xref: /freebsd/sys/kern/subr_witness.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89 
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101 
102 #include <ddb/ddb.h>
103 
104 #include <machine/stdarg.h>
105 
106 /* Define this to check for blessed mutexes */
107 #undef BLESSING
108 
109 #define WITNESS_COUNT 1024
110 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
111 /*
112  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
113  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
114  * probably be safe for the most part, but it's still a SWAG.
115  */
116 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
117 
118 #define	WITNESS_NCHILDREN 6
119 
120 struct witness_child_list_entry;
121 
122 struct witness {
123 	const	char *w_name;
124 	struct	lock_class *w_class;
125 	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
126 	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
127 	struct	witness_child_list_entry *w_children;	/* Great evilness... */
128 	const	char *w_file;
129 	int	w_line;
130 	u_int	w_level;
131 	u_int	w_refcount;
132 	u_char	w_Giant_squawked:1;
133 	u_char	w_other_squawked:1;
134 	u_char	w_same_squawked:1;
135 	u_char	w_displayed:1;
136 };
137 
138 struct witness_child_list_entry {
139 	struct	witness_child_list_entry *wcl_next;
140 	struct	witness *wcl_children[WITNESS_NCHILDREN];
141 	u_int	wcl_count;
142 };
143 
144 STAILQ_HEAD(witness_list, witness);
145 
146 #ifdef BLESSING
147 struct witness_blessed {
148 	const	char *b_lock1;
149 	const	char *b_lock2;
150 };
151 #endif
152 
153 struct witness_order_list_entry {
154 	const	char *w_name;
155 	struct	lock_class *w_class;
156 };
157 
158 #ifdef BLESSING
159 static int	blessed(struct witness *, struct witness *);
160 #endif
161 static int	depart(struct witness *w);
162 static struct	witness *enroll(const char *description,
163 				struct lock_class *lock_class);
164 static int	insertchild(struct witness *parent, struct witness *child);
165 static int	isitmychild(struct witness *parent, struct witness *child);
166 static int	isitmydescendant(struct witness *parent, struct witness *child);
167 static int	itismychild(struct witness *parent, struct witness *child);
168 static int	rebalancetree(struct witness_list *list);
169 static void	removechild(struct witness *parent, struct witness *child);
170 static int	reparentchildren(struct witness *newparent,
171 		    struct witness *oldparent);
172 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
173 static void	witness_displaydescendants(void(*)(const char *fmt, ...),
174 					   struct witness *, int indent);
175 static const char *fixup_filename(const char *file);
176 static void	witness_leveldescendents(struct witness *parent, int level);
177 static void	witness_levelall(void);
178 static struct	witness *witness_get(void);
179 static void	witness_free(struct witness *m);
180 static struct	witness_child_list_entry *witness_child_get(void);
181 static void	witness_child_free(struct witness_child_list_entry *wcl);
182 static struct	lock_list_entry *witness_lock_list_get(void);
183 static void	witness_lock_list_free(struct lock_list_entry *lle);
184 static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
185 					     struct lock_object *lock);
186 static void	witness_list_lock(struct lock_instance *instance);
187 #ifdef DDB
188 static void	witness_list(struct thread *td);
189 static void	witness_display_list(void(*prnt)(const char *fmt, ...),
190 				     struct witness_list *list);
191 static void	witness_display(void(*)(const char *fmt, ...));
192 #endif
193 
194 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
195 
196 /*
197  * If set to 0, witness is disabled.  If set to 1, witness performs full lock
198  * order checking for all locks.  If set to 2 or higher, then witness skips
199  * the full lock order check if the lock being acquired is at a higher level
200  * (i.e. farther down in the tree) than the current lock.  This last mode is
201  * somewhat experimental and not considered fully safe.  At runtime, this
202  * value may be set to 0 to turn off witness.  witness is not allowed be
203  * turned on once it is turned off, however.
204  */
205 static int witness_watch = 1;
206 TUNABLE_INT("debug.witness.watch", &witness_watch);
207 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
208     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
209 
210 #ifdef KDB
211 /*
212  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
213  * to drop into kdebug() when:
214  *	- a lock heirarchy violation occurs
215  *	- locks are held when going to sleep.
216  */
217 #ifdef WITNESS_KDB
218 int	witness_kdb = 1;
219 #else
220 int	witness_kdb = 0;
221 #endif
222 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
223 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
224 
225 /*
226  * When KDB is enabled and witness_trace is set to 1, it will cause the system
227  * to print a stack trace:
228  *	- a lock heirarchy violation occurs
229  *	- locks are held when going to sleep.
230  */
231 int	witness_trace = 1;
232 TUNABLE_INT("debug.witness.trace", &witness_trace);
233 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
234 #endif /* KDB */
235 
236 #ifdef WITNESS_SKIPSPIN
237 int	witness_skipspin = 1;
238 #else
239 int	witness_skipspin = 0;
240 #endif
241 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
242 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
243     &witness_skipspin, 0, "");
244 
245 static struct mtx w_mtx;
246 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
247 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
248 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
249 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
250 static struct witness_child_list_entry *w_child_free = NULL;
251 static struct lock_list_entry *w_lock_list_free = NULL;
252 
253 static struct witness w_data[WITNESS_COUNT];
254 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
255 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
256 
257 static struct witness_order_list_entry order_lists[] = {
258 	{ "proctree", &lock_class_sx },
259 	{ "allproc", &lock_class_sx },
260 	{ "Giant", &lock_class_mtx_sleep },
261 	{ "filedesc structure", &lock_class_mtx_sleep },
262 	{ "pipe mutex", &lock_class_mtx_sleep },
263 	{ "sigio lock", &lock_class_mtx_sleep },
264 	{ "process group", &lock_class_mtx_sleep },
265 	{ "process lock", &lock_class_mtx_sleep },
266 	{ "session", &lock_class_mtx_sleep },
267 	{ "uidinfo hash", &lock_class_mtx_sleep },
268 	{ "uidinfo struct", &lock_class_mtx_sleep },
269 	{ "allprison", &lock_class_mtx_sleep },
270 	{ NULL, NULL },
271 	/*
272 	 * Sockets
273 	 */
274 	{ "filedesc structure", &lock_class_mtx_sleep },
275 	{ "accept", &lock_class_mtx_sleep },
276 	{ "so_snd", &lock_class_mtx_sleep },
277 	{ "so_rcv", &lock_class_mtx_sleep },
278 	{ "sellck", &lock_class_mtx_sleep },
279 	{ NULL, NULL },
280 	/*
281 	 * Routing
282 	 */
283 	{ "so_rcv", &lock_class_mtx_sleep },
284 	{ "radix node head", &lock_class_mtx_sleep },
285 	{ "rtentry", &lock_class_mtx_sleep },
286 	{ "ifaddr", &lock_class_mtx_sleep },
287 	{ NULL, NULL },
288 	/*
289 	 * UNIX Domain Sockets
290 	 */
291 	{ "unp", &lock_class_mtx_sleep },
292 	{ "so_snd", &lock_class_mtx_sleep },
293 	{ NULL, NULL },
294 	/*
295 	 * UDP/IP
296 	 */
297 	{ "udp", &lock_class_mtx_sleep },
298 	{ "udpinp", &lock_class_mtx_sleep },
299 	{ "so_snd", &lock_class_mtx_sleep },
300 	{ NULL, NULL },
301 	/*
302 	 * TCP/IP
303 	 */
304 	{ "tcp", &lock_class_mtx_sleep },
305 	{ "tcpinp", &lock_class_mtx_sleep },
306 	{ "so_snd", &lock_class_mtx_sleep },
307 	{ NULL, NULL },
308 	/*
309 	 * SLIP
310 	 */
311 	{ "slip_mtx", &lock_class_mtx_sleep },
312 	{ "slip sc_mtx", &lock_class_mtx_sleep },
313 	{ NULL, NULL },
314 	/*
315 	 * netatalk
316 	 */
317 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
318 	{ "ddp_mtx", &lock_class_mtx_sleep },
319 	{ NULL, NULL },
320 	/*
321 	 * BPF
322 	 */
323 	{ "bpf global lock", &lock_class_mtx_sleep },
324 	{ "bpf interface lock", &lock_class_mtx_sleep },
325 	{ "bpf cdev lock", &lock_class_mtx_sleep },
