xref: /freebsd/sys/kern/subr_witness.c (revision 6e660824a82f590542932de52f128db584029893)
1 /*-
2  * Copyright (c) 2008 Isilon Systems, Inc.
3  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
4  * Copyright (c) 1998 Berkeley Software Design, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Berkeley Software Design Inc's name may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
32  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
33  */
34 
35 /*
36  * Implementation of the `witness' lock verifier.  Originally implemented for
37  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
38  * classes in FreeBSD.
39  */
40 
41 /*
42  *	Main Entry: witness
43  *	Pronunciation: 'wit-n&s
44  *	Function: noun
45  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
46  *	    testimony, witness, from 2wit
47  *	Date: before 12th century
48  *	1 : attestation of a fact or event : TESTIMONY
49  *	2 : one that gives evidence; specifically : one who testifies in
50  *	    a cause or before a judicial tribunal
51  *	3 : one asked to be present at a transaction so as to be able to
52  *	    testify to its having taken place
53  *	4 : one who has personal knowledge of something
54  *	5 a : something serving as evidence or proof : SIGN
55  *	  b : public affirmation by word or example of usually
56  *	      religious faith or conviction <the heroic witness to divine
57  *	      life -- Pilot>
58  *	6 capitalized : a member of the Jehovah's Witnesses
59  */
60 
61 /*
62  * Special rules concerning Giant and lock orders:
63  *
64  * 1) Giant must be acquired before any other mutexes.  Stated another way,
65  *    no other mutex may be held when Giant is acquired.
66  *
67  * 2) Giant must be released when blocking on a sleepable lock.
68  *
69  * This rule is less obvious, but is a result of Giant providing the same
70  * semantics as spl().  Basically, when a thread sleeps, it must release
71  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
72  * 2).
73  *
74  * 3) Giant may be acquired before or after sleepable locks.
75  *
76  * This rule is also not quite as obvious.  Giant may be acquired after
77  * a sleepable lock because it is a non-sleepable lock and non-sleepable
78  * locks may always be acquired while holding a sleepable lock.  The second
79  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
80  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
81  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
82  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
83  * execute.  Thus, acquiring Giant both before and after a sleepable lock
84  * will not result in a lock order reversal.
85  */
86 
87 #include <sys/cdefs.h>
88 __FBSDID("$FreeBSD$");
89 
90 #include "opt_ddb.h"
91 #include "opt_hwpmc_hooks.h"
92 #include "opt_stack.h"
93 #include "opt_witness.h"
94 
95 #include <sys/param.h>
96 #include <sys/bus.h>
97 #include <sys/kdb.h>
98 #include <sys/kernel.h>
99 #include <sys/ktr.h>
100 #include <sys/lock.h>
101 #include <sys/malloc.h>
102 #include <sys/mutex.h>
103 #include <sys/priv.h>
104 #include <sys/proc.h>
105 #include <sys/sbuf.h>
106 #include <sys/sched.h>
107 #include <sys/stack.h>
108 #include <sys/sysctl.h>
109 #include <sys/systm.h>
110 
111 #ifdef DDB
112 #include <ddb/ddb.h>
113 #endif
114 
115 #include <machine/stdarg.h>
116 
117 #if !defined(DDB) && !defined(STACK)
118 #error "DDB or STACK options are required for WITNESS"
119 #endif
120 
121 /* Note that these traces do not work with KTR_ALQ. */
122 #if 0
123 #define	KTR_WITNESS	KTR_SUBSYS
124 #else
125 #define	KTR_WITNESS	0
126 #endif
127 
128 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
129 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
130 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
131 
132 /* Define this to check for blessed mutexes */
133 #undef BLESSING
134 
135 #define	WITNESS_COUNT 		1024
136 #define	WITNESS_CHILDCOUNT 	(WITNESS_COUNT * 4)
137 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
138 #define	WITNESS_PENDLIST	768
139 
140 /* Allocate 256 KB of stack data space */
141 #define	WITNESS_LO_DATA_COUNT	2048
142 
143 /* Prime, gives load factor of ~2 at full load */
144 #define	WITNESS_LO_HASH_SIZE	1021
145 
146 /*
147  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
148  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
149  * probably be safe for the most part, but it's still a SWAG.
150  */
151 #define	LOCK_NCHILDREN	5
152 #define	LOCK_CHILDCOUNT	2048
153 
154 #define	MAX_W_NAME	64
155 
156 #define	BADSTACK_SBUF_SIZE	(256 * WITNESS_COUNT)
157 #define	FULLGRAPH_SBUF_SIZE	512
158 
159 /*
160  * These flags go in the witness relationship matrix and describe the
161  * relationship between any two struct witness objects.
162  */
163 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
164 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
165 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
166 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
167 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
168 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
169 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
170 #define	WITNESS_RELATED_MASK						\
171 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
172 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
173 					  * observed. */
174 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
175 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
176 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
177 
178 /* Descendant to ancestor flags */
179 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
180 
181 /* Ancestor to descendant flags */
182 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
183 
184 #define	WITNESS_INDEX_ASSERT(i)						\
185 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT)
186 
187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
188 
189 /*
190  * Lock instances.  A lock instance is the data associated with a lock while
191  * it is held by witness.  For example, a lock instance will hold the
192  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
193  * are held in a per-cpu list while sleep locks are held in per-thread list.
194  */
195 struct lock_instance {
196 	struct lock_object	*li_lock;
197 	const char		*li_file;
198 	int			li_line;
199 	u_int			li_flags;
200 };
201 
202 /*
203  * A simple list type used to build the list of locks held by a thread
204  * or CPU.  We can't simply embed the list in struct lock_object since a
205  * lock may be held by more than one thread if it is a shared lock.  Locks
206  * are added to the head of the list, so we fill up each list entry from
207  * "the back" logically.  To ease some of the arithmetic, we actually fill
208  * in each list entry the normal way (children[0] then children[1], etc.) but
209  * when we traverse the list we read children[count-1] as the first entry
210  * down to children[0] as the final entry.
211  */
212 struct lock_list_entry {
213 	struct lock_list_entry	*ll_next;
214 	struct lock_instance	ll_children[LOCK_NCHILDREN];
215 	u_int			ll_count;
216 };
217 
218 /*
219  * The main witness structure. One of these per named lock type in the system
220  * (for example, "vnode interlock").
221  */
222 struct witness {
223 	char  			w_name[MAX_W_NAME];
224 	uint32_t 		w_index;  /* Index in the relationship matrix */
225 	struct lock_class	*w_class;
226 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
227 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
228 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
229 	const char		*w_file; /* File where last acquired */
230 	uint32_t 		w_line; /* Line where last acquired */
231 	uint32_t 		w_refcount;
232 	uint16_t 		w_num_ancestors; /* direct/indirect
233 						  * ancestor count */
234 	uint16_t 		w_num_descendants; /* direct/indirect
235 						    * descendant count */
236 	int16_t 		w_ddb_level;
237 	unsigned		w_displayed:1;
238 	unsigned		w_reversed:1;
239 };
240 
241 STAILQ_HEAD(witness_list, witness);
242 
243 /*
244  * The witness hash table. Keys are witness names (const char *), elements are
245  * witness objects (struct witness *).
246  */
247 struct witness_hash {
248 	struct witness	*wh_array[WITNESS_HASH_SIZE];
249 	uint32_t	wh_size;
250 	uint32_t	wh_count;
251 };
252 
253 /*
254  * Key type for the lock order data hash table.
255  */
256 struct witness_lock_order_key {
257 	uint16_t	from;
258 	uint16_t	to;
259 };
260 
261 struct witness_lock_order_data {
262 	struct stack			wlod_stack;
263 	struct witness_lock_order_key	wlod_key;
264 	struct witness_lock_order_data	*wlod_next;
265 };
266 
267 /*
268  * The witness lock order data hash table. Keys are witness index tuples
269  * (struct witness_lock_order_key), elements are lock order data objects
270  * (struct witness_lock_order_data).
271  */
272 struct witness_lock_order_hash {
273 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
274 	u_int	wloh_size;
275 	u_int	wloh_count;
276 };
277 
278 #ifdef BLESSING
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 #endif
284 
285 struct witness_pendhelp {
286 	const char		*wh_type;
287 	struct lock_object	*wh_lock;
288 };
289 
290 struct witness_order_list_entry {
291 	const char		*w_name;
292 	struct lock_class	*w_class;
293 };
294 
295 /*
296  * Returns 0 if one of the locks is a spin lock and the other is not.
297  * Returns 1 otherwise.
298  */
299 static __inline int
300 witness_lock_type_equal(struct witness *w1, struct witness *w2)
301 {
302 
303 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
304 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
305 }
306 
307 static __inline int
308 witness_lock_order_key_empty(const struct witness_lock_order_key *key)
309 {
310 
311 	return (key->from == 0 && key->to == 0);
312 }
313 
314 static __inline int
315 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
316     const struct witness_lock_order_key *b)
317 {
318 
319 	return (a->from == b->from && a->to == b->to);
320 }
321 
322 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
323 		    const char *fname);
324 #ifdef KDB
325 static void	_witness_debugger(int cond, const char *msg);
326 #endif
327 static void	adopt(struct witness *parent, struct witness *child);
328 #ifdef BLESSING
329 static int	blessed(struct witness *, struct witness *);
330 #endif
331 static void	depart(struct witness *w);
332 static struct witness	*enroll(const char *description,
333 			    struct lock_class *lock_class);
334 static struct lock_instance	*find_instance(struct lock_list_entry *list,
335 				    const struct lock_object *lock);
336 static int	isitmychild(struct witness *parent, struct witness *child);
337 static int	isitmydescendant(struct witness *parent, struct witness *child);
338 static void	itismychild(struct witness *parent, struct witness *child);
339 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
340 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
341 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
342 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
343 #ifdef DDB
344 static void	witness_ddb_compute_levels(void);
345 static void	witness_ddb_display(int(*)(const char *fmt, ...));
346 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
347 		    struct witness *, int indent);
348 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
349 		    struct witness_list *list);
350 static void	witness_ddb_level_descendants(struct witness *parent, int l);
351 static void	witness_ddb_list(struct thread *td);
352 #endif
353 static void	witness_free(struct witness *m);
354 static struct witness	*witness_get(void);
355 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
356 static struct witness	*witness_hash_get(const char *key);
357 static void	witness_hash_put(struct witness *w);
358 static void	witness_init_hash_tables(void);
359 static void	witness_increment_graph_generation(void);
360 static void	witness_lock_list_free(struct lock_list_entry *lle);
361 static struct lock_list_entry	*witness_lock_list_get(void);
362 static int	witness_lock_order_add(struct witness *parent,
363 		    struct witness *child);
364 static int	witness_lock_order_check(struct witness *parent,
365 		    struct witness *child);
366 static struct witness_lock_order_data	*witness_lock_order_get(
367 					    struct witness *parent,
368 					    struct witness *child);
369 static void	witness_list_lock(struct lock_instance *instance,
370 		    int (*prnt)(const char *fmt, ...));
371 static void	witness_setflag(struct lock_object *lock, int flag, int set);
372 
373 #ifdef KDB
374 #define	witness_debugger(c)	_witness_debugger(c, __func__)
375 #else
376 #define	witness_debugger(c)
377 #endif
378 
379 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
380     "Witness Locking");
381 
382 /*
383  * If set to 0, lock order checking is disabled.  If set to -1,
384  * witness is completely disabled.  Otherwise witness performs full
385  * lock order checking for all locks.  At runtime, lock order checking
386  * may be toggled.  However, witness cannot be reenabled once it is
387  * completely disabled.
