xref: /freebsd/sys/kern/subr_witness.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89 
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101 
102 #include <ddb/ddb.h>
103 
104 #include <machine/stdarg.h>
105 
106 /* Define this to check for blessed mutexes */
107 #undef BLESSING
108 
109 #define WITNESS_COUNT 200
110 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
111 /*
112  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
113  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
114  * probably be safe for the most part, but it's still a SWAG.
115  */
116 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
117 
118 #define	WITNESS_NCHILDREN 6
119 
120 struct witness_child_list_entry;
121 
122 struct witness {
123 	const	char *w_name;
124 	struct	lock_class *w_class;
125 	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
126 	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
127 	struct	witness_child_list_entry *w_children;	/* Great evilness... */
128 	const	char *w_file;
129 	int	w_line;
130 	u_int	w_level;
131 	u_int	w_refcount;
132 	u_char	w_Giant_squawked:1;
133 	u_char	w_other_squawked:1;
134 	u_char	w_same_squawked:1;
135 	u_char	w_displayed:1;
136 };
137 
138 struct witness_child_list_entry {
139 	struct	witness_child_list_entry *wcl_next;
140 	struct	witness *wcl_children[WITNESS_NCHILDREN];
141 	u_int	wcl_count;
142 };
143 
144 STAILQ_HEAD(witness_list, witness);
145 
146 #ifdef BLESSING
147 struct witness_blessed {
148 	const	char *b_lock1;
149 	const	char *b_lock2;
150 };
151 #endif
152 
153 struct witness_order_list_entry {
154 	const	char *w_name;
155 	struct	lock_class *w_class;
156 };
157 
158 #ifdef BLESSING
159 static int	blessed(struct witness *, struct witness *);
160 #endif
161 static int	depart(struct witness *w);
162 static struct	witness *enroll(const char *description,
163 				struct lock_class *lock_class);
164 static int	insertchild(struct witness *parent, struct witness *child);
165 static int	isitmychild(struct witness *parent, struct witness *child);
166 static int	isitmydescendant(struct witness *parent, struct witness *child);
167 static int	itismychild(struct witness *parent, struct witness *child);
168 static int	rebalancetree(struct witness_list *list);
169 static void	removechild(struct witness *parent, struct witness *child);
170 static int	reparentchildren(struct witness *newparent,
171 		    struct witness *oldparent);
172 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
173 static void	witness_displaydescendants(void(*)(const char *fmt, ...),
174 					   struct witness *, int indent);
175 static const char *fixup_filename(const char *file);
176 static void	witness_leveldescendents(struct witness *parent, int level);
177 static void	witness_levelall(void);
178 static struct	witness *witness_get(void);
179 static void	witness_free(struct witness *m);
180 static struct	witness_child_list_entry *witness_child_get(void);
181 static void	witness_child_free(struct witness_child_list_entry *wcl);
182 static struct	lock_list_entry *witness_lock_list_get(void);
183 static void	witness_lock_list_free(struct lock_list_entry *lle);
184 static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
185 					     struct lock_object *lock);
186 static void	witness_list_lock(struct lock_instance *instance);
187 #ifdef DDB
188 static void	witness_list(struct thread *td);
189 static void	witness_display_list(void(*prnt)(const char *fmt, ...),
190 				     struct witness_list *list);
191 static void	witness_display(void(*)(const char *fmt, ...));
192 #endif
193 
194 MALLOC_DEFINE(M_WITNESS, "witness", "witness structure");
195 
196 /*
197  * If set to 0, witness is disabled.  If set to 1, witness performs full lock
198  * order checking for all locks.  If set to 2 or higher, then witness skips
199  * the full lock order check if the lock being acquired is at a higher level
200  * (i.e. farther down in the tree) than the current lock.  This last mode is
201  * somewhat experimental and not considered fully safe.  At runtime, this
202  * value may be set to 0 to turn off witness.  witness is not allowed be
203  * turned on once it is turned off, however.
204  */
205 static int witness_watch = 1;
206 TUNABLE_INT("debug.witness_watch", &witness_watch);
207 SYSCTL_PROC(_debug, OID_AUTO, witness_watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
208     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
209 
210 #ifdef KDB
211 /*
212  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
213  * to drop into kdebug() when:
214  *	- a lock heirarchy violation occurs
215  *	- locks are held when going to sleep.
216  */
217 #ifdef WITNESS_KDB
218 int	witness_kdb = 1;
219 #else
220 int	witness_kdb = 0;
221 #endif
222 TUNABLE_INT("debug.witness_kdb", &witness_kdb);
223 SYSCTL_INT(_debug, OID_AUTO, witness_kdb, CTLFLAG_RW, &witness_kdb, 0, "");
224 
225 /*
226  * When KDB is enabled and witness_trace is set to 1, it will cause the system
227  * to print a stack trace:
228  *	- a lock heirarchy violation occurs
229  *	- locks are held when going to sleep.
230  */
231 int	witness_trace = 1;
232 TUNABLE_INT("debug.witness_trace", &witness_trace);
233 SYSCTL_INT(_debug, OID_AUTO, witness_trace, CTLFLAG_RW, &witness_trace, 0, "");
234 #endif /* KDB */
235 
236 #ifdef WITNESS_SKIPSPIN
237 int	witness_skipspin = 1;
238 #else
239 int	witness_skipspin = 0;
240 #endif
241 TUNABLE_INT("debug.witness_skipspin", &witness_skipspin);
242 SYSCTL_INT(_debug, OID_AUTO, witness_skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0,
243     "");
244 
245 static struct mtx w_mtx;
246 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
247 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
248 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
249 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
250 static struct witness_child_list_entry *w_child_free = NULL;
251 static struct lock_list_entry *w_lock_list_free = NULL;
252 
253 static struct witness w_data[WITNESS_COUNT];
254 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
255 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
256 
257 static struct witness_order_list_entry order_lists[] = {
258 	{ "proctree", &lock_class_sx },
259 	{ "allproc", &lock_class_sx },
260 	{ "Giant", &lock_class_mtx_sleep },
261 	{ "filedesc structure", &lock_class_mtx_sleep },
262 	{ "pipe mutex", &lock_class_mtx_sleep },
263 	{ "sigio lock", &lock_class_mtx_sleep },
264 	{ "process group", &lock_class_mtx_sleep },
265 	{ "process lock", &lock_class_mtx_sleep },
266 	{ "session", &lock_class_mtx_sleep },
267 	{ "uidinfo hash", &lock_class_mtx_sleep },
268 	{ "uidinfo struct", &lock_class_mtx_sleep },
269 	{ "allprison", &lock_class_mtx_sleep },
270 	{ NULL, NULL },
271 	/*
272 	 * Sockets
273 	 */
274 	{ "filedesc structure", &lock_class_mtx_sleep },
275 	{ "accept", &lock_class_mtx_sleep },
276 	{ "so_snd", &lock_class_mtx_sleep },
277 	{ "so_rcv", &lock_class_mtx_sleep },
278 	{ "sellck", &lock_class_mtx_sleep },
279 	{ NULL, NULL },
280 	/*
281 	 * Routing
282 	 */
283 	{ "so_rcv", &lock_class_mtx_sleep },
284 	{ "radix node head", &lock_class_mtx_sleep },
285 	{ "rtentry", &lock_class_mtx_sleep },
286 	{ "ifaddr", &lock_class_mtx_sleep },
287 	{ NULL, NULL },
288 	/*
289 	 * UNIX Domain Sockets
290 	 */
291 	{ "unp", &lock_class_mtx_sleep },
292 	{ "so_snd", &lock_class_mtx_sleep },
293 	{ NULL, NULL },
294 	/*
295 	 * UDP/IP
296 	 */
297 	{ "udp", &lock_class_mtx_sleep },
298 	{ "udpinp", &lock_class_mtx_sleep },
299 	{ "so_snd", &lock_class_mtx_sleep },
300 	{ NULL, NULL },
301 	/*
302 	 * TCP/IP
303 	 */
304 	{ "tcp", &lock_class_mtx_sleep },
305 	{ "tcpinp", &lock_class_mtx_sleep },
306 	{ "so_snd", &lock_class_mtx_sleep },