326 	{ NULL, NULL },
327 	/*
328 	 * NFS server
329 	 */
330 	{ "nfsd_mtx", &lock_class_mtx_sleep },
331 	{ "so_snd", &lock_class_mtx_sleep },
332 	{ NULL, NULL },
333 	/*
334 	 * CDEV
335 	 */
336 	{ "system map", &lock_class_mtx_sleep },
337 	{ "vm page queue mutex", &lock_class_mtx_sleep },
338 	{ "vnode interlock", &lock_class_mtx_sleep },
339 	{ "cdev", &lock_class_mtx_sleep },
340 	{ NULL, NULL },
341 	/*
342 	 * spin locks
343 	 */
344 #ifdef SMP
345 	{ "ap boot", &lock_class_mtx_spin },
346 #endif
347 	{ "sio", &lock_class_mtx_spin },
348 #ifdef __i386__
349 	{ "cy", &lock_class_mtx_spin },
350 #endif
351 	{ "uart_hwmtx", &lock_class_mtx_spin },
352 	{ "sabtty", &lock_class_mtx_spin },
353 	{ "zstty", &lock_class_mtx_spin },
354 	{ "ng_node", &lock_class_mtx_spin },
355 	{ "ng_worklist", &lock_class_mtx_spin },
356 	{ "taskqueue_fast", &lock_class_mtx_spin },
357 	{ "intr table", &lock_class_mtx_spin },
358 	{ "ithread table lock", &lock_class_mtx_spin },
359 	{ "sleepq chain", &lock_class_mtx_spin },
360 	{ "sched lock", &lock_class_mtx_spin },
361 	{ "turnstile chain", &lock_class_mtx_spin },
362 	{ "td_contested", &lock_class_mtx_spin },
363 	{ "callout", &lock_class_mtx_spin },
364 	{ "entropy harvest mutex", &lock_class_mtx_spin },
365 	/*
366 	 * leaf locks
367 	 */
368 	{ "allpmaps", &lock_class_mtx_spin },
369 	{ "vm page queue free mutex", &lock_class_mtx_spin },
370 	{ "icu", &lock_class_mtx_spin },
371 #ifdef SMP
372 	{ "smp rendezvous", &lock_class_mtx_spin },
373 #if defined(__i386__) || defined(__amd64__)
374 	{ "tlb", &lock_class_mtx_spin },
375 #endif
376 #ifdef __sparc64__
377 	{ "ipi", &lock_class_mtx_spin },
378 	{ "rtc_mtx", &lock_class_mtx_spin },
379 #endif
380 #endif
381 	{ "clk", &lock_class_mtx_spin },
382 	{ "mutex profiling lock", &lock_class_mtx_spin },
383 	{ "kse zombie lock", &lock_class_mtx_spin },
384 	{ "ALD Queue", &lock_class_mtx_spin },
385 #ifdef __ia64__
386 	{ "MCA spin lock", &lock_class_mtx_spin },
387 #endif
388 #if defined(__i386__) || defined(__amd64__)
389 	{ "pcicfg", &lock_class_mtx_spin },
390 	{ "NDIS thread lock", &lock_class_mtx_spin },
391 #endif
392 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
393 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
394 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
395 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
396 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
397 	{ NULL, NULL },
398 	{ NULL, NULL }
399 };
400 
401 #ifdef BLESSING
402 /*
403  * Pairs of locks which have been blessed
404  * Don't complain about order problems with blessed locks
405  */
406 static struct witness_blessed blessed_list[] = {
407 };
408 static int blessed_count =
409 	sizeof(blessed_list) / sizeof(struct witness_blessed);
410 #endif
411 
412 /*
413  * List of all locks in the system.
414  */
415 TAILQ_HEAD(, lock_object) all_locks = TAILQ_HEAD_INITIALIZER(all_locks);
416 
417 static struct mtx all_mtx = {
418 	{ &lock_class_mtx_sleep,	/* mtx_object.lo_class */
419 	  "All locks list",		/* mtx_object.lo_name */
420 	  "All locks list",		/* mtx_object.lo_type */
421 	  LO_INITIALIZED,		/* mtx_object.lo_flags */
422 	  { NULL, NULL },		/* mtx_object.lo_list */
423 	  NULL },			/* mtx_object.lo_witness */
424 	MTX_UNOWNED, 0			/* mtx_lock, mtx_recurse */
425 };
426 
427 /*
428  * This global is set to 0 once it becomes safe to use the witness code.
429  */
430 static int witness_cold = 1;
431 
432 /*
433  * Global variables for book keeping.
434  */
435 static int lock_cur_cnt;
436 static int lock_max_cnt;
437 
438 /*
439  * The WITNESS-enabled diagnostic code.
440  */
441 static void
442 witness_initialize(void *dummy __unused)
443 {
444 	struct lock_object *lock;
445 	struct witness_order_list_entry *order;
446 	struct witness *w, *w1;
447 	int i;
448 
449 	/*
450 	 * We have to release Giant before initializing its witness
451 	 * structure so that WITNESS doesn't get confused.
452 	 */
453 	mtx_unlock(&Giant);
454 	mtx_assert(&Giant, MA_NOTOWNED);
455 
456 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
457 	TAILQ_INSERT_HEAD(&all_locks, &all_mtx.mtx_object, lo_list);
458 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
459 	    MTX_NOWITNESS);
460 	for (i = 0; i < WITNESS_COUNT; i++)
461 		witness_free(&w_data[i]);
462 	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
463 		witness_child_free(&w_childdata[i]);
464 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
465 		witness_lock_list_free(&w_locklistdata[i]);
466 
467 	/* First add in all the specified order lists. */
468 	for (order = order_lists; order->w_name != NULL; order++) {
469 		w = enroll(order->w_name, order->w_class);
470 		if (w == NULL)
471 			continue;
472 		w->w_file = "order list";
473 		for (order++; order->w_name != NULL; order++) {
474 			w1 = enroll(order->w_name, order->w_class);
475 			if (w1 == NULL)
476 				continue;
477 			w1->w_file = "order list";
478 			if (!itismychild(w, w1))
479 				panic("Not enough memory for static orders!");
480 			w = w1;
481 		}
482 	}
483 
484 	/* Iterate through all locks and add them to witness. */
485 	mtx_lock(&all_mtx);
486 	TAILQ_FOREACH(lock, &all_locks, lo_list) {
487 		if (lock->lo_flags & LO_WITNESS)
488 			lock->lo_witness = enroll(lock->lo_type,
489 			    lock->lo_class);
490 		else
491 			lock->lo_witness = NULL;
492 	}
493 	mtx_unlock(&all_mtx);
494 
495 	/* Mark the witness code as being ready for use. */
496 	atomic_store_rel_int(&witness_cold, 0);
497 
498 	mtx_lock(&Giant);
499 }
500 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
501 
502 static int
503 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
504 {
505 	int error, value;
506 
507 	value = witness_watch;
508 	error = sysctl_handle_int(oidp, &value, 0, req);
509 	if (error != 0 || req->newptr == NULL)
510 		return (error);
511 	error = suser(req->td);
512 	if (error != 0)
513 		return (error);
514 	if (value == witness_watch)
515 		return (0);
516 	if (value != 0)
517 		return (EINVAL);
518 	witness_watch = 0;
519 	return (0);
520 }
521 
522 void
523 witness_init(struct lock_object *lock)
524 {
525 	struct lock_class *class;
526 
527 	class = lock->lo_class;
528 	if (lock->lo_flags & LO_INITIALIZED)
529 		panic("%s: lock (%s) %s is already initialized", __func__,
530 		    class->lc_name, lock->lo_name);
531 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
532 	    (class->lc_flags & LC_RECURSABLE) == 0)
533 		panic("%s: lock (%s) %s can not be recursable", __func__,
534 		    class->lc_name, lock->lo_name);
535 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
536 	    (class->lc_flags & LC_SLEEPABLE) == 0)
537 		panic("%s: lock (%s) %s can not be sleepable", __func__,
538 		    class->lc_name, lock->lo_name);
539 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
540 	    (class->lc_flags & LC_UPGRADABLE) == 0)
541 		panic("%s: lock (%s) %s can not be upgradable", __func__,
542 		    class->lc_name, lock->lo_name);
543 
544 	mtx_lock(&all_mtx);
545 	TAILQ_INSERT_TAIL(&all_locks, lock, lo_list);
546 	lock->lo_flags |= LO_INITIALIZED;
547 	lock_cur_cnt++;
548 	if (lock_cur_cnt > lock_max_cnt)
549 		lock_max_cnt = lock_cur_cnt;
550 	mtx_unlock(&all_mtx);
551 	if (!witness_cold && witness_watch != 0 && panicstr == NULL &&
552 	    (lock->lo_flags & LO_WITNESS) != 0)
553 		lock->lo_witness = enroll(lock->lo_type, class);
554 	else
555 		lock->lo_witness = NULL;
556 }
557 
558 void
559 witness_destroy(struct lock_object *lock)
560 {
561 	struct witness *w;
562 
563 	if (witness_cold)
564 		panic("lock (%s) %s destroyed while witness_cold",
565 		    lock->lo_class->lc_name, lock->lo_name);
566 	if ((lock->lo_flags & LO_INITIALIZED) == 0)
567 		panic("%s: lock (%s) %s is not initialized", __func__,
568 		    lock->lo_class->lc_name, lock->lo_name);
569 
570 	/* XXX: need to verify that no one holds the lock */
571 	w = lock->lo_witness;
572 	if (w != NULL) {
573 		mtx_lock_spin(&w_mtx);
574 		MPASS(w->w_refcount > 0);
575 		w->w_refcount--;
576 
577 		/*
578 		 * Lock is already released if we have an allocation failure
579 		 * and depart() fails.
