182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 183 184 #define WITNESS_INDEX_ASSERT(i) \ 185 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT) 186 187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 188 189 /* 190 * Lock instances. A lock instance is the data associated with a lock while 191 * it is held by witness. For example, a lock instance will hold the 192 * recursion count of a lock. Lock instances are held in lists. Spin locks 193 * are held in a per-cpu list while sleep locks are held in per-thread list. 194 */ 195 struct lock_instance { 196 struct lock_object *li_lock; 197 const char *li_file; 198 int li_line; 199 u_int li_flags; 200 }; 201 202 /* 203 * A simple list type used to build the list of locks held by a thread 204 * or CPU. We can't simply embed the list in struct lock_object since a 205 * lock may be held by more than one thread if it is a shared lock. Locks 206 * are added to the head of the list, so we fill up each list entry from 207 * "the back" logically. To ease some of the arithmetic, we actually fill 208 * in each list entry the normal way (children[0] then children[1], etc.) but 209 * when we traverse the list we read children[count-1] as the first entry 210 * down to children[0] as the final entry. 211 */ 212 struct lock_list_entry { 213 struct lock_list_entry *ll_next; 214 struct lock_instance ll_children[LOCK_NCHILDREN]; 215 u_int ll_count; 216 }; 217 218 /* 219 * The main witness structure. One of these per named lock type in the system 220 * (for example, "vnode interlock"). 221 */ 222 struct witness { 223 char w_name[MAX_W_NAME]; 224 uint32_t w_index; /* Index in the relationship matrix */ 225 struct lock_class *w_class; 226 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 227 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 228 struct witness *w_hash_next; /* Linked list in hash buckets. */ 229 const char *w_file; /* File where last acquired */ 230 uint32_t w_line; /* Line where last acquired */ 231 uint32_t w_refcount; 232 uint16_t w_num_ancestors; /* direct/indirect 233 * ancestor count */ 234 uint16_t w_num_descendants; /* direct/indirect 235 * descendant count */ 236 int16_t w_ddb_level; 237 unsigned w_displayed:1; 238 unsigned w_reversed:1; 239 }; 240 241 STAILQ_HEAD(witness_list, witness); 242 243 /* 244 * The witness hash table. Keys are witness names (const char *), elements are 245 * witness objects (struct witness *). 246 */ 247 struct witness_hash { 248 struct witness *wh_array[WITNESS_HASH_SIZE]; 249 uint32_t wh_size; 250 uint32_t wh_count; 251 }; 252 253 /* 254 * Key type for the lock order data hash table. 255 */ 256 struct witness_lock_order_key { 257 uint16_t from; 258 uint16_t to; 259 }; 260 261 struct witness_lock_order_data { 262 struct stack wlod_stack; 263 struct witness_lock_order_key wlod_key; 264 struct witness_lock_order_data *wlod_next; 265 }; 266 267 /* 268 * The witness lock order data hash table. Keys are witness index tuples 269 * (struct witness_lock_order_key), elements are lock order data objects 270 * (struct witness_lock_order_data). 271 */ 272 struct witness_lock_order_hash { 273 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 274 u_int wloh_size; 275 u_int wloh_count; 276 }; 277 278 #ifdef BLESSING 279 struct witness_blessed { 280 const char *b_lock1; 281 const char *b_lock2; 282 }; 283 #endif 284 285 struct witness_pendhelp { 286 const char *wh_type; 287 struct lock_object *wh_lock; 288 }; 289 290 struct witness_order_list_entry { 291 const char *w_name; 292 struct lock_class *w_class; 293 }; 294 295 /* 296 * Returns 0 if one of the locks is a spin lock and the other is not. 297 * Returns 1 otherwise. 298 */ 299 static __inline int 300 witness_lock_type_equal(struct witness *w1, struct witness *w2) 301 { 302 303 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 304 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 305 } 306 307 static __inline int 308 witness_lock_order_key_empty(const struct witness_lock_order_key *key) 309 { 310 311 return (key->from == 0 && key->to == 0); 312 } 313 314 static __inline int 315 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 316 const struct witness_lock_order_key *b) 317 { 318 319 return (a->from == b->from && a->to == b->to); 320 } 321 322 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 323 const char *fname); 324 #ifdef KDB 325 static void _witness_debugger(int cond, const char *msg); 326 #endif 327 static void adopt(struct witness *parent, struct witness *child); 328 #ifdef BLESSING 329 static int blessed(struct witness *, struct witness *); 330 #endif 331 static void depart(struct witness *w); 332 static struct witness *enroll(const char *description, 333 struct lock_class *lock_class); 334 static struct lock_instance *find_instance(struct lock_list_entry *list, 335 const struct lock_object *lock); 336 static int isitmychild(struct witness *parent, struct witness *child); 337 static int isitmydescendant(struct witness *parent, struct witness *child); 338 static void itismychild(struct witness *parent, struct witness *child); 339 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 340 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 341 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 342 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 343 #ifdef DDB 344 static void witness_ddb_compute_levels(void); 345 static void witness_ddb_display(int(*)(const char *fmt, ...)); 346 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 347 struct witness *, int indent); 348 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 349 struct witness_list *list); 350 static void witness_ddb_level_descendants(struct witness *parent, int l); 351 static void witness_ddb_list(struct thread *td); 352 #endif 353 static void witness_free(struct witness *m); 354 static struct witness *witness_get(void); 355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 356 static struct witness *witness_hash_get(const char *key); 357 static void witness_hash_put(struct witness *w); 358 static void witness_init_hash_tables(void); 359 static void witness_increment_graph_generation(void); 360 static void witness_lock_list_free(struct lock_list_entry *lle); 361 static struct lock_list_entry *witness_lock_list_get(void); 362 static int witness_lock_order_add(struct witness *parent, 363 struct witness *child); 364 static int witness_lock_order_check(struct witness *parent, 365 struct witness *child); 366 static struct witness_lock_order_data *witness_lock_order_get( 367 struct witness *parent, 368 struct witness *child); 369 static void witness_list_lock(struct lock_instance *instance, 370 int (*prnt)(const char *fmt, ...)); 371 static void witness_setflag(struct lock_object *lock, int flag, int set); 372 373 #ifdef KDB 374 #define witness_debugger(c) _witness_debugger(c, __func__) 375 #else 376 #define witness_debugger(c) 377 #endif 378 379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 380 "Witness Locking"); 381 382 /* 383 * If set to 0, lock order checking is disabled. If set to -1, 384 * witness is completely disabled. Otherwise witness performs full 385 * lock order checking for all locks. At runtime, lock order checking 386 * may be toggled. However, witness cannot be reenabled once it is 387 * completely disabled. 388 */ 389 static int witness_watch = 1; 390 TUNABLE_INT("debug.witness.watch", &witness_watch); 391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, 392 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 393 394 #ifdef KDB 395 /* 396 * When KDB is enabled and witness_kdb is 1, it will cause the system 397 * to drop into kdebug() when: 398 * - a lock hierarchy violation occurs 399 * - locks are held when going to sleep. 400 */ 401 #ifdef WITNESS_KDB 402 int witness_kdb = 1; 403 #else 404 int witness_kdb = 0; 405 #endif 406 TUNABLE_INT("debug.witness.kdb", &witness_kdb); 407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, ""); 408 409 /* 410 * When KDB is enabled and witness_trace is 1, it will cause the system 411 * to print a stack trace: 412 * - a lock hierarchy violation occurs 413 * - locks are held when going to sleep. 414 */ 415 int witness_trace = 1; 416 TUNABLE_INT("debug.witness.trace", &witness_trace); 417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, ""); 418 #endif /* KDB */ 419 420 #ifdef WITNESS_SKIPSPIN 421 int witness_skipspin = 1; 422 #else 423 int witness_skipspin = 0; 424 #endif 425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin); 426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 427 0, ""); 428 429 /* 430 * Call this to print out the relations between locks. 431 */ 432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 433 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 434 435 /* 436 * Call this to print out the witness faulty stacks. 