307 	{ NULL, NULL },
308 	/*
309 	 * SLIP
310 	 */
311 	{ "slip_mtx", &lock_class_mtx_sleep },
312 	{ "slip sc_mtx", &lock_class_mtx_sleep },
313 	{ NULL, NULL },
314 	/*
315 	 * netatalk
316 	 */
317 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
318 	{ "ddp_mtx", &lock_class_mtx_sleep },
319 	{ NULL, NULL },
320 	/*
321 	 * spin locks
322 	 */
323 #ifdef SMP
324 	{ "ap boot", &lock_class_mtx_spin },
325 #endif
326 	{ "sio", &lock_class_mtx_spin },
327 #ifdef __i386__
328 	{ "cy", &lock_class_mtx_spin },
329 #endif
330 	{ "uart_hwmtx", &lock_class_mtx_spin },
331 	{ "sabtty", &lock_class_mtx_spin },
332 	{ "zstty", &lock_class_mtx_spin },
333 	{ "ng_node", &lock_class_mtx_spin },
334 	{ "ng_worklist", &lock_class_mtx_spin },
335 	{ "taskqueue_fast", &lock_class_mtx_spin },
336 	{ "intr table", &lock_class_mtx_spin },
337 	{ "ithread table lock", &lock_class_mtx_spin },
338 	{ "sleepq chain", &lock_class_mtx_spin },
339 	{ "sched lock", &lock_class_mtx_spin },
340 	{ "turnstile chain", &lock_class_mtx_spin },
341 	{ "td_contested", &lock_class_mtx_spin },
342 	{ "callout", &lock_class_mtx_spin },
343 	{ "entropy harvest", &lock_class_mtx_spin },
344 	{ "entropy harvest buffers", &lock_class_mtx_spin },
345 	/*
346 	 * leaf locks
347 	 */
348 	{ "allpmaps", &lock_class_mtx_spin },
349 	{ "vm page queue free mutex", &lock_class_mtx_spin },
350 	{ "icu", &lock_class_mtx_spin },
351 #ifdef SMP
352 	{ "smp rendezvous", &lock_class_mtx_spin },
353 #if defined(__i386__) || defined(__amd64__)
354 	{ "tlb", &lock_class_mtx_spin },
355 	{ "lazypmap", &lock_class_mtx_spin },
356 #endif
357 #ifdef __sparc64__
358 	{ "ipi", &lock_class_mtx_spin },
359 #endif
360 #endif
361 	{ "clk", &lock_class_mtx_spin },
362 	{ "mutex profiling lock", &lock_class_mtx_spin },
363 	{ "kse zombie lock", &lock_class_mtx_spin },
364 	{ "ALD Queue", &lock_class_mtx_spin },
365 #ifdef __ia64__
366 	{ "MCA spin lock", &lock_class_mtx_spin },
367 #endif
368 #if defined(__i386__) || defined(__amd64__)
369 	{ "pcicfg", &lock_class_mtx_spin },
370 #endif
371 	{ NULL, NULL },
372 	{ NULL, NULL }
373 };
374 
375 #ifdef BLESSING
376 /*
377  * Pairs of locks which have been blessed
378  * Don't complain about order problems with blessed locks
379  */
380 static struct witness_blessed blessed_list[] = {
381 };
382 static int blessed_count =
383 	sizeof(blessed_list) / sizeof(struct witness_blessed);
384 #endif
385 
386 /*
387  * List of all locks in the system.
388  */
389 TAILQ_HEAD(, lock_object) all_locks = TAILQ_HEAD_INITIALIZER(all_locks);
390 
391 static struct mtx all_mtx = {
392 	{ &lock_class_mtx_sleep,	/* mtx_object.lo_class */
393 	  "All locks list",		/* mtx_object.lo_name */
394 	  "All locks list",		/* mtx_object.lo_type */
395 	  LO_INITIALIZED,		/* mtx_object.lo_flags */
396 	  { NULL, NULL },		/* mtx_object.lo_list */
397 	  NULL },			/* mtx_object.lo_witness */
398 	MTX_UNOWNED, 0			/* mtx_lock, mtx_recurse */
399 };
400 
401 /*
402  * This global is set to 0 once it becomes safe to use the witness code.
403  */
404 static int witness_cold = 1;
405 
406 /*
407  * Global variables for book keeping.
408  */
409 static int lock_cur_cnt;
410 static int lock_max_cnt;
411 
412 /*
413  * The WITNESS-enabled diagnostic code.
414  */
415 static void
416 witness_initialize(void *dummy __unused)
417 {
418 	struct lock_object *lock;
419 	struct witness_order_list_entry *order;
420 	struct witness *w, *w1;
421 	int i;
422 
423 	/*
424 	 * We have to release Giant before initializing its witness
425 	 * structure so that WITNESS doesn't get confused.
426 	 */
427 	mtx_unlock(&Giant);
428 	mtx_assert(&Giant, MA_NOTOWNED);
429 
430 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
431 	TAILQ_INSERT_HEAD(&all_locks, &all_mtx.mtx_object, lo_list);
432 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
433 	    MTX_NOWITNESS);
434 	for (i = 0; i < WITNESS_COUNT; i++)
435 		witness_free(&w_data[i]);
436 	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
437 		witness_child_free(&w_childdata[i]);
438 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
439 		witness_lock_list_free(&w_locklistdata[i]);
440 
441 	/* First add in all the specified order lists. */
442 	for (order = order_lists; order->w_name != NULL; order++) {
443 		w = enroll(order->w_name, order->w_class);
444 		if (w == NULL)
445 			continue;
446 		w->w_file = "order list";
447 		for (order++; order->w_name != NULL; order++) {
448 			w1 = enroll(order->w_name, order->w_class);
449 			if (w1 == NULL)
450 				continue;
451 			w1->w_file = "order list";
452 			if (!itismychild(w, w1))
453 				panic("Not enough memory for static orders!");
454 			w = w1;
455 		}
456 	}
457 
458 	/* Iterate through all locks and add them to witness. */
459 	mtx_lock(&all_mtx);
460 	TAILQ_FOREACH(lock, &all_locks, lo_list) {
461 		if (lock->lo_flags & LO_WITNESS)
462 			lock->lo_witness = enroll(lock->lo_type,
463 			    lock->lo_class);
464 		else
465 			lock->lo_witness = NULL;
466 	}
467 	mtx_unlock(&all_mtx);
468 
469 	/* Mark the witness code as being ready for use. */
470 	atomic_store_rel_int(&witness_cold, 0);
471 
472 	mtx_lock(&Giant);
473 }
474 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
475 
476 static int
477 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
478 {
479 	int error, value;
480 
481 	value = witness_watch;
482 	error = sysctl_handle_int(oidp, &value, 0, req);
483 	if (error != 0 || req->newptr == NULL)
484 		return (error);
485 	error = suser(req->td);
486 	if (error != 0)
487 		return (error);
488 	if (value == witness_watch)
489 		return (0);
490 	if (value != 0)
491 		return (EINVAL);
492 	witness_watch = 0;
493 	return (0);
494 }
495 
496 void
497 witness_init(struct lock_object *lock)
498 {
499 	struct lock_class *class;
500 
501 	class = lock->lo_class;
502 	if (lock->lo_flags & LO_INITIALIZED)
503 		panic("%s: lock (%s) %s is already initialized", __func__,
504 		    class->lc_name, lock->lo_name);
505 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
506 	    (class->lc_flags & LC_RECURSABLE) == 0)
507 		panic("%s: lock (%s) %s can not be recursable", __func__,
508 		    class->lc_name, lock->lo_name);
509 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
510 	    (class->lc_flags & LC_SLEEPABLE) == 0)
511 		panic("%s: lock (%s) %s can not be sleepable", __func__,
512 		    class->lc_name, lock->lo_name);
513 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
514 	    (class->lc_flags & LC_UPGRADABLE) == 0)
515 		panic("%s: lock (%s) %s can not be upgradable", __func__,
516 		    class->lc_name, lock->lo_name);
517 
518 	mtx_lock(&all_mtx);
519 	TAILQ_INSERT_TAIL(&all_locks, lock, lo_list);
520 	lock->lo_flags |= LO_INITIALIZED;
521 	lock_cur_cnt++;
522 	if (lock_cur_cnt > lock_max_cnt)
523 		lock_max_cnt = lock_cur_cnt;
524 	mtx_unlock(&all_mtx);
525 	if (!witness_cold && witness_watch != 0 && panicstr == NULL &&
526 	    (lock->lo_flags & LO_WITNESS) != 0)
527 		lock->lo_witness = enroll(lock->lo_type, class);
528 	else
529 		lock->lo_witness = NULL;
530 }
531 
532 void
533 witness_destroy(struct lock_object *lock)
534 {
535 	struct witness *w;
536 
537 	if (witness_cold)
538 		panic("lock (%s) %s destroyed while witness_cold",
539 		    lock->lo_class->lc_name, lock->lo_name);
540 	if ((lock->lo_flags & LO_INITIALIZED) == 0)
541 		panic("%s: lock (%s) %s is not initialized", __func__,
542 		    lock->lo_class->lc_name, lock->lo_name);
543 
544 	/* XXX: need to verify that no one holds the lock */
545 	w = lock->lo_witness;
546 	if (w != NULL) {
547 		mtx_lock_spin(&w_mtx);
548 		MPASS(w->w_refcount > 0);
549 		w->w_refcount--;
550 
551 		/*
552 		 * Lock is already released if we have an allocation failure
553 		 * and depart() fails.
