xref: /freebsd/sys/kern/subr_witness.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89 
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101 
102 #include <ddb/ddb.h>
103 
104 #include <machine/stdarg.h>
105 
106 /* Define this to check for blessed mutexes */
107 #undef BLESSING
108 
109 #define WITNESS_COUNT 1024
110 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
111 /*
112  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
113  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
114  * probably be safe for the most part, but it's still a SWAG.
115  */
116 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
117 
118 #define	WITNESS_NCHILDREN 6
119 
120 struct witness_child_list_entry;
121 
122 struct witness {
123 	const	char *w_name;
124 	struct	lock_class *w_class;
125 	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
126 	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
127 	struct	witness_child_list_entry *w_children;	/* Great evilness... */
128 	const	char *w_file;
129 	int	w_line;
130 	u_int	w_level;
131 	u_int	w_refcount;
132 	u_char	w_Giant_squawked:1;
133 	u_char	w_other_squawked:1;
134 	u_char	w_same_squawked:1;
135 	u_char	w_displayed:1;
136 };
137 
138 struct witness_child_list_entry {
139 	struct	witness_child_list_entry *wcl_next;
140 	struct	witness *wcl_children[WITNESS_NCHILDREN];
141 	u_int	wcl_count;
142 };
143 
144 STAILQ_HEAD(witness_list, witness);
145 
146 #ifdef BLESSING
147 struct witness_blessed {
148 	const	char *b_lock1;
149 	const	char *b_lock2;
150 };
151 #endif
152 
153 struct witness_order_list_entry {
154 	const	char *w_name;
155 	struct	lock_class *w_class;
156 };
157 
158 #ifdef BLESSING
159 static int	blessed(struct witness *, struct witness *);
160 #endif
161 static int	depart(struct witness *w);
162 static struct	witness *enroll(const char *description,
163 				struct lock_class *lock_class);
164 static int	insertchild(struct witness *parent, struct witness *child);
165 static int	isitmychild(struct witness *parent, struct witness *child);
166 static int	isitmydescendant(struct witness *parent, struct witness *child);
167 static int	itismychild(struct witness *parent, struct witness *child);
168 static int	rebalancetree(struct witness_list *list);
169 static void	removechild(struct witness *parent, struct witness *child);
170 static int	reparentchildren(struct witness *newparent,
171 		    struct witness *oldparent);
172 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
173 static void	witness_displaydescendants(void(*)(const char *fmt, ...),
174 					   struct witness *, int indent);
175 static const char *fixup_filename(const char *file);
176 static void	witness_leveldescendents(struct witness *parent, int level);
177 static void	witness_levelall(void);
178 static struct	witness *witness_get(void);
179 static void	witness_free(struct witness *m);
180 static struct	witness_child_list_entry *witness_child_get(void);
181 static void	witness_child_free(struct witness_child_list_entry *wcl);
182 static struct	lock_list_entry *witness_lock_list_get(void);
183 static void	witness_lock_list_free(struct lock_list_entry *lle);
184 static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
185 					     struct lock_object *lock);
186 static void	witness_list_lock(struct lock_instance *instance);
187 #ifdef DDB
188 static void	witness_list(struct thread *td);
189 static void	witness_display_list(void(*prnt)(const char *fmt, ...),
190 				     struct witness_list *list);
191 static void	witness_display(void(*)(const char *fmt, ...));
192 #endif
193 
194 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
195 
196 /*
197  * If set to 0, witness is disabled.  If set to 1, witness performs full lock
198  * order checking for all locks.  If set to 2 or higher, then witness skips
199  * the full lock order check if the lock being acquired is at a higher level
200  * (i.e. farther down in the tree) than the current lock.  This last mode is
201  * somewhat experimental and not considered fully safe.  At runtime, this
202  * value may be set to 0 to turn off witness.  witness is not allowed be
203  * turned on once it is turned off, however.
204  */
205 static int witness_watch = 1;
206 TUNABLE_INT("debug.witness.watch", &witness_watch);
207 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
208     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
209 
210 #ifdef KDB
211 /*
212  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
213  * to drop into kdebug() when:
214  *	- a lock heirarchy violation occurs
215  *	- locks are held when going to sleep.