580 		 */
581 		if (w->w_refcount != 0 || depart(w))
582 			mtx_unlock_spin(&w_mtx);
583 	}
584 
585 	mtx_lock(&all_mtx);
586 	lock_cur_cnt--;
587 	TAILQ_REMOVE(&all_locks, lock, lo_list);
588 	lock->lo_flags &= ~LO_INITIALIZED;
589 	mtx_unlock(&all_mtx);
590 }
591 
592 #ifdef DDB
593 static void
594 witness_display_list(void(*prnt)(const char *fmt, ...),
595 		     struct witness_list *list)
596 {
597 	struct witness *w;
598 
599 	STAILQ_FOREACH(w, list, w_typelist) {
600 		if (w->w_file == NULL || w->w_level > 0)
601 			continue;
602 		/*
603 		 * This lock has no anscestors, display its descendants.
604 		 */
605 		witness_displaydescendants(prnt, w, 0);
606 	}
607 }
608 
609 static void
610 witness_display(void(*prnt)(const char *fmt, ...))
611 {
612 	struct witness *w;
613 
614 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
615 	witness_levelall();
616 
617 	/* Clear all the displayed flags. */
618 	STAILQ_FOREACH(w, &w_all, w_list) {
619 		w->w_displayed = 0;
620 	}
621 
622 	/*
623 	 * First, handle sleep locks which have been acquired at least
624 	 * once.
625 	 */
626 	prnt("Sleep locks:\n");
627 	witness_display_list(prnt, &w_sleep);
628 
629 	/*
630 	 * Now do spin locks which have been acquired at least once.
631 	 */
632 	prnt("\nSpin locks:\n");
633 	witness_display_list(prnt, &w_spin);
634 
635 	/*
636 	 * Finally, any locks which have not been acquired yet.
637 	 */
638 	prnt("\nLocks which were never acquired:\n");
639 	STAILQ_FOREACH(w, &w_all, w_list) {
640 		if (w->w_file != NULL || w->w_refcount == 0)
641 			continue;
642 		prnt("%s\n", w->w_name);
643 	}
644 }
645 #endif /* DDB */
646 
647 /* Trim useless garbage from filenames. */
648 static const char *
649 fixup_filename(const char *file)
650 {
651 
652 	if (file == NULL)
653 		return (NULL);
654 	while (strncmp(file, "../", 3) == 0)
655 		file += 3;
656 	return (file);
657 }
658 
659 int
660 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
661 {
662 
663 	if (witness_watch == 0 || panicstr != NULL)
664 		return (0);
665 
666 	/* Require locks that witness knows about. */
667 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
668 	    lock2->lo_witness == NULL)
669 		return (EINVAL);
670 
671 	MPASS(!mtx_owned(&w_mtx));
672 	mtx_lock_spin(&w_mtx);
673 
674 	/*
675 	 * If we already have either an explicit or implied lock order that
676 	 * is the other way around, then return an error.
677 	 */
678 	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
679 		mtx_unlock_spin(&w_mtx);
680 		return (EDOOFUS);
681 	}
682 
683 	/* Try to add the new order. */
684 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
685 	    lock2->lo_type, lock1->lo_type);
686 	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
687 		return (ENOMEM);
688 	mtx_unlock_spin(&w_mtx);
689 	return (0);
690 }
691 
692 void
693 witness_checkorder(struct lock_object *lock, int flags, const char *file,
694     int line)
695 {
696 	struct lock_list_entry **lock_list, *lle;
697 	struct lock_instance *lock1, *lock2;
698 	struct lock_class *class;
699 	struct witness *w, *w1;
700 	struct thread *td;
701 	int i, j;
702 
703 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
704 	    panicstr != NULL)
705 		return;
706 
707 	/*
708 	 * Try locks do not block if they fail to acquire the lock, thus
709 	 * there is no danger of deadlocks or of switching while holding a
710 	 * spin lock if we acquire a lock via a try operation.  This
711 	 * function shouldn't even be called for try locks, so panic if
712 	 * that happens.
713 	 */
714 	if (flags & LOP_TRYLOCK)
715 		panic("%s should not be called for try lock operations",
716 		    __func__);
717 
718 	w = lock->lo_witness;
719 	class = lock->lo_class;
720 	td = curthread;
721 	file = fixup_filename(file);
722 
723 	if (class->lc_flags & LC_SLEEPLOCK) {
724 		/*
725 		 * Since spin locks include a critical section, this check
726 		 * implicitly enforces a lock order of all sleep locks before
727 		 * all spin locks.
728 		 */
729 		if (td->td_critnest != 0 && !kdb_active)
730 			panic("blockable sleep lock (%s) %s @ %s:%d",
731 			    class->lc_name, lock->lo_name, file, line);
732 
733 		/*
734 		 * If this is the first lock acquired then just return as
735 		 * no order checking is needed.
736 		 */
737 		if (td->td_sleeplocks == NULL)
738 			return;
739 		lock_list = &td->td_sleeplocks;
740 	} else {
741 		/*
742 		 * If this is the first lock, just return as no order
743 		 * checking is needed.  We check this in both if clauses
744 		 * here as unifying the check would require us to use a
745 		 * critical section to ensure we don't migrate while doing
746 		 * the check.  Note that if this is not the first lock, we
747 		 * are already in a critical section and are safe for the
748 		 * rest of the check.
749 		 */
750 		if (PCPU_GET(spinlocks) == NULL)
751 			return;
752 		lock_list = PCPU_PTR(spinlocks);
753 	}
754 
755 	/*
756 	 * Check to see if we are recursing on a lock we already own.  If
757 	 * so, make sure that we don't mismatch exclusive and shared lock
758 	 * acquires.