388  */
389 static int witness_watch = 1;
390 TUNABLE_INT("debug.witness.watch", &witness_watch);
391 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
392     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
393 
394 #ifdef KDB
395 /*
396  * When KDB is enabled and witness_kdb is 1, it will cause the system
397  * to drop into kdebug() when:
398  *	- a lock hierarchy violation occurs
399  *	- locks are held when going to sleep.
400  */
401 #ifdef WITNESS_KDB
402 int	witness_kdb = 1;
403 #else
404 int	witness_kdb = 0;
405 #endif
406 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
407 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
408 
409 /*
410  * When KDB is enabled and witness_trace is 1, it will cause the system
411  * to print a stack trace:
412  *	- a lock hierarchy violation occurs
413  *	- locks are held when going to sleep.
414  */
415 int	witness_trace = 1;
416 TUNABLE_INT("debug.witness.trace", &witness_trace);
417 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
418 #endif /* KDB */
419 
420 #ifdef WITNESS_SKIPSPIN
421 int	witness_skipspin = 1;
422 #else
423 int	witness_skipspin = 0;
424 #endif
425 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
426 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin,
427     0, "");
428 
429 /*
430  * Call this to print out the relations between locks.
431  */
432 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
433     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
434 
435 /*
436  * Call this to print out the witness faulty stacks.
437  */
438 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
439     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
440 
441 static struct mtx w_mtx;
442 
443 /* w_list */
444 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
445 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
446 
447 /* w_typelist */
448 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
449 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
450 
451 /* lock list */
452 static struct lock_list_entry *w_lock_list_free = NULL;
453 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
454 static u_int pending_cnt;
455 
456 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
457 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
458 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
459 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
460     "");
461 
462 static struct witness *w_data;
463 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1];
464 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
465 static struct witness_hash w_hash;	/* The witness hash table. */
466 
467 /* The lock order data hash */
468 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
469 static struct witness_lock_order_data *w_lofree = NULL;
470 static struct witness_lock_order_hash w_lohash;
471 static int w_max_used_index = 0;
472 static unsigned int w_generation = 0;
473 static const char w_notrunning[] = "Witness not running\n";
474 static const char w_stillcold[] = "Witness is still cold\n";
475 
476 
477 static struct witness_order_list_entry order_lists[] = {
478 	/*
479 	 * sx locks
480 	 */
481 	{ "proctree", &lock_class_sx },
482 	{ "allproc", &lock_class_sx },
483 	{ "allprison", &lock_class_sx },
484 	{ NULL, NULL },
485 	/*
486 	 * Various mutexes
487 	 */
488 	{ "Giant", &lock_class_mtx_sleep },
489 	{ "pipe mutex", &lock_class_mtx_sleep },
490 	{ "sigio lock", &lock_class_mtx_sleep },
491 	{ "process group", &lock_class_mtx_sleep },
492 	{ "process lock", &lock_class_mtx_sleep },
493 	{ "session", &lock_class_mtx_sleep },
494 	{ "uidinfo hash", &lock_class_rw },
495 #ifdef	HWPMC_HOOKS
496 	{ "pmc-sleep", &lock_class_mtx_sleep },
497 #endif
498 	{ "time lock", &lock_class_mtx_sleep },
499 	{ NULL, NULL },
500 	/*
501 	 * Sockets
502 	 */
503 	{ "accept", &lock_class_mtx_sleep },
504 	{ "so_snd", &lock_class_mtx_sleep },
505 	{ "so_rcv", &lock_class_mtx_sleep },
506 	{ "sellck", &lock_class_mtx_sleep },
507 	{ NULL, NULL },
508 	/*
509 	 * Routing
510 	 */
511 	{ "so_rcv", &lock_class_mtx_sleep },
512 	{ "radix node head", &lock_class_rw },
513 	{ "rtentry", &lock_class_mtx_sleep },
514 	{ "ifaddr", &lock_class_mtx_sleep },
515 	{ NULL, NULL },
516 	/*
517 	 * IPv4 multicast:
518 	 * protocol locks before interface locks, after UDP locks.
519 	 */
520 	{ "udpinp", &lock_class_rw },
521 	{ "in_multi_mtx", &lock_class_mtx_sleep },
522 	{ "igmp_mtx", &lock_class_mtx_sleep },
523 	{ "if_addr_lock", &lock_class_rw },
524 	{ NULL, NULL },
525 	/*
526 	 * IPv6 multicast:
527 	 * protocol locks before interface locks, after UDP locks.
528 	 */
529 	{ "udpinp", &lock_class_rw },
530 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
531 	{ "mld_mtx", &lock_class_mtx_sleep },
532 	{ "if_addr_lock", &lock_class_rw },
533 	{ NULL, NULL },
534 	/*
535 	 * UNIX Domain Sockets
536 	 */
537 	{ "unp_global_rwlock", &lock_class_rw },
538 	{ "unp_list_lock", &lock_class_mtx_sleep },
539 	{ "unp", &lock_class_mtx_sleep },
540 	{ "so_snd", &lock_class_mtx_sleep },
541 	{ NULL, NULL },
542 	/*
543 	 * UDP/IP
544 	 */
545 	{ "udp", &lock_class_rw },
546 	{ "udpinp", &lock_class_rw },
547 	{ "so_snd", &lock_class_mtx_sleep },
548 	{ NULL, NULL },
549 	/*
550 	 * TCP/IP
551 	 */
552 	{ "tcp", &lock_class_rw },
553 	{ "tcpinp", &lock_class_rw },
554 	{ "so_snd", &lock_class_mtx_sleep },
555 	{ NULL, NULL },
556 	/*
557 	 * netatalk
558 	 */
559 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
560 	{ "ddp_mtx", &lock_class_mtx_sleep },
561 	{ NULL, NULL },
562 	/*
563 	 * BPF
564 	 */
565 	{ "bpf global lock", &lock_class_mtx_sleep },
566 	{ "bpf interface lock", &lock_class_rw },
567 	{ "bpf cdev lock", &lock_class_mtx_sleep },
568 	{ NULL, NULL },
569 	/*
570 	 * NFS server
571 	 */
572 	{ "nfsd_mtx", &lock_class_mtx_sleep },
573 	{ "so_snd", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 
576 	/*
577 	 * IEEE 802.11
578 	 */
579 	{ "802.11 com lock", &lock_class_mtx_sleep},
580 	{ NULL, NULL },
581 	/*
582 	 * Network drivers
583 	 */
584 	{ "network driver", &lock_class_mtx_sleep},
585 	{ NULL, NULL },
586 
587 	/*
588 	 * Netgraph
589 	 */
590 	{ "ng_node", &lock_class_mtx_sleep },
591 	{ "ng_worklist", &lock_class_mtx_sleep },
592 	{ NULL, NULL },
593 	/*
594 	 * CDEV
595 	 */
596 	{ "vm map (system)", &lock_class_mtx_sleep },
597 	{ "vm page queue", &lock_class_mtx_sleep },
598 	{ "vnode interlock", &lock_class_mtx_sleep },
599 	{ "cdev", &lock_class_mtx_sleep },
600 	{ NULL, NULL },
601 	/*
602 	 * VM
603 	 */
604 	{ "vm map (user)", &lock_class_sx },
605 	{ "vm object", &lock_class_rw },
606 	{ "vm page", &lock_class_mtx_sleep },
607 	{ "vm page queue", &lock_class_mtx_sleep },
608 	{ "pmap pv global", &lock_class_rw },
609 	{ "pmap", &lock_class_mtx_sleep },
610 	{ "pmap pv list", &lock_class_rw },
611 	{ "vm page free queue", &lock_class_mtx_sleep },
612 	{ NULL, NULL },
613 	/*
614 	 * kqueue/VFS interaction
615 	 */
616 	{ "kqueue", &lock_class_mtx_sleep },
617 	{ "struct mount mtx", &lock_class_mtx_sleep },
618 	{ "vnode interlock", &lock_class_mtx_sleep },
619 	{ NULL, NULL },
620 	/*
621 	 * ZFS locking
622 	 */
623 	{ "dn->dn_mtx", &lock_class_sx },
624 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
625 	{ "db->db_mtx", &lock_class_sx },
626 	{ NULL, NULL },
627 	/*
628 	 * spin locks
629 	 */
630 #ifdef SMP
631 	{ "ap boot", &lock_class_mtx_spin },
632 #endif
633 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
634 	{ "sio", &lock_class_mtx_spin },
635 	{ "scrlock", &lock_class_mtx_spin },
636 #ifdef __i386__
637 	{ "cy", &lock_class_mtx_spin },
638 #endif
639 #ifdef __sparc64__
640 	{ "pcib_mtx", &lock_class_mtx_spin },
641 	{ "rtc_mtx", &lock_class_mtx_spin },
642 #endif
643 	{ "scc_hwmtx", &lock_class_mtx_spin },
644 	{ "uart_hwmtx", &lock_class_mtx_spin },
645 	{ "fast_taskqueue", &lock_class_mtx_spin },
646 	{ "intr table", &lock_class_mtx_spin },
647 #ifdef	HWPMC_HOOKS
648 	{ "pmc-per-proc", &lock_class_mtx_spin },
649 #endif
650 	{ "process slock", &lock_class_mtx_spin },
651 	{ "sleepq chain", &lock_class_mtx_spin },
652 	{ "umtx lock", &lock_class_mtx_spin },
653 	{ "rm_spinlock", &lock_class_mtx_spin },
654 	{ "turnstile chain", &lock_class_mtx_spin },
655 	{ "turnstile lock", &lock_class_mtx_spin },
656 	{ "sched lock", &lock_class_mtx_spin },
657 	{ "td_contested", &lock_class_mtx_spin },
658 	{ "callout", &lock_class_mtx_spin },
659 	{ "entropy harvest mutex", &lock_class_mtx_spin },
660 	{ "syscons video lock", &lock_class_mtx_spin },
661 #ifdef SMP
662 	{ "smp rendezvous", &lock_class_mtx_spin },
663 #endif
664 #ifdef __powerpc__
665 	{ "tlb0", &lock_class_mtx_spin },
666 #endif
667 	/*
668 	 * leaf locks
669 	 */
670 	{ "intrcnt", &lock_class_mtx_spin },
671 	{ "icu", &lock_class_mtx_spin },
672 #ifdef __i386__
673 	{ "allpmaps", &lock_class_mtx_spin },
674 	{ "descriptor tables", &lock_class_mtx_spin },
675 #endif
676 	{ "clk", &lock_class_mtx_spin },
677 	{ "cpuset", &lock_class_mtx_spin },
678 	{ "mprof lock", &lock_class_mtx_spin },
679 	{ "zombie lock", &lock_class_mtx_spin },
680 	{ "ALD Queue", &lock_class_mtx_spin },
681 #ifdef __ia64__
682 	{ "MCA spin lock", &lock_class_mtx_spin },
683 #endif
684 #if defined(__i386__) || defined(__amd64__)
685 	{ "pcicfg", &lock_class_mtx_spin },
686 	{ "NDIS thread lock", &lock_class_mtx_spin },
687 #endif
688 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
689 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
690 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
691 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
692 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
693 #ifdef	HWPMC_HOOKS
694 	{ "pmc-leaf", &lock_class_mtx_spin },
695 #endif
696 	{ "blocked lock", &lock_class_mtx_spin },
697 	{ NULL, NULL },
698 	{ NULL, NULL }
699 };
700 
701 #ifdef BLESSING
702 /*
703  * Pairs of locks which have been blessed
704  * Don't complain about order problems with blessed locks
705  */
706 static struct witness_blessed blessed_list[] = {
707 };
708 static int blessed_count =
709 	sizeof(blessed_list) / sizeof(struct witness_blessed);
710 #endif
711 
712 /*
713  * This global is set to 0 once it becomes safe to use the witness code.