437 */ 438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 439 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 440 441 static struct mtx w_mtx; 442 443 /* w_list */ 444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 446 447 /* w_typelist */ 448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 450 451 /* lock list */ 452 static struct lock_list_entry *w_lock_list_free = NULL; 453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 454 static u_int pending_cnt; 455 456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 460 ""); 461 462 static struct witness *w_data; 463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1]; 464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 465 static struct witness_hash w_hash; /* The witness hash table. */ 466 467 /* The lock order data hash */ 468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 469 static struct witness_lock_order_data *w_lofree = NULL; 470 static struct witness_lock_order_hash w_lohash; 471 static int w_max_used_index = 0; 472 static unsigned int w_generation = 0; 473 static const char w_notrunning[] = "Witness not running\n"; 474 static const char w_stillcold[] = "Witness is still cold\n"; 475 476 477 static struct witness_order_list_entry order_lists[] = { 478 /* 479 * sx locks 480 */ 481 { "proctree", &lock_class_sx }, 482 { "allproc", &lock_class_sx }, 483 { "allprison", &lock_class_sx }, 484 { NULL, NULL }, 485 /* 486 * Various mutexes 487 */ 488 { "Giant", &lock_class_mtx_sleep }, 489 { "pipe mutex", &lock_class_mtx_sleep }, 490 { "sigio lock", &lock_class_mtx_sleep }, 491 { "process group", &lock_class_mtx_sleep }, 492 { "process lock", &lock_class_mtx_sleep }, 493 { "session", &lock_class_mtx_sleep }, 494 { "uidinfo hash", &lock_class_rw }, 495 #ifdef HWPMC_HOOKS 496 { "pmc-sleep", &lock_class_mtx_sleep }, 497 #endif 498 { "time lock", &lock_class_mtx_sleep }, 499 { NULL, NULL }, 500 /* 501 * Sockets 502 */ 503 { "accept", &lock_class_mtx_sleep }, 504 { "so_snd", &lock_class_mtx_sleep }, 505 { "so_rcv", &lock_class_mtx_sleep }, 506 { "sellck", &lock_class_mtx_sleep }, 507 { NULL, NULL }, 508 /* 509 * Routing 510 */ 511 { "so_rcv", &lock_class_mtx_sleep }, 512 { "radix node head", &lock_class_rw }, 513 { "rtentry", &lock_class_mtx_sleep }, 514 { "ifaddr", &lock_class_mtx_sleep }, 515 { NULL, NULL }, 516 /* 517 * IPv4 multicast: 518 * protocol locks before interface locks, after UDP locks. 519 */ 520 { "udpinp", &lock_class_rw }, 521 { "in_multi_mtx", &lock_class_mtx_sleep }, 522 { "igmp_mtx", &lock_class_mtx_sleep }, 523 { "if_addr_lock", &lock_class_rw }, 524 { NULL, NULL }, 525 /* 526 * IPv6 multicast: 527 * protocol locks before interface locks, after UDP locks. 528 */ 529 { "udpinp", &lock_class_rw }, 530 { "in6_multi_mtx", &lock_class_mtx_sleep }, 531 { "mld_mtx", &lock_class_mtx_sleep }, 532 { "if_addr_lock", &lock_class_rw }, 533 { NULL, NULL }, 534 /* 535 * UNIX Domain Sockets 536 */ 537 { "unp_global_rwlock", &lock_class_rw }, 538 { "unp_list_lock", &lock_class_mtx_sleep }, 539 { "unp", &lock_class_mtx_sleep }, 540 { "so_snd", &lock_class_mtx_sleep }, 541 { NULL, NULL }, 542 /* 543 * UDP/IP 544 */ 545 { "udp", &lock_class_rw }, 546 { "udpinp", &lock_class_rw }, 547 { "so_snd", &lock_class_mtx_sleep }, 548 { NULL, NULL }, 549 /* 550 * TCP/IP 551 */ 552 { "tcp", &lock_class_rw }, 553 { "tcpinp", &lock_class_rw }, 554 { "so_snd", &lock_class_mtx_sleep }, 555 { NULL, NULL }, 556 /* 557 * netatalk 558 */ 559 { "ddp_list_mtx", &lock_class_mtx_sleep }, 560 { "ddp_mtx", &lock_class_mtx_sleep }, 561 { NULL, NULL }, 562 /* 563 * BPF 564 */ 565 { "bpf global lock", &lock_class_mtx_sleep }, 566 { "bpf interface lock", &lock_class_rw }, 567 { "bpf cdev lock", &lock_class_mtx_sleep }, 568 { NULL, NULL }, 569 /* 570 * NFS server 571 */ 572 { "nfsd_mtx", &lock_class_mtx_sleep }, 573 { "so_snd", &lock_class_mtx_sleep }, 574 { NULL, NULL }, 575 576 /* 577 * IEEE 802.11 578 */ 579 { "802.11 com lock", &lock_class_mtx_sleep}, 580 { NULL, NULL }, 581 /* 582 * Network drivers 583 */ 584 { "network driver", &lock_class_mtx_sleep}, 585 { NULL, NULL }, 586 587 /* 588 * Netgraph 589 */ 590 { "ng_node", &lock_class_mtx_sleep }, 591 { "ng_worklist", &lock_class_mtx_sleep }, 592 { NULL, NULL }, 593 /* 594 * CDEV 595 */ 596 { "vm map (system)", &lock_class_mtx_sleep }, 597 { "vm page queue", &lock_class_mtx_sleep }, 598 { "vnode interlock", &lock_class_mtx_sleep }, 599 { "cdev", &lock_class_mtx_sleep }, 600 { NULL, NULL }, 601 /* 602 * VM 603 */ 604 { "vm map (user)", &lock_class_sx }, 605 { "vm object", &lock_class_mtx_sleep }, 606 { "vm page", &lock_class_mtx_sleep }, 607 { "vm page queue", &lock_class_mtx_sleep }, 608 { "pmap pv global", &lock_class_rw }, 609 { "pmap", &lock_class_mtx_sleep }, 610 { "pmap pv list", &lock_class_rw }, 611 { "vm page free queue", &lock_class_mtx_sleep }, 612 { NULL, NULL }, 613 /* 614 * kqueue/VFS interaction 615 */ 616 { "kqueue", &lock_class_mtx_sleep }, 617 { "struct mount mtx", &lock_class_mtx_sleep }, 618 { "vnode interlock", &lock_class_mtx_sleep }, 619 { NULL, NULL }, 620 /* 621 * ZFS locking 622 */ 623 { "dn->dn_mtx", &lock_class_sx }, 624 { "dr->dt.di.dr_mtx", &lock_class_sx }, 625 { "db->db_mtx", &lock_class_sx }, 626 { NULL, NULL }, 627 /* 628 * spin locks 629 */ 630 #ifdef SMP 631 { "ap boot", &lock_class_mtx_spin }, 632 #endif 633 { "rm.mutex_mtx", &lock_class_mtx_spin }, 634 { "sio", &lock_class_mtx_spin }, 635 { "scrlock", &lock_class_mtx_spin }, 636 #ifdef __i386__ 637 { "cy", &lock_class_mtx_spin }, 638 #endif 639 #ifdef __sparc64__ 640 { "pcib_mtx", &lock_class_mtx_spin }, 641 { "rtc_mtx", &lock_class_mtx_spin }, 642 #endif 643 { "scc_hwmtx", &lock_class_mtx_spin }, 644 { "uart_hwmtx", &lock_class_mtx_spin }, 645 { "fast_taskqueue", &lock_class_mtx_spin }, 646 { "intr table", &lock_class_mtx_spin }, 647 #ifdef HWPMC_HOOKS 648 { "pmc-per-proc", &lock_class_mtx_spin }, 649 #endif 650 { "process slock", &lock_class_mtx_spin }, 651 { "sleepq chain", &lock_class_mtx_spin }, 652 { "umtx lock", &lock_class_mtx_spin }, 653 { "rm_spinlock", &lock_class_mtx_spin }, 654 { "turnstile chain", &lock_class_mtx_spin }, 655 { "turnstile lock", &lock_class_mtx_spin }, 656 { "sched lock", &lock_class_mtx_spin }, 657 { "td_contested", &lock_class_mtx_spin }, 658 { "callout", &lock_class_mtx_spin }, 659 { "entropy harvest mutex", &lock_class_mtx_spin }, 660 { "syscons video lock", &lock_class_mtx_spin }, 661 #ifdef SMP 662 { "smp rendezvous", &lock_class_mtx_spin }, 663 #endif 664 #ifdef __powerpc__ 665 { "tlb0", &lock_class_mtx_spin }, 666 #endif 667 /* 668 * leaf locks 669 */ 670 { "intrcnt", &lock_class_mtx_spin }, 671 { "icu", &lock_class_mtx_spin }, 672 #ifdef __i386__ 673 { "allpmaps", &lock_class_mtx_spin }, 674 { "descriptor tables", &lock_class_mtx_spin }, 675 #endif 676 { "clk", &lock_class_mtx_spin }, 677 { "cpuset", &lock_class_mtx_spin }, 678 { "mprof lock", &lock_class_mtx_spin }, 679 { "zombie lock", &lock_class_mtx_spin }, 680 { "ALD Queue", &lock_class_mtx_spin }, 681 #ifdef __ia64__ 682 { "MCA spin lock", &lock_class_mtx_spin }, 683 #endif 684 #if defined(__i386__) || defined(__amd64__) 685 { "pcicfg", &lock_class_mtx_spin }, 686 { "NDIS thread lock", &lock_class_mtx_spin }, 687 #endif 688 { "tw_osl_io_lock", &lock_class_mtx_spin }, 689 { "tw_osl_q_lock", &lock_class_mtx_spin }, 690 { "tw_cl_io_lock", &lock_class_mtx_spin }, 691 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 692 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 693 #ifdef HWPMC_HOOKS 694 { "pmc-leaf", &lock_class_mtx_spin }, 695 #endif 696 { "blocked lock", &lock_class_mtx_spin }, 697 { NULL, NULL }, 698 { NULL, NULL } 699 }; 700 701 #ifdef BLESSING 702 /* 703 * Pairs of locks which have been blessed 704 * Don't complain about order problems with blessed locks 705 */ 706 static struct witness_blessed blessed_list[] = { 707 }; 708 static int blessed_count = 709 sizeof(blessed_list) / sizeof(struct witness_blessed); 710 #endif 711 712 /* 713 * This global is set to 0 once it becomes safe to use the witness code. 714 */ 715 static int witness_cold = 1; 716 717 /* 718 * This global is set to 1 once the static lock orders have been enrolled 719 * so that a warning can be issued for any spin locks enrolled later. 720 */ 721 static int witness_spin_warn = 0; 722 723 /* Trim useless garbage from filenames. */ 724 static const char * 725 fixup_filename(const char *file) 726 { 727 728 if (file == NULL) 729 return (NULL); 730 while (strncmp(file, "../", 3) == 0) 731 file += 3; 732 return (file); 733 } 734 735 /* 736 * The WITNESS-enabled diagnostic code. Note that the witness code does 737 * assume that the early boot is single-threaded at least until after this 738 * routine is completed. 739 */ 740 static void 741 witness_initialize(void *dummy __unused) 742 { 743 struct lock_object *lock; 744 struct witness_order_list_entry *order; 745 struct witness *w, *w1; 746 int i; 747 748 w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS, 749 M_NOWAIT | M_ZERO); 750 751 /* 752 * We have to release Giant before initializing its witness 753 * structure so that WITNESS doesn't get confused. 754 */ 755 mtx_unlock(&Giant); 756 mtx_assert(&Giant, MA_NOTOWNED); 757 758 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 759 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 760 MTX_NOWITNESS | MTX_NOPROFILE); 761 for (i = WITNESS_COUNT - 1; i >= 0; i--) { 762 w = &w_data[i]; 763 memset(w, 0, sizeof(*w)); 764 w_data[i].w_index = i; /* Witness index never changes. */ 765 witness_free(w); 766 } 767 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 768 ("%s: Invalid list of free witness objects", __func__)); 769 770 /* Witness with index 0 is not used to aid in debugging. */ 771 STAILQ_REMOVE_HEAD(&w_free, w_list); 772 w_free_cnt--; 773 774 memset(w_rmatrix, 0, 775 (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1))); 776 777 for (i = 0; i < LOCK_CHILDCOUNT; i++) 778 witness_lock_list_free(&w_locklistdata[i]); 779 witness_init_hash_tables(); 780 781 /* First add in all the specified order lists. */ 782 for (order = order_lists; order->w_name != NULL; order++) { 783 w = enroll(order->w_name, order->w_class); 784 if (w == NULL) 785 continue; 786 w->w_file = "order list"; 787 for (order++; order->w_name != NULL; order++) { 788 w1 = enroll(order->w_name, order->w_class); 789 if (w1 == NULL) 790 continue; 791 w1->w_file = "order list"; 792 itismychild(w, w1); 793 w = w1; 794 } 795 } 796 witness_spin_warn = 1; 797 798 /* Iterate through all locks and add them to witness. */ 799 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 800 lock = pending_locks[i].wh_lock; 801 KASSERT(lock->lo_flags & LO_WITNESS, 802 ("%s: lock %s is on pending list but not LO_WITNESS", 803 __func__, lock->lo_name)); 804 lock->lo_witness = enroll(pending_locks[i].wh_type, 805 LOCK_CLASS(lock)); 806 } 807 808 /* Mark the witness code as being ready for use. */ 809 witness_cold = 0; 810 811 mtx_lock(&Giant); 812 } 813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 814 NULL); 815 816 void 817 witness_init(struct lock_object *lock, const char *type) 818 { 819 struct lock_class *class; 820 821 /* Various sanity checks. */ 822 class = LOCK_CLASS(lock); 823 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 824 (class->lc_flags & LC_RECURSABLE) == 0) 825 panic("%s: lock (%s) %s can not be recursable", __func__, 826 class->lc_name, lock->lo_name); 827 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 828 (class->lc_flags & LC_SLEEPABLE) == 0) 829 panic("%s: lock (%s) %s can not be sleepable", __func__, 830 class->lc_name, lock->lo_name); 831 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 832 (class->lc_flags & LC_UPGRADABLE) == 0) 833 panic("%s: lock (%s) %s can not be upgradable", __func__, 834 class->lc_name, lock->lo_name); 835 836 /* 837 * If we shouldn't watch this lock, then just clear lo_witness. 