759 	 */
760 	lock1 = find_instance(*lock_list, lock);
761 	if (lock1 != NULL) {
762 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
763 		    (flags & LOP_EXCLUSIVE) == 0) {
764 			printf("shared lock of (%s) %s @ %s:%d\n",
765 			    class->lc_name, lock->lo_name, file, line);
766 			printf("while exclusively locked from %s:%d\n",
767 			    lock1->li_file, lock1->li_line);
768 			panic("share->excl");
769 		}
770 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
771 		    (flags & LOP_EXCLUSIVE) != 0) {
772 			printf("exclusive lock of (%s) %s @ %s:%d\n",
773 			    class->lc_name, lock->lo_name, file, line);
774 			printf("while share locked from %s:%d\n",
775 			    lock1->li_file, lock1->li_line);
776 			panic("excl->share");
777 		}
778 		return;
779 	}
780 
781 	/*
782 	 * Try locks do not block if they fail to acquire the lock, thus
783 	 * there is no danger of deadlocks or of switching while holding a
784 	 * spin lock if we acquire a lock via a try operation.
785 	 */
786 	if (flags & LOP_TRYLOCK)
787 		return;
788 
789 	/*
790 	 * Check for duplicate locks of the same type.  Note that we only
791 	 * have to check for this on the last lock we just acquired.  Any
792 	 * other cases will be caught as lock order violations.
793 	 */
794 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
795 	w1 = lock1->li_lock->lo_witness;
796 	if (w1 == w) {
797 		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) ||
798 		    (flags & LOP_DUPOK))
799 			return;
800 		w->w_same_squawked = 1;
801 		printf("acquiring duplicate lock of same type: \"%s\"\n",
802 			lock->lo_type);
803 		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
804 		    lock1->li_file, lock1->li_line);
805 		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
806 #ifdef KDB
807 		goto debugger;
808 #else
809 		return;
810 #endif
811 	}
812 	MPASS(!mtx_owned(&w_mtx));
813 	mtx_lock_spin(&w_mtx);
814 	/*
815 	 * If we have a known higher number just say ok
816 	 */
817 	if (witness_watch > 1 && w->w_level > w1->w_level) {
818 		mtx_unlock_spin(&w_mtx);
819 		return;
820 	}
821 	/*
822 	 * If we know that the the lock we are acquiring comes after
823 	 * the lock we most recently acquired in the lock order tree,
824 	 * then there is no need for any further checks.
825 	 */
826 	if (isitmydescendant(w1, w)) {
827 		mtx_unlock_spin(&w_mtx);
828 		return;
829 	}
830 	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
831 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
832 
833 			MPASS(j < WITNESS_COUNT);
834 			lock1 = &lle->ll_children[i];
835 			w1 = lock1->li_lock->lo_witness;
836 
837 			/*
838 			 * If this lock doesn't undergo witness checking,
839 			 * then skip it.
840 			 */
841 			if (w1 == NULL) {
842 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
843 				    ("lock missing witness structure"));
844 				continue;
845 			}
846 			/*
847 			 * If we are locking Giant and this is a sleepable
848 			 * lock, then skip it.
849 			 */
850 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
851 			    lock == &Giant.mtx_object)
852 				continue;
853 			/*
854 			 * If we are locking a sleepable lock and this lock
855 			 * is Giant, then skip it.
856 			 */
857 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
858 			    lock1->li_lock == &Giant.mtx_object)
859 				continue;
860 			/*
861 			 * If we are locking a sleepable lock and this lock
862 			 * isn't sleepable, we want to treat it as a lock
863 			 * order violation to enfore a general lock order of
864 			 * sleepable locks before non-sleepable locks.
865 			 */
866 			if (!((lock->lo_flags & LO_SLEEPABLE) != 0 &&
867 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
868 			    /*
869 			     * Check the lock order hierarchy for a reveresal.
870 			     */
871 			    if (!isitmydescendant(w, w1))
872 				continue;
873 			/*
874 			 * We have a lock order violation, check to see if it
875 			 * is allowed or has already been yelled about.
876 			 */
877 			mtx_unlock_spin(&w_mtx);
878 #ifdef BLESSING
879 			/*
880 			 * If the lock order is blessed, just bail.  We don't
881 			 * look for other lock order violations though, which
882 			 * may be a bug.
883 			 */
884 			if (blessed(w, w1))
885 				return;
886 #endif
887 			if (lock1->li_lock == &Giant.mtx_object) {
888 				if (w1->w_Giant_squawked)
889 					return;
890 				else
891 					w1->w_Giant_squawked = 1;
892 			} else {
893 				if (w1->w_other_squawked)
894 					return;
895 				else
896 					w1->w_other_squawked = 1;
897 			}
898 			/*
899 			 * Ok, yell about it.
900 			 */
901 			printf("lock order reversal\n");
902 			/*
903 			 * Try to locate an earlier lock with
904 			 * witness w in our list.
905 			 */
906 			do {
907 				lock2 = &lle->ll_children[i];
908 				MPASS(lock2->li_lock != NULL);
909 				if (lock2->li_lock->lo_witness == w)
910 					break;
911 				if (i == 0 && lle->ll_next != NULL) {
912 					lle = lle->ll_next;
913 					i = lle->ll_count - 1;
914 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
915 				} else
916 					i--;
917 			} while (i >= 0);
918 			if (i < 0) {
919 				printf(" 1st %p %s (%s) @ %s:%d\n",
920 				    lock1->li_lock, lock1->li_lock->lo_name,
921 				    lock1->li_lock->lo_type, lock1->li_file,
922 				    lock1->li_line);
923 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
924 				    lock->lo_name, lock->lo_type, file, line);
925 			} else {
926 				printf(" 1st %p %s (%s) @ %s:%d\n",
927 				    lock2->li_lock, lock2->li_lock->lo_name,
928 				    lock2->li_lock->lo_type, lock2->li_file,
929 				    lock2->li_line);
930 				printf(" 2nd %p %s (%s) @ %s:%d\n",
931 				    lock1->li_lock, lock1->li_lock->lo_name,
932 				    lock1->li_lock->lo_type, lock1->li_file,
933 				    lock1->li_line);
934 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
935 				    lock->lo_name, lock->lo_type, file, line);
936 			}
937 #ifdef KDB
938 			goto debugger;
939 #else
940 			return;
941 #endif
942 		}
943 	}
944 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
945 	/*
946 	 * If requested, build a new lock order.  However, don't build a new
947 	 * relationship between a sleepable lock and Giant if it is in the
948 	 * wrong direction.  The correct lock order is that sleepable locks
949 	 * always come before Giant.