714  */
715 static int witness_cold = 1;
716 
717 /*
718  * This global is set to 1 once the static lock orders have been enrolled
719  * so that a warning can be issued for any spin locks enrolled later.
720  */
721 static int witness_spin_warn = 0;
722 
723 /* Trim useless garbage from filenames. */
724 static const char *
725 fixup_filename(const char *file)
726 {
727 
728 	if (file == NULL)
729 		return (NULL);
730 	while (strncmp(file, "../", 3) == 0)
731 		file += 3;
732 	return (file);
733 }
734 
735 /*
736  * The WITNESS-enabled diagnostic code.  Note that the witness code does
737  * assume that the early boot is single-threaded at least until after this
738  * routine is completed.
739  */
740 static void
741 witness_initialize(void *dummy __unused)
742 {
743 	struct lock_object *lock;
744 	struct witness_order_list_entry *order;
745 	struct witness *w, *w1;
746 	int i;
747 
748 	w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS,
749 	    M_NOWAIT | M_ZERO);
750 
751 	/*
752 	 * We have to release Giant before initializing its witness
753 	 * structure so that WITNESS doesn't get confused.
754 	 */
755 	mtx_unlock(&Giant);
756 	mtx_assert(&Giant, MA_NOTOWNED);
757 
758 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
759 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
760 	    MTX_NOWITNESS | MTX_NOPROFILE);
761 	for (i = WITNESS_COUNT - 1; i >= 0; i--) {
762 		w = &w_data[i];
763 		memset(w, 0, sizeof(*w));
764 		w_data[i].w_index = i;	/* Witness index never changes. */
765 		witness_free(w);
766 	}
767 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
768 	    ("%s: Invalid list of free witness objects", __func__));
769 
770 	/* Witness with index 0 is not used to aid in debugging. */
771 	STAILQ_REMOVE_HEAD(&w_free, w_list);
772 	w_free_cnt--;
773 
774 	memset(w_rmatrix, 0,
775 	    (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1)));
776 
777 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
778 		witness_lock_list_free(&w_locklistdata[i]);
779 	witness_init_hash_tables();
780 
781 	/* First add in all the specified order lists. */
782 	for (order = order_lists; order->w_name != NULL; order++) {
783 		w = enroll(order->w_name, order->w_class);
784 		if (w == NULL)
785 			continue;
786 		w->w_file = "order list";
787 		for (order++; order->w_name != NULL; order++) {
788 			w1 = enroll(order->w_name, order->w_class);
789 			if (w1 == NULL)
790 				continue;
791 			w1->w_file = "order list";
792 			itismychild(w, w1);
793 			w = w1;
794 		}
795 	}
796 	witness_spin_warn = 1;
797 
798 	/* Iterate through all locks and add them to witness. */
799 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
800 		lock = pending_locks[i].wh_lock;
801 		KASSERT(lock->lo_flags & LO_WITNESS,
802 		    ("%s: lock %s is on pending list but not LO_WITNESS",
803 		    __func__, lock->lo_name));
804 		lock->lo_witness = enroll(pending_locks[i].wh_type,
805 		    LOCK_CLASS(lock));
806 	}
807 
808 	/* Mark the witness code as being ready for use. */
809 	witness_cold = 0;
810 
811 	mtx_lock(&Giant);
812 }
813 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize,
814     NULL);
815 
816 void
817 witness_init(struct lock_object *lock, const char *type)
818 {
819 	struct lock_class *class;
820 
821 	/* Various sanity checks. */
822 	class = LOCK_CLASS(lock);
823 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
824 	    (class->lc_flags & LC_RECURSABLE) == 0)
825 		kassert_panic("%s: lock (%s) %s can not be recursable",
826 		    __func__, class->lc_name, lock->lo_name);
827 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
828 	    (class->lc_flags & LC_SLEEPABLE) == 0)
829 		kassert_panic("%s: lock (%s) %s can not be sleepable",
830 		    __func__, class->lc_name, lock->lo_name);
831 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
832 	    (class->lc_flags & LC_UPGRADABLE) == 0)
833 		kassert_panic("%s: lock (%s) %s can not be upgradable",
834 		    __func__, class->lc_name, lock->lo_name);
835 
836 	/*
837 	 * If we shouldn't watch this lock, then just clear lo_witness.
838 	 * Otherwise, if witness_cold is set, then it is too early to
839 	 * enroll this lock, so defer it to witness_initialize() by adding
840 	 * it to the pending_locks list.  If it is not too early, then enroll
841 	 * the lock now.
842 	 */
843 	if (witness_watch < 1 || panicstr != NULL ||
844 	    (lock->lo_flags & LO_WITNESS) == 0)
845 		lock->lo_witness = NULL;
846 	else if (witness_cold) {
847 		pending_locks[pending_cnt].wh_lock = lock;
848 		pending_locks[pending_cnt++].wh_type = type;
849 		if (pending_cnt > WITNESS_PENDLIST)
850 			panic("%s: pending locks list is too small, "
851 			    "increase WITNESS_PENDLIST\n",
852 			    __func__);
853 	} else
854 		lock->lo_witness = enroll(type, class);
855 }
856 
857 void
858 witness_destroy(struct lock_object *lock)
859 {
860 	struct lock_class *class;
861 	struct witness *w;
862 
863 	class = LOCK_CLASS(lock);
864 
865 	if (witness_cold)
866 		panic("lock (%s) %s destroyed while witness_cold",
867 		    class->lc_name, lock->lo_name);
868 
869 	/* XXX: need to verify that no one holds the lock */
870 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
871 		return;
872 	w = lock->lo_witness;
873 
874 	mtx_lock_spin(&w_mtx);
875 	MPASS(w->w_refcount > 0);
876 	w->w_refcount--;
877 
878 	if (w->w_refcount == 0)
879 		depart(w);
880 	mtx_unlock_spin(&w_mtx);
881 }
882 
883 #ifdef DDB
884 static void
885 witness_ddb_compute_levels(void)
886 {
887 	struct witness *w;
888 
889 	/*
890 	 * First clear all levels.
891 	 */
892 	STAILQ_FOREACH(w, &w_all, w_list)
893 		w->w_ddb_level = -1;
894 
895 	/*
896 	 * Look for locks with no parents and level all their descendants.
897 	 */
898 	STAILQ_FOREACH(w, &w_all, w_list) {
899 
900 		/* If the witness has ancestors (is not a root), skip it. */
901 		if (w->w_num_ancestors > 0)
902 			continue;
903 		witness_ddb_level_descendants(w, 0);
904 	}
905 }
906 
907 static void
908 witness_ddb_level_descendants(struct witness *w, int l)
909 {
910 	int i;
911 
912 	if (w->w_ddb_level >= l)
913 		return;
914 
915 	w->w_ddb_level = l;
916 	l++;
917 
918 	for (i = 1; i <= w_max_used_index; i++) {
919 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
920 			witness_ddb_level_descendants(&w_data[i], l);
921 	}
922 }
923 
924 static void
925 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
926     struct witness *w, int indent)
927 {
928 	int i;
929 
930  	for (i = 0; i < indent; i++)
931  		prnt(" ");
932 	prnt("%s (type: %s, depth: %d, active refs: %d)",
933 	     w->w_name, w->w_class->lc_name,
934 	     w->w_ddb_level, w->w_refcount);
935  	if (w->w_displayed) {
936  		prnt(" -- (already displayed)\n");
937  		return;
938  	}
939  	w->w_displayed = 1;
940 	if (w->w_file != NULL && w->w_line != 0)
941 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
942 		    w->w_line);
943 	else
944 		prnt(" -- never acquired\n");
945 	indent++;
946 	WITNESS_INDEX_ASSERT(w->w_index);
947 	for (i = 1; i <= w_max_used_index; i++) {
948 		if (db_pager_quit)
949 			return;
950 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
951 			witness_ddb_display_descendants(prnt, &w_data[i],
952 			    indent);
953 	}
954 }
955 
956 static void
957 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
958     struct witness_list *list)
959 {
960 	struct witness *w;
961 
962 	STAILQ_FOREACH(w, list, w_typelist) {
963 		if (w->w_file == NULL || w->w_ddb_level > 0)
964 			continue;
965 
966 		/* This lock has no anscestors - display its descendants. */
967 		witness_ddb_display_descendants(prnt, w, 0);
968 		if (db_pager_quit)
969 			return;
970 	}
971 }
972 
973 static void
974 witness_ddb_display(int(*prnt)(const char *fmt, ...))
975 {
976 	struct witness *w;
977 
978 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
979 	witness_ddb_compute_levels();
980 
981 	/* Clear all the displayed flags. */
982 	STAILQ_FOREACH(w, &w_all, w_list)
983 		w->w_displayed = 0;
984 
985 	/*
986 	 * First, handle sleep locks which have been acquired at least
987 	 * once.
988 	 */
989 	prnt("Sleep locks:\n");
990 	witness_ddb_display_list(prnt, &w_sleep);
991 	if (db_pager_quit)
992 		return;
993 
994 	/*
995 	 * Now do spin locks which have been acquired at least once.
996 	 */
997 	prnt("\nSpin locks:\n");
998 	witness_ddb_display_list(prnt, &w_spin);
999 	if (db_pager_quit)
1000 		return;
1001 
1002 	/*
1003 	 * Finally, any locks which have not been acquired yet.
1004 	 */
1005 	prnt("\nLocks which were never acquired:\n");
1006 	STAILQ_FOREACH(w, &w_all, w_list) {
1007 		if (w->w_file != NULL || w->w_refcount == 0)
1008 			continue;
1009 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1010 		    w->w_class->lc_name, w->w_ddb_level);
1011 		if (db_pager_quit)
1012 			return;
1013 	}
1014 }
1015 #endif /* DDB */
1016 
1017 int
1018 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1019 {
1020 
1021 	if (witness_watch == -1 || panicstr != NULL)
1022 		return (0);
1023 
1024 	/* Require locks that witness knows about. */
1025 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1026 	    lock2->lo_witness == NULL)
1027 		return (EINVAL);
1028 
1029 	mtx_assert(&w_mtx, MA_NOTOWNED);
1030 	mtx_lock_spin(&w_mtx);
1031 
1032 	/*
1033 	 * If we already have either an explicit or implied lock order that
1034 	 * is the other way around, then return an error.
1035 	 */
1036 	if (witness_watch &&
1037 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1038 		mtx_unlock_spin(&w_mtx);
1039 		return (EDOOFUS);
1040 	}
1041 
1042 	/* Try to add the new order. */
1043 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1044 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1045 	itismychild(lock1->lo_witness, lock2->lo_witness);
1046 	mtx_unlock_spin(&w_mtx);
1047 	return (0);
1048 }
1049 
1050 void
1051 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1052     int line, struct lock_object *interlock)
1053 {
1054 	struct lock_list_entry *lock_list, *lle;
1055 	struct lock_instance *lock1, *lock2, *plock;
1056 	struct lock_class *class, *iclass;
1057 	struct witness *w, *w1;
1058 	struct thread *td;
1059 	int i, j;
1060 
1061 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1062 	    panicstr != NULL)
1063 		return;
1064 
1065 	w = lock->lo_witness;
1066 	class = LOCK_CLASS(lock);
1067 	td = curthread;
1068 
1069 	if (class->lc_flags & LC_SLEEPLOCK) {
1070 
1071 		/*
1072 		 * Since spin locks include a critical section, this check
1073 		 * implicitly enforces a lock order of all sleep locks before
1074 		 * all spin locks.
1075 		 */
1076 		if (td->td_critnest != 0 && !kdb_active)
1077 			kassert_panic("acquiring blockable sleep lock with "
1078 			    "spinlock or critical section held (%s) %s @ %s:%d",
1079 			    class->lc_name, lock->lo_name,
1080 			    fixup_filename(file), line);
1081 
1082 		/*
1083 		 * If this is the first lock acquired then just return as
1084 		 * no order checking is needed.