838 * Otherwise, if witness_cold is set, then it is too early to 839 * enroll this lock, so defer it to witness_initialize() by adding 840 * it to the pending_locks list. If it is not too early, then enroll 841 * the lock now. 842 */ 843 if (witness_watch < 1 || panicstr != NULL || 844 (lock->lo_flags & LO_WITNESS) == 0) 845 lock->lo_witness = NULL; 846 else if (witness_cold) { 847 pending_locks[pending_cnt].wh_lock = lock; 848 pending_locks[pending_cnt++].wh_type = type; 849 if (pending_cnt > WITNESS_PENDLIST) 850 panic("%s: pending locks list is too small, bump it\n", 851 __func__); 852 } else 853 lock->lo_witness = enroll(type, class); 854 } 855 856 void 857 witness_destroy(struct lock_object *lock) 858 { 859 struct lock_class *class; 860 struct witness *w; 861 862 class = LOCK_CLASS(lock); 863 864 if (witness_cold) 865 panic("lock (%s) %s destroyed while witness_cold", 866 class->lc_name, lock->lo_name); 867 868 /* XXX: need to verify that no one holds the lock */ 869 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 870 return; 871 w = lock->lo_witness; 872 873 mtx_lock_spin(&w_mtx); 874 MPASS(w->w_refcount > 0); 875 w->w_refcount--; 876 877 if (w->w_refcount == 0) 878 depart(w); 879 mtx_unlock_spin(&w_mtx); 880 } 881 882 #ifdef DDB 883 static void 884 witness_ddb_compute_levels(void) 885 { 886 struct witness *w; 887 888 /* 889 * First clear all levels. 890 */ 891 STAILQ_FOREACH(w, &w_all, w_list) 892 w->w_ddb_level = -1; 893 894 /* 895 * Look for locks with no parents and level all their descendants. 896 */ 897 STAILQ_FOREACH(w, &w_all, w_list) { 898 899 /* If the witness has ancestors (is not a root), skip it. */ 900 if (w->w_num_ancestors > 0) 901 continue; 902 witness_ddb_level_descendants(w, 0); 903 } 904 } 905 906 static void 907 witness_ddb_level_descendants(struct witness *w, int l) 908 { 909 int i; 910 911 if (w->w_ddb_level >= l) 912 return; 913 914 w->w_ddb_level = l; 915 l++; 916 917 for (i = 1; i <= w_max_used_index; i++) { 918 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 919 witness_ddb_level_descendants(&w_data[i], l); 920 } 921 } 922 923 static void 924 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 925 struct witness *w, int indent) 926 { 927 int i; 928 929 for (i = 0; i < indent; i++) 930 prnt(" "); 931 prnt("%s (type: %s, depth: %d, active refs: %d)", 932 w->w_name, w->w_class->lc_name, 933 w->w_ddb_level, w->w_refcount); 934 if (w->w_displayed) { 935 prnt(" -- (already displayed)\n"); 936 return; 937 } 938 w->w_displayed = 1; 939 if (w->w_file != NULL && w->w_line != 0) 940 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 941 w->w_line); 942 else 943 prnt(" -- never acquired\n"); 944 indent++; 945 WITNESS_INDEX_ASSERT(w->w_index); 946 for (i = 1; i <= w_max_used_index; i++) { 947 if (db_pager_quit) 948 return; 949 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 950 witness_ddb_display_descendants(prnt, &w_data[i], 951 indent); 952 } 953 } 954 955 static void 956 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 957 struct witness_list *list) 958 { 959 struct witness *w; 960 961 STAILQ_FOREACH(w, list, w_typelist) { 962 if (w->w_file == NULL || w->w_ddb_level > 0) 963 continue; 964 965 /* This lock has no anscestors - display its descendants. */ 966 witness_ddb_display_descendants(prnt, w, 0); 967 if (db_pager_quit) 968 return; 969 } 970 } 971 972 static void 973 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 974 { 975 struct witness *w; 976 977 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 978 witness_ddb_compute_levels(); 979 980 /* Clear all the displayed flags. */ 981 STAILQ_FOREACH(w, &w_all, w_list) 982 w->w_displayed = 0; 983 984 /* 985 * First, handle sleep locks which have been acquired at least 986 * once. 987 */ 988 prnt("Sleep locks:\n"); 989 witness_ddb_display_list(prnt, &w_sleep); 990 if (db_pager_quit) 991 return; 992 993 /* 994 * Now do spin locks which have been acquired at least once. 995 */ 996 prnt("\nSpin locks:\n"); 997 witness_ddb_display_list(prnt, &w_spin); 998 if (db_pager_quit) 999 return; 1000 1001 /* 1002 * Finally, any locks which have not been acquired yet. 1003 */ 1004 prnt("\nLocks which were never acquired:\n"); 1005 STAILQ_FOREACH(w, &w_all, w_list) { 1006 if (w->w_file != NULL || w->w_refcount == 0) 1007 continue; 1008 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1009 w->w_class->lc_name, w->w_ddb_level); 1010 if (db_pager_quit) 1011 return; 1012 } 1013 } 1014 #endif /* DDB */ 1015 1016 int 1017 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1018 { 1019 1020 if (witness_watch == -1 || panicstr != NULL) 1021 return (0); 1022 1023 /* Require locks that witness knows about. */ 1024 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1025 lock2->lo_witness == NULL) 1026 return (EINVAL); 1027 1028 mtx_assert(&w_mtx, MA_NOTOWNED); 1029 mtx_lock_spin(&w_mtx); 1030 1031 /* 1032 * If we already have either an explicit or implied lock order that 1033 * is the other way around, then return an error. 1034 */ 1035 if (witness_watch && 1036 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1037 mtx_unlock_spin(&w_mtx); 1038 return (EDOOFUS); 1039 } 1040 1041 /* Try to add the new order. */ 1042 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1043 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1044 itismychild(lock1->lo_witness, lock2->lo_witness); 1045 mtx_unlock_spin(&w_mtx); 1046 return (0); 1047 } 1048 1049 void 1050 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1051 int line, struct lock_object *interlock) 1052 { 1053 struct lock_list_entry *lock_list, *lle; 1054 struct lock_instance *lock1, *lock2, *plock; 1055 struct lock_class *class; 1056 struct witness *w, *w1; 1057 struct thread *td; 1058 int i, j; 1059 1060 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1061 panicstr != NULL) 1062 return; 1063 1064 w = lock->lo_witness; 1065 class = LOCK_CLASS(lock); 1066 td = curthread; 1067 1068 if (class->lc_flags & LC_SLEEPLOCK) { 1069 1070 /* 1071 * Since spin locks include a critical section, this check 1072 * implicitly enforces a lock order of all sleep locks before 1073 * all spin locks. 1074 */ 1075 if (td->td_critnest != 0 && !kdb_active) 1076 panic("blockable sleep lock (%s) %s @ %s:%d", 1077 class->lc_name, lock->lo_name, 1078 fixup_filename(file), line); 1079 1080 /* 1081 * If this is the first lock acquired then just return as 1082 * no order checking is needed. 1083 */ 1084 lock_list = td->td_sleeplocks; 1085 if (lock_list == NULL || lock_list->ll_count == 0) 1086 return; 1087 } else { 1088 1089 /* 1090 * If this is the first lock, just return as no order 1091 * checking is needed. Avoid problems with thread 1092 * migration pinning the thread while checking if 1093 * spinlocks are held. If at least one spinlock is held 1094 * the thread is in a safe path and it is allowed to 1095 * unpin it. 1096 */ 1097 sched_pin(); 1098 lock_list = PCPU_GET(spinlocks); 1099 if (lock_list == NULL || lock_list->ll_count == 0) { 1100 sched_unpin(); 1101 return; 1102 } 1103 sched_unpin(); 1104 } 1105 1106 /* 1107 * Check to see if we are recursing on a lock we already own. If 1108 * so, make sure that we don't mismatch exclusive and shared lock 1109 * acquires. 1110 */ 1111 lock1 = find_instance(lock_list, lock); 1112 if (lock1 != NULL) { 1113 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1114 (flags & LOP_EXCLUSIVE) == 0) { 1115 printf("shared lock of (%s) %s @ %s:%d\n", 1116 class->lc_name, lock->lo_name, 1117 fixup_filename(file), line); 1118 printf("while exclusively locked from %s:%d\n", 1119 fixup_filename(lock1->li_file), lock1->li_line); 1120 panic("share->excl"); 1121 } 1122 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1123 (flags & LOP_EXCLUSIVE) != 0) { 1124 printf("exclusive lock of (%s) %s @ %s:%d\n", 1125 class->lc_name, lock->lo_name, 1126 fixup_filename(file), line); 1127 printf("while share locked from %s:%d\n", 1128 fixup_filename(lock1->li_file), lock1->li_line); 1129 panic("excl->share"); 1130 } 1131 return; 1132 } 1133 1134 /* 1135 * Find the previously acquired lock, but ignore interlocks. 1136 */ 1137 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1138 if (interlock != NULL && plock->li_lock == interlock) { 1139 if (lock_list->ll_count > 1) 1140 plock = 1141 &lock_list->ll_children[lock_list->ll_count - 2]; 1142 else { 1143 lle = lock_list->ll_next; 1144 1145 /* 1146 * The interlock is the only lock we hold, so 1147 * simply return. 1148 */ 1149 if (lle == NULL) 1150 return; 1151 plock = &lle->ll_children[lle->ll_count - 1]; 1152 } 1153 } 1154 1155 /* 1156 * Try to perform most checks without a lock. If this succeeds we 1157 * can skip acquiring the lock and return success. 1158 */ 1159 w1 = plock->li_lock->lo_witness; 1160 if (witness_lock_order_check(w1, w)) 1161 return; 1162 1163 /* 1164 * Check for duplicate locks of the same type. Note that we only 1165 * have to check for this on the last lock we just acquired. Any 1166 * other cases will be caught as lock order violations. 