950 	 */
951 	if (flags & LOP_NEWORDER &&
952 	    !(lock1->li_lock == &Giant.mtx_object &&
953 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
954 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
955 		    lock->lo_type, lock1->li_lock->lo_type);
956 		if (!itismychild(lock1->li_lock->lo_witness, w))
957 			/* Witness is dead. */
958 			return;
959 	}
960 	mtx_unlock_spin(&w_mtx);
961 	return;
962 
963 #ifdef KDB
964 debugger:
965 	if (witness_trace)
966 		kdb_backtrace();
967 	if (witness_kdb)
968 		kdb_enter(__func__);
969 #endif
970 }
971 
972 void
973 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
974 {
975 	struct lock_list_entry **lock_list, *lle;
976 	struct lock_instance *instance;
977 	struct witness *w;
978 	struct thread *td;
979 
980 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
981 	    panicstr != NULL)
982 		return;
983 	w = lock->lo_witness;
984 	td = curthread;
985 	file = fixup_filename(file);
986 
987 	/* Determine lock list for this lock. */
988 	if (lock->lo_class->lc_flags & LC_SLEEPLOCK)
989 		lock_list = &td->td_sleeplocks;
990 	else
991 		lock_list = PCPU_PTR(spinlocks);
992 
993 	/* Check to see if we are recursing on a lock we already own. */
994 	instance = find_instance(*lock_list, lock);
995 	if (instance != NULL) {
996 		instance->li_flags++;
997 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
998 		    td->td_proc->p_pid, lock->lo_name,
999 		    instance->li_flags & LI_RECURSEMASK);
1000 		instance->li_file = file;
1001 		instance->li_line = line;
1002 		return;
1003 	}
1004 
1005 	/* Update per-witness last file and line acquire. */
1006 	w->w_file = file;
1007 	w->w_line = line;
1008 
1009 	/* Find the next open lock instance in the list and fill it. */
1010 	lle = *lock_list;
1011 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1012 		lle = witness_lock_list_get();
1013 		if (lle == NULL)
1014 			return;
1015 		lle->ll_next = *lock_list;
1016 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1017 		    td->td_proc->p_pid, lle);
1018 		*lock_list = lle;
1019 	}
1020 	instance = &lle->ll_children[lle->ll_count++];
1021 	instance->li_lock = lock;
1022 	instance->li_line = line;
1023 	instance->li_file = file;
1024 	if ((flags & LOP_EXCLUSIVE) != 0)
1025 		instance->li_flags = LI_EXCLUSIVE;
1026 	else
1027 		instance->li_flags = 0;
1028 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1029 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1030 }
1031 
1032 void
1033 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1034 {
1035 	struct lock_instance *instance;
1036 	struct lock_class *class;
1037 
1038 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1039 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1040 		return;
1041 	class = lock->lo_class;
1042 	file = fixup_filename(file);
1043 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1044 		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1045 		    class->lc_name, lock->lo_name, file, line);
1046 	if ((flags & LOP_TRYLOCK) == 0)
1047 		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1048 		    lock->lo_name, file, line);
1049 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1050 		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1051 		    class->lc_name, lock->lo_name, file, line);
1052 	instance = find_instance(curthread->td_sleeplocks, lock);
1053 	if (instance == NULL)
1054 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1055 		    class->lc_name, lock->lo_name, file, line);
1056 	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1057 		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1058 		    class->lc_name, lock->lo_name, file, line);
1059 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1060 		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1061 		    class->lc_name, lock->lo_name,
1062 		    instance->li_flags & LI_RECURSEMASK, file, line);
1063 	instance->li_flags |= LI_EXCLUSIVE;
1064 }
1065 
1066 void
1067 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1068     int line)
1069 {
1070 	struct lock_instance *instance;
1071 	struct lock_class *class;
1072 
1073 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1074 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1075 		return;
1076 	class = lock->lo_class;
1077 	file = fixup_filename(file);
1078 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1079 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1080 		    class->lc_name, lock->lo_name, file, line);
1081 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1082 		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1083 		    class->lc_name, lock->lo_name, file, line);
1084 	instance = find_instance(curthread->td_sleeplocks, lock);
1085 	if (instance == NULL)
1086 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1087 		    class->lc_name, lock->lo_name, file, line);
1088 	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1089 		panic("downgrade of shared lock (%s) %s @ %s:%d",
1090 		    class->lc_name, lock->lo_name, file, line);
1091 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1092 		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1093 		    class->lc_name, lock->lo_name,
1094 		    instance->li_flags & LI_RECURSEMASK, file, line);
1095 	instance->li_flags &= ~LI_EXCLUSIVE;
1096 }
1097 
1098 void
1099 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1100 {
1101 	struct lock_list_entry **lock_list, *lle;
1102 	struct lock_instance *instance;
1103 	struct lock_class *class;
1104 	struct thread *td;
1105 	register_t s;
1106 	int i, j;
1107 
1108 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1109 	    panicstr != NULL)
1110 		return;
1111 	td = curthread;
1112 	class = lock->lo_class;
1113 	file = fixup_filename(file);
1114 
1115 	/* Find lock instance associated with this lock. */
1116 	if (class->lc_flags & LC_SLEEPLOCK)
1117 		lock_list = &td->td_sleeplocks;
1118 	else
1119 		lock_list = PCPU_PTR(spinlocks);
1120 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1121 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1122 			instance = &(*lock_list)->ll_children[i];
1123 			if (instance->li_lock == lock)
1124 				goto found;
1125 		}
1126 	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1127 	    file, line);
1128 found:
1129 
1130 	/* First, check for shared/exclusive mismatches. */
1131 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1132 	    (flags & LOP_EXCLUSIVE) == 0) {
1133 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1134 		    lock->lo_name, file, line);
1135 		printf("while exclusively locked from %s:%d\n",
1136 		    instance->li_file, instance->li_line);
1137 		panic("excl->ushare");
1138 	}
1139 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1140 	    (flags & LOP_EXCLUSIVE) != 0) {
1141 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1142 		    lock->lo_name, file, line);
1143 		printf("while share locked from %s:%d\n", instance->li_file,
1144 		    instance->li_line);
1145 		panic("share->uexcl");
1146 	}
1147 
1148 	/* If we are recursed, unrecurse. */
1149 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1150 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1151 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1152 		    instance->li_flags);
1153 		instance->li_flags--;
1154 		return;
1155 	}
1156 
1157 	/* Otherwise, remove this item from the list. */
1158 	s = intr_disable();
1159 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1160 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1161 	    (*lock_list)->ll_count - 1);
1162 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1163 		(*lock_list)->ll_children[j] =
1164 		    (*lock_list)->ll_children[j + 1];
1165 	(*lock_list)->ll_count--;
1166 	intr_restore(s);
1167 
1168 	/* If this lock list entry is now empty, free it. */
1169 	if ((*lock_list)->ll_count == 0) {
1170 		lle = *lock_list;
1171 		*lock_list = lle->ll_next;
1172 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1173 		    td->td_proc->p_pid, lle);
1174 		witness_lock_list_free(lle);
1175 	}
1176 }
1177 
1178 /*
1179  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1180  * exempt Giant and sleepable locks from the checks as well.  If any
1181  * non-exempt locks are held, then a supplied message is printed to the
1182  * console along with a list of the offending locks.  If indicated in the
1183  * flags then a failure results in a panic as well.
1184  */
1185 int
1186 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1187 {
1188 	struct lock_list_entry *lle;
1189 	struct lock_instance *lock1;
1190 	struct thread *td;
1191 	va_list ap;
1192 	int i, n;
1193 
1194 	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1195 		return (0);
1196 	n = 0;
1197 	td = curthread;
1198 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1199 		for (i = lle->ll_count - 1; i >= 0; i--) {
1200 			lock1 = &lle->ll_children[i];
1201 			if (lock1->li_lock == lock)
1202 				continue;
1203 			if (flags & WARN_GIANTOK &&
1204 			    lock1->li_lock == &Giant.mtx_object)
1205 				continue;
1206 			if (flags & WARN_SLEEPOK &&
1207 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1208 				continue;
1209 			if (n == 0) {
1210 				va_start(ap, fmt);
1211 				vprintf(fmt, ap);
1212 				va_end(ap);
1213 				printf(" with the following");
1214 				if (flags & WARN_SLEEPOK)
1215 					printf(" non-sleepable");
1216 				printf(" locks held:\n");
1217 			}
1218 			n++;
1219 			witness_list_lock(lock1);
1220 		}
1221 	if (PCPU_GET(spinlocks) != NULL) {
1222 		/*
1223 		 * Since we already hold a spinlock preemption is
1224 		 * already blocked.