1085 		 */
1086 		lock_list = td->td_sleeplocks;
1087 		if (lock_list == NULL || lock_list->ll_count == 0)
1088 			return;
1089 	} else {
1090 
1091 		/*
1092 		 * If this is the first lock, just return as no order
1093 		 * checking is needed.  Avoid problems with thread
1094 		 * migration pinning the thread while checking if
1095 		 * spinlocks are held.  If at least one spinlock is held
1096 		 * the thread is in a safe path and it is allowed to
1097 		 * unpin it.
1098 		 */
1099 		sched_pin();
1100 		lock_list = PCPU_GET(spinlocks);
1101 		if (lock_list == NULL || lock_list->ll_count == 0) {
1102 			sched_unpin();
1103 			return;
1104 		}
1105 		sched_unpin();
1106 	}
1107 
1108 	/*
1109 	 * Check to see if we are recursing on a lock we already own.  If
1110 	 * so, make sure that we don't mismatch exclusive and shared lock
1111 	 * acquires.
1112 	 */
1113 	lock1 = find_instance(lock_list, lock);
1114 	if (lock1 != NULL) {
1115 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1116 		    (flags & LOP_EXCLUSIVE) == 0) {
1117 			printf("shared lock of (%s) %s @ %s:%d\n",
1118 			    class->lc_name, lock->lo_name,
1119 			    fixup_filename(file), line);
1120 			printf("while exclusively locked from %s:%d\n",
1121 			    fixup_filename(lock1->li_file), lock1->li_line);
1122 			kassert_panic("excl->share");
1123 		}
1124 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1125 		    (flags & LOP_EXCLUSIVE) != 0) {
1126 			printf("exclusive lock of (%s) %s @ %s:%d\n",
1127 			    class->lc_name, lock->lo_name,
1128 			    fixup_filename(file), line);
1129 			printf("while share locked from %s:%d\n",
1130 			    fixup_filename(lock1->li_file), lock1->li_line);
1131 			kassert_panic("share->excl");
1132 		}
1133 		return;
1134 	}
1135 
1136 	/* Warn if the interlock is not locked exactly once. */
1137 	if (interlock != NULL) {
1138 		iclass = LOCK_CLASS(interlock);
1139 		lock1 = find_instance(lock_list, interlock);
1140 		if (lock1 == NULL)
1141 			kassert_panic(
1142 			    "interlock (%s) %s not locked while locking"
1143 			    " %s @ %s:%d",
1144 			    iclass->lc_name, interlock->lo_name,
1145 			    flags & LOP_EXCLUSIVE ? "exclusive" : "shared",
1146 			    fixup_filename(file), line);
1147 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1148 			kassert_panic(
1149 			    "interlock (%s) %s recursed while locking %s"
1150 			    " @ %s:%d",
1151 			    iclass->lc_name, interlock->lo_name,
1152 			    flags & LOP_EXCLUSIVE ? "exclusive" : "shared",
1153 			    fixup_filename(file), line);
1154 	}
1155 
1156 	/*
1157 	 * Find the previously acquired lock, but ignore interlocks.
1158 	 */
1159 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1160 	if (interlock != NULL && plock->li_lock == interlock) {
1161 		if (lock_list->ll_count > 1)
1162 			plock =
1163 			    &lock_list->ll_children[lock_list->ll_count - 2];
1164 		else {
1165 			lle = lock_list->ll_next;
1166 
1167 			/*
1168 			 * The interlock is the only lock we hold, so
1169 			 * simply return.
1170 			 */
1171 			if (lle == NULL)
1172 				return;
1173 			plock = &lle->ll_children[lle->ll_count - 1];
1174 		}
1175 	}
1176 
1177 	/*
1178 	 * Try to perform most checks without a lock.  If this succeeds we
1179 	 * can skip acquiring the lock and return success.
1180 	 */
1181 	w1 = plock->li_lock->lo_witness;
1182 	if (witness_lock_order_check(w1, w))
1183 		return;
1184 
1185 	/*
1186 	 * Check for duplicate locks of the same type.  Note that we only
1187 	 * have to check for this on the last lock we just acquired.  Any
1188 	 * other cases will be caught as lock order violations.
1189 	 */
1190 	mtx_lock_spin(&w_mtx);
1191 	witness_lock_order_add(w1, w);
1192 	if (w1 == w) {
1193 		i = w->w_index;
1194 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1195 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1196 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1197 			w->w_reversed = 1;
1198 			mtx_unlock_spin(&w_mtx);
1199 			printf(
1200 			    "acquiring duplicate lock of same type: \"%s\"\n",
1201 			    w->w_name);
1202 			printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1203 			    fixup_filename(plock->li_file), plock->li_line);
1204 			printf(" 2nd %s @ %s:%d\n", lock->lo_name,
1205 			    fixup_filename(file), line);
1206 			witness_debugger(1);
1207 		} else
1208 			mtx_unlock_spin(&w_mtx);
1209 		return;
1210 	}
1211 	mtx_assert(&w_mtx, MA_OWNED);
1212 
1213 	/*
1214 	 * If we know that the lock we are acquiring comes after
1215 	 * the lock we most recently acquired in the lock order tree,
1216 	 * then there is no need for any further checks.
1217 	 */
1218 	if (isitmychild(w1, w))
1219 		goto out;
1220 
1221 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1222 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1223 
1224 			MPASS(j < WITNESS_COUNT);
1225 			lock1 = &lle->ll_children[i];
1226 
1227 			/*
1228 			 * Ignore the interlock.
1229 			 */
1230 			if (interlock == lock1->li_lock)
1231 				continue;
1232 
1233 			/*
1234 			 * If this lock doesn't undergo witness checking,
1235 			 * then skip it.
1236 			 */
1237 			w1 = lock1->li_lock->lo_witness;
1238 			if (w1 == NULL) {
1239 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1240 				    ("lock missing witness structure"));
1241 				continue;
1242 			}
1243 
1244 			/*
1245 			 * If we are locking Giant and this is a sleepable
1246 			 * lock, then skip it.
1247 			 */
1248 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1249 			    lock == &Giant.lock_object)
1250 				continue;
1251 
1252 			/*
1253 			 * If we are locking a sleepable lock and this lock
1254 			 * is Giant, then skip it.
1255 			 */
1256 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1257 			    lock1->li_lock == &Giant.lock_object)
1258 				continue;
1259 
1260 			/*
1261 			 * If we are locking a sleepable lock and this lock
1262 			 * isn't sleepable, we want to treat it as a lock
1263 			 * order violation to enfore a general lock order of
1264 			 * sleepable locks before non-sleepable locks.
1265 			 */
1266 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1267 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1268 				goto reversal;
1269 
1270 			/*
1271 			 * If we are locking Giant and this is a non-sleepable
1272 			 * lock, then treat it as a reversal.
1273 			 */
1274 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1275 			    lock == &Giant.lock_object)
1276 				goto reversal;
1277 
1278 			/*
1279 			 * Check the lock order hierarchy for a reveresal.
1280 			 */
1281 			if (!isitmydescendant(w, w1))
1282 				continue;
1283 		reversal:
1284 
1285 			/*
1286 			 * We have a lock order violation, check to see if it
1287 			 * is allowed or has already been yelled about.
1288 			 */
1289 #ifdef BLESSING
1290 
1291 			/*
1292 			 * If the lock order is blessed, just bail.  We don't
1293 			 * look for other lock order violations though, which
1294 			 * may be a bug.
1295 			 */
1296 			if (blessed(w, w1))
1297 				goto out;
1298 #endif
1299 
1300 			/* Bail if this violation is known */
1301 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1302 				goto out;
1303 
1304 			/* Record this as a violation */
1305 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1306 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1307 			w->w_reversed = w1->w_reversed = 1;
1308 			witness_increment_graph_generation();
1309 			mtx_unlock_spin(&w_mtx);
1310 
1311 #ifdef WITNESS_NO_VNODE
1312 			/*
1313 			 * There are known LORs between VNODE locks. They are
1314 			 * not an indication of a bug. VNODE locks are flagged
1315 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1316 			 * is between 2 VNODE locks.
1317 			 */
1318 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1319 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1320 				return;
1321 #endif
1322 
1323 			/*
1324 			 * Ok, yell about it.
1325 			 */
1326 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1327 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1328 				printf(
1329 		"lock order reversal: (sleepable after non-sleepable)\n");
1330 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1331 			    && lock == &Giant.lock_object)
1332 				printf(
1333 		"lock order reversal: (Giant after non-sleepable)\n");
1334 			else
1335 				printf("lock order reversal:\n");
1336 
1337 			/*
1338 			 * Try to locate an earlier lock with
1339 			 * witness w in our list.
1340 			 */
1341 			do {
1342 				lock2 = &lle->ll_children[i];
1343 				MPASS(lock2->li_lock != NULL);
1344 				if (lock2->li_lock->lo_witness == w)
1345 					break;
1346 				if (i == 0 && lle->ll_next != NULL) {
1347 					lle = lle->ll_next;
1348 					i = lle->ll_count - 1;
1349 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1350 				} else
1351 					i--;
1352 			} while (i >= 0);
1353 			if (i < 0) {
1354 				printf(" 1st %p %s (%s) @ %s:%d\n",
1355 				    lock1->li_lock, lock1->li_lock->lo_name,
1356 				    w1->w_name, fixup_filename(lock1->li_file),
1357 				    lock1->li_line);
1358 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
1359 				    lock->lo_name, w->w_name,
1360 				    fixup_filename(file), line);
1361 			} else {
1362 				printf(" 1st %p %s (%s) @ %s:%d\n",
1363 				    lock2->li_lock, lock2->li_lock->lo_name,
1364 				    lock2->li_lock->lo_witness->w_name,
1365 				    fixup_filename(lock2->li_file),
1366 				    lock2->li_line);
1367 				printf(" 2nd %p %s (%s) @ %s:%d\n",
1368 				    lock1->li_lock, lock1->li_lock->lo_name,
1369 				    w1->w_name, fixup_filename(lock1->li_file),
1370 				    lock1->li_line);
1371 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
1372 				    lock->lo_name, w->w_name,
1373 				    fixup_filename(file), line);
1374 			}
1375 			witness_debugger(1);
1376 			return;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * If requested, build a new lock order.  However, don't build a new
1382 	 * relationship between a sleepable lock and Giant if it is in the
1383 	 * wrong direction.  The correct lock order is that sleepable locks
1384 	 * always come before Giant.