554 		 */
555 		if (w->w_refcount != 0 || depart(w))
556 			mtx_unlock_spin(&w_mtx);
557 	}
558 
559 	mtx_lock(&all_mtx);
560 	lock_cur_cnt--;
561 	TAILQ_REMOVE(&all_locks, lock, lo_list);
562 	lock->lo_flags &= ~LO_INITIALIZED;
563 	mtx_unlock(&all_mtx);
564 }
565 
566 #ifdef DDB
567 static void
568 witness_display_list(void(*prnt)(const char *fmt, ...),
569 		     struct witness_list *list)
570 {
571 	struct witness *w;
572 
573 	STAILQ_FOREACH(w, list, w_typelist) {
574 		if (w->w_file == NULL || w->w_level > 0)
575 			continue;
576 		/*
577 		 * This lock has no anscestors, display its descendants.
578 		 */
579 		witness_displaydescendants(prnt, w, 0);
580 	}
581 }
582 
583 static void
584 witness_display(void(*prnt)(const char *fmt, ...))
585 {
586 	struct witness *w;
587 
588 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
589 	witness_levelall();
590 
591 	/* Clear all the displayed flags. */
592 	STAILQ_FOREACH(w, &w_all, w_list) {
593 		w->w_displayed = 0;
594 	}
595 
596 	/*
597 	 * First, handle sleep locks which have been acquired at least
598 	 * once.
599 	 */
600 	prnt("Sleep locks:\n");
601 	witness_display_list(prnt, &w_sleep);
602 
603 	/*
604 	 * Now do spin locks which have been acquired at least once.
605 	 */
606 	prnt("\nSpin locks:\n");
607 	witness_display_list(prnt, &w_spin);
608 
609 	/*
610 	 * Finally, any locks which have not been acquired yet.
611 	 */
612 	prnt("\nLocks which were never acquired:\n");
613 	STAILQ_FOREACH(w, &w_all, w_list) {
614 		if (w->w_file != NULL || w->w_refcount == 0)
615 			continue;
616 		prnt("%s\n", w->w_name);
617 	}
618 }
619 #endif /* DDB */
620 
621 /* Trim useless garbage from filenames. */
622 static const char *
623 fixup_filename(const char *file)
624 {
625 
626 	if (file == NULL)
627 		return (NULL);
628 	while (strncmp(file, "../", 3) == 0)
629 		file += 3;
630 	return (file);
631 }
632 
633 int
634 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
635 {
636 
637 	if (witness_watch == 0 || panicstr != NULL)
638 		return (0);
639 
640 	/* Require locks that witness knows about. */
641 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
642 	    lock2->lo_witness == NULL)
643 		return (EINVAL);
644 
645 	MPASS(!mtx_owned(&w_mtx));
646 	mtx_lock_spin(&w_mtx);
647 
648 	/*
649 	 * If we already have either an explicit or implied lock order that
650 	 * is the other way around, then return an error.
651 	 */
652 	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
653 		mtx_unlock_spin(&w_mtx);
654 		return (EDOOFUS);
655 	}
656 
657 	/* Try to add the new order. */
658 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
659 	    lock2->lo_type, lock1->lo_type);
660 	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
661 		return (ENOMEM);
662 	mtx_unlock_spin(&w_mtx);
663 	return (0);
664 }
665 
666 void
667 witness_checkorder(struct lock_object *lock, int flags, const char *file,
668     int line)
669 {
670 	struct lock_list_entry **lock_list, *lle;
671 	struct lock_instance *lock1, *lock2;
672 	struct lock_class *class;
673 	struct witness *w, *w1;
674 	struct thread *td;
675 	int i, j;
676 
677 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
678 	    panicstr != NULL)
679 		return;
680 
681 	/*
682 	 * Try locks do not block if they fail to acquire the lock, thus
683 	 * there is no danger of deadlocks or of switching while holding a
684 	 * spin lock if we acquire a lock via a try operation.  This
685 	 * function shouldn't even be called for try locks, so panic if
686 	 * that happens.
687 	 */
688 	if (flags & LOP_TRYLOCK)
689 		panic("%s should not be called for try lock operations",
690 		    __func__);
691 
692 	w = lock->lo_witness;
693 	class = lock->lo_class;
694 	td = curthread;
695 	file = fixup_filename(file);
696 
697 	if (class->lc_flags & LC_SLEEPLOCK) {
698 		/*
699 		 * Since spin locks include a critical section, this check
700 		 * implicitly enforces a lock order of all sleep locks before
701 		 * all spin locks.
702 		 */
703 		if (td->td_critnest != 0)
704 			panic("blockable sleep lock (%s) %s @ %s:%d",
705 			    class->lc_name, lock->lo_name, file, line);
706 
707 		/*
708 		 * If this is the first lock acquired then just return as
709 		 * no order checking is needed.
710 		 */
711 		if (td->td_sleeplocks == NULL)
712 			return;
713 		lock_list = &td->td_sleeplocks;
714 	} else {
715 		/*
716 		 * If this is the first lock, just return as no order
717 		 * checking is needed.  We check this in both if clauses
718 		 * here as unifying the check would require us to use a
719 		 * critical section to ensure we don't migrate while doing
720 		 * the check.  Note that if this is not the first lock, we
721 		 * are already in a critical section and are safe for the
722 		 * rest of the check.
723 		 */
724 		if (PCPU_GET(spinlocks) == NULL)
725 			return;
726 		lock_list = PCPU_PTR(spinlocks);
727 	}
728 
729 	/*
730 	 * Check to see if we are recursing on a lock we already own.  If
731 	 * so, make sure that we don't mismatch exclusive and shared lock
732 	 * acquires.