1225 		 */
1226 		if (n == 0) {
1227 			va_start(ap, fmt);
1228 			vprintf(fmt, ap);
1229 			va_end(ap);
1230 			printf(" with the following");
1231 			if (flags & WARN_SLEEPOK)
1232 				printf(" non-sleepable");
1233 			printf(" locks held:\n");
1234 		}
1235 		n += witness_list_locks(PCPU_PTR(spinlocks));
1236 	}
1237 	if (flags & WARN_PANIC && n)
1238 		panic("witness_warn");
1239 #ifdef KDB
1240 	else if (witness_kdb && n)
1241 		kdb_enter(__func__);
1242 	else if (witness_trace && n)
1243 		kdb_backtrace();
1244 #endif
1245 	return (n);
1246 }
1247 
1248 const char *
1249 witness_file(struct lock_object *lock)
1250 {
1251 	struct witness *w;
1252 
1253 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1254 		return ("?");
1255 	w = lock->lo_witness;
1256 	return (w->w_file);
1257 }
1258 
1259 int
1260 witness_line(struct lock_object *lock)
1261 {
1262 	struct witness *w;
1263 
1264 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1265 		return (0);
1266 	w = lock->lo_witness;
1267 	return (w->w_line);
1268 }
1269 
1270 static struct witness *
1271 enroll(const char *description, struct lock_class *lock_class)
1272 {
1273 	struct witness *w;
1274 
1275 	if (witness_watch == 0 || panicstr != NULL)
1276 		return (NULL);
1277 	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1278 		return (NULL);
1279 	mtx_lock_spin(&w_mtx);
1280 	STAILQ_FOREACH(w, &w_all, w_list) {
1281 		if (w->w_name == description || (w->w_refcount > 0 &&
1282 		    strcmp(description, w->w_name) == 0)) {
1283 			w->w_refcount++;
1284 			mtx_unlock_spin(&w_mtx);
1285 			if (lock_class != w->w_class)
1286 				panic(
1287 				"lock (%s) %s does not match earlier (%s) lock",
1288 				    description, lock_class->lc_name,
1289 				    w->w_class->lc_name);
1290 			return (w);
1291 		}
1292 	}
1293 	/*
1294 	 * This isn't quite right, as witness_cold is still 0 while we
1295 	 * enroll all the locks initialized before witness_initialize().
1296 	 */
1297 	if ((lock_class->lc_flags & LC_SPINLOCK) && !witness_cold) {
1298 		mtx_unlock_spin(&w_mtx);
1299 		panic("spin lock %s not in order list", description);
1300 	}
1301 	if ((w = witness_get()) == NULL)
1302 		return (NULL);
1303 	w->w_name = description;
1304 	w->w_class = lock_class;
1305 	w->w_refcount = 1;
1306 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1307 	if (lock_class->lc_flags & LC_SPINLOCK)
1308 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1309 	else if (lock_class->lc_flags & LC_SLEEPLOCK)
1310 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1311 	else {
1312 		mtx_unlock_spin(&w_mtx);
1313 		panic("lock class %s is not sleep or spin",
1314 		    lock_class->lc_name);
1315 	}
1316 	mtx_unlock_spin(&w_mtx);
1317 	return (w);
1318 }
1319 
1320 /* Don't let the door bang you on the way out... */
1321 static int
1322 depart(struct witness *w)
1323 {
1324 	struct witness_child_list_entry *wcl, *nwcl;
1325 	struct witness_list *list;
1326 	struct witness *parent;
1327 
1328 	MPASS(w->w_refcount == 0);
1329 	if (w->w_class->lc_flags & LC_SLEEPLOCK)
1330 		list = &w_sleep;
1331 	else
1332 		list = &w_spin;
1333 	/*
1334 	 * First, we run through the entire tree looking for any
1335 	 * witnesses that the outgoing witness is a child of.  For
1336 	 * each parent that we find, we reparent all the direct
1337 	 * children of the outgoing witness to its parent.
1338 	 */
1339 	STAILQ_FOREACH(parent, list, w_typelist) {
1340 		if (!isitmychild(parent, w))
1341 			continue;
1342 		removechild(parent, w);
1343 		if (!reparentchildren(parent, w))
1344 			return (0);
1345 	}
1346 
1347 	/*
1348 	 * Now we go through and free up the child list of the
1349 	 * outgoing witness.
1350 	 */
1351 	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1352 		nwcl = wcl->wcl_next;
1353 		witness_child_free(wcl);
1354 	}
1355 
1356 	/*
1357 	 * Detach from various lists and free.
1358 	 */
1359 	STAILQ_REMOVE(list, w, witness, w_typelist);
1360 	STAILQ_REMOVE(&w_all, w, witness, w_list);
1361 	witness_free(w);
1362 
1363 	/* Finally, fixup the tree. */
1364 	return (rebalancetree(list));
1365 }
1366 
1367 /*
1368  * Prune an entire lock order tree.  We look for cases where a lock
1369  * is now both a descendant and a direct child of a given lock.  In
1370  * that case, we want to remove the direct child link from the tree.
1371  *
1372  * Returns false if insertchild() fails.
1373  */
1374 static int
1375 rebalancetree(struct witness_list *list)
1376 {
1377 	struct witness *child, *parent;
1378 
1379 	STAILQ_FOREACH(child, list, w_typelist) {
1380 		STAILQ_FOREACH(parent, list, w_typelist) {
1381 			if (!isitmychild(parent, child))
1382 				continue;
1383 			removechild(parent, child);
1384 			if (isitmydescendant(parent, child))
1385 				continue;
1386 			if (!insertchild(parent, child))
1387 				return (0);
1388 		}
1389 	}
1390 	witness_levelall();
1391 	return (1);
1392 }
1393 
1394 /*
1395  * Add "child" as a direct child of "parent".  Returns false if
1396  * we fail due to out of memory.
1397  */
1398 static int
1399 insertchild(struct witness *parent, struct witness *child)
1400 {
1401 	struct witness_child_list_entry **wcl;
1402 
1403 	MPASS(child != NULL && parent != NULL);
1404 
1405 	/*
1406 	 * Insert "child" after "parent"
1407 	 */
1408 	wcl = &parent->w_children;
1409 	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1410 		wcl = &(*wcl)->wcl_next;
1411 	if (*wcl == NULL) {
1412 		*wcl = witness_child_get();
1413 		if (*wcl == NULL)
1414 			return (0);
1415 	}
1416 	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1417 
1418 	return (1);
1419 }
1420 
1421 /*
1422  * Make all the direct descendants of oldparent be direct descendants
1423  * of newparent.
1424  */
1425 static int
1426 reparentchildren(struct witness *newparent, struct witness *oldparent)
1427 {
1428 	struct witness_child_list_entry *wcl;
1429 	int i;
1430 
1431 	/* Avoid making a witness a child of itself. */
1432 	MPASS(!isitmychild(oldparent, newparent));
1433 
1434 	for (wcl = oldparent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1435 		for (i = 0; i < wcl->wcl_count; i++)
1436 			if (!insertchild(newparent, wcl->wcl_children[i]))
1437 				return (0);
1438 	return (1);
1439 }
1440 
1441 static int
1442 itismychild(struct witness *parent, struct witness *child)
1443 {
1444 	struct witness_list *list;
1445 
1446 	MPASS(child != NULL && parent != NULL);
1447 	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1448 	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1449 		panic(
1450 		"%s: parent (%s) and child (%s) are not the same lock type",
1451 		    __func__, parent->w_class->lc_name,
1452 		    child->w_class->lc_name);
1453 
1454 	if (!insertchild(parent, child))
1455 		return (0);
1456 
1457 	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1458 		list = &w_sleep;
1459 	else
1460 		list = &w_spin;
1461 	return (rebalancetree(list));
1462 }
1463 
1464 static void
1465 removechild(struct witness *parent, struct witness *child)
1466 {
1467 	struct witness_child_list_entry **wcl, *wcl1;
1468 	int i;
1469 
1470 	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1471 		for (i = 0; i < (*wcl)->wcl_count; i++)
1472 			if ((*wcl)->wcl_children[i] == child)
1473 				goto found;
1474 	return;
1475 found:
1476 	(*wcl)->wcl_count--;
1477 	if ((*wcl)->wcl_count > i)
1478 		(*wcl)->wcl_children[i] =
1479 		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1480 	MPASS((*wcl)->wcl_children[i] != NULL);
1481 	if ((*wcl)->wcl_count != 0)
1482 		return;
1483 	wcl1 = *wcl;
1484 	*wcl = wcl1->wcl_next;
1485 	witness_child_free(wcl1);
1486 }
1487 
1488 static int
1489 isitmychild(struct witness *parent, struct witness *child)
1490 {
1491 	struct witness_child_list_entry *wcl;
1492 	int i;
1493 
1494 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1495 		for (i = 0; i < wcl->wcl_count; i++) {
1496 			if (wcl->wcl_children[i] == child)
1497 				return (1);
1498 		}
1499 	}
1500 	return (0);
1501 }
1502 
1503 static int
1504 isitmydescendant(struct witness *parent, struct witness *child)
1505 {
1506 	struct witness_child_list_entry *wcl;
1507 	int i, j;
1508 
1509 	if (isitmychild(parent, child))
1510 		return (1);
1511 	j = 0;
1512 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1513 		MPASS(j < 1000);
1514 		for (i = 0; i < wcl->wcl_count; i++) {
1515 			if (isitmydescendant(wcl->wcl_children[i], child))
1516 				return (1);
1517 		}
1518 		j++;
1519 	}
1520 	return (0);
1521 }
1522 
1523 static void
1524 witness_levelall (void)
1525 {
1526 	struct witness_list *list;
1527 	struct witness *w, *w1;
1528 
1529 	/*
1530 	 * First clear all levels.