1385 	 */
1386 	if (flags & LOP_NEWORDER &&
1387 	    !(plock->li_lock == &Giant.lock_object &&
1388 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1389 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1390 		    w->w_name, plock->li_lock->lo_witness->w_name);
1391 		itismychild(plock->li_lock->lo_witness, w);
1392 	}
1393 out:
1394 	mtx_unlock_spin(&w_mtx);
1395 }
1396 
1397 void
1398 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1399 {
1400 	struct lock_list_entry **lock_list, *lle;
1401 	struct lock_instance *instance;
1402 	struct witness *w;
1403 	struct thread *td;
1404 
1405 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1406 	    panicstr != NULL)
1407 		return;
1408 	w = lock->lo_witness;
1409 	td = curthread;
1410 
1411 	/* Determine lock list for this lock. */
1412 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1413 		lock_list = &td->td_sleeplocks;
1414 	else
1415 		lock_list = PCPU_PTR(spinlocks);
1416 
1417 	/* Check to see if we are recursing on a lock we already own. */
1418 	instance = find_instance(*lock_list, lock);
1419 	if (instance != NULL) {
1420 		instance->li_flags++;
1421 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1422 		    td->td_proc->p_pid, lock->lo_name,
1423 		    instance->li_flags & LI_RECURSEMASK);
1424 		instance->li_file = file;
1425 		instance->li_line = line;
1426 		return;
1427 	}
1428 
1429 	/* Update per-witness last file and line acquire. */
1430 	w->w_file = file;
1431 	w->w_line = line;
1432 
1433 	/* Find the next open lock instance in the list and fill it. */
1434 	lle = *lock_list;
1435 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1436 		lle = witness_lock_list_get();
1437 		if (lle == NULL)
1438 			return;
1439 		lle->ll_next = *lock_list;
1440 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1441 		    td->td_proc->p_pid, lle);
1442 		*lock_list = lle;
1443 	}
1444 	instance = &lle->ll_children[lle->ll_count++];
1445 	instance->li_lock = lock;
1446 	instance->li_line = line;
1447 	instance->li_file = file;
1448 	if ((flags & LOP_EXCLUSIVE) != 0)
1449 		instance->li_flags = LI_EXCLUSIVE;
1450 	else
1451 		instance->li_flags = 0;
1452 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1453 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1454 }
1455 
1456 void
1457 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1458 {
1459 	struct lock_instance *instance;
1460 	struct lock_class *class;
1461 
1462 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1463 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1464 		return;
1465 	class = LOCK_CLASS(lock);
1466 	if (witness_watch) {
1467 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1468 			kassert_panic(
1469 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1470 			    class->lc_name, lock->lo_name,
1471 			    fixup_filename(file), line);
1472 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1473 			kassert_panic(
1474 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1475 			    class->lc_name, lock->lo_name,
1476 			    fixup_filename(file), line);
1477 	}
1478 	instance = find_instance(curthread->td_sleeplocks, lock);
1479 	if (instance == NULL) {
1480 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1481 		    class->lc_name, lock->lo_name,
1482 		    fixup_filename(file), line);
1483 		return;
1484 	}
1485 	if (witness_watch) {
1486 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1487 			kassert_panic(
1488 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1489 			    class->lc_name, lock->lo_name,
1490 			    fixup_filename(file), line);
1491 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1492 			kassert_panic(
1493 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1494 			    class->lc_name, lock->lo_name,
1495 			    instance->li_flags & LI_RECURSEMASK,
1496 			    fixup_filename(file), line);
1497 	}
1498 	instance->li_flags |= LI_EXCLUSIVE;
1499 }
1500 
1501 void
1502 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1503     int line)
1504 {
1505 	struct lock_instance *instance;
1506 	struct lock_class *class;
1507 
1508 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1509 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1510 		return;
1511 	class = LOCK_CLASS(lock);
1512 	if (witness_watch) {
1513 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1514 			kassert_panic(
1515 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1516 			    class->lc_name, lock->lo_name,
1517 			    fixup_filename(file), line);
1518 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1519 			kassert_panic(
1520 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1521 			    class->lc_name, lock->lo_name,
1522 			    fixup_filename(file), line);
1523 	}
1524 	instance = find_instance(curthread->td_sleeplocks, lock);
1525 	if (instance == NULL) {
1526 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1527 		    class->lc_name, lock->lo_name,
1528 		    fixup_filename(file), line);
1529 		return;
1530 	}
1531 	if (witness_watch) {
1532 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1533 			kassert_panic(
1534 			    "downgrade of shared lock (%s) %s @ %s:%d",
1535 			    class->lc_name, lock->lo_name,
1536 			    fixup_filename(file), line);
1537 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1538 			kassert_panic(
1539 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1540 			    class->lc_name, lock->lo_name,
1541 			    instance->li_flags & LI_RECURSEMASK,
1542 			    fixup_filename(file), line);
1543 	}
1544 	instance->li_flags &= ~LI_EXCLUSIVE;
1545 }
1546 
1547 void
1548 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1549 {
1550 	struct lock_list_entry **lock_list, *lle;
1551 	struct lock_instance *instance;
1552 	struct lock_class *class;
1553 	struct thread *td;
1554 	register_t s;
1555 	int i, j;
1556 
1557 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1558 		return;
1559 	td = curthread;
1560 	class = LOCK_CLASS(lock);
1561 
1562 	/* Find lock instance associated with this lock. */
1563 	if (class->lc_flags & LC_SLEEPLOCK)
1564 		lock_list = &td->td_sleeplocks;
1565 	else
1566 		lock_list = PCPU_PTR(spinlocks);
1567 	lle = *lock_list;
1568 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1569 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1570 			instance = &(*lock_list)->ll_children[i];
1571 			if (instance->li_lock == lock)
1572 				goto found;
1573 		}
1574 
1575 	/*
1576 	 * When disabling WITNESS through witness_watch we could end up in
1577 	 * having registered locks in the td_sleeplocks queue.
1578 	 * We have to make sure we flush these queues, so just search for
1579 	 * eventual register locks and remove them.
1580 	 */
1581 	if (witness_watch > 0) {
1582 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1583 		    lock->lo_name, fixup_filename(file), line);
1584 		return;
1585 	} else {
1586 		return;
1587 	}
1588 found:
1589 
1590 	/* First, check for shared/exclusive mismatches. */
1591 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1592 	    (flags & LOP_EXCLUSIVE) == 0) {
1593 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1594 		    lock->lo_name, fixup_filename(file), line);
1595 		printf("while exclusively locked from %s:%d\n",
1596 		    fixup_filename(instance->li_file), instance->li_line);
1597 		kassert_panic("excl->ushare");
1598 	}
1599 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1600 	    (flags & LOP_EXCLUSIVE) != 0) {
1601 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1602 		    lock->lo_name, fixup_filename(file), line);
1603 		printf("while share locked from %s:%d\n",
1604 		    fixup_filename(instance->li_file),
1605 		    instance->li_line);
1606 		kassert_panic("share->uexcl");
1607 	}
1608 	/* If we are recursed, unrecurse. */
1609 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1610 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1611 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1612 		    instance->li_flags);
1613 		instance->li_flags--;
1614 		return;
1615 	}
1616 	/* The lock is now being dropped, check for NORELEASE flag */
1617 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1618 		printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name,
1619 		    lock->lo_name, fixup_filename(file), line);
1620 		kassert_panic("lock marked norelease");
1621 	}
1622 
1623 	/* Otherwise, remove this item from the list. */
1624 	s = intr_disable();
1625 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1626 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1627 	    (*lock_list)->ll_count - 1);
1628 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1629 		(*lock_list)->ll_children[j] =
1630 		    (*lock_list)->ll_children[j + 1];
1631 	(*lock_list)->ll_count--;
1632 	intr_restore(s);
1633 
1634 	/*
1635 	 * In order to reduce contention on w_mtx, we want to keep always an
1636 	 * head object into lists so that frequent allocation from the
1637 	 * free witness pool (and subsequent locking) is avoided.
1638 	 * In order to maintain the current code simple, when the head
1639 	 * object is totally unloaded it means also that we do not have
1640 	 * further objects in the list, so the list ownership needs to be
1641 	 * hand over to another object if the current head needs to be freed.
1642 	 */
1643 	if ((*lock_list)->ll_count == 0) {
1644 		if (*lock_list == lle) {
1645 			if (lle->ll_next == NULL)
1646 				return;
1647 		} else
1648 			lle = *lock_list;
1649 		*lock_list = lle->ll_next;
1650 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1651 		    td->td_proc->p_pid, lle);
1652 		witness_lock_list_free(lle);
1653 	}
1654 }
1655 
1656 void
1657 witness_thread_exit(struct thread *td)
1658 {
1659 	struct lock_list_entry *lle;
1660 	int i, n;
1661 
1662 	lle = td->td_sleeplocks;
1663 	if (lle == NULL || panicstr != NULL)
1664 		return;
1665 	if (lle->ll_count != 0) {
1666 		for (n = 0; lle != NULL; lle = lle->ll_next)
1667 			for (i = lle->ll_count - 1; i >= 0; i--) {
1668 				if (n == 0)
1669 		printf("Thread %p exiting with the following locks held:\n",
1670 					    td);
1671 				n++;
1672 				witness_list_lock(&lle->ll_children[i], printf);
1673 
1674 			}
1675 		kassert_panic(
1676 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1677 	}
1678 	witness_lock_list_free(lle);
1679 }
1680 
1681 /*
1682  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1683  * exempt Giant and sleepable locks from the checks as well.  If any
1684  * non-exempt locks are held, then a supplied message is printed to the
1685  * console along with a list of the offending locks.  If indicated in the
1686  * flags then a failure results in a panic as well.
1687  */
1688 int
1689 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1690 {
1691 	struct lock_list_entry *lock_list, *lle;
1692 	struct lock_instance *lock1;
1693 	struct thread *td;
1694 	va_list ap;
1695 	int i, n;
1696 
1697 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1698 		return (0);
1699 	n = 0;
1700 	td = curthread;
1701 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1702 		for (i = lle->ll_count - 1; i >= 0; i--) {
1703 			lock1 = &lle->ll_children[i];
1704 			if (lock1->li_lock == lock)
1705 				continue;
1706 			if (flags & WARN_GIANTOK &&
1707 			    lock1->li_lock == &Giant.lock_object)
1708 				continue;
1709 			if (flags & WARN_SLEEPOK &&
1710 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1711 				continue;
1712 			if (n == 0) {
1713 				va_start(ap, fmt);
1714 				vprintf(fmt, ap);
1715 				va_end(ap);
1716 				printf(" with the following");
1717 				if (flags & WARN_SLEEPOK)
1718 					printf(" non-sleepable");
1719 				printf(" locks held:\n");
1720 			}
1721 			n++;
1722 			witness_list_lock(lock1, printf);
1723 		}
1724 
1725 	/*
1726 	 * Pin the thread in order to avoid problems with thread migration.
1727 	 * Once that all verifies are passed about spinlocks ownership,
1728 	 * the thread is in a safe path and it can be unpinned.
1729 	 */
1730 	sched_pin();
1731 	lock_list = PCPU_GET(spinlocks);
1732 	if (lock_list != NULL && lock_list->ll_count != 0) {
1733 		sched_unpin();
1734 
1735 		/*
1736 		 * We should only have one spinlock and as long as
1737 		 * the flags cannot match for this locks class,
1738 		 * check if the first spinlock is the one curthread
1739 		 * should hold.