216  */
217 #ifdef WITNESS_KDB
218 int	witness_kdb = 1;
219 #else
220 int	witness_kdb = 0;
221 #endif
222 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
223 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
224 
225 /*
226  * When KDB is enabled and witness_trace is set to 1, it will cause the system
227  * to print a stack trace:
228  *	- a lock heirarchy violation occurs
229  *	- locks are held when going to sleep.
230  */
231 int	witness_trace = 1;
232 TUNABLE_INT("debug.witness.trace", &witness_trace);
233 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
234 #endif /* KDB */
235 
236 #ifdef WITNESS_SKIPSPIN
237 int	witness_skipspin = 1;
238 #else
239 int	witness_skipspin = 0;
240 #endif
241 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
242 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
243     &witness_skipspin, 0, "");
244 
245 static struct mtx w_mtx;
246 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
247 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
248 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
249 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
250 static struct witness_child_list_entry *w_child_free = NULL;
251 static struct lock_list_entry *w_lock_list_free = NULL;
252 
253 static struct witness w_data[WITNESS_COUNT];
254 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
255 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
256 
257 static struct witness_order_list_entry order_lists[] = {
258 	{ "proctree", &lock_class_sx },
259 	{ "allproc", &lock_class_sx },
260 	{ "Giant", &lock_class_mtx_sleep },
261 	{ "filedesc structure", &lock_class_mtx_sleep },
262 	{ "pipe mutex", &lock_class_mtx_sleep },
263 	{ "sigio lock", &lock_class_mtx_sleep },
264 	{ "process group", &lock_class_mtx_sleep },
265 	{ "process lock", &lock_class_mtx_sleep },
266 	{ "session", &lock_class_mtx_sleep },
267 	{ "uidinfo hash", &lock_class_mtx_sleep },
268 	{ "uidinfo struct", &lock_class_mtx_sleep },
269 	{ "allprison", &lock_class_mtx_sleep },
270 	{ NULL, NULL },
271 	/*
272 	 * Sockets
273 	 */
274 	{ "filedesc structure", &lock_class_mtx_sleep },
275 	{ "accept", &lock_class_mtx_sleep },
276 	{ "so_snd", &lock_class_mtx_sleep },
277 	{ "so_rcv", &lock_class_mtx_sleep },
278 	{ "sellck", &lock_class_mtx_sleep },
279 	{ NULL, NULL },
280 	/*
281 	 * Routing
282 	 */
283 	{ "so_rcv", &lock_class_mtx_sleep },
284 	{ "radix node head", &lock_class_mtx_sleep },
285 	{ "rtentry", &lock_class_mtx_sleep },
286 	{ "ifaddr", &lock_class_mtx_sleep },
287 	{ NULL, NULL },
288 	/*
289 	 * UNIX Domain Sockets
290 	 */
291 	{ "unp", &lock_class_mtx_sleep },
292 	{ "so_snd", &lock_class_mtx_sleep },
293 	{ NULL, NULL },
294 	/*
295 	 * UDP/IP
296 	 */
297 	{ "udp", &lock_class_mtx_sleep },
298 	{ "udpinp", &lock_class_mtx_sleep },
299 	{ "so_snd", &lock_class_mtx_sleep },
300 	{ NULL, NULL },
301 	/*
302 	 * TCP/IP
303 	 */
304 	{ "tcp", &lock_class_mtx_sleep },
305 	{ "tcpinp", &lock_class_mtx_sleep },
306 	{ "so_snd", &lock_class_mtx_sleep },
307 	{ NULL, NULL },
308 	/*
309 	 * SLIP
310 	 */
311 	{ "slip_mtx", &lock_class_mtx_sleep },
312 	{ "slip sc_mtx", &lock_class_mtx_sleep },
313 	{ NULL, NULL },
314 	/*
315 	 * netatalk
316 	 */
317 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
318 	{ "ddp_mtx", &lock_class_mtx_sleep },
319 	{ NULL, NULL },
320 	/*