1167 */ 1168 mtx_lock_spin(&w_mtx); 1169 witness_lock_order_add(w1, w); 1170 if (w1 == w) { 1171 i = w->w_index; 1172 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1173 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1174 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1175 w->w_reversed = 1; 1176 mtx_unlock_spin(&w_mtx); 1177 printf( 1178 "acquiring duplicate lock of same type: \"%s\"\n", 1179 w->w_name); 1180 printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1181 fixup_filename(plock->li_file), plock->li_line); 1182 printf(" 2nd %s @ %s:%d\n", lock->lo_name, 1183 fixup_filename(file), line); 1184 witness_debugger(1); 1185 } else 1186 mtx_unlock_spin(&w_mtx); 1187 return; 1188 } 1189 mtx_assert(&w_mtx, MA_OWNED); 1190 1191 /* 1192 * If we know that the lock we are acquiring comes after 1193 * the lock we most recently acquired in the lock order tree, 1194 * then there is no need for any further checks. 1195 */ 1196 if (isitmychild(w1, w)) 1197 goto out; 1198 1199 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1200 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1201 1202 MPASS(j < WITNESS_COUNT); 1203 lock1 = &lle->ll_children[i]; 1204 1205 /* 1206 * Ignore the interlock the first time we see it. 1207 */ 1208 if (interlock != NULL && interlock == lock1->li_lock) { 1209 interlock = NULL; 1210 continue; 1211 } 1212 1213 /* 1214 * If this lock doesn't undergo witness checking, 1215 * then skip it. 1216 */ 1217 w1 = lock1->li_lock->lo_witness; 1218 if (w1 == NULL) { 1219 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1220 ("lock missing witness structure")); 1221 continue; 1222 } 1223 1224 /* 1225 * If we are locking Giant and this is a sleepable 1226 * lock, then skip it. 1227 */ 1228 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1229 lock == &Giant.lock_object) 1230 continue; 1231 1232 /* 1233 * If we are locking a sleepable lock and this lock 1234 * is Giant, then skip it. 1235 */ 1236 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1237 lock1->li_lock == &Giant.lock_object) 1238 continue; 1239 1240 /* 1241 * If we are locking a sleepable lock and this lock 1242 * isn't sleepable, we want to treat it as a lock 1243 * order violation to enfore a general lock order of 1244 * sleepable locks before non-sleepable locks. 1245 */ 1246 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1247 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1248 goto reversal; 1249 1250 /* 1251 * If we are locking Giant and this is a non-sleepable 1252 * lock, then treat it as a reversal. 1253 */ 1254 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1255 lock == &Giant.lock_object) 1256 goto reversal; 1257 1258 /* 1259 * Check the lock order hierarchy for a reveresal. 1260 */ 1261 if (!isitmydescendant(w, w1)) 1262 continue; 1263 reversal: 1264 1265 /* 1266 * We have a lock order violation, check to see if it 1267 * is allowed or has already been yelled about. 1268 */ 1269 #ifdef BLESSING 1270 1271 /* 1272 * If the lock order is blessed, just bail. We don't 1273 * look for other lock order violations though, which 1274 * may be a bug. 1275 */ 1276 if (blessed(w, w1)) 1277 goto out; 1278 #endif 1279 1280 /* Bail if this violation is known */ 1281 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1282 goto out; 1283 1284 /* Record this as a violation */ 1285 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1286 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1287 w->w_reversed = w1->w_reversed = 1; 1288 witness_increment_graph_generation(); 1289 mtx_unlock_spin(&w_mtx); 1290 1291 /* 1292 * Ok, yell about it. 1293 */ 1294 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1295 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1296 printf( 1297 "lock order reversal: (sleepable after non-sleepable)\n"); 1298 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1299 && lock == &Giant.lock_object) 1300 printf( 1301 "lock order reversal: (Giant after non-sleepable)\n"); 1302 else 1303 printf("lock order reversal:\n"); 1304 1305 /* 1306 * Try to locate an earlier lock with 1307 * witness w in our list. 1308 */ 1309 do { 1310 lock2 = &lle->ll_children[i]; 1311 MPASS(lock2->li_lock != NULL); 1312 if (lock2->li_lock->lo_witness == w) 1313 break; 1314 if (i == 0 && lle->ll_next != NULL) { 1315 lle = lle->ll_next; 1316 i = lle->ll_count - 1; 1317 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1318 } else 1319 i--; 1320 } while (i >= 0); 1321 if (i < 0) { 1322 printf(" 1st %p %s (%s) @ %s:%d\n", 1323 lock1->li_lock, lock1->li_lock->lo_name, 1324 w1->w_name, fixup_filename(lock1->li_file), 1325 lock1->li_line); 1326 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1327 lock->lo_name, w->w_name, 1328 fixup_filename(file), line); 1329 } else { 1330 printf(" 1st %p %s (%s) @ %s:%d\n", 1331 lock2->li_lock, lock2->li_lock->lo_name, 1332 lock2->li_lock->lo_witness->w_name, 1333 fixup_filename(lock2->li_file), 1334 lock2->li_line); 1335 printf(" 2nd %p %s (%s) @ %s:%d\n", 1336 lock1->li_lock, lock1->li_lock->lo_name, 1337 w1->w_name, fixup_filename(lock1->li_file), 1338 lock1->li_line); 1339 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1340 lock->lo_name, w->w_name, 1341 fixup_filename(file), line); 1342 } 1343 witness_debugger(1); 1344 return; 1345 } 1346 } 1347 1348 /* 1349 * If requested, build a new lock order. However, don't build a new 1350 * relationship between a sleepable lock and Giant if it is in the 1351 * wrong direction. The correct lock order is that sleepable locks 1352 * always come before Giant. 1353 */ 1354 if (flags & LOP_NEWORDER && 1355 !(plock->li_lock == &Giant.lock_object && 1356 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1357 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1358 w->w_name, plock->li_lock->lo_witness->w_name); 1359 itismychild(plock->li_lock->lo_witness, w); 1360 } 1361 out: 1362 mtx_unlock_spin(&w_mtx); 1363 } 1364 1365 void 1366 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1367 { 1368 struct lock_list_entry **lock_list, *lle; 1369 struct lock_instance *instance; 1370 struct witness *w; 1371 struct thread *td; 1372 1373 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1374 panicstr != NULL) 1375 return; 1376 w = lock->lo_witness; 1377 td = curthread; 1378 1379 /* Determine lock list for this lock. */ 1380 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1381 lock_list = &td->td_sleeplocks; 1382 else 1383 lock_list = PCPU_PTR(spinlocks); 1384 1385 /* Check to see if we are recursing on a lock we already own. */ 1386 instance = find_instance(*lock_list, lock); 1387 if (instance != NULL) { 1388 instance->li_flags++; 1389 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1390 td->td_proc->p_pid, lock->lo_name, 1391 instance->li_flags & LI_RECURSEMASK); 1392 instance->li_file = file; 1393 instance->li_line = line; 1394 return; 1395 } 1396 1397 /* Update per-witness last file and line acquire. */ 1398 w->w_file = file; 1399 w->w_line = line; 1400 1401 /* Find the next open lock instance in the list and fill it. */ 1402 lle = *lock_list; 1403 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1404 lle = witness_lock_list_get(); 1405 if (lle == NULL) 1406 return; 1407 lle->ll_next = *lock_list; 1408 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1409 td->td_proc->p_pid, lle); 1410 *lock_list = lle; 1411 } 1412 instance = &lle->ll_children[lle->ll_count++]; 1413 instance->li_lock = lock; 1414 instance->li_line = line; 1415 instance->li_file = file; 1416 if ((flags & LOP_EXCLUSIVE) != 0) 1417 instance->li_flags = LI_EXCLUSIVE; 1418 else 1419 instance->li_flags = 0; 1420 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1421 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1422 } 1423 1424 void 1425 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1426 { 1427 struct lock_instance *instance; 1428 struct lock_class *class; 1429 1430 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1431 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1432 return; 1433 class = LOCK_CLASS(lock); 1434 if (witness_watch) { 1435 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1436 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d", 1437 class->lc_name, lock->lo_name, 1438 fixup_filename(file), line); 1439 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1440 panic("upgrade of non-sleep lock (%s) %s @ %s:%d", 1441 class->lc_name, lock->lo_name, 1442 fixup_filename(file), line); 1443 } 1444 instance = find_instance(curthread->td_sleeplocks, lock); 1445 if (instance == NULL) 1446 panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1447 class->lc_name, lock->lo_name, 1448 fixup_filename(file), line); 1449 if (witness_watch) { 1450 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1451 panic("upgrade of exclusive lock (%s) %s @ %s:%d", 1452 class->lc_name, lock->lo_name, 1453 fixup_filename(file), line); 1454 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1455 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1456 class->lc_name, lock->lo_name, 1457 instance->li_flags & LI_RECURSEMASK, 1458 fixup_filename(file), line); 1459 } 1460 instance->li_flags |= LI_EXCLUSIVE; 1461 } 1462 1463 void 1464 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1465 int line) 1466 { 1467 struct lock_instance *instance; 1468 struct lock_class *class; 1469 1470 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1471 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1472 return; 1473 class = LOCK_CLASS(lock); 1474 if (witness_watch) { 1475 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1476 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d", 1477 class->lc_name, lock->lo_name, 1478 fixup_filename(file), line); 1479 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1480 