1740 		 */
1741 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1742 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1743 		    lock1->li_lock == lock && n == 0)
1744 			return (0);
1745 
1746 		va_start(ap, fmt);
1747 		vprintf(fmt, ap);
1748 		va_end(ap);
1749 		printf(" with the following");
1750 		if (flags & WARN_SLEEPOK)
1751 			printf(" non-sleepable");
1752 		printf(" locks held:\n");
1753 		n += witness_list_locks(&lock_list, printf);
1754 	} else
1755 		sched_unpin();
1756 	if (flags & WARN_PANIC && n)
1757 		kassert_panic("%s", __func__);
1758 	else
1759 		witness_debugger(n);
1760 	return (n);
1761 }
1762 
1763 const char *
1764 witness_file(struct lock_object *lock)
1765 {
1766 	struct witness *w;
1767 
1768 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1769 		return ("?");
1770 	w = lock->lo_witness;
1771 	return (w->w_file);
1772 }
1773 
1774 int
1775 witness_line(struct lock_object *lock)
1776 {
1777 	struct witness *w;
1778 
1779 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1780 		return (0);
1781 	w = lock->lo_witness;
1782 	return (w->w_line);
1783 }
1784 
1785 static struct witness *
1786 enroll(const char *description, struct lock_class *lock_class)
1787 {
1788 	struct witness *w;
1789 	struct witness_list *typelist;
1790 
1791 	MPASS(description != NULL);
1792 
1793 	if (witness_watch == -1 || panicstr != NULL)
1794 		return (NULL);
1795 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1796 		if (witness_skipspin)
1797 			return (NULL);
1798 		else
1799 			typelist = &w_spin;
1800 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK)) {
1801 		typelist = &w_sleep;
1802 	} else {
1803 		kassert_panic("lock class %s is not sleep or spin",
1804 		    lock_class->lc_name);
1805 		return (NULL);
1806 	}
1807 
1808 	mtx_lock_spin(&w_mtx);
1809 	w = witness_hash_get(description);
1810 	if (w)
1811 		goto found;
1812 	if ((w = witness_get()) == NULL)
1813 		return (NULL);
1814 	MPASS(strlen(description) < MAX_W_NAME);
1815 	strcpy(w->w_name, description);
1816 	w->w_class = lock_class;
1817 	w->w_refcount = 1;
1818 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1819 	if (lock_class->lc_flags & LC_SPINLOCK) {
1820 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1821 		w_spin_cnt++;
1822 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1823 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1824 		w_sleep_cnt++;
1825 	}
1826 
1827 	/* Insert new witness into the hash */
1828 	witness_hash_put(w);
1829 	witness_increment_graph_generation();
1830 	mtx_unlock_spin(&w_mtx);
1831 	return (w);
1832 found:
1833 	w->w_refcount++;
1834 	mtx_unlock_spin(&w_mtx);
1835 	if (lock_class != w->w_class)
1836 		kassert_panic(
1837 			"lock (%s) %s does not match earlier (%s) lock",
1838 			description, lock_class->lc_name,
1839 			w->w_class->lc_name);
1840 	return (w);
1841 }
1842 
1843 static void
1844 depart(struct witness *w)
1845 {
1846 	struct witness_list *list;
1847 
1848 	MPASS(w->w_refcount == 0);
1849 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1850 		list = &w_sleep;
1851 		w_sleep_cnt--;
1852 	} else {
1853 		list = &w_spin;
1854 		w_spin_cnt--;
1855 	}
1856 	/*
1857 	 * Set file to NULL as it may point into a loadable module.
1858 	 */
1859 	w->w_file = NULL;
1860 	w->w_line = 0;
1861 	witness_increment_graph_generation();
1862 }
1863 
1864 
1865 static void
1866 adopt(struct witness *parent, struct witness *child)
1867 {
1868 	int pi, ci, i, j;
1869 
1870 	if (witness_cold == 0)
1871 		mtx_assert(&w_mtx, MA_OWNED);
1872 
1873 	/* If the relationship is already known, there's no work to be done. */
1874 	if (isitmychild(parent, child))
1875 		return;
1876 
1877 	/* When the structure of the graph changes, bump up the generation. */
1878 	witness_increment_graph_generation();
1879 
1880 	/*
1881 	 * The hard part ... create the direct relationship, then propagate all
1882 	 * indirect relationships.
1883 	 */
1884 	pi = parent->w_index;
1885 	ci = child->w_index;
1886 	WITNESS_INDEX_ASSERT(pi);
1887 	WITNESS_INDEX_ASSERT(ci);
1888 	MPASS(pi != ci);
1889 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1890 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1891 
1892 	/*
1893 	 * If parent was not already an ancestor of child,
1894 	 * then we increment the descendant and ancestor counters.
1895 	 */
1896 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1897 		parent->w_num_descendants++;
1898 		child->w_num_ancestors++;
1899 	}
1900 
1901 	/*
1902 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1903 	 * an ancestor of 'pi' during this loop.
1904 	 */
1905 	for (i = 1; i <= w_max_used_index; i++) {
1906 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1907 		    (i != pi))
1908 			continue;
1909 
1910 		/* Find each descendant of 'i' and mark it as a descendant. */
1911 		for (j = 1; j <= w_max_used_index; j++) {
1912 
1913 			/*
1914 			 * Skip children that are already marked as
1915 			 * descendants of 'i'.
1916 			 */
1917 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1918 				continue;
1919 
1920 			/*
1921 			 * We are only interested in descendants of 'ci'. Note
1922 			 * that 'ci' itself is counted as a descendant of 'ci'.
1923 			 */
1924 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1925 			    (j != ci))
1926 				continue;
1927 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1928 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1929 			w_data[i].w_num_descendants++;
1930 			w_data[j].w_num_ancestors++;
1931 
1932 			/*
1933 			 * Make sure we aren't marking a node as both an
1934 			 * ancestor and descendant. We should have caught
1935 			 * this as a lock order reversal earlier.
1936 			 */
1937 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1938 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1939 				printf("witness rmatrix paradox! [%d][%d]=%d "
1940 				    "both ancestor and descendant\n",
1941 				    i, j, w_rmatrix[i][j]);
1942 				kdb_backtrace();
1943 				printf("Witness disabled.\n");
1944 				witness_watch = -1;
1945 			}
1946 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1947 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1948 				printf("witness rmatrix paradox! [%d][%d]=%d "
1949 				    "both ancestor and descendant\n",
1950 				    j, i, w_rmatrix[j][i]);
1951 				kdb_backtrace();
1952 				printf("Witness disabled.\n");
1953 				witness_watch = -1;
1954 			}
1955 		}
1956 	}
1957 }
1958 
1959 static void
1960 itismychild(struct witness *parent, struct witness *child)
1961 {
1962 	int unlocked;
1963 
1964 	MPASS(child != NULL && parent != NULL);
1965 	if (witness_cold == 0)
1966 		mtx_assert(&w_mtx, MA_OWNED);
1967 
1968 	if (!witness_lock_type_equal(parent, child)) {
1969 		if (witness_cold == 0) {
1970 			unlocked = 1;
1971 			mtx_unlock_spin(&w_mtx);
1972 		} else {
1973 			unlocked = 0;
1974 		}
1975 		kassert_panic(
1976 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
1977 		    "the same lock type", __func__, parent->w_name,
1978 		    parent->w_class->lc_name, child->w_name,
1979 		    child->w_class->lc_name);
1980 		if (unlocked)
1981 			mtx_lock_spin(&w_mtx);
1982 	}
1983 	adopt(parent, child);
1984 }
1985 
1986 /*
1987  * Generic code for the isitmy*() functions. The rmask parameter is the
1988  * expected relationship of w1 to w2.
1989  */
1990 static int
1991 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
1992 {
1993 	unsigned char r1, r2;
1994 	int i1, i2;
1995 
1996 	i1 = w1->w_index;
1997 	i2 = w2->w_index;
1998 	WITNESS_INDEX_ASSERT(i1);
1999 	WITNESS_INDEX_ASSERT(i2);
2000 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2001 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2002 
2003 	/* The flags on one better be the inverse of the flags on the other */
2004 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2005 		(WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2006 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2007 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2008 		    "w_rmatrix[%d][%d] == %hhx\n",
2009 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2010 		    i2, i1, r2);
2011 		kdb_backtrace();
2012 		printf("Witness disabled.\n");
2013 		witness_watch = -1;
2014 	}
2015 	return (r1 & rmask);
2016 }
2017 
2018 /*
2019  * Checks if @child is a direct child of @parent.
2020  */
2021 static int
2022 isitmychild(struct witness *parent, struct witness *child)
2023 {
2024 
2025 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2026 }
2027 
2028 /*
2029  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2030  */
2031 static int
2032 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2033 {
2034 
2035 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2036 	    __func__));
2037 }
2038 
2039 #ifdef BLESSING
2040 static int
2041 blessed(struct witness *w1, struct witness *w2)
2042 {
2043 	int i;
2044 	struct witness_blessed *b;
2045 
2046 	for (i = 0; i < blessed_count; i++) {
2047 		b = &blessed_list[i];
2048 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2049 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2050 				return (1);
2051 			continue;
2052 		}
2053 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2054 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2055 				return (1);
2056 	}
2057 	return (0);
2058 }
2059 #endif
2060 
2061 static struct witness *
2062 witness_get(void)
2063 {
2064 	struct witness *w;
2065 	int index;
2066 
2067 	if (witness_cold == 0)
2068 		mtx_assert(&w_mtx, MA_OWNED);
2069 
2070 	if (witness_watch == -1) {
2071 		mtx_unlock_spin(&w_mtx);
2072 		return (NULL);
2073 	}
2074 	if (STAILQ_EMPTY(&w_free)) {
2075 		witness_watch = -1;
2076 		mtx_unlock_spin(&w_mtx);
2077 		printf("WITNESS: unable to allocate a new witness object\n");
2078 		return (NULL);
2079 	}
2080 	w = STAILQ_FIRST(&w_free);
2081 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2082 	w_free_cnt--;
2083 	index = w->w_index;
2084 	MPASS(index > 0 && index == w_max_used_index+1 &&
2085 	    index < WITNESS_COUNT);
2086 	bzero(w, sizeof(*w));
2087 	w->w_index = index;
2088 	if (index > w_max_used_index)
2089 		w_max_used_index = index;
2090 	return (w);
2091 }
2092 
2093 static void
2094 witness_free(struct witness *w)
2095 {
2096 
2097 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2098 	w_free_cnt++;
2099 }
2100 
2101 static struct lock_list_entry *
2102 witness_lock_list_get(void)
2103 {
2104 	struct lock_list_entry *lle;
2105 
2106 	if (witness_watch == -1)
2107 		return (NULL);
2108 	mtx_lock_spin(&w_mtx);
2109 	lle = w_lock_list_free;
2110 	if (lle == NULL) {
2111 		witness_watch = -1;
2112 		mtx_unlock_spin(&w_mtx);
2113 		printf("%s: witness exhausted\n", __func__);
2114 		return (NULL);
2115 	}
2116 	w_lock_list_free = lle->ll_next;
2117 	mtx_unlock_spin(&w_mtx);
2118 	bzero(lle, sizeof(*lle));
2119 	return (lle);
2120 }
2121 
2122 static void
2123 witness_lock_list_free(struct lock_list_entry *lle)
2124 {
2125 
2126 	mtx_lock_spin(&w_mtx);
2127 	lle->ll_next = w_lock_list_free;
2128 	w_lock_list_free = lle;
2129 	mtx_unlock_spin(&w_mtx);
2130 }
2131 
2132 static struct lock_instance *
2133 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2134 {
2135 	struct lock_list_entry *lle;
2136 	struct lock_instance *instance;
2137 	int i;
2138 
2139 	for (lle = list; lle != NULL; lle = lle->ll_next)
2140 		for (i = lle->ll_count - 1; i >= 0; i--) {
2141 			instance = &lle->ll_children[i];
2142 			if (instance->li_lock == lock)
2143 				return (instance);
2144 		}
2145 	return (NULL);
2146 }
2147 
2148 static void
2149 witness_list_lock(struct lock_instance *instance,
2150     int (*prnt)(const char *fmt, ...))
2151 {
2152 	struct lock_object *lock;
2153 
2154 	lock = instance->li_lock;
2155 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2156 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2157 	if (lock->lo_witness->w_name != lock->lo_name)
2158 		prnt(" (%s)", lock->lo_witness->w_name);
2159 	prnt(" r = %d (%p) locked @ %s:%d\n",
2160 	    instance->li_flags & LI_RECURSEMASK, lock,
2161 	    fixup_filename(instance->li_file), instance->li_line);
2162 }
2163 
2164 #ifdef DDB
2165 static int
2166 witness_thread_has_locks(struct thread *td)
2167 {
2168 
2169 	if (td->td_sleeplocks == NULL)
2170 		return (0);
2171 	return (td->td_sleeplocks->ll_count != 0);
2172 }
2173 
2174 static int
2175 witness_proc_has_locks(struct proc *p)
2176 {
2177 	struct thread *td;
2178 
2179 	FOREACH_THREAD_IN_PROC(p, td) {
2180 		if (witness_thread_has_locks(td))
2181 			return (1);
2182 	}
2183 	return (0);
2184 }
2185 #endif
2186 
2187 int
2188 witness_list_locks(struct lock_list_entry **lock_list,
2189     int (*prnt)(const char *fmt, ...))