733 	 */
734 	lock1 = find_instance(*lock_list, lock);
735 	if (lock1 != NULL) {
736 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
737 		    (flags & LOP_EXCLUSIVE) == 0) {
738 			printf("shared lock of (%s) %s @ %s:%d\n",
739 			    class->lc_name, lock->lo_name, file, line);
740 			printf("while exclusively locked from %s:%d\n",
741 			    lock1->li_file, lock1->li_line);
742 			panic("share->excl");
743 		}
744 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
745 		    (flags & LOP_EXCLUSIVE) != 0) {
746 			printf("exclusive lock of (%s) %s @ %s:%d\n",
747 			    class->lc_name, lock->lo_name, file, line);
748 			printf("while share locked from %s:%d\n",
749 			    lock1->li_file, lock1->li_line);
750 			panic("excl->share");
751 		}
752 		return;
753 	}
754 
755 	/*
756 	 * Try locks do not block if they fail to acquire the lock, thus
757 	 * there is no danger of deadlocks or of switching while holding a
758 	 * spin lock if we acquire a lock via a try operation.
759 	 */
760 	if (flags & LOP_TRYLOCK)
761 		return;
762 
763 	/*
764 	 * Check for duplicate locks of the same type.  Note that we only
765 	 * have to check for this on the last lock we just acquired.  Any
766 	 * other cases will be caught as lock order violations.
767 	 */
768 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
769 	w1 = lock1->li_lock->lo_witness;
770 	if (w1 == w) {
771 		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK))
772 			return;
773 		w->w_same_squawked = 1;
774 		printf("acquiring duplicate lock of same type: \"%s\"\n",
775 			lock->lo_type);
776 		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
777 		    lock1->li_file, lock1->li_line);
778 		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
779 #ifdef KDB
780 		goto debugger;
781 #else
782 		return;
783 #endif
784 	}
785 	MPASS(!mtx_owned(&w_mtx));
786 	mtx_lock_spin(&w_mtx);
787 	/*
788 	 * If we have a known higher number just say ok
789 	 */
790 	if (witness_watch > 1 && w->w_level > w1->w_level) {
791 		mtx_unlock_spin(&w_mtx);
792 		return;
793 	}
794 	/*
795 	 * If we know that the the lock we are acquiring comes after
796 	 * the lock we most recently acquired in the lock order tree,
797 	 * then there is no need for any further checks.
798 	 */
799 	if (isitmydescendant(w1, w)) {
800 		mtx_unlock_spin(&w_mtx);
801 		return;
802 	}
803 	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
804 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
805 
806 			MPASS(j < WITNESS_COUNT);
807 			lock1 = &lle->ll_children[i];
808 			w1 = lock1->li_lock->lo_witness;
809 
810 			/*
811 			 * If this lock doesn't undergo witness checking,
812 			 * then skip it.
813 			 */
814 			if (w1 == NULL) {
815 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
816 				    ("lock missing witness structure"));
817 				continue;
818 			}
819 			/*
820 			 * If we are locking Giant and this is a sleepable
821 			 * lock, then skip it.
822 			 */
823 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
824 			    lock == &Giant.mtx_object)
825 				continue;
826 			/*
827 			 * If we are locking a sleepable lock and this lock
828 			 * is Giant, then skip it.
829 			 */
830 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
831 			    lock1->li_lock == &Giant.mtx_object)
832 				continue;
833 			/*
834 			 * If we are locking a sleepable lock and this lock
835 			 * isn't sleepable, we want to treat it as a lock
836 			 * order violation to enfore a general lock order of
837 			 * sleepable locks before non-sleepable locks.
838 			 */
839 			if (!((lock->lo_flags & LO_SLEEPABLE) != 0 &&
840 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
841 			    /*
842 			     * Check the lock order hierarchy for a reveresal.
843 			     */
844 			    if (!isitmydescendant(w, w1))
845 				continue;
846 			/*
847 			 * We have a lock order violation, check to see if it
848 			 * is allowed or has already been yelled about.
849 			 */
850 			mtx_unlock_spin(&w_mtx);
851 #ifdef BLESSING
852 			/*
853 			 * If the lock order is blessed, just bail.  We don't
854 			 * look for other lock order violations though, which
855 			 * may be a bug.
856 			 */
857 			if (blessed(w, w1))
858 				return;
859 #endif
860 			if (lock1->li_lock == &Giant.mtx_object) {
861 				if (w1->w_Giant_squawked)
862 					return;
863 				else
864 					w1->w_Giant_squawked = 1;
865 			} else {
866 				if (w1->w_other_squawked)
867 					return;
868 				else
869 					w1->w_other_squawked = 1;
870 			}
871 			/*
872 			 * Ok, yell about it.
873 			 */
874 			printf("lock order reversal\n");
875 			/*
876 			 * Try to locate an earlier lock with
877 			 * witness w in our list.
878 			 */
879 			do {
880 				lock2 = &lle->ll_children[i];
881 				MPASS(lock2->li_lock != NULL);
882 				if (lock2->li_lock->lo_witness == w)
883 					break;
884 				if (i == 0 && lle->ll_next != NULL) {
885 					lle = lle->ll_next;
886 					i = lle->ll_count - 1;
887 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
888 				} else
889 					i--;
890 			} while (i >= 0);
891 			if (i < 0) {
892 				printf(" 1st %p %s (%s) @ %s:%d\n",
893 				    lock1->li_lock, lock1->li_lock->lo_name,
894 				    lock1->li_lock->lo_type, lock1->li_file,
895 				    lock1->li_line);
896 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
897 				    lock->lo_name, lock->lo_type, file, line);
898 			} else {
899 				printf(" 1st %p %s (%s) @ %s:%d\n",
900 				    lock2->li_lock, lock2->li_lock->lo_name,
901 				    lock2->li_lock->lo_type, lock2->li_file,
902 				    lock2->li_line);
903 				printf(" 2nd %p %s (%s) @ %s:%d\n",
904 				    lock1->li_lock, lock1->li_lock->lo_name,
905 				    lock1->li_lock->lo_type, lock1->li_file,
906 				    lock1->li_line);
907 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
908 				    lock->lo_name, lock->lo_type, file, line);
909 			}
910 #ifdef KDB
911 			goto debugger;
912 #else
913 			return;
914 #endif
915 		}
916 	}
917 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
918 	/*
919 	 * If requested, build a new lock order.  However, don't build a new
920 	 * relationship between a sleepable lock and Giant if it is in the
921 	 * wrong direction.  The correct lock order is that sleepable locks
922 	 * always come before Giant.