panic("downgrade of non-sleep lock (%s) %s @ %s:%d", 1481 class->lc_name, lock->lo_name, 1482 fixup_filename(file), line); 1483 } 1484 instance = find_instance(curthread->td_sleeplocks, lock); 1485 if (instance == NULL) 1486 panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1487 class->lc_name, lock->lo_name, 1488 fixup_filename(file), line); 1489 if (witness_watch) { 1490 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1491 panic("downgrade of shared lock (%s) %s @ %s:%d", 1492 class->lc_name, lock->lo_name, 1493 fixup_filename(file), line); 1494 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1495 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1496 class->lc_name, lock->lo_name, 1497 instance->li_flags & LI_RECURSEMASK, 1498 fixup_filename(file), line); 1499 } 1500 instance->li_flags &= ~LI_EXCLUSIVE; 1501 } 1502 1503 void 1504 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1505 { 1506 struct lock_list_entry **lock_list, *lle; 1507 struct lock_instance *instance; 1508 struct lock_class *class; 1509 struct thread *td; 1510 register_t s; 1511 int i, j; 1512 1513 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1514 return; 1515 td = curthread; 1516 class = LOCK_CLASS(lock); 1517 1518 /* Find lock instance associated with this lock. */ 1519 if (class->lc_flags & LC_SLEEPLOCK) 1520 lock_list = &td->td_sleeplocks; 1521 else 1522 lock_list = PCPU_PTR(spinlocks); 1523 lle = *lock_list; 1524 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1525 for (i = 0; i < (*lock_list)->ll_count; i++) { 1526 instance = &(*lock_list)->ll_children[i]; 1527 if (instance->li_lock == lock) 1528 goto found; 1529 } 1530 1531 /* 1532 * When disabling WITNESS through witness_watch we could end up in 1533 * having registered locks in the td_sleeplocks queue. 1534 * We have to make sure we flush these queues, so just search for 1535 * eventual register locks and remove them. 1536 */ 1537 if (witness_watch > 0) 1538 panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1539 lock->lo_name, fixup_filename(file), line); 1540 else 1541 return; 1542 found: 1543 1544 /* First, check for shared/exclusive mismatches. */ 1545 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1546 (flags & LOP_EXCLUSIVE) == 0) { 1547 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1548 lock->lo_name, fixup_filename(file), line); 1549 printf("while exclusively locked from %s:%d\n", 1550 fixup_filename(instance->li_file), instance->li_line); 1551 panic("excl->ushare"); 1552 } 1553 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1554 (flags & LOP_EXCLUSIVE) != 0) { 1555 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1556 lock->lo_name, fixup_filename(file), line); 1557 printf("while share locked from %s:%d\n", 1558 fixup_filename(instance->li_file), 1559 instance->li_line); 1560 panic("share->uexcl"); 1561 } 1562 /* If we are recursed, unrecurse. */ 1563 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1564 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1565 td->td_proc->p_pid, instance->li_lock->lo_name, 1566 instance->li_flags); 1567 instance->li_flags--; 1568 return; 1569 } 1570 /* The lock is now being dropped, check for NORELEASE flag */ 1571 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1572 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name, 1573 lock->lo_name, fixup_filename(file), line); 1574 panic("lock marked norelease"); 1575 } 1576 1577 /* Otherwise, remove this item from the list. */ 1578 s = intr_disable(); 1579 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1580 td->td_proc->p_pid, instance->li_lock->lo_name, 1581 (*lock_list)->ll_count - 1); 1582 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1583 (*lock_list)->ll_children[j] = 1584 (*lock_list)->ll_children[j + 1]; 1585 (*lock_list)->ll_count--; 1586 intr_restore(s); 1587 1588 /* 1589 * In order to reduce contention on w_mtx, we want to keep always an 1590 * head object into lists so that frequent allocation from the 1591 * free witness pool (and subsequent locking) is avoided. 1592 * In order to maintain the current code simple, when the head 1593 * object is totally unloaded it means also that we do not have 1594 * further objects in the list, so the list ownership needs to be 1595 * hand over to another object if the current head needs to be freed. 1596 */ 1597 if ((*lock_list)->ll_count == 0) { 1598 if (*lock_list == lle) { 1599 if (lle->ll_next == NULL) 1600 return; 1601 } else 1602 lle = *lock_list; 1603 *lock_list = lle->ll_next; 1604 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1605 td->td_proc->p_pid, lle); 1606 witness_lock_list_free(lle); 1607 } 1608 } 1609 1610 void 1611 witness_thread_exit(struct thread *td) 1612 { 1613 struct lock_list_entry *lle; 1614 int i, n; 1615 1616 lle = td->td_sleeplocks; 1617 if (lle == NULL || panicstr != NULL) 1618 return; 1619 if (lle->ll_count != 0) { 1620 for (n = 0; lle != NULL; lle = lle->ll_next) 1621 for (i = lle->ll_count - 1; i >= 0; i--) { 1622 if (n == 0) 1623 printf("Thread %p exiting with the following locks held:\n", 1624 td); 1625 n++; 1626 witness_list_lock(&lle->ll_children[i], printf); 1627 1628 } 1629 panic("Thread %p cannot exit while holding sleeplocks\n", td); 1630 } 1631 witness_lock_list_free(lle); 1632 } 1633 1634 /* 1635 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1636 * exempt Giant and sleepable locks from the checks as well. If any 1637 * non-exempt locks are held, then a supplied message is printed to the 1638 * console along with a list of the offending locks. If indicated in the 1639 * flags then a failure results in a panic as well. 1640 */ 1641 int 1642 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1643 { 1644 struct lock_list_entry *lock_list, *lle; 1645 struct lock_instance *lock1; 1646 struct thread *td; 1647 va_list ap; 1648 int i, n; 1649 1650 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1651 return (0); 1652 n = 0; 1653 td = curthread; 1654 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1655 for (i = lle->ll_count - 1; i >= 0; i--) { 1656 lock1 = &lle->ll_children[i]; 1657 if (lock1->li_lock == lock) 1658 continue; 1659 if (flags & WARN_GIANTOK && 1660 lock1->li_lock == &Giant.lock_object) 1661 continue; 1662 if (flags & WARN_SLEEPOK && 1663 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1664 continue; 1665 if (n == 0) { 1666 va_start(ap, fmt); 1667 vprintf(fmt, ap); 1668 va_end(ap); 1669 printf(" with the following"); 1670 if (flags & WARN_SLEEPOK) 1671 printf(" non-sleepable"); 1672 printf(" locks held:\n"); 1673 } 1674 n++; 1675 witness_list_lock(lock1, printf); 1676 } 1677 1678 /* 1679 * Pin the thread in order to avoid problems with thread migration. 1680 * Once that all verifies are passed about spinlocks ownership, 1681 * the thread is in a safe path and it can be unpinned. 1682 */ 1683 sched_pin(); 1684 lock_list = PCPU_GET(spinlocks); 1685 if (lock_list != NULL && lock_list->ll_count != 0) { 1686 sched_unpin(); 1687 1688 /* 1689 * We should only have one spinlock and as long as 1690 * the flags cannot match for this locks class, 1691 * check if the first spinlock is the one curthread 1692 * should hold. 1693 */ 1694 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1695 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1696 lock1->li_lock == lock && n == 0) 1697 return (0); 1698 1699 va_start(ap, fmt); 1700 vprintf(fmt, ap); 1701 va_end(ap); 1702 printf(" with the following"); 1703 if (flags & WARN_SLEEPOK) 1704 printf(" non-sleepable"); 1705 printf(" locks held:\n"); 1706 n += witness_list_locks(&lock_list, printf); 1707 } else 1708 sched_unpin(); 1709 if (flags & WARN_PANIC && n) 1710 panic("%s", __func__); 1711 else 1712 witness_debugger(n); 1713 return (n); 1714 } 1715 1716 const char * 1717 witness_file(struct lock_object *lock) 1718 { 1719 struct witness *w; 1720 1721 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1722 return ("?"); 1723 w = lock->lo_witness; 1724 return (w->w_file); 1725 } 1726 1727 int 1728 witness_line(struct lock_object *lock) 1729 { 1730 struct witness *w; 1731 1732 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1733 return (0); 1734 w = lock->lo_witness; 1735 return (w->w_line); 1736 } 1737 1738 static struct witness * 1739 enroll(const char *description, struct lock_class *lock_class) 1740 { 1741 struct witness *w; 1742 struct witness_list *typelist; 1743 1744 MPASS(description != NULL); 1745 1746 if (witness_watch == -1 || panicstr != NULL) 1747 return (NULL); 1748 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1749 if (witness_skipspin) 1750 return (NULL); 1751 else 1752 typelist = &w_spin; 1753 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) 1754 typelist = &w_sleep; 1755 else 1756 panic("lock class %s is not sleep or spin", 1757 lock_class->lc_name); 1758 1759 mtx_lock_spin(&w_mtx); 1760 w = witness_hash_get(description); 1761 if (w) 1762 goto found; 1763 if ((w = witness_get()) == NULL) 1764 return (NULL); 1765 MPASS(strlen(description) < MAX_W_NAME); 1766 strcpy(w->w_name, description); 1767 w->w_class = lock_class; 1768 w->w_refcount = 1; 1769 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1770 if (lock_class->lc_flags & LC_SPINLOCK) { 1771 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1772 w_spin_cnt++; 1773 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1774 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1775 w_sleep_cnt++; 1776 } 1777 1778 /* Insert new witness into the hash */ 1779 witness_hash_put(w); 1780 witness_increment_graph_generation(); 1781 mtx_unlock_spin(&w_mtx); 1782 return (w); 1783 found: 1784 w->w_refcount++; 1785 mtx_unlock_spin(&w_mtx); 1786 if (lock_class != w->w_class) 1787 panic( 1788 "lock (%s) %s does not match earlier (%s) lock", 1789 description, lock_class->lc_name, 1790 w->w_class->lc_name); 1791 return (w); 1792 } 1793 1794 static void 1795 depart(struct witness *w) 1796 { 1797 struct witness_list *list; 1798 1799 MPASS(w->w_refcount == 0); 1800 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1801 list = &w_sleep; 1802 w_sleep_cnt--; 1803 } else { 1804 list = &w_spin; 1805 w_spin_cnt--; 1806 } 1807 /* 1808 * Set file to NULL as it may point into a loadable module. 