1531 	 */
1532 	STAILQ_FOREACH(w, &w_all, w_list) {
1533 		w->w_level = 0;
1534 	}
1535 
1536 	/*
1537 	 * Look for locks with no parent and level all their descendants.
1538 	 */
1539 	STAILQ_FOREACH(w, &w_all, w_list) {
1540 		/*
1541 		 * This is just an optimization, technically we could get
1542 		 * away just walking the all list each time.
1543 		 */
1544 		if (w->w_class->lc_flags & LC_SLEEPLOCK)
1545 			list = &w_sleep;
1546 		else
1547 			list = &w_spin;
1548 		STAILQ_FOREACH(w1, list, w_typelist) {
1549 			if (isitmychild(w1, w))
1550 				goto skip;
1551 		}
1552 		witness_leveldescendents(w, 0);
1553 	skip:
1554 		;	/* silence GCC 3.x */
1555 	}
1556 }
1557 
1558 static void
1559 witness_leveldescendents(struct witness *parent, int level)
1560 {
1561 	struct witness_child_list_entry *wcl;
1562 	int i;
1563 
1564 	if (parent->w_level < level)
1565 		parent->w_level = level;
1566 	level++;
1567 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1568 		for (i = 0; i < wcl->wcl_count; i++)
1569 			witness_leveldescendents(wcl->wcl_children[i], level);
1570 }
1571 
1572 static void
1573 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1574 			   struct witness *parent, int indent)
1575 {
1576 	struct witness_child_list_entry *wcl;
1577 	int i, level;
1578 
1579 	level = parent->w_level;
1580 	prnt("%-2d", level);
1581 	for (i = 0; i < indent; i++)
1582 		prnt(" ");
1583 	if (parent->w_refcount > 0)
1584 		prnt("%s", parent->w_name);
1585 	else
1586 		prnt("(dead)");
1587 	if (parent->w_displayed) {
1588 		prnt(" -- (already displayed)\n");
1589 		return;
1590 	}
1591 	parent->w_displayed = 1;
1592 	if (parent->w_refcount > 0) {
1593 		if (parent->w_file != NULL)
1594 			prnt(" -- last acquired @ %s:%d", parent->w_file,
1595 			    parent->w_line);
1596 	}
1597 	prnt("\n");
1598 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1599 		for (i = 0; i < wcl->wcl_count; i++)
1600 			    witness_displaydescendants(prnt,
1601 				wcl->wcl_children[i], indent + 1);
1602 }
1603 
1604 #ifdef BLESSING
1605 static int
1606 blessed(struct witness *w1, struct witness *w2)
1607 {
1608 	int i;
1609 	struct witness_blessed *b;
1610 
1611 	for (i = 0; i < blessed_count; i++) {
1612 		b = &blessed_list[i];
1613 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1614 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1615 				return (1);
1616 			continue;
1617 		}
1618 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1619 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1620 				return (1);
1621 	}
1622 	return (0);
1623 }
1624 #endif
1625 
1626 static struct witness *
1627 witness_get(void)
1628 {
1629 	struct witness *w;
1630 
1631 	if (witness_watch == 0) {
1632 		mtx_unlock_spin(&w_mtx);
1633 		return (NULL);
1634 	}
1635 	if (STAILQ_EMPTY(&w_free)) {
1636 		witness_watch = 0;
1637 		mtx_unlock_spin(&w_mtx);
1638 		printf("%s: witness exhausted\n", __func__);
1639 		return (NULL);
1640 	}
1641 	w = STAILQ_FIRST(&w_free);
1642 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1643 	bzero(w, sizeof(*w));
1644 	return (w);
1645 }
1646 
1647 static void
1648 witness_free(struct witness *w)
1649 {
1650 
1651 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1652 }
1653 
1654 static struct witness_child_list_entry *
1655 witness_child_get(void)
1656 {
1657 	struct witness_child_list_entry *wcl;
1658 
1659 	if (witness_watch == 0) {
1660 		mtx_unlock_spin(&w_mtx);
1661 		return (NULL);
1662 	}
1663 	wcl = w_child_free;
1664 	if (wcl == NULL) {
1665 		witness_watch = 0;
1666 		mtx_unlock_spin(&w_mtx);
1667 		printf("%s: witness exhausted\n", __func__);
1668 		return (NULL);
1669 	}
1670 	w_child_free = wcl->wcl_next;
1671 	bzero(wcl, sizeof(*wcl));
1672 	return (wcl);
1673 }
1674 
1675 static void
1676 witness_child_free(struct witness_child_list_entry *wcl)
1677 {
1678 
1679 	wcl->wcl_next = w_child_free;
1680 	w_child_free = wcl;
1681 }
1682 
1683 static struct lock_list_entry *
1684 witness_lock_list_get(void)
1685 {
1686 	struct lock_list_entry *lle;
1687 
1688 	if (witness_watch == 0)
1689 		return (NULL);
1690 	mtx_lock_spin(&w_mtx);
1691 	lle = w_lock_list_free;
1692 	if (lle == NULL) {
1693 		witness_watch = 0;
1694 		mtx_unlock_spin(&w_mtx);
1695 		printf("%s: witness exhausted\n", __func__);
1696 		return (NULL);
1697 	}
1698 	w_lock_list_free = lle->ll_next;
1699 	mtx_unlock_spin(&w_mtx);
1700 	bzero(lle, sizeof(*lle));
1701 	return (lle);
1702 }
1703 
1704 static void
1705 witness_lock_list_free(struct lock_list_entry *lle)
1706 {
1707 
1708 	mtx_lock_spin(&w_mtx);
1709 	lle->ll_next = w_lock_list_free;
1710 	w_lock_list_free = lle;
1711 	mtx_unlock_spin(&w_mtx);
1712 }
1713 
1714 static struct lock_instance *
1715 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1716 {
1717 	struct lock_list_entry *lle;
1718 	struct lock_instance *instance;
1719 	int i;
1720 
1721 	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1722 		for (i = lle->ll_count - 1; i >= 0; i--) {
1723 			instance = &lle->ll_children[i];
1724 			if (instance->li_lock == lock)
1725 				return (instance);
1726 		}
1727 	return (NULL);
1728 }
1729 
1730 static void
1731 witness_list_lock(struct lock_instance *instance)
1732 {
1733 	struct lock_object *lock;
1734 
1735 	lock = instance->li_lock;
1736 	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1737 	    "exclusive" : "shared", lock->lo_class->lc_name, lock->lo_name);
1738 	if (lock->lo_type != lock->lo_name)
1739 		printf(" (%s)", lock->lo_type);
1740 	printf(" r = %d (%p) locked @ %s:%d\n",
1741 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1742 	    instance->li_line);
1743 }
1744 
1745 #ifdef DDB
1746 static int
1747 witness_thread_has_locks(struct thread *td)
1748 {
1749 
1750 	return (td->td_sleeplocks != NULL);
1751 }
1752 
1753 static int
1754 witness_proc_has_locks(struct proc *p)
1755 {
1756 	struct thread *td;
1757 
1758 	FOREACH_THREAD_IN_PROC(p, td) {
1759 		if (witness_thread_has_locks(td))
1760 			return (1);
1761 	}
1762 	return (0);
1763 }
1764 #endif
1765 
1766 int
1767 witness_list_locks(struct lock_list_entry **lock_list)
1768 {
1769 	struct lock_list_entry *lle;
1770 	int i, nheld;
1771 
1772 	nheld = 0;
1773 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1774 		for (i = lle->ll_count - 1; i >= 0; i--) {
1775 			witness_list_lock(&lle->ll_children[i]);
1776 			nheld++;
1777 		}
1778 	return (nheld);
1779 }
1780 
1781 /*
1782  * This is a bit risky at best.  We call this function when we have timed
1783  * out acquiring a spin lock, and we assume that the other CPU is stuck
1784  * with this lock held.  So, we go groveling around in the other CPU's
1785  * per-cpu data to try to find the lock instance for this spin lock to
1786  * see when it was last acquired.