2190 {
2191 	struct lock_list_entry *lle;
2192 	int i, nheld;
2193 
2194 	nheld = 0;
2195 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2196 		for (i = lle->ll_count - 1; i >= 0; i--) {
2197 			witness_list_lock(&lle->ll_children[i], prnt);
2198 			nheld++;
2199 		}
2200 	return (nheld);
2201 }
2202 
2203 /*
2204  * This is a bit risky at best.  We call this function when we have timed
2205  * out acquiring a spin lock, and we assume that the other CPU is stuck
2206  * with this lock held.  So, we go groveling around in the other CPU's
2207  * per-cpu data to try to find the lock instance for this spin lock to
2208  * see when it was last acquired.
2209  */
2210 void
2211 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2212     int (*prnt)(const char *fmt, ...))
2213 {
2214 	struct lock_instance *instance;
2215 	struct pcpu *pc;
2216 
2217 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2218 		return;
2219 	pc = pcpu_find(owner->td_oncpu);
2220 	instance = find_instance(pc->pc_spinlocks, lock);
2221 	if (instance != NULL)
2222 		witness_list_lock(instance, prnt);
2223 }
2224 
2225 void
2226 witness_save(struct lock_object *lock, const char **filep, int *linep)
2227 {
2228 	struct lock_list_entry *lock_list;
2229 	struct lock_instance *instance;
2230 	struct lock_class *class;
2231 
2232 	/*
2233 	 * This function is used independently in locking code to deal with
2234 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2235 	 * is gone.
2236 	 */
2237 	if (SCHEDULER_STOPPED())
2238 		return;
2239 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2240 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2241 		return;
2242 	class = LOCK_CLASS(lock);
2243 	if (class->lc_flags & LC_SLEEPLOCK)
2244 		lock_list = curthread->td_sleeplocks;
2245 	else {
2246 		if (witness_skipspin)
2247 			return;
2248 		lock_list = PCPU_GET(spinlocks);
2249 	}
2250 	instance = find_instance(lock_list, lock);
2251 	if (instance == NULL) {
2252 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2253 		    class->lc_name, lock->lo_name);
2254 		return;
2255 	}
2256 	*filep = instance->li_file;
2257 	*linep = instance->li_line;
2258 }
2259 
2260 void
2261 witness_restore(struct lock_object *lock, const char *file, int line)
2262 {
2263 	struct lock_list_entry *lock_list;
2264 	struct lock_instance *instance;
2265 	struct lock_class *class;
2266 
2267 	/*
2268 	 * This function is used independently in locking code to deal with
2269 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2270 	 * is gone.
2271 	 */
2272 	if (SCHEDULER_STOPPED())
2273 		return;
2274 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2275 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2276 		return;
2277 	class = LOCK_CLASS(lock);
2278 	if (class->lc_flags & LC_SLEEPLOCK)
2279 		lock_list = curthread->td_sleeplocks;
2280 	else {
2281 		if (witness_skipspin)
2282 			return;
2283 		lock_list = PCPU_GET(spinlocks);
2284 	}
2285 	instance = find_instance(lock_list, lock);
2286 	if (instance == NULL)
2287 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2288 		    class->lc_name, lock->lo_name);
2289 	lock->lo_witness->w_file = file;
2290 	lock->lo_witness->w_line = line;
2291 	if (instance == NULL)
2292 		return;
2293 	instance->li_file = file;
2294 	instance->li_line = line;
2295 }
2296 
2297 void
2298 witness_assert(const struct lock_object *lock, int flags, const char *file,
2299     int line)
2300 {
2301 #ifdef INVARIANT_SUPPORT
2302 	struct lock_instance *instance;
2303 	struct lock_class *class;
2304 
2305 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2306 		return;
2307 	class = LOCK_CLASS(lock);
2308 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2309 		instance = find_instance(curthread->td_sleeplocks, lock);
2310 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2311 		instance = find_instance(PCPU_GET(spinlocks), lock);
2312 	else {
2313 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2314 		    class->lc_name, lock->lo_name);
2315 		return;
2316 	}
2317 	switch (flags) {
2318 	case LA_UNLOCKED:
2319 		if (instance != NULL)
2320 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2321 			    class->lc_name, lock->lo_name,
2322 			    fixup_filename(file), line);
2323 		break;
2324 	case LA_LOCKED:
2325 	case LA_LOCKED | LA_RECURSED:
2326 	case LA_LOCKED | LA_NOTRECURSED:
2327 	case LA_SLOCKED:
2328 	case LA_SLOCKED | LA_RECURSED:
2329 	case LA_SLOCKED | LA_NOTRECURSED:
2330 	case LA_XLOCKED:
2331 	case LA_XLOCKED | LA_RECURSED:
2332 	case LA_XLOCKED | LA_NOTRECURSED:
2333 		if (instance == NULL) {
2334 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2335 			    class->lc_name, lock->lo_name,
2336 			    fixup_filename(file), line);
2337 			break;
2338 		}
2339 		if ((flags & LA_XLOCKED) != 0 &&
2340 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2341 			kassert_panic(
2342 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2343 			    class->lc_name, lock->lo_name,
2344 			    fixup_filename(file), line);
2345 		if ((flags & LA_SLOCKED) != 0 &&
2346 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2347 			kassert_panic(
2348 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2349 			    class->lc_name, lock->lo_name,
2350 			    fixup_filename(file), line);
2351 		if ((flags & LA_RECURSED) != 0 &&
2352 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2353 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2354 			    class->lc_name, lock->lo_name,
2355 			    fixup_filename(file), line);
2356 		if ((flags & LA_NOTRECURSED) != 0 &&
2357 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2358 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2359 			    class->lc_name, lock->lo_name,
2360 			    fixup_filename(file), line);
2361 		break;
2362 	default:
2363 		kassert_panic("Invalid lock assertion at %s:%d.",
2364 		    fixup_filename(file), line);
2365 
2366 	}
2367 #endif	/* INVARIANT_SUPPORT */
2368 }
2369 
2370 static void
2371 witness_setflag(struct lock_object *lock, int flag, int set)
2372 {
2373 	struct lock_list_entry *lock_list;
2374 	struct lock_instance *instance;
2375 	struct lock_class *class;
2376 
2377 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2378 		return;
2379 	class = LOCK_CLASS(lock);
2380 	if (class->lc_flags & LC_SLEEPLOCK)
2381 		lock_list = curthread->td_sleeplocks;
2382 	else {
2383 		if (witness_skipspin)
2384 			return;
2385 		lock_list = PCPU_GET(spinlocks);
2386 	}
2387 	instance = find_instance(lock_list, lock);
2388 	if (instance == NULL) {
2389 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2390 		    class->lc_name, lock->lo_name);
2391 		return;
2392 	}
2393 
2394 	if (set)
2395 		instance->li_flags |= flag;
2396 	else
2397 		instance->li_flags &= ~flag;
2398 }
2399 
2400 void
2401 witness_norelease(struct lock_object *lock)
2402 {
2403 
2404 	witness_setflag(lock, LI_NORELEASE, 1);
2405 }
2406 
2407 void
2408 witness_releaseok(struct lock_object *lock)
2409 {
2410 
2411 	witness_setflag(lock, LI_NORELEASE, 0);
2412 }
2413 
2414 #ifdef DDB
2415 static void
2416 witness_ddb_list(struct thread *td)
2417 {
2418 
2419 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2420 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2421 
2422 	if (witness_watch < 1)
2423 		return;
2424 
2425 	witness_list_locks(&td->td_sleeplocks, db_printf);
2426 
2427 	/*
2428 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2429 	 * if td is currently executing on some other CPU and holds spin locks
2430 	 * as we won't display those locks.  If we had a MI way of getting
2431 	 * the per-cpu data for a given cpu then we could use
2432 	 * td->td_oncpu to get the list of spinlocks for this thread
2433 	 * and "fix" this.
2434 	 *
2435 	 * That still wouldn't really fix this unless we locked the scheduler
2436 	 * lock or stopped the other CPU to make sure it wasn't changing the
2437 	 * list out from under us.  It is probably best to just not try to
2438 	 * handle threads on other CPU's for now.
2439 	 */
2440 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2441 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2442 }
2443 
2444 DB_SHOW_COMMAND(locks, db_witness_list)
2445 {
2446 	struct thread *td;
2447 
2448 	if (have_addr)
2449 		td = db_lookup_thread(addr, TRUE);
2450 	else
2451 		td = kdb_thread;
2452 	witness_ddb_list(td);
2453 }
2454 
2455 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2456 {
2457 	struct thread *td;
2458 	struct proc *p;
2459 
2460 	/*
2461 	 * It would be nice to list only threads and processes that actually
2462 	 * held sleep locks, but that information is currently not exported
2463 	 * by WITNESS.
2464 	 */
2465 	FOREACH_PROC_IN_SYSTEM(p) {
2466 		if (!witness_proc_has_locks(p))
2467 			continue;
2468 		FOREACH_THREAD_IN_PROC(p, td) {
2469 			if (!witness_thread_has_locks(td))
2470 				continue;
2471 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2472 			    p->p_comm, td, td->td_tid);
2473 			witness_ddb_list(td);
2474 			if (db_pager_quit)
2475 				return;
2476 		}
2477 	}
2478 }
2479 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2480 
2481 DB_SHOW_COMMAND(witness, db_witness_display)
2482 {
2483 
2484 	witness_ddb_display(db_printf);
2485 }
2486 #endif
2487 
2488 static int
2489 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2490 {
2491 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2492 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2493 	struct sbuf *sb;
2494 	u_int w_rmatrix1, w_rmatrix2;
2495 	int error, generation, i, j;
2496 
2497 	tmp_data1 = NULL;
2498 	tmp_data2 = NULL;
2499 	tmp_w1 = NULL;
2500 	tmp_w2 = NULL;
2501 	if (witness_watch < 1) {
2502 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2503 		return (error);
2504 	}
2505 	if (witness_cold) {
2506 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2507 		return (error);
2508 	}
2509 	error = 0;
2510 	sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND);
2511 	if (sb == NULL)
2512 		return (ENOMEM);
2513 
2514 	/* Allocate and init temporary storage space. */
2515 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2516 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2517 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2518 	    M_WAITOK | M_ZERO);
2519 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2520 	    M_WAITOK | M_ZERO);
2521 	stack_zero(&tmp_data1->wlod_stack);
2522 	stack_zero(&tmp_data2->wlod_stack);
2523 
2524 restart:
2525 	mtx_lock_spin(&w_mtx);
2526 	generation = w_generation;
2527 	mtx_unlock_spin(&w_mtx);
2528 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2529 	    w_lohash.wloh_count);
2530 	for (i = 1; i < w_max_used_index; i++) {
2531 		mtx_lock_spin(&w_mtx);
2532 		if (generation != w_generation) {
2533 			mtx_unlock_spin(&w_mtx);
2534 
2535 			/* The graph has changed, try again. */
2536 			req->oldidx = 0;
2537 			sbuf_clear(sb);
2538 			goto restart;
2539 		}
2540 
2541 		w1 = &w_data[i];
2542 		if (w1->w_reversed == 0) {
2543 			mtx_unlock_spin(&w_mtx);
2544 			continue;
2545 		}
2546 
2547 		/* Copy w1 locally so we can release the spin lock. */
2548 		*tmp_w1 = *w1;
2549 		mtx_unlock_spin(&w_mtx);
2550 
2551 		if (tmp_w1->w_reversed == 0)
2552 			continue;
2553 		for (j = 1; j < w_max_used_index; j++) {
2554 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2555 				continue;
2556 
2557 			mtx_lock_spin(&w_mtx);
2558 			if (generation != w_generation) {
2559 				mtx_unlock_spin(&w_mtx);
2560 
2561 				/* The graph has changed, try again. */
2562 				req->oldidx = 0;
2563 				sbuf_clear(sb);
2564 				goto restart;
2565 			}
2566 
2567 			w2 = &w_data[j];
2568 			data1 = witness_lock_order_get(w1, w2);
2569 			data2 = witness_lock_order_get(w2, w1);
2570 
2571 			/*
2572 			 * Copy information locally so we can release the
2573 			 * spin lock.