923 	 */
924 	if (flags & LOP_NEWORDER &&
925 	    !(lock1->li_lock == &Giant.mtx_object &&
926 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
927 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
928 		    lock->lo_type, lock1->li_lock->lo_type);
929 		if (!itismychild(lock1->li_lock->lo_witness, w))
930 			/* Witness is dead. */
931 			return;
932 	}
933 	mtx_unlock_spin(&w_mtx);
934 	return;
935 
936 #ifdef KDB
937 debugger:
938 	if (witness_trace)
939 		kdb_backtrace();
940 	if (witness_kdb)
941 		kdb_enter(__func__);
942 #endif
943 }
944 
945 void
946 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
947 {
948 	struct lock_list_entry **lock_list, *lle;
949 	struct lock_instance *instance;
950 	struct witness *w;
951 	struct thread *td;
952 
953 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
954 	    panicstr != NULL)
955 		return;
956 	w = lock->lo_witness;
957 	td = curthread;
958 	file = fixup_filename(file);
959 
960 	/* Determine lock list for this lock. */
961 	if (lock->lo_class->lc_flags & LC_SLEEPLOCK)
962 		lock_list = &td->td_sleeplocks;
963 	else
964 		lock_list = PCPU_PTR(spinlocks);
965 
966 	/* Check to see if we are recursing on a lock we already own. */
967 	instance = find_instance(*lock_list, lock);
968 	if (instance != NULL) {
969 		instance->li_flags++;
970 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
971 		    td->td_proc->p_pid, lock->lo_name,
972 		    instance->li_flags & LI_RECURSEMASK);
973 		instance->li_file = file;
974 		instance->li_line = line;
975 		return;
976 	}
977 
978 	/* Update per-witness last file and line acquire. */
979 	w->w_file = file;
980 	w->w_line = line;
981 
982 	/* Find the next open lock instance in the list and fill it. */
983 	lle = *lock_list;
984 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
985 		lle = witness_lock_list_get();
986 		if (lle == NULL)
987 			return;
988 		lle->ll_next = *lock_list;
989 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
990 		    td->td_proc->p_pid, lle);
991 		*lock_list = lle;
992 	}
993 	instance = &lle->ll_children[lle->ll_count++];
994 	instance->li_lock = lock;
995 	instance->li_line = line;
996 	instance->li_file = file;
997 	if ((flags & LOP_EXCLUSIVE) != 0)
998 		instance->li_flags = LI_EXCLUSIVE;
999 	else
1000 		instance->li_flags = 0;
1001 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1002 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1003 }
1004 
1005 void
1006 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1007 {
1008 	struct lock_instance *instance;
1009 	struct lock_class *class;
1010 
1011 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1012 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1013 		return;
1014 	class = lock->lo_class;
1015 	file = fixup_filename(file);
1016 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1017 		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1018 		    class->lc_name, lock->lo_name, file, line);
1019 	if ((flags & LOP_TRYLOCK) == 0)
1020 		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1021 		    lock->lo_name, file, line);
1022 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1023 		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1024 		    class->lc_name, lock->lo_name, file, line);
1025 	instance = find_instance(curthread->td_sleeplocks, lock);
1026 	if (instance == NULL)
1027 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1028 		    class->lc_name, lock->lo_name, file, line);
1029 	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1030 		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1031 		    class->lc_name, lock->lo_name, file, line);
1032 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1033 		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1034 		    class->lc_name, lock->lo_name,
1035 		    instance->li_flags & LI_RECURSEMASK, file, line);
1036 	instance->li_flags |= LI_EXCLUSIVE;
1037 }
1038 
1039 void
1040 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1041     int line)
1042 {
1043 	struct lock_instance *instance;
1044 	struct lock_class *class;
1045 
1046 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1047 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1048 		return;
1049 	class = lock->lo_class;
1050 	file = fixup_filename(file);
1051 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1052 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1053 		    class->lc_name, lock->lo_name, file, line);
1054 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1055 		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1056 		    class->lc_name, lock->lo_name, file, line);
1057 	instance = find_instance(curthread->td_sleeplocks, lock);
1058 	if (instance == NULL)
1059 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1060 		    class->lc_name, lock->lo_name, file, line);
1061 	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1062 		panic("downgrade of shared lock (%s) %s @ %s:%d",
1063 		    class->lc_name, lock->lo_name, file, line);
1064 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1065 		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1066 		    class->lc_name, lock->lo_name,
1067 		    instance->li_flags & LI_RECURSEMASK, file, line);
1068 	instance->li_flags &= ~LI_EXCLUSIVE;
1069 }
1070 
1071 void
1072 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1073 {
1074 	struct lock_list_entry **lock_list, *lle;
1075 	struct lock_instance *instance;
1076 	struct lock_class *class;
1077 	struct thread *td;
1078 	register_t s;
1079 	int i, j;
1080 
1081 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1082 	    panicstr != NULL)
1083 		return;
1084 	td = curthread;
1085 	class = lock->lo_class;
1086 	file = fixup_filename(file);
1087 
1088 	/* Find lock instance associated with this lock. */
1089 	if (class->lc_flags & LC_SLEEPLOCK)
1090 		lock_list = &td->td_sleeplocks;
1091 	else
1092 		lock_list = PCPU_PTR(spinlocks);
1093 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1094 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1095 			instance = &(*lock_list)->ll_children[i];
1096 			if (instance->li_lock == lock)
1097 				goto found;
1098 		}
1099 	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1100 	    file, line);
1101 found:
1102 
1103 	/* First, check for shared/exclusive mismatches. */
1104 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1105 	    (flags & LOP_EXCLUSIVE) == 0) {
1106 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1107 		    lock->lo_name, file, line);
1108 		printf("while exclusively locked from %s:%d\n",
1109 		    instance->li_file, instance->li_line);
1110 		panic("excl->ushare");
1111 	}
1112 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1113 	    (flags & LOP_EXCLUSIVE) != 0) {
1114 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1115 		    lock->lo_name, file, line);
1116 		printf("while share locked from %s:%d\n", instance->li_file,
1117 		    instance->li_line);
1118 		panic("share->uexcl");
1119 	}
1120 
1121 	/* If we are recursed, unrecurse. */
1122 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1123 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1124 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1125 		    instance->li_flags);
1126 		instance->li_flags--;
1127 		return;
1128 	}
1129 
1130 	/* Otherwise, remove this item from the list. */
1131 	s = intr_disable();
1132 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1133 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1134 	    (*lock_list)->ll_count - 1);
1135 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1136 		(*lock_list)->ll_children[j] =
1137 		    (*lock_list)->ll_children[j + 1];
1138 	(*lock_list)->ll_count--;
1139 	intr_restore(s);
1140 
1141 	/* If this lock list entry is now empty, free it. */
1142 	if ((*lock_list)->ll_count == 0) {
1143 		lle = *lock_list;
1144 		*lock_list = lle->ll_next;
1145 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1146 		    td->td_proc->p_pid, lle);
1147 		witness_lock_list_free(lle);
1148 	}
1149 }
1150 
1151 /*
1152  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1153  * exempt Giant and sleepable locks from the checks as well.  If any
1154  * non-exempt locks are held, then a supplied message is printed to the
1155  * console along with a list of the offending locks.  If indicated in the
1156  * flags then a failure results in a panic as well.
1157  */
1158 int
1159 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1160 {
1161 	struct lock_list_entry *lle;
1162 	struct lock_instance *lock1;
1163 	struct thread *td;
1164 	va_list ap;
1165 	int i, n;
1166 
1167 	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1168 		return (0);
1169 	n = 0;
1170 	td = curthread;
1171 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1172 		for (i = lle->ll_count - 1; i >= 0; i--) {
1173 			lock1 = &lle->ll_children[i];
1174 			if (lock1->li_lock == lock)
1175 				continue;
1176 			if (flags & WARN_GIANTOK &&
1177 			    lock1->li_lock == &Giant.mtx_object)
1178 				continue;
1179 			if (flags & WARN_SLEEPOK &&
1180 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1181 				continue;
1182 			if (n == 0) {
1183 				va_start(ap, fmt);
1184 				vprintf(fmt, ap);
1185 				va_end(ap);
1186 				printf(" with the following");
1187 				if (flags & WARN_SLEEPOK)
1188 					printf(" non-sleepable");
1189 				printf(" locks held:\n");
1190 			}
1191 			n++;
1192 			witness_list_lock(lock1);
1193 		}
1194 	if (PCPU_GET(spinlocks) != NULL) {
1195 		/*
1196 		 * Since we already hold a spinlock preemption is
1197 		 * already blocked.