1787  */
1788 void
1789 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1790 {
1791 	struct lock_instance *instance;
1792 	struct pcpu *pc;
1793 
1794 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1795 		return;
1796 	pc = pcpu_find(owner->td_oncpu);
1797 	instance = find_instance(pc->pc_spinlocks, lock);
1798 	if (instance != NULL)
1799 		witness_list_lock(instance);
1800 }
1801 
1802 void
1803 witness_save(struct lock_object *lock, const char **filep, int *linep)
1804 {
1805 	struct lock_instance *instance;
1806 
1807 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1808 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1809 		return;
1810 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1811 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1812 		    lock->lo_class->lc_name, lock->lo_name);
1813 	instance = find_instance(curthread->td_sleeplocks, lock);
1814 	if (instance == NULL)
1815 		panic("%s: lock (%s) %s not locked", __func__,
1816 		    lock->lo_class->lc_name, lock->lo_name);
1817 	*filep = instance->li_file;
1818 	*linep = instance->li_line;
1819 }
1820 
1821 void
1822 witness_restore(struct lock_object *lock, const char *file, int line)
1823 {
1824 	struct lock_instance *instance;
1825 
1826 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1827 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1828 		return;
1829 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1830 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1831 		    lock->lo_class->lc_name, lock->lo_name);
1832 	instance = find_instance(curthread->td_sleeplocks, lock);
1833 	if (instance == NULL)
1834 		panic("%s: lock (%s) %s not locked", __func__,
1835 		    lock->lo_class->lc_name, lock->lo_name);
1836 	lock->lo_witness->w_file = file;
1837 	lock->lo_witness->w_line = line;
1838 	instance->li_file = file;
1839 	instance->li_line = line;
1840 }
1841 
1842 void
1843 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1844 {
1845 #ifdef INVARIANT_SUPPORT
1846 	struct lock_instance *instance;
1847 
1848 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1849 		return;
1850 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) != 0)
1851 		instance = find_instance(curthread->td_sleeplocks, lock);
1852 	else if ((lock->lo_class->lc_flags & LC_SPINLOCK) != 0)
1853 		instance = find_instance(PCPU_GET(spinlocks), lock);
1854 	else {
1855 		panic("Lock (%s) %s is not sleep or spin!",
1856 		    lock->lo_class->lc_name, lock->lo_name);
1857 	}
1858 	file = fixup_filename(file);
1859 	switch (flags) {
1860 	case LA_UNLOCKED:
1861 		if (instance != NULL)
1862 			panic("Lock (%s) %s locked @ %s:%d.",
1863 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1864 		break;
1865 	case LA_LOCKED:
1866 	case LA_LOCKED | LA_RECURSED:
1867 	case LA_LOCKED | LA_NOTRECURSED:
1868 	case LA_SLOCKED:
1869 	case LA_SLOCKED | LA_RECURSED:
1870 	case LA_SLOCKED | LA_NOTRECURSED:
1871 	case LA_XLOCKED:
1872 	case LA_XLOCKED | LA_RECURSED:
1873 	case LA_XLOCKED | LA_NOTRECURSED:
1874 		if (instance == NULL) {
1875 			panic("Lock (%s) %s not locked @ %s:%d.",
1876 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1877 			break;
1878 		}
1879 		if ((flags & LA_XLOCKED) != 0 &&
1880 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1881 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1882 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1883 		if ((flags & LA_SLOCKED) != 0 &&
1884 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1885 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1886 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1887 		if ((flags & LA_RECURSED) != 0 &&
1888 		    (instance->li_flags & LI_RECURSEMASK) == 0)
1889 			panic("Lock (%s) %s not recursed @ %s:%d.",
1890 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1891 		if ((flags & LA_NOTRECURSED) != 0 &&
1892 		    (instance->li_flags & LI_RECURSEMASK) != 0)
1893 			panic("Lock (%s) %s recursed @ %s:%d.",
1894 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1895 		break;
1896 	default:
1897 		panic("Invalid lock assertion at %s:%d.", file, line);
1898 
1899 	}
1900 #endif	/* INVARIANT_SUPPORT */
1901 }
1902 
1903 #ifdef DDB
1904 static void
1905 witness_list(struct thread *td)
1906 {
1907 
1908 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1909 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1910 
1911 	if (witness_watch == 0)
1912 		return;
1913 
1914 	witness_list_locks(&td->td_sleeplocks);
1915 
1916 	/*
1917 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1918 	 * if td is currently executing on some other CPU and holds spin locks
1919 	 * as we won't display those locks.  If we had a MI way of getting
1920 	 * the per-cpu data for a given cpu then we could use
1921 	 * td->td_oncpu to get the list of spinlocks for this thread
1922 	 * and "fix" this.
1923 	 *
1924 	 * That still wouldn't really fix this unless we locked sched_lock
1925 	 * or stopped the other CPU to make sure it wasn't changing the list
1926 	 * out from under us.  It is probably best to just not try to handle
1927 	 * threads on other CPU's for now.
1928 	 */
1929 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1930 		witness_list_locks(PCPU_PTR(spinlocks));
1931 }
1932 
1933 DB_SHOW_COMMAND(locks, db_witness_list)
1934 {
1935 	struct thread *td;
1936 	pid_t pid;
1937 	struct proc *p;
1938 
1939 	if (have_addr) {
1940 		pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1941 		    ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1942 		    ((addr >> 16) % 16) * 10000;
1943 		/* sx_slock(&allproc_lock); */
1944 		FOREACH_PROC_IN_SYSTEM(p) {
1945 			if (p->p_pid == pid)
1946 				break;
1947 		}
1948 		/* sx_sunlock(&allproc_lock); */
1949 		if (p == NULL) {
1950 			db_printf("pid %d not found\n", pid);
1951 			return;
1952 		}
1953 		FOREACH_THREAD_IN_PROC(p, td) {
1954 			witness_list(td);
1955 		}
1956 	} else {
1957 		td = curthread;
1958 		witness_list(td);
1959 	}
1960 }
1961 
1962 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1963 {
1964 	struct thread *td;
1965 	struct proc *p;
1966 
1967 	/*
1968 	 * It would be nice to list only threads and processes that actually
1969 	 * held sleep locks, but that information is currently not exported
1970 	 * by WITNESS.
1971 	 */
1972 	FOREACH_PROC_IN_SYSTEM(p) {
1973 		if (!witness_proc_has_locks(p))
1974 			continue;
1975 		FOREACH_THREAD_IN_PROC(p, td) {
1976 			if (!witness_thread_has_locks(td))
1977 				continue;
1978 			printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
1979 			    p->p_comm, td, td->td_tid);
1980 			witness_list(td);
1981 		}
1982 	}
1983 }
1984 
1985 DB_SHOW_COMMAND(witness, db_witness_display)
1986 {
1987 
1988 	witness_display(db_printf);
1989 }
1990 #endif
1991