1809 */ 1810 w->w_file = NULL; 1811 w->w_line = 0; 1812 witness_increment_graph_generation(); 1813 } 1814 1815 1816 static void 1817 adopt(struct witness *parent, struct witness *child) 1818 { 1819 int pi, ci, i, j; 1820 1821 if (witness_cold == 0) 1822 mtx_assert(&w_mtx, MA_OWNED); 1823 1824 /* If the relationship is already known, there's no work to be done. */ 1825 if (isitmychild(parent, child)) 1826 return; 1827 1828 /* When the structure of the graph changes, bump up the generation. */ 1829 witness_increment_graph_generation(); 1830 1831 /* 1832 * The hard part ... create the direct relationship, then propagate all 1833 * indirect relationships. 1834 */ 1835 pi = parent->w_index; 1836 ci = child->w_index; 1837 WITNESS_INDEX_ASSERT(pi); 1838 WITNESS_INDEX_ASSERT(ci); 1839 MPASS(pi != ci); 1840 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1841 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1842 1843 /* 1844 * If parent was not already an ancestor of child, 1845 * then we increment the descendant and ancestor counters. 1846 */ 1847 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1848 parent->w_num_descendants++; 1849 child->w_num_ancestors++; 1850 } 1851 1852 /* 1853 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1854 * an ancestor of 'pi' during this loop. 1855 */ 1856 for (i = 1; i <= w_max_used_index; i++) { 1857 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1858 (i != pi)) 1859 continue; 1860 1861 /* Find each descendant of 'i' and mark it as a descendant. */ 1862 for (j = 1; j <= w_max_used_index; j++) { 1863 1864 /* 1865 * Skip children that are already marked as 1866 * descendants of 'i'. 1867 */ 1868 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1869 continue; 1870 1871 /* 1872 * We are only interested in descendants of 'ci'. Note 1873 * that 'ci' itself is counted as a descendant of 'ci'. 1874 */ 1875 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1876 (j != ci)) 1877 continue; 1878 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1879 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1880 w_data[i].w_num_descendants++; 1881 w_data[j].w_num_ancestors++; 1882 1883 /* 1884 * Make sure we aren't marking a node as both an 1885 * ancestor and descendant. We should have caught 1886 * this as a lock order reversal earlier. 1887 */ 1888 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1889 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1890 printf("witness rmatrix paradox! [%d][%d]=%d " 1891 "both ancestor and descendant\n", 1892 i, j, w_rmatrix[i][j]); 1893 kdb_backtrace(); 1894 printf("Witness disabled.\n"); 1895 witness_watch = -1; 1896 } 1897 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1898 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1899 printf("witness rmatrix paradox! [%d][%d]=%d " 1900 "both ancestor and descendant\n", 1901 j, i, w_rmatrix[j][i]); 1902 kdb_backtrace(); 1903 printf("Witness disabled.\n"); 1904 witness_watch = -1; 1905 } 1906 } 1907 } 1908 } 1909 1910 static void 1911 itismychild(struct witness *parent, struct witness *child) 1912 { 1913 1914 MPASS(child != NULL && parent != NULL); 1915 if (witness_cold == 0) 1916 mtx_assert(&w_mtx, MA_OWNED); 1917 1918 if (!witness_lock_type_equal(parent, child)) { 1919 if (witness_cold == 0) 1920 mtx_unlock_spin(&w_mtx); 1921 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 1922 "the same lock type", __func__, parent->w_name, 1923 parent->w_class->lc_name, child->w_name, 1924 child->w_class->lc_name); 1925 } 1926 adopt(parent, child); 1927 } 1928 1929 /* 1930 * Generic code for the isitmy*() functions. The rmask parameter is the 1931 * expected relationship of w1 to w2. 1932 */ 1933 static int 1934 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 1935 { 1936 unsigned char r1, r2; 1937 int i1, i2; 1938 1939 i1 = w1->w_index; 1940 i2 = w2->w_index; 1941 WITNESS_INDEX_ASSERT(i1); 1942 WITNESS_INDEX_ASSERT(i2); 1943 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 1944 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 1945 1946 /* The flags on one better be the inverse of the flags on the other */ 1947 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 1948 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 1949 printf("%s: rmatrix mismatch between %s (index %d) and %s " 1950 "(index %d): w_rmatrix[%d][%d] == %hhx but " 1951 "w_rmatrix[%d][%d] == %hhx\n", 1952 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 1953 i2, i1, r2); 1954 kdb_backtrace(); 1955 printf("Witness disabled.\n"); 1956 witness_watch = -1; 1957 } 1958 return (r1 & rmask); 1959 } 1960 1961 /* 1962 * Checks if @child is a direct child of @parent. 1963 */ 1964 static int 1965 isitmychild(struct witness *parent, struct witness *child) 1966 { 1967 1968 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 1969 } 1970 1971 /* 1972 * Checks if @descendant is a direct or inderect descendant of @ancestor. 1973 */ 1974 static int 1975 isitmydescendant(struct witness *ancestor, struct witness *descendant) 1976 { 1977 1978 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 1979 __func__)); 1980 } 1981 1982 #ifdef BLESSING 1983 static int 1984 blessed(struct witness *w1, struct witness *w2) 1985 { 1986 int i; 1987 struct witness_blessed *b; 1988 1989 for (i = 0; i < blessed_count; i++) { 1990 b = &blessed_list[i]; 1991 if (strcmp(w1->w_name, b->b_lock1) == 0) { 1992 if (strcmp(w2->w_name, b->b_lock2) == 0) 1993 return (1); 1994 continue; 1995 } 1996 if (strcmp(w1->w_name, b->b_lock2) == 0) 1997 if (strcmp(w2->w_name, b->b_lock1) == 0) 1998 return (1); 1999 } 2000 return (0); 2001 } 2002 #endif 2003 2004 static struct witness * 2005 witness_get(void) 2006 { 2007 struct witness *w; 2008 int index; 2009 2010 if (witness_cold == 0) 2011 mtx_assert(&w_mtx, MA_OWNED); 2012 2013 if (witness_watch == -1) { 2014 mtx_unlock_spin(&w_mtx); 2015 return (NULL); 2016 } 2017 if (STAILQ_EMPTY(&w_free)) { 2018 witness_watch = -1; 2019 mtx_unlock_spin(&w_mtx); 2020 printf("WITNESS: unable to allocate a new witness object\n"); 2021 return (NULL); 2022 } 2023 w = STAILQ_FIRST(&w_free); 2024 STAILQ_REMOVE_HEAD(&w_free, w_list); 2025 w_free_cnt--; 2026 index = w->w_index; 2027 MPASS(index > 0 && index == w_max_used_index+1 && 2028 index < WITNESS_COUNT); 2029 bzero(w, sizeof(*w)); 2030 w->w_index = index; 2031 if (index > w_max_used_index) 2032 w_max_used_index = index; 2033 return (w); 2034 } 2035 2036 static void 2037 witness_free(struct witness *w) 2038 { 2039 2040 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2041 w_free_cnt++; 2042 } 2043 2044 static struct lock_list_entry * 2045 witness_lock_list_get(void) 2046 { 2047 struct lock_list_entry *lle; 2048 2049 if (witness_watch == -1) 2050 return (NULL); 2051 mtx_lock_spin(&w_mtx); 2052 lle = w_lock_list_free; 2053 if (lle == NULL) { 2054 witness_watch = -1; 2055 mtx_unlock_spin(&w_mtx); 2056 printf("%s: witness exhausted\n", __func__); 2057 return (NULL); 2058 } 2059 w_lock_list_free = lle->ll_next; 2060 mtx_unlock_spin(&w_mtx); 2061 bzero(lle, sizeof(*lle)); 2062 return (lle); 2063 } 2064 2065 static void 2066 witness_lock_list_free(struct lock_list_entry *lle) 2067 { 2068 2069 mtx_lock_spin(&w_mtx); 2070 lle->ll_next = w_lock_list_free; 2071 w_lock_list_free = lle; 2072 mtx_unlock_spin(&w_mtx); 2073 } 2074 2075 static struct lock_instance * 2076 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2077 { 2078 struct lock_list_entry *lle; 2079 struct lock_instance *instance; 2080 int i; 2081 2082 for (lle = list; lle != NULL; lle = lle->ll_next) 2083 for (i = lle->ll_count - 1; i >= 0; i--) { 2084 instance = &lle->ll_children[i]; 2085 if (instance->li_lock == lock) 2086 return (instance); 2087 } 2088 return (NULL); 2089 } 2090 2091 static void 2092 witness_list_lock(struct lock_instance *instance, 2093 int (*prnt)(const char *fmt, ...)) 2094 { 2095 struct lock_object *lock; 2096 2097 lock = instance->li_lock; 2098 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2099 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2100 if (lock->lo_witness->w_name != lock->lo_name) 2101 prnt(" (%s)", lock->lo_witness->w_name); 2102 prnt(" r = %d (%p) locked @ %s:%d\n", 2103 instance->li_flags & LI_RECURSEMASK, lock, 2104 fixup_filename(instance->li_file), instance->li_line); 2105 } 2106 2107 #ifdef DDB 2108 static int 2109 witness_thread_has_locks(struct thread *td) 2110 { 2111 2112 if (td->td_sleeplocks == NULL) 2113 return (0); 2114 return (td->td_sleeplocks->ll_count != 0); 2115 } 2116 2117 static int 2118 witness_proc_has_locks(struct proc *p) 2119 { 2120 struct thread *td; 2121 2122 FOREACH_THREAD_IN_PROC(p, td) { 2123 if (witness_thread_has_locks(td)) 2124 return (1); 2125 } 2126 return (0); 2127 } 2128 #endif 2129 2130 int 2131 witness_list_locks(struct lock_list_entry **lock_list, 2132 int (*prnt)(const char *fmt, ...)) 2133 { 2134 struct lock_list_entry *lle; 2135 int i, nheld; 2136 2137 nheld = 0; 2138 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2139 for (i = lle->ll_count - 1; i >= 0; i--) { 2140 witness_list_lock(&lle->ll_children[i], prnt); 2141 nheld++; 2142 } 2143 return (nheld); 2144 } 2145 2146 /* 2147 * This is a bit risky at best. We call this function when we have timed 2148 * out acquiring a spin lock, and we assume that the other CPU is stuck 2149 * with this lock held. So, we go groveling around in the other CPU's 2150 * per-cpu data to try to find the lock instance for this spin lock to 2151 * see when it was last acquired. 