1198 		 */
1199 		if (n == 0) {
1200 			va_start(ap, fmt);
1201 			vprintf(fmt, ap);
1202 			va_end(ap);
1203 			printf(" with the following");
1204 			if (flags & WARN_SLEEPOK)
1205 				printf(" non-sleepable");
1206 			printf(" locks held:\n");
1207 		}
1208 		n += witness_list_locks(PCPU_PTR(spinlocks));
1209 	}
1210 	if (flags & WARN_PANIC && n)
1211 		panic("witness_warn");
1212 #ifdef KDB
1213 	else if (witness_kdb && n)
1214 		kdb_enter(__func__);
1215 	else if (witness_trace && n)
1216 		kdb_backtrace();
1217 #endif
1218 	return (n);
1219 }
1220 
1221 const char *
1222 witness_file(struct lock_object *lock)
1223 {
1224 	struct witness *w;
1225 
1226 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1227 		return ("?");
1228 	w = lock->lo_witness;
1229 	return (w->w_file);
1230 }
1231 
1232 int
1233 witness_line(struct lock_object *lock)
1234 {
1235 	struct witness *w;
1236 
1237 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1238 		return (0);
1239 	w = lock->lo_witness;
1240 	return (w->w_line);
1241 }
1242 
1243 static struct witness *
1244 enroll(const char *description, struct lock_class *lock_class)
1245 {
1246 	struct witness *w;
1247 
1248 	if (witness_watch == 0 || panicstr != NULL)
1249 		return (NULL);
1250 	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1251 		return (NULL);
1252 	mtx_lock_spin(&w_mtx);
1253 	STAILQ_FOREACH(w, &w_all, w_list) {
1254 		if (w->w_name == description || (w->w_refcount > 0 &&
1255 		    strcmp(description, w->w_name) == 0)) {
1256 			w->w_refcount++;
1257 			mtx_unlock_spin(&w_mtx);
1258 			if (lock_class != w->w_class)
1259 				panic(
1260 				"lock (%s) %s does not match earlier (%s) lock",
1261 				    description, lock_class->lc_name,
1262 				    w->w_class->lc_name);
1263 			return (w);
1264 		}
1265 	}
1266 	/*
1267 	 * This isn't quite right, as witness_cold is still 0 while we
1268 	 * enroll all the locks initialized before witness_initialize().
1269 	 */
1270 	if ((lock_class->lc_flags & LC_SPINLOCK) && !witness_cold) {
1271 		mtx_unlock_spin(&w_mtx);
1272 		panic("spin lock %s not in order list", description);
1273 	}
1274 	if ((w = witness_get()) == NULL)
1275 		return (NULL);
1276 	w->w_name = description;
1277 	w->w_class = lock_class;
1278 	w->w_refcount = 1;
1279 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1280 	if (lock_class->lc_flags & LC_SPINLOCK)
1281 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1282 	else if (lock_class->lc_flags & LC_SLEEPLOCK)
1283 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1284 	else {
1285 		mtx_unlock_spin(&w_mtx);
1286 		panic("lock class %s is not sleep or spin",
1287 		    lock_class->lc_name);
1288 	}
1289 	mtx_unlock_spin(&w_mtx);
1290 	return (w);
1291 }
1292 
1293 /* Don't let the door bang you on the way out... */
1294 static int
1295 depart(struct witness *w)
1296 {
1297 	struct witness_child_list_entry *wcl, *nwcl;
1298 	struct witness_list *list;
1299 	struct witness *parent;
1300 
1301 	MPASS(w->w_refcount == 0);
1302 	if (w->w_class->lc_flags & LC_SLEEPLOCK)
1303 		list = &w_sleep;
1304 	else
1305 		list = &w_spin;
1306 	/*
1307 	 * First, we run through the entire tree looking for any
1308 	 * witnesses that the outgoing witness is a child of.  For
1309 	 * each parent that we find, we reparent all the direct
1310 	 * children of the outgoing witness to its parent.
1311 	 */
1312 	STAILQ_FOREACH(parent, list, w_typelist) {
1313 		if (!isitmychild(parent, w))
1314 			continue;
1315 		removechild(parent, w);
1316 		if (!reparentchildren(parent, w))
1317 			return (0);
1318 	}
1319 
1320 	/*
1321 	 * Now we go through and free up the child list of the
1322 	 * outgoing witness.
1323 	 */
1324 	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1325 		nwcl = wcl->wcl_next;
1326 		witness_child_free(wcl);
1327 	}
1328 
1329 	/*
1330 	 * Detach from various lists and free.
1331 	 */
1332 	STAILQ_REMOVE(list, w, witness, w_typelist);
1333 	STAILQ_REMOVE(&w_all, w, witness, w_list);
1334 	witness_free(w);
1335 
1336 	/* Finally, fixup the tree. */
1337 	return (rebalancetree(list));
1338 }
1339 
1340 /*
1341  * Prune an entire lock order tree.  We look for cases where a lock
1342  * is now both a descendant and a direct child of a given lock.  In
1343  * that case, we want to remove the direct child link from the tree.
1344  *
1345  * Returns false if insertchild() fails.
1346  */
1347 static int
1348 rebalancetree(struct witness_list *list)
1349 {
1350 	struct witness *child, *parent;
1351 
1352 	STAILQ_FOREACH(child, list, w_typelist) {
1353 		STAILQ_FOREACH(parent, list, w_typelist) {
1354 			if (!isitmychild(parent, child))
1355 				continue;
1356 			removechild(parent, child);
1357 			if (isitmydescendant(parent, child))
1358 				continue;
1359 			if (!insertchild(parent, child))
1360 				return (0);
1361 		}
1362 	}
1363 	witness_levelall();
1364 	return (1);
1365 }
1366 
1367 /*
1368  * Add "child" as a direct child of "parent".  Returns false if
1369  * we fail due to out of memory.
1370  */
1371 static int
1372 insertchild(struct witness *parent, struct witness *child)
1373 {
1374 	struct witness_child_list_entry **wcl;
1375 
1376 	MPASS(child != NULL && parent != NULL);
1377 
1378 	/*
1379 	 * Insert "child" after "parent"
1380 	 */
1381 	wcl = &parent->w_children;
1382 	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1383 		wcl = &(*wcl)->wcl_next;
1384 	if (*wcl == NULL) {
1385 		*wcl = witness_child_get();
1386 		if (*wcl == NULL)
1387 			return (0);
1388 	}
1389 	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1390 
1391 	return (1);
1392 }
1393 
1394 /*
1395  * Make all the direct descendants of oldparent be direct descendants
1396  * of newparent.