321 	 * BPF
322 	 */
323 	{ "bpf global lock", &lock_class_mtx_sleep },
324 	{ "bpf interface lock", &lock_class_mtx_sleep },
325 	{ "bpf cdev lock", &lock_class_mtx_sleep },
326 	{ NULL, NULL },
327 	/*
328 	 * spin locks
329 	 */
330 #ifdef SMP
331 	{ "ap boot", &lock_class_mtx_spin },
332 #endif
333 	{ "sio", &lock_class_mtx_spin },
334 #ifdef __i386__
335 	{ "cy", &lock_class_mtx_spin },
336 #endif
337 	{ "uart_hwmtx", &lock_class_mtx_spin },
338 	{ "sabtty", &lock_class_mtx_spin },
339 	{ "zstty", &lock_class_mtx_spin },
340 	{ "ng_node", &lock_class_mtx_spin },
341 	{ "ng_worklist", &lock_class_mtx_spin },
342 	{ "taskqueue_fast", &lock_class_mtx_spin },
343 	{ "intr table", &lock_class_mtx_spin },
344 	{ "ithread table lock", &lock_class_mtx_spin },
345 	{ "sleepq chain", &lock_class_mtx_spin },
346 	{ "sched lock", &lock_class_mtx_spin },
347 	{ "turnstile chain", &lock_class_mtx_spin },
348 	{ "td_contested", &lock_class_mtx_spin },
349 	{ "callout", &lock_class_mtx_spin },
350 	{ "entropy harvest mutex", &lock_class_mtx_spin },
351 	/*
352 	 * leaf locks
353 	 */
354 	{ "allpmaps", &lock_class_mtx_spin },
355 	{ "vm page queue free mutex", &lock_class_mtx_spin },
356 	{ "icu", &lock_class_mtx_spin },
357 #ifdef SMP
358 	{ "smp rendezvous", &lock_class_mtx_spin },
359 #if defined(__i386__) || defined(__amd64__)
360 	{ "tlb", &lock_class_mtx_spin },
361 #endif
362 #ifdef __sparc64__
363 	{ "ipi", &lock_class_mtx_spin },
364 #endif
365 #endif
366 	{ "clk", &lock_class_mtx_spin },
367 	{ "mutex profiling lock", &lock_class_mtx_spin },
368 	{ "kse zombie lock", &lock_class_mtx_spin },
369 	{ "ALD Queue", &lock_class_mtx_spin },
370 #ifdef __ia64__
371 	{ "MCA spin lock", &lock_class_mtx_spin },
372 #endif
373 #if defined(__i386__) || defined(__amd64__)
374 	{ "pcicfg", &lock_class_mtx_spin },
375 #endif
376 	{ NULL, NULL },
377 	{ NULL, NULL }
378 };
379 
380 #ifdef BLESSING
381 /*
382  * Pairs of locks which have been blessed
383  * Don't complain about order problems with blessed locks
384  */
385 static struct witness_blessed blessed_list[] = {
386 };
387 static int blessed_count =
388 	sizeof(blessed_list) / sizeof(struct witness_blessed);
389 #endif
390 
391 /*
392  * List of all locks in the system.
393  */
394 TAILQ_HEAD(, lock_object) all_locks = TAILQ_HEAD_INITIALIZER(all_locks);
395 
396 static struct mtx all_mtx = {
397 	{ &lock_class_mtx_sleep,	/* mtx_object.lo_class */
398 	  "All locks list",		/* mtx_object.lo_name */
399 	  "All locks list",		/* mtx_object.lo_type */
400 	  LO_INITIALIZED,		/* mtx_object.lo_flags */
401 	  { NULL, NULL },		/* mtx_object.lo_list */
402 	  NULL },			/* mtx_object.lo_witness */
403 	MTX_UNOWNED, 0			/* mtx_lock, mtx_recurse */
404 };
405 
406 /*
407  * This global is set to 0 once it becomes safe to use the witness code.
408  */
409 static int witness_cold = 1;
410 
411 /*
412  * Global variables for book keeping.
413  */
414 static int lock_cur_cnt;
415 static int lock_max_cnt;
416 
417 /*
418  * The WITNESS-enabled diagnostic code.
419  */
420 static void
421 witness_initialize(void *dummy __unused)
422 {
423 	struct lock_object *lock;
424 	struct witness_order_list_entry *order;
425 	struct witness *w, *w1;
426 	int i;
427 
428 	/*
429 	 * We have to release Giant before initializing its witness
430 	 * structure so that WITNESS doesn't get confused.