2152 */ 2153 void 2154 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2155 int (*prnt)(const char *fmt, ...)) 2156 { 2157 struct lock_instance *instance; 2158 struct pcpu *pc; 2159 2160 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2161 return; 2162 pc = pcpu_find(owner->td_oncpu); 2163 instance = find_instance(pc->pc_spinlocks, lock); 2164 if (instance != NULL) 2165 witness_list_lock(instance, prnt); 2166 } 2167 2168 void 2169 witness_save(struct lock_object *lock, const char **filep, int *linep) 2170 { 2171 struct lock_list_entry *lock_list; 2172 struct lock_instance *instance; 2173 struct lock_class *class; 2174 2175 /* 2176 * This function is used independently in locking code to deal with 2177 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2178 * is gone. 2179 */ 2180 if (SCHEDULER_STOPPED()) 2181 return; 2182 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2183 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2184 return; 2185 class = LOCK_CLASS(lock); 2186 if (class->lc_flags & LC_SLEEPLOCK) 2187 lock_list = curthread->td_sleeplocks; 2188 else { 2189 if (witness_skipspin) 2190 return; 2191 lock_list = PCPU_GET(spinlocks); 2192 } 2193 instance = find_instance(lock_list, lock); 2194 if (instance == NULL) 2195 panic("%s: lock (%s) %s not locked", __func__, 2196 class->lc_name, lock->lo_name); 2197 *filep = instance->li_file; 2198 *linep = instance->li_line; 2199 } 2200 2201 void 2202 witness_restore(struct lock_object *lock, const char *file, int line) 2203 { 2204 struct lock_list_entry *lock_list; 2205 struct lock_instance *instance; 2206 struct lock_class *class; 2207 2208 /* 2209 * This function is used independently in locking code to deal with 2210 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2211 * is gone. 2212 */ 2213 if (SCHEDULER_STOPPED()) 2214 return; 2215 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2216 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2217 return; 2218 class = LOCK_CLASS(lock); 2219 if (class->lc_flags & LC_SLEEPLOCK) 2220 lock_list = curthread->td_sleeplocks; 2221 else { 2222 if (witness_skipspin) 2223 return; 2224 lock_list = PCPU_GET(spinlocks); 2225 } 2226 instance = find_instance(lock_list, lock); 2227 if (instance == NULL) 2228 panic("%s: lock (%s) %s not locked", __func__, 2229 class->lc_name, lock->lo_name); 2230 lock->lo_witness->w_file = file; 2231 lock->lo_witness->w_line = line; 2232 instance->li_file = file; 2233 instance->li_line = line; 2234 } 2235 2236 void 2237 witness_assert(const struct lock_object *lock, int flags, const char *file, 2238 int line) 2239 { 2240 #ifdef INVARIANT_SUPPORT 2241 struct lock_instance *instance; 2242 struct lock_class *class; 2243 2244 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2245 return; 2246 class = LOCK_CLASS(lock); 2247 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2248 instance = find_instance(curthread->td_sleeplocks, lock); 2249 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2250 instance = find_instance(PCPU_GET(spinlocks), lock); 2251 else { 2252 panic("Lock (%s) %s is not sleep or spin!", 2253 class->lc_name, lock->lo_name); 2254 } 2255 switch (flags) { 2256 case LA_UNLOCKED: 2257 if (instance != NULL) 2258 panic("Lock (%s) %s locked @ %s:%d.", 2259 class->lc_name, lock->lo_name, 2260 fixup_filename(file), line); 2261 break; 2262 case LA_LOCKED: 2263 case LA_LOCKED | LA_RECURSED: 2264 case LA_LOCKED | LA_NOTRECURSED: 2265 case LA_SLOCKED: 2266 case LA_SLOCKED | LA_RECURSED: 2267 case LA_SLOCKED | LA_NOTRECURSED: 2268 case LA_XLOCKED: 2269 case LA_XLOCKED | LA_RECURSED: 2270 case LA_XLOCKED | LA_NOTRECURSED: 2271 if (instance == NULL) { 2272 panic("Lock (%s) %s not locked @ %s:%d.", 2273 class->lc_name, lock->lo_name, 2274 fixup_filename(file), line); 2275 break; 2276 } 2277 if ((flags & LA_XLOCKED) != 0 && 2278 (instance->li_flags & LI_EXCLUSIVE) == 0) 2279 panic("Lock (%s) %s not exclusively locked @ %s:%d.", 2280 class->lc_name, lock->lo_name, 2281 fixup_filename(file), line); 2282 if ((flags & LA_SLOCKED) != 0 && 2283 (instance->li_flags & LI_EXCLUSIVE) != 0) 2284 panic("Lock (%s) %s exclusively locked @ %s:%d.", 2285 class->lc_name, lock->lo_name, 2286 fixup_filename(file), line); 2287 if ((flags & LA_RECURSED) != 0 && 2288 (instance->li_flags & LI_RECURSEMASK) == 0) 2289 panic("Lock (%s) %s not recursed @ %s:%d.", 2290 class->lc_name, lock->lo_name, 2291 fixup_filename(file), line); 2292 if ((flags & LA_NOTRECURSED) != 0 && 2293 (instance->li_flags & LI_RECURSEMASK) != 0) 2294 panic("Lock (%s) %s recursed @ %s:%d.", 2295 class->lc_name, lock->lo_name, 2296 fixup_filename(file), line); 2297 break; 2298 default: 2299 panic("Invalid lock assertion at %s:%d.", 2300 fixup_filename(file), line); 2301 2302 } 2303 #endif /* INVARIANT_SUPPORT */ 2304 } 2305 2306 static void 2307 witness_setflag(struct lock_object *lock, int flag, int set) 2308 { 2309 struct lock_list_entry *lock_list; 2310 struct lock_instance *instance; 2311 struct lock_class *class; 2312 2313 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2314 return; 2315 class = LOCK_CLASS(lock); 2316 if (class->lc_flags & LC_SLEEPLOCK) 2317 lock_list = curthread->td_sleeplocks; 2318 else { 2319 if (witness_skipspin) 2320 return; 2321 lock_list = PCPU_GET(spinlocks); 2322 } 2323 instance = find_instance(lock_list, lock); 2324 if (instance == NULL) 2325 panic("%s: lock (%s) %s not locked", __func__, 2326 class->lc_name, lock->lo_name); 2327 2328 if (set) 2329 instance->li_flags |= flag; 2330 else 2331 instance->li_flags &= ~flag; 2332 } 2333 2334 void 2335 witness_norelease(struct lock_object *lock) 2336 { 2337 2338 witness_setflag(lock, LI_NORELEASE, 1); 2339 } 2340 2341 void 2342 witness_releaseok(struct lock_object *lock) 2343 { 2344 2345 witness_setflag(lock, LI_NORELEASE, 0); 2346 } 2347 2348 #ifdef DDB 2349 static void 2350 witness_ddb_list(struct thread *td) 2351 { 2352 2353 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2354 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2355 2356 if (witness_watch < 1) 2357 return; 2358 2359 witness_list_locks(&td->td_sleeplocks, db_printf); 2360 2361 /* 2362 * We only handle spinlocks if td == curthread. This is somewhat broken 2363 * if td is currently executing on some other CPU and holds spin locks 2364 * as we won't display those locks. If we had a MI way of getting 2365 * the per-cpu data for a given cpu then we could use 2366 * td->td_oncpu to get the list of spinlocks for this thread 2367 * and "fix" this. 2368 * 2369 * That still wouldn't really fix this unless we locked the scheduler 2370 * lock or stopped the other CPU to make sure it wasn't changing the 2371 * list out from under us. It is probably best to just not try to 2372 * handle threads on other CPU's for now. 2373 */ 2374 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2375 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2376 } 2377 2378 DB_SHOW_COMMAND(locks, db_witness_list) 2379 { 2380 struct thread *td; 2381 2382 if (have_addr) 2383 td = db_lookup_thread(addr, TRUE); 2384 else 2385 td = kdb_thread; 2386 witness_ddb_list(td); 2387 } 2388 2389 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2390 { 2391 struct thread *td; 2392 struct proc *p; 2393 2394 /* 2395 * It would be nice to list only threads and processes that actually 2396 * held sleep locks, but that information is currently not exported 2397 * by WITNESS. 2398 */ 2399 FOREACH_PROC_IN_SYSTEM(p) { 2400 if (!witness_proc_has_locks(p)) 2401 continue; 2402 FOREACH_THREAD_IN_PROC(p, td) { 2403 if (!witness_thread_has_locks(td)) 2404 continue; 2405 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2406 p->p_comm, td, td->td_tid); 2407 witness_ddb_list(td); 2408 if (db_pager_quit) 2409 return; 2410 } 2411 } 2412 } 2413 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2414 2415 DB_SHOW_COMMAND(witness, db_witness_display) 2416 { 2417 2418 witness_ddb_display(db_printf); 2419 } 2420 #endif 2421 2422 static int 2423 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2424 { 2425 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2426 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2427 struct sbuf *sb; 2428 u_int w_rmatrix1, w_rmatrix2; 2429 int error, generation, i, j; 2430 2431 tmp_data1 = NULL; 2432 tmp_data2 = NULL; 2433 tmp_w1 = NULL; 2434 tmp_w2 = NULL; 2435 if (witness_watch < 1) { 2436 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2437 return (error); 2438 } 2439 if (witness_cold) { 2440 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2441 return (error); 2442 } 2443 error = 0; 2444 sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND); 2445 if (sb == NULL) 2446 return (ENOMEM); 2447 2448 /* Allocate and init temporary storage space. */ 2449 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2450 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2451 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2452 M_WAITOK | M_ZERO); 2453 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2454 M_WAITOK | M_ZERO); 2455 stack_zero(&tmp_data1->wlod_stack); 2456 stack_zero(&tmp_data2->wlod_stack); 2457 2458 restart: 2459 mtx_lock_spin(&w_mtx); 2460 generation = w_generation; 2461 mtx_unlock_spin(&w_mtx); 2462 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2463 w_lohash.wloh_count); 2464 for (i = 1; i < w_max_used_index; i++) { 2465 mtx_lock_spin(&w_mtx); 2466 if (generation != w_generation) { 2467 mtx_unlock_spin(&w_mtx); 2468 2469 /* The graph has changed, try again. */ 2470 req->oldidx = 0; 2471 sbuf_clear(sb); 2472 goto restart; 2473 } 2474 2475 w1 = &w_data[i]; 2476 if (w1->w_reversed == 0) { 2477 mtx_unlock_spin(&w_mtx); 2478 continue; 2479 } 2480 2481 /* Copy w1 locally so we can release the spin lock. */ 2482 *tmp_w1 = *w1; 2483 mtx_unlock_spin(&w_mtx); 2484 2485 if (tmp_w1->w_reversed == 0) 2486 continue; 2487 for (j = 1; j < w_max_used_index; j++) { 2488 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2489 