1397  */
1398 static int
1399 reparentchildren(struct witness *newparent, struct witness *oldparent)
1400 {
1401 	struct witness_child_list_entry *wcl;
1402 	int i;
1403 
1404 	/* Avoid making a witness a child of itself. */
1405 	MPASS(!isitmychild(oldparent, newparent));
1406 
1407 	for (wcl = oldparent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1408 		for (i = 0; i < wcl->wcl_count; i++)
1409 			if (!insertchild(newparent, wcl->wcl_children[i]))
1410 				return (0);
1411 	return (1);
1412 }
1413 
1414 static int
1415 itismychild(struct witness *parent, struct witness *child)
1416 {
1417 	struct witness_list *list;
1418 
1419 	MPASS(child != NULL && parent != NULL);
1420 	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1421 	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1422 		panic(
1423 		"%s: parent (%s) and child (%s) are not the same lock type",
1424 		    __func__, parent->w_class->lc_name,
1425 		    child->w_class->lc_name);
1426 
1427 	if (!insertchild(parent, child))
1428 		return (0);
1429 
1430 	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1431 		list = &w_sleep;
1432 	else
1433 		list = &w_spin;
1434 	return (rebalancetree(list));
1435 }
1436 
1437 static void
1438 removechild(struct witness *parent, struct witness *child)
1439 {
1440 	struct witness_child_list_entry **wcl, *wcl1;
1441 	int i;
1442 
1443 	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1444 		for (i = 0; i < (*wcl)->wcl_count; i++)
1445 			if ((*wcl)->wcl_children[i] == child)
1446 				goto found;
1447 	return;
1448 found:
1449 	(*wcl)->wcl_count--;
1450 	if ((*wcl)->wcl_count > i)
1451 		(*wcl)->wcl_children[i] =
1452 		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1453 	MPASS((*wcl)->wcl_children[i] != NULL);
1454 	if ((*wcl)->wcl_count != 0)
1455 		return;
1456 	wcl1 = *wcl;
1457 	*wcl = wcl1->wcl_next;
1458 	witness_child_free(wcl1);
1459 }
1460 
1461 static int
1462 isitmychild(struct witness *parent, struct witness *child)
1463 {
1464 	struct witness_child_list_entry *wcl;
1465 	int i;
1466 
1467 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1468 		for (i = 0; i < wcl->wcl_count; i++) {
1469 			if (wcl->wcl_children[i] == child)
1470 				return (1);
1471 		}
1472 	}
1473 	return (0);
1474 }
1475 
1476 static int
1477 isitmydescendant(struct witness *parent, struct witness *child)
1478 {
1479 	struct witness_child_list_entry *wcl;
1480 	int i, j;
1481 
1482 	if (isitmychild(parent, child))
1483 		return (1);
1484 	j = 0;
1485 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1486 		MPASS(j < 1000);
1487 		for (i = 0; i < wcl->wcl_count; i++) {
1488 			if (isitmydescendant(wcl->wcl_children[i], child))
1489 				return (1);
1490 		}
1491 		j++;
1492 	}
1493 	return (0);
1494 }
1495 
1496 static void
1497 witness_levelall (void)
1498 {
1499 	struct witness_list *list;
1500 	struct witness *w, *w1;
1501 
1502 	/*
1503 	 * First clear all levels.
1504 	 */
1505 	STAILQ_FOREACH(w, &w_all, w_list) {
1506 		w->w_level = 0;
1507 	}
1508 
1509 	/*
1510 	 * Look for locks with no parent and level all their descendants.
1511 	 */
1512 	STAILQ_FOREACH(w, &w_all, w_list) {
1513 		/*
1514 		 * This is just an optimization, technically we could get
1515 		 * away just walking the all list each time.
1516 		 */
1517 		if (w->w_class->lc_flags & LC_SLEEPLOCK)
1518 			list = &w_sleep;
1519 		else
1520 			list = &w_spin;
1521 		STAILQ_FOREACH(w1, list, w_typelist) {
1522 			if (isitmychild(w1, w))
1523 				goto skip;
1524 		}
1525 		witness_leveldescendents(w, 0);
1526 	skip:
1527 		;	/* silence GCC 3.x */
1528 	}
1529 }
1530 
1531 static void
1532 witness_leveldescendents(struct witness *parent, int level)
1533 {
1534 	struct witness_child_list_entry *wcl;
1535 	int i;
1536 
1537 	if (parent->w_level < level)
1538 		parent->w_level = level;
1539 	level++;
1540 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1541 		for (i = 0; i < wcl->wcl_count; i++)
1542 			witness_leveldescendents(wcl->wcl_children[i], level);
1543 }
1544 
1545 static void
1546 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1547 			   struct witness *parent, int indent)
1548 {
1549 	struct witness_child_list_entry *wcl;
1550 	int i, level;
1551 
1552 	level = parent->w_level;
1553 	prnt("%-2d", level);
1554 	for (i = 0; i < indent; i++)
1555 		prnt(" ");
1556 	if (parent->w_refcount > 0)
1557 		prnt("%s", parent->w_name);
1558 	else
1559 		prnt("(dead)");
1560 	if (parent->w_displayed) {
1561 		prnt(" -- (already displayed)\n");
1562 		return;
1563 	}
1564 	parent->w_displayed = 1;
1565 	if (parent->w_refcount > 0) {
1566 		if (parent->w_file != NULL)
1567 			prnt(" -- last acquired @ %s:%d", parent->w_file,
1568 			    parent->w_line);
1569 	}
1570 	prnt("\n");
1571 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1572 		for (i = 0; i < wcl->wcl_count; i++)
1573 			    witness_displaydescendants(prnt,
1574 				wcl->wcl_children[i], indent + 1);
1575 }
1576 
1577 #ifdef BLESSING
1578 static int
1579 blessed(struct witness *w1, struct witness *w2)
1580 {
1581 	int i;
1582 	struct witness_blessed *b;
1583 
1584 	for (i = 0; i < blessed_count; i++) {
1585 		b = &blessed_list[i];
1586 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1587 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1588 				return (1);
1589 			continue;
1590 		}
1591 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1592 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1593 				return (1);
1594 	}
1595 	return (0);
1596 }
1597 #endif
1598 
1599 static struct witness *
1600 witness_get(void)
1601 {
1602 	struct witness *w;
1603 
1604 	if (witness_watch == 0) {
1605 		mtx_unlock_spin(&w_mtx);
1606 		return (NULL);
1607 	}
1608 	if (STAILQ_EMPTY(&w_free)) {
1609 		witness_watch = 0;
1610 		mtx_unlock_spin(&w_mtx);
1611 		printf("%s: witness exhausted\n", __func__);
1612 		return (NULL);
1613 	}
1614 	w = STAILQ_FIRST(&w_free);
1615 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1616 	bzero(w, sizeof(*w));
1617 	return (w);
1618 }
1619 
1620 static void
1621 witness_free(struct witness *w)
1622 {
1623 
1624 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1625 }
1626 
1627 static struct witness_child_list_entry *
1628 witness_child_get(void)
1629 {
1630 	struct witness_child_list_entry *wcl;
1631 
1632 	if (witness_watch == 0) {
1633 		mtx_unlock_spin(&w_mtx);
1634 		return (NULL);
1635 	}
1636 	wcl = w_child_free;
1637 	if (wcl == NULL) {
1638 		witness_watch = 0;
1639 		mtx_unlock_spin(&w_mtx);
1640 		printf("%s: witness exhausted\n", __func__);
1641 		return (NULL);
1642 	}
1643 	w_child_free = wcl->wcl_next;
1644 	bzero(wcl, sizeof(*wcl));
1645 	return (wcl);
1646 }
1647 
1648 static void
1649 witness_child_free(struct witness_child_list_entry *wcl)
1650 {
1651 
1652 	wcl->wcl_next = w_child_free;
1653 	w_child_free = wcl;
1654 }
1655 
1656 static struct lock_list_entry *
1657 witness_lock_list_get(void)
1658 {
1659 	struct lock_list_entry *lle;
1660 
1661 	if (witness_watch == 0)
1662 		return (NULL);
1663 	mtx_lock_spin(&w_mtx);
1664 	lle = w_lock_list_free;
1665 	if (lle == NULL) {
1666 		witness_watch = 0;
1667 		mtx_unlock_spin(&w_mtx);
1668 		printf("%s: witness exhausted\n", __func__);
1669 		return (NULL);
1670 	}
1671 	w_lock_list_free = lle->ll_next;
1672 	mtx_unlock_spin(&w_mtx);
1673 	bzero(lle, sizeof(*lle));
1674 	return (lle);
1675 }
1676 
1677 static void
1678 witness_lock_list_free(struct lock_list_entry *lle)
1679 {
1680 
1681 	mtx_lock_spin(&w_mtx);
1682 	lle->ll_next = w_lock_list_free;
1683 	w_lock_list_free = lle;
1684 	mtx_unlock_spin(&w_mtx);
1685 }
1686 
1687 static struct lock_instance *
1688 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1689 {
1690 	struct lock_list_entry *lle;
1691 	struct lock_instance *instance;
1692 	int i;
1693 
1694 	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1695 		for (i = lle->ll_count - 1; i >= 0; i--) {
1696 			instance = &lle->ll_children[i];
1697 			if (instance->li_lock == lock)
1698 				return (instance);
1699 		}
1700 	return (NULL);
1701 }
1702 
1703 static void
1704 witness_list_lock(struct lock_instance *instance)
1705 {
1706 	struct lock_object *lock;
1707 
1708 	lock = instance->li_lock;
1709 	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1710 	    "exclusive" : "shared", lock->lo_class->lc_name, lock->lo_name);
1711 	if (lock->lo_type != lock->lo_name)
1712 		printf(" (%s)", lock->lo_type);
1713 	printf(" r = %d (%p) locked @ %s:%d\n",
1714 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1715 	    instance->li_line);
1716 }
1717 
1718 int
1719 witness_list_locks(struct lock_list_entry **lock_list)
1720 {
1721 	struct lock_list_entry *lle;
1722 	int i, nheld;
1723 
1724 	nheld = 0;
1725 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1726 		for (i = lle->ll_count - 1; i >= 0; i--) {
1727 			witness_list_lock(&lle->ll_children[i]);
1728 			nheld++;
1729 		}
1730 	return (nheld);
1731 }
1732 
1733 /*
1734  * This is a bit risky at best.  We call this function when we have timed
1735  * out acquiring a spin lock, and we assume that the other CPU is stuck
1736  * with this lock held.  So, we go groveling around in the other CPU's
1737  * per-cpu data to try to find the lock instance for this spin lock to
1738  * see when it was last acquired.