431 	 */
432 	mtx_unlock(&Giant);
433 	mtx_assert(&Giant, MA_NOTOWNED);
434 
435 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
436 	TAILQ_INSERT_HEAD(&all_locks, &all_mtx.mtx_object, lo_list);
437 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
438 	    MTX_NOWITNESS);
439 	for (i = 0; i < WITNESS_COUNT; i++)
440 		witness_free(&w_data[i]);
441 	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
442 		witness_child_free(&w_childdata[i]);
443 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
444 		witness_lock_list_free(&w_locklistdata[i]);
445 
446 	/* First add in all the specified order lists. */
447 	for (order = order_lists; order->w_name != NULL; order++) {
448 		w = enroll(order->w_name, order->w_class);
449 		if (w == NULL)
450 			continue;
451 		w->w_file = "order list";
452 		for (order++; order->w_name != NULL; order++) {
453 			w1 = enroll(order->w_name, order->w_class);
454 			if (w1 == NULL)
455 				continue;
456 			w1->w_file = "order list";
457 			if (!itismychild(w, w1))
458 				panic("Not enough memory for static orders!");
459 			w = w1;
460 		}
461 	}
462 
463 	/* Iterate through all locks and add them to witness. */
464 	mtx_lock(&all_mtx);
465 	TAILQ_FOREACH(lock, &all_locks, lo_list) {
466 		if (lock->lo_flags & LO_WITNESS)
467 			lock->lo_witness = enroll(lock->lo_type,
468 			    lock->lo_class);
469 		else
470 			lock->lo_witness = NULL;
471 	}
472 	mtx_unlock(&all_mtx);
473 
474 	/* Mark the witness code as being ready for use. */
475 	atomic_store_rel_int(&witness_cold, 0);
476 
477 	mtx_lock(&Giant);
478 }
479 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
480 
481 static int
482 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
483 {
484 	int error, value;
485 
486 	value = witness_watch;
487 	error = sysctl_handle_int(oidp, &value, 0, req);
488 	if (error != 0 || req->newptr == NULL)
489 		return (error);
490 	error = suser(req->td);
491 	if (error != 0)
492 		return (error);
493 	if (value == witness_watch)
494 		return (0);
495 	if (value != 0)
496 		return (EINVAL);
497 	witness_watch = 0;
498 	return (0);
499 }
500 
501 void
502 witness_init(struct lock_object *lock)
503 {
504 	struct lock_class *class;
505 
506 	class = lock->lo_class;
507 	if (lock->lo_flags & LO_INITIALIZED)
508 		panic("%s: lock (%s) %s is already initialized", __func__,
509 		    class->lc_name, lock->lo_name);
510 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
511 	    (class->lc_flags & LC_RECURSABLE) == 0)
512 		panic("%s: lock (%s) %s can not be recursable", __func__,
513 		    class->lc_name, lock->lo_name);
514 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
515 	    (class->lc_flags & LC_SLEEPABLE) == 0)
516 		panic("%s: lock (%s) %s can not be sleepable", __func__,
517 		    class->lc_name, lock->lo_name);
518 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
519 	    (class->lc_flags & LC_UPGRADABLE) == 0)
520 		panic("%s: lock (%s) %s can not be upgradable", __func__,
521 		    class->lc_name, lock->lo_name);
522 
523 	mtx_lock(&all_mtx);
524 	TAILQ_INSERT_TAIL(&all_locks, lock, lo_list);
525 	lock->lo_flags |= LO_INITIALIZED;
526 	lock_cur_cnt++;
527 	if (lock_cur_cnt > lock_max_cnt)
528 		lock_max_cnt = lock_cur_cnt;
529 	mtx_unlock(&all_mtx);
530 	if (!witness_cold && witness_watch != 0 && panicstr == NULL &&
531 	    (lock->lo_flags & LO_WITNESS) != 0)
532 		lock->lo_witness = enroll(lock->lo_type, class);
533 	else
534 		lock->lo_witness = NULL;
535 }
536 
537 void
538 witness_destroy(struct lock_object *lock)
539 {
540 	struct witness *w;
541 
542 	if (witness_cold)
543 		panic("lock (%s) %s destroyed while witness_cold",
544 		    lock->lo_class->lc_name, lock->lo_name);
545 	if ((lock->lo_flags & LO_INITIALIZED) == 0)
546 		panic("%s: lock (%s) %s is not initialized", __func__,
547 		    lock->lo_class->lc_name, lock->lo_name);
548 
549 	/* XXX: need to verify that no one holds the lock */
550 	w = lock->lo_witness;
551 	if (w != NULL) {
552 		mtx_lock_spin(&w_mtx);
553 		MPASS(w->w_refcount > 0);
554 		w->w_refcount--;
555 
556 		/*
557 		 * Lock is already released if we have an allocation failure
558 		 * and depart() fails.