continue; 2490 2491 mtx_lock_spin(&w_mtx); 2492 if (generation != w_generation) { 2493 mtx_unlock_spin(&w_mtx); 2494 2495 /* The graph has changed, try again. */ 2496 req->oldidx = 0; 2497 sbuf_clear(sb); 2498 goto restart; 2499 } 2500 2501 w2 = &w_data[j]; 2502 data1 = witness_lock_order_get(w1, w2); 2503 data2 = witness_lock_order_get(w2, w1); 2504 2505 /* 2506 * Copy information locally so we can release the 2507 * spin lock. 2508 */ 2509 *tmp_w2 = *w2; 2510 w_rmatrix1 = (unsigned int)w_rmatrix[i][j]; 2511 w_rmatrix2 = (unsigned int)w_rmatrix[j][i]; 2512 2513 if (data1) { 2514 stack_zero(&tmp_data1->wlod_stack); 2515 stack_copy(&data1->wlod_stack, 2516 &tmp_data1->wlod_stack); 2517 } 2518 if (data2 && data2 != data1) { 2519 stack_zero(&tmp_data2->wlod_stack); 2520 stack_copy(&data2->wlod_stack, 2521 &tmp_data2->wlod_stack); 2522 } 2523 mtx_unlock_spin(&w_mtx); 2524 2525 sbuf_printf(sb, 2526 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2527 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2528 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2529 #if 0 2530 sbuf_printf(sb, 2531 "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n", 2532 tmp_w1->name, tmp_w2->w_name, w_rmatrix1, 2533 tmp_w2->name, tmp_w1->w_name, w_rmatrix2); 2534 #endif 2535 if (data1) { 2536 sbuf_printf(sb, 2537 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2538 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2539 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2540 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2541 sbuf_printf(sb, "\n"); 2542 } 2543 if (data2 && data2 != data1) { 2544 sbuf_printf(sb, 2545 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2546 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2547 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2548 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2549 sbuf_printf(sb, "\n"); 2550 } 2551 } 2552 } 2553 mtx_lock_spin(&w_mtx); 2554 if (generation != w_generation) { 2555 mtx_unlock_spin(&w_mtx); 2556 2557 /* 2558 * The graph changed while we were printing stack data, 2559 * try again. 2560 */ 2561 req->oldidx = 0; 2562 sbuf_clear(sb); 2563 goto restart; 2564 } 2565 mtx_unlock_spin(&w_mtx); 2566 2567 /* Free temporary storage space. */ 2568 free(tmp_data1, M_TEMP); 2569 free(tmp_data2, M_TEMP); 2570 free(tmp_w1, M_TEMP); 2571 free(tmp_w2, M_TEMP); 2572 2573 sbuf_finish(sb); 2574 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2575 sbuf_delete(sb); 2576 2577 return (error); 2578 } 2579 2580 static int 2581 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2582 { 2583 struct witness *w; 2584 struct sbuf *sb; 2585 int error; 2586 2587 if (witness_watch < 1) { 2588 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2589 return (error); 2590 } 2591 if (witness_cold) { 2592 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2593 return (error); 2594 } 2595 error = 0; 2596 2597 error = sysctl_wire_old_buffer(req, 0); 2598 if (error != 0) 2599 return (error); 2600 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2601 if (sb == NULL) 2602 return (ENOMEM); 2603 sbuf_printf(sb, "\n"); 2604 2605 mtx_lock_spin(&w_mtx); 2606 STAILQ_FOREACH(w, &w_all, w_list) 2607 w->w_displayed = 0; 2608 STAILQ_FOREACH(w, &w_all, w_list) 2609 witness_add_fullgraph(sb, w); 2610 mtx_unlock_spin(&w_mtx); 2611 2612 /* 2613 * Close the sbuf and return to userland. 2614 */ 2615 error = sbuf_finish(sb); 2616 sbuf_delete(sb); 2617 2618 return (error); 2619 } 2620 2621 static int 2622 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2623 { 2624 int error, value; 2625 2626 value = witness_watch; 2627 error = sysctl_handle_int(oidp, &value, 0, req); 2628 if (error != 0 || req->newptr == NULL) 2629 return (error); 2630 if (value > 1 || value < -1 || 2631 (witness_watch == -1 && value != witness_watch)) 2632 return (EINVAL); 2633 witness_watch = value; 2634 return (0); 2635 } 2636 2637 static void 2638 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2639 { 2640 int i; 2641 2642 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2643 return; 2644 w->w_displayed = 1; 2645 2646 WITNESS_INDEX_ASSERT(w->w_index); 2647 for (i = 1; i <= w_max_used_index; i++) { 2648 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2649 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2650 w_data[i].w_name); 2651 witness_add_fullgraph(sb, &w_data[i]); 2652 } 2653 } 2654 } 2655 2656 /* 2657 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2658 * interprets the key as a string and reads until the null 2659 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2660 * hash value computed from the key. 2661 */ 2662 static uint32_t 2663 witness_hash_djb2(const uint8_t *key, uint32_t size) 2664 { 2665 unsigned int hash = 5381; 2666 int i; 2667 2668 /* hash = hash * 33 + key[i] */ 2669 if (size) 2670 for (i = 0; i < size; i++) 2671 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2672 else 2673 for (i = 0; key[i] != 0; i++) 2674 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2675 2676 return (hash); 2677 } 2678 2679 2680 /* 2681 * Initializes the two witness hash tables. Called exactly once from 2682 * witness_initialize(). 2683 */ 2684 static void 2685 witness_init_hash_tables(void) 2686 { 2687 int i; 2688 2689 MPASS(witness_cold); 2690 2691 /* Initialize the hash tables. */ 2692 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2693 w_hash.wh_array[i] = NULL; 2694 2695 w_hash.wh_size = WITNESS_HASH_SIZE; 2696 w_hash.wh_count = 0; 2697 2698 /* Initialize the lock order data hash. */ 2699 w_lofree = NULL; 2700 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2701 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2702 w_lodata[i].wlod_next = w_lofree; 2703 w_lofree = &w_lodata[i]; 2704 } 2705 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2706 w_lohash.wloh_count = 0; 2707 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2708 w_lohash.wloh_array[i] = NULL; 2709 } 2710 2711 static struct witness * 2712 witness_hash_get(const char *key) 2713 { 2714 struct witness *w; 2715 uint32_t hash; 2716 2717 MPASS(key != NULL); 2718 if (witness_cold == 0) 2719 mtx_assert(&w_mtx, MA_OWNED); 2720 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2721 w = w_hash.wh_array[hash]; 2722 while (w != NULL) { 2723 if (strcmp(w->w_name, key) == 0) 2724 goto out; 2725 w = w->w_hash_next; 2726 } 2727 2728 out: 2729 return (w); 2730 } 2731 2732 static void 2733 witness_hash_put(struct witness *w) 2734 { 2735 uint32_t hash; 2736 2737 MPASS(w != NULL); 2738 MPASS(w->w_name != NULL); 2739 if (witness_cold == 0) 2740 mtx_assert(&w_mtx, MA_OWNED); 2741 KASSERT(witness_hash_get(w->w_name) == NULL, 2742 ("%s: trying to add a hash entry that already exists!", __func__)); 2743 KASSERT(w->w_hash_next == NULL, 2744 ("%s: w->w_hash_next != NULL", __func__)); 2745 2746 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2747 w->w_hash_next = w_hash.wh_array[hash]; 2748 w_hash.wh_array[hash] = w; 2749 w_hash.wh_count++; 2750 } 2751 2752 2753 static struct witness_lock_order_data * 2754 witness_lock_order_get(struct witness *parent, struct witness *child) 2755 { 2756 struct witness_lock_order_data *data = NULL; 2757 struct witness_lock_order_key key; 2758 unsigned int hash; 2759 2760 MPASS(parent != NULL && child != NULL); 2761 key.from = parent->w_index; 2762 key.to = child->w_index; 2763 WITNESS_INDEX_ASSERT(key.from); 2764 WITNESS_INDEX_ASSERT(key.to); 2765 if ((w_rmatrix[parent->w_index][child->w_index] 2766 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2767 goto out; 2768 2769 hash = witness_hash_djb2((const char*)&key, 2770 sizeof(key)) % w_lohash.wloh_size; 2771 data = w_lohash.wloh_array[hash]; 2772 while (data != NULL) { 2773 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2774 break; 2775 data = data->wlod_next; 2776 } 2777 2778 out: 2779 return (data); 2780 } 2781 2782 /* 2783 * Verify that parent and child have a known relationship, are not the same, 2784 * and child is actually a child of parent. This is done without w_mtx 2785 * to avoid contention in the common case. 2786 */ 2787 static int 2788 witness_lock_order_check(struct witness *parent, struct witness *child) 2789 { 2790 2791 if (parent != child && 2792 w_rmatrix[parent->w_index][child->w_index] 2793 & WITNESS_LOCK_ORDER_KNOWN && 2794 isitmychild(parent, child)) 2795 return (1); 2796 2797 return (0); 2798 } 2799 2800 static int 2801 witness_lock_order_add(struct witness *parent, struct witness *child) 2802 { 2803 struct witness_lock_order_data *data = NULL; 2804 struct witness_lock_order_key key; 2805 unsigned int hash; 2806 2807 MPASS(parent != NULL && child != NULL); 2808 key.from = parent->w_index; 2809 key.to = child->w_index; 2810 WITNESS_INDEX_ASSERT(key.from); 2811 WITNESS_INDEX_ASSERT(key.to); 2812 if (w_rmatrix[parent->w_index][child->w_index] 2813 & WITNESS_LOCK_ORDER_KNOWN) 2814 return (1); 2815 2816 hash = witness_hash_djb2((const char*)&key, 2817 sizeof(key)) % w_lohash.wloh_size; 2818 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 2819 data = w_lofree; 2820 if (data == NULL) 2821 return (0); 2822 w_lofree = data->wlod_next; 2823 data->wlod_next = w_lohash.wloh_array[hash]; 2824 data->wlod_key = key; 2825 w_lohash.wloh_array[hash] = data; 2826 w_lohash.wloh_count++; 2827 stack_zero(&data->wlod_stack); 2828 stack_save(&data->wlod_stack); 2829 return (1); 2830 } 2831 2832 /* Call this whenver the structure of the witness graph changes. */ 2833 static void 2834 witness_increment_graph_generation(void) 2835 { 2836 2837 if (witness_cold == 0) 2838 mtx_assert(&w_mtx, MA_OWNED); 2839 w_generation++; 2840 } 2841 2842 #ifdef KDB 2843 static void 2844 _witness_debugger(int cond, const char *msg) 2845 { 2846 2847 if (witness_trace && cond) 2848 kdb_backtrace(); 2849 if (witness_kdb && cond) 2850 kdb_enter(KDB_WHY_WITNESS, msg); 2851 } 2852 #endif 2853