1739  */
1740 void
1741 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1742 {
1743 	struct lock_instance *instance;
1744 	struct pcpu *pc;
1745 
1746 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1747 		return;
1748 	pc = pcpu_find(owner->td_oncpu);
1749 	instance = find_instance(pc->pc_spinlocks, lock);
1750 	if (instance != NULL)
1751 		witness_list_lock(instance);
1752 }
1753 
1754 void
1755 witness_save(struct lock_object *lock, const char **filep, int *linep)
1756 {
1757 	struct lock_instance *instance;
1758 
1759 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1760 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1761 		return;
1762 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1763 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1764 		    lock->lo_class->lc_name, lock->lo_name);
1765 	instance = find_instance(curthread->td_sleeplocks, lock);
1766 	if (instance == NULL)
1767 		panic("%s: lock (%s) %s not locked", __func__,
1768 		    lock->lo_class->lc_name, lock->lo_name);
1769 	*filep = instance->li_file;
1770 	*linep = instance->li_line;
1771 }
1772 
1773 void
1774 witness_restore(struct lock_object *lock, const char *file, int line)
1775 {
1776 	struct lock_instance *instance;
1777 
1778 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1779 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1780 		return;
1781 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1782 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1783 		    lock->lo_class->lc_name, lock->lo_name);
1784 	instance = find_instance(curthread->td_sleeplocks, lock);
1785 	if (instance == NULL)
1786 		panic("%s: lock (%s) %s not locked", __func__,
1787 		    lock->lo_class->lc_name, lock->lo_name);
1788 	lock->lo_witness->w_file = file;
1789 	lock->lo_witness->w_line = line;
1790 	instance->li_file = file;
1791 	instance->li_line = line;
1792 }
1793 
1794 void
1795 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1796 {
1797 #ifdef INVARIANT_SUPPORT
1798 	struct lock_instance *instance;
1799 
1800 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1801 		return;
1802 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) != 0)
1803 		instance = find_instance(curthread->td_sleeplocks, lock);
1804 	else if ((lock->lo_class->lc_flags & LC_SPINLOCK) != 0)
1805 		instance = find_instance(PCPU_GET(spinlocks), lock);
1806 	else {
1807 		panic("Lock (%s) %s is not sleep or spin!",
1808 		    lock->lo_class->lc_name, lock->lo_name);
1809 	}
1810 	file = fixup_filename(file);
1811 	switch (flags) {
1812 	case LA_UNLOCKED:
1813 		if (instance != NULL)
1814 			panic("Lock (%s) %s locked @ %s:%d.",
1815 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1816 		break;
1817 	case LA_LOCKED:
1818 	case LA_LOCKED | LA_RECURSED:
1819 	case LA_LOCKED | LA_NOTRECURSED:
1820 	case LA_SLOCKED:
1821 	case LA_SLOCKED | LA_RECURSED:
1822 	case LA_SLOCKED | LA_NOTRECURSED:
1823 	case LA_XLOCKED:
1824 	case LA_XLOCKED | LA_RECURSED:
1825 	case LA_XLOCKED | LA_NOTRECURSED:
1826 		if (instance == NULL) {
1827 			panic("Lock (%s) %s not locked @ %s:%d.",
1828 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1829 			break;
1830 		}
1831 		if ((flags & LA_XLOCKED) != 0 &&
1832 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1833 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1834 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1835 		if ((flags & LA_SLOCKED) != 0 &&
1836 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1837 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1838 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1839 		if ((flags & LA_RECURSED) != 0 &&
1840 		    (instance->li_flags & LI_RECURSEMASK) == 0)
1841 			panic("Lock (%s) %s not recursed @ %s:%d.",
1842 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1843 		if ((flags & LA_NOTRECURSED) != 0 &&
1844 		    (instance->li_flags & LI_RECURSEMASK) != 0)
1845 			panic("Lock (%s) %s recursed @ %s:%d.",
1846 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1847 		break;
1848 	default:
1849 		panic("Invalid lock assertion at %s:%d.", file, line);
1850 
1851 	}
1852 #endif	/* INVARIANT_SUPPORT */
1853 }
1854 
1855 #ifdef DDB
1856 static void
1857 witness_list(struct thread *td)
1858 {
1859 
1860 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1861 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1862 
1863 	if (witness_watch == 0)
1864 		return;
1865 
1866 	witness_list_locks(&td->td_sleeplocks);
1867 
1868 	/*
1869 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1870 	 * if td is currently executing on some other CPU and holds spin locks
1871 	 * as we won't display those locks.  If we had a MI way of getting
1872 	 * the per-cpu data for a given cpu then we could use
1873 	 * td->td_oncpu to get the list of spinlocks for this thread
1874 	 * and "fix" this.
1875 	 *
1876 	 * That still wouldn't really fix this unless we locked sched_lock
1877 	 * or stopped the other CPU to make sure it wasn't changing the list
1878 	 * out from under us.  It is probably best to just not try to handle
1879 	 * threads on other CPU's for now.
1880 	 */
1881 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1882 		witness_list_locks(PCPU_PTR(spinlocks));
1883 }
1884 
1885 DB_SHOW_COMMAND(locks, db_witness_list)
1886 {
1887 	struct thread *td;
1888 	pid_t pid;
1889 	struct proc *p;
1890 
1891 	if (have_addr) {
1892 		pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1893 		    ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1894 		    ((addr >> 16) % 16) * 10000;
1895 		/* sx_slock(&allproc_lock); */
1896 		FOREACH_PROC_IN_SYSTEM(p) {
1897 			if (p->p_pid == pid)
1898 				break;
1899 		}
1900 		/* sx_sunlock(&allproc_lock); */
1901 		if (p == NULL) {
1902 			db_printf("pid %d not found\n", pid);
1903 			return;
1904 		}
1905 		FOREACH_THREAD_IN_PROC(p, td) {
1906 			witness_list(td);
1907 		}
1908 	} else {
1909 		td = curthread;
1910 		witness_list(td);
1911 	}
1912 }
1913 
1914 DB_SHOW_COMMAND(witness, db_witness_display)
1915 {
1916 
1917 	witness_display(db_printf);
1918 }
1919 #endif
1920