2574 			 */
2575 			*tmp_w2 = *w2;
2576 			w_rmatrix1 = (unsigned int)w_rmatrix[i][j];
2577 			w_rmatrix2 = (unsigned int)w_rmatrix[j][i];
2578 
2579 			if (data1) {
2580 				stack_zero(&tmp_data1->wlod_stack);
2581 				stack_copy(&data1->wlod_stack,
2582 				    &tmp_data1->wlod_stack);
2583 			}
2584 			if (data2 && data2 != data1) {
2585 				stack_zero(&tmp_data2->wlod_stack);
2586 				stack_copy(&data2->wlod_stack,
2587 				    &tmp_data2->wlod_stack);
2588 			}
2589 			mtx_unlock_spin(&w_mtx);
2590 
2591 			sbuf_printf(sb,
2592 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2593 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2594 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2595 #if 0
2596  			sbuf_printf(sb,
2597 			"w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n",
2598  			    tmp_w1->name, tmp_w2->w_name, w_rmatrix1,
2599  			    tmp_w2->name, tmp_w1->w_name, w_rmatrix2);
2600 #endif
2601 			if (data1) {
2602 				sbuf_printf(sb,
2603 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2604 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2605 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2606 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2607 				sbuf_printf(sb, "\n");
2608 			}
2609 			if (data2 && data2 != data1) {
2610 				sbuf_printf(sb,
2611 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2612 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2613 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2614 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2615 				sbuf_printf(sb, "\n");
2616 			}
2617 		}
2618 	}
2619 	mtx_lock_spin(&w_mtx);
2620 	if (generation != w_generation) {
2621 		mtx_unlock_spin(&w_mtx);
2622 
2623 		/*
2624 		 * The graph changed while we were printing stack data,
2625 		 * try again.
2626 		 */
2627 		req->oldidx = 0;
2628 		sbuf_clear(sb);
2629 		goto restart;
2630 	}
2631 	mtx_unlock_spin(&w_mtx);
2632 
2633 	/* Free temporary storage space. */
2634 	free(tmp_data1, M_TEMP);
2635 	free(tmp_data2, M_TEMP);
2636 	free(tmp_w1, M_TEMP);
2637 	free(tmp_w2, M_TEMP);
2638 
2639 	sbuf_finish(sb);
2640 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2641 	sbuf_delete(sb);
2642 
2643 	return (error);
2644 }
2645 
2646 static int
2647 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2648 {
2649 	struct witness *w;
2650 	struct sbuf *sb;
2651 	int error;
2652 
2653 	if (witness_watch < 1) {
2654 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2655 		return (error);
2656 	}
2657 	if (witness_cold) {
2658 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2659 		return (error);
2660 	}
2661 	error = 0;
2662 
2663 	error = sysctl_wire_old_buffer(req, 0);
2664 	if (error != 0)
2665 		return (error);
2666 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2667 	if (sb == NULL)
2668 		return (ENOMEM);
2669 	sbuf_printf(sb, "\n");
2670 
2671 	mtx_lock_spin(&w_mtx);
2672 	STAILQ_FOREACH(w, &w_all, w_list)
2673 		w->w_displayed = 0;
2674 	STAILQ_FOREACH(w, &w_all, w_list)
2675 		witness_add_fullgraph(sb, w);
2676 	mtx_unlock_spin(&w_mtx);
2677 
2678 	/*
2679 	 * Close the sbuf and return to userland.
2680 	 */
2681 	error = sbuf_finish(sb);
2682 	sbuf_delete(sb);
2683 
2684 	return (error);
2685 }
2686 
2687 static int
2688 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2689 {
2690 	int error, value;
2691 
2692 	value = witness_watch;
2693 	error = sysctl_handle_int(oidp, &value, 0, req);
2694 	if (error != 0 || req->newptr == NULL)
2695 		return (error);
2696 	if (value > 1 || value < -1 ||
2697 	    (witness_watch == -1 && value != witness_watch))
2698 		return (EINVAL);
2699 	witness_watch = value;
2700 	return (0);
2701 }
2702 
2703 static void
2704 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2705 {
2706 	int i;
2707 
2708 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2709 		return;
2710 	w->w_displayed = 1;
2711 
2712 	WITNESS_INDEX_ASSERT(w->w_index);
2713 	for (i = 1; i <= w_max_used_index; i++) {
2714 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2715 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2716 			    w_data[i].w_name);
2717 			witness_add_fullgraph(sb, &w_data[i]);
2718 		}
2719 	}
2720 }
2721 
2722 /*
2723  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2724  * interprets the key as a string and reads until the null
2725  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2726  * hash value computed from the key.
2727  */
2728 static uint32_t
2729 witness_hash_djb2(const uint8_t *key, uint32_t size)
2730 {
2731 	unsigned int hash = 5381;
2732 	int i;
2733 
2734 	/* hash = hash * 33 + key[i] */
2735 	if (size)
2736 		for (i = 0; i < size; i++)
2737 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2738 	else
2739 		for (i = 0; key[i] != 0; i++)
2740 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2741 
2742 	return (hash);
2743 }
2744 
2745 
2746 /*
2747  * Initializes the two witness hash tables. Called exactly once from
2748  * witness_initialize().
2749  */
2750 static void
2751 witness_init_hash_tables(void)
2752 {
2753 	int i;
2754 
2755 	MPASS(witness_cold);
2756 
2757 	/* Initialize the hash tables. */
2758 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2759 		w_hash.wh_array[i] = NULL;
2760 
2761 	w_hash.wh_size = WITNESS_HASH_SIZE;
2762 	w_hash.wh_count = 0;
2763 
2764 	/* Initialize the lock order data hash. */
2765 	w_lofree = NULL;
2766 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2767 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2768 		w_lodata[i].wlod_next = w_lofree;
2769 		w_lofree = &w_lodata[i];
2770 	}
2771 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2772 	w_lohash.wloh_count = 0;
2773 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2774 		w_lohash.wloh_array[i] = NULL;
2775 }
2776 
2777 static struct witness *
2778 witness_hash_get(const char *key)
2779 {
2780 	struct witness *w;
2781 	uint32_t hash;
2782 
2783 	MPASS(key != NULL);
2784 	if (witness_cold == 0)
2785 		mtx_assert(&w_mtx, MA_OWNED);
2786 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2787 	w = w_hash.wh_array[hash];
2788 	while (w != NULL) {
2789 		if (strcmp(w->w_name, key) == 0)
2790 			goto out;
2791 		w = w->w_hash_next;
2792 	}
2793 
2794 out:
2795 	return (w);
2796 }
2797 
2798 static void
2799 witness_hash_put(struct witness *w)
2800 {
2801 	uint32_t hash;
2802 
2803 	MPASS(w != NULL);
2804 	MPASS(w->w_name != NULL);
2805 	if (witness_cold == 0)
2806 		mtx_assert(&w_mtx, MA_OWNED);
2807 	KASSERT(witness_hash_get(w->w_name) == NULL,
2808 	    ("%s: trying to add a hash entry that already exists!", __func__));
2809 	KASSERT(w->w_hash_next == NULL,
2810 	    ("%s: w->w_hash_next != NULL", __func__));
2811 
2812 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2813 	w->w_hash_next = w_hash.wh_array[hash];
2814 	w_hash.wh_array[hash] = w;
2815 	w_hash.wh_count++;
2816 }
2817 
2818 
2819 static struct witness_lock_order_data *
2820 witness_lock_order_get(struct witness *parent, struct witness *child)
2821 {
2822 	struct witness_lock_order_data *data = NULL;
2823 	struct witness_lock_order_key key;
2824 	unsigned int hash;
2825 
2826 	MPASS(parent != NULL && child != NULL);
2827 	key.from = parent->w_index;
2828 	key.to = child->w_index;
2829 	WITNESS_INDEX_ASSERT(key.from);
2830 	WITNESS_INDEX_ASSERT(key.to);
2831 	if ((w_rmatrix[parent->w_index][child->w_index]
2832 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2833 		goto out;
2834 
2835 	hash = witness_hash_djb2((const char*)&key,
2836 	    sizeof(key)) % w_lohash.wloh_size;
2837 	data = w_lohash.wloh_array[hash];
2838 	while (data != NULL) {
2839 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2840 			break;
2841 		data = data->wlod_next;
2842 	}
2843 
2844 out:
2845 	return (data);
2846 }
2847 
2848 /*
2849  * Verify that parent and child have a known relationship, are not the same,
2850  * and child is actually a child of parent.  This is done without w_mtx
2851  * to avoid contention in the common case.
2852  */
2853 static int
2854 witness_lock_order_check(struct witness *parent, struct witness *child)
2855 {
2856 
2857 	if (parent != child &&
2858 	    w_rmatrix[parent->w_index][child->w_index]
2859 	    & WITNESS_LOCK_ORDER_KNOWN &&
2860 	    isitmychild(parent, child))
2861 		return (1);
2862 
2863 	return (0);
2864 }
2865 
2866 static int
2867 witness_lock_order_add(struct witness *parent, struct witness *child)
2868 {
2869 	struct witness_lock_order_data *data = NULL;
2870 	struct witness_lock_order_key key;
2871 	unsigned int hash;
2872 
2873 	MPASS(parent != NULL && child != NULL);
2874 	key.from = parent->w_index;
2875 	key.to = child->w_index;
2876 	WITNESS_INDEX_ASSERT(key.from);
2877 	WITNESS_INDEX_ASSERT(key.to);
2878 	if (w_rmatrix[parent->w_index][child->w_index]
2879 	    & WITNESS_LOCK_ORDER_KNOWN)
2880 		return (1);
2881 
2882 	hash = witness_hash_djb2((const char*)&key,
2883 	    sizeof(key)) % w_lohash.wloh_size;
2884 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
2885 	data = w_lofree;
2886 	if (data == NULL)
2887 		return (0);
2888 	w_lofree = data->wlod_next;
2889 	data->wlod_next = w_lohash.wloh_array[hash];
2890 	data->wlod_key = key;
2891 	w_lohash.wloh_array[hash] = data;
2892 	w_lohash.wloh_count++;
2893 	stack_zero(&data->wlod_stack);
2894 	stack_save(&data->wlod_stack);
2895 	return (1);
2896 }
2897 
2898 /* Call this whenver the structure of the witness graph changes. */
2899 static void
2900 witness_increment_graph_generation(void)
2901 {
2902 
2903 	if (witness_cold == 0)
2904 		mtx_assert(&w_mtx, MA_OWNED);
2905 	w_generation++;
2906 }
2907 
2908 #ifdef KDB
2909 static void
2910 _witness_debugger(int cond, const char *msg)
2911 {
2912 
2913 	if (witness_trace && cond)
2914 		kdb_backtrace();
2915 	if (witness_kdb && cond)
2916 		kdb_enter(KDB_WHY_WITNESS, msg);
2917 }
2918 #endif
2919