559 		 */
560 		if (w->w_refcount != 0 || depart(w))
561 			mtx_unlock_spin(&w_mtx);
562 	}
563 
564 	mtx_lock(&all_mtx);
565 	lock_cur_cnt--;
566 	TAILQ_REMOVE(&all_locks, lock, lo_list);
567 	lock->lo_flags &= ~LO_INITIALIZED;
568 	mtx_unlock(&all_mtx);
569 }
570 
571 #ifdef DDB
572 static void
573 witness_display_list(void(*prnt)(const char *fmt, ...),
574 		     struct witness_list *list)
575 {
576 	struct witness *w;
577 
578 	STAILQ_FOREACH(w, list, w_typelist) {
579 		if (w->w_file == NULL || w->w_level > 0)
580 			continue;
581 		/*
582 		 * This lock has no anscestors, display its descendants.
583 		 */
584 		witness_displaydescendants(prnt, w, 0);
585 	}
586 }
587 
588 static void
589 witness_display(void(*prnt)(const char *fmt, ...))
590 {
591 	struct witness *w;
592 
593 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
594 	witness_levelall();
595 
596 	/* Clear all the displayed flags. */
597 	STAILQ_FOREACH(w, &w_all, w_list) {
598 		w->w_displayed = 0;
599 	}
600 
601 	/*
602 	 * First, handle sleep locks which have been acquired at least
603 	 * once.
604 	 */
605 	prnt("Sleep locks:\n");
606 	witness_display_list(prnt, &w_sleep);
607 
608 	/*
609 	 * Now do spin locks which have been acquired at least once.
610 	 */
611 	prnt("\nSpin locks:\n");
612 	witness_display_list(prnt, &w_spin);
613 
614 	/*
615 	 * Finally, any locks which have not been acquired yet.
616 	 */
617 	prnt("\nLocks which were never acquired:\n");
618 	STAILQ_FOREACH(w, &w_all, w_list) {
619 		if (w->w_file != NULL || w->w_refcount == 0)
620 			continue;
621 		prnt("%s\n", w->w_name);
622 	}
623 }
624 #endif /* DDB */
625 
626 /* Trim useless garbage from filenames. */
627 static const char *
628 fixup_filename(const char *file)
629 {
630 
631 	if (file == NULL)
632 		return (NULL);
633 	while (strncmp(file, "../", 3) == 0)
634 		file += 3;
635 	return (file);
636 }
637 
638 int
639 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
640 {
641 
642 	if (witness_watch == 0 || panicstr != NULL)
643 		return (0);
644 
645 	/* Require locks that witness knows about. */
646 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
647 	    lock2->lo_witness == NULL)
648 		return (EINVAL);
649 
650 	MPASS(!mtx_owned(&w_mtx));
651 	mtx_lock_spin(&w_mtx);
652 
653 	/*
654 	 * If we already have either an explicit or implied lock order that
655 	 * is the other way around, then return an error.
656 	 */
657 	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
658 		mtx_unlock_spin(&w_mtx);
659 		return (EDOOFUS);
660 	}
661 
662 	/* Try to add the new order. */
663 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
664 	    lock2->lo_type, lock1->lo_type);
665 	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
666 		return (ENOMEM);
667 	mtx_unlock_spin(&w_mtx);
668 	return (0);
669 }
670 
671 void
672 witness_checkorder(struct lock_object *lock, int flags, const char *file,
673     int line)
674 {
675 	struct lock_list_entry **lock_list, *lle;
676 	struct lock_instance *lock1, *lock2;
677 	struct lock_class *class;
678 	struct witness *w, *w1;
679 	struct thread *td;
680 	int i, j;
681 
682 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
683 	    panicstr != NULL)
684 		return;
685 
686 	/*
687 	 * Try locks do not block if they fail to acquire the lock, thus
688 	 * there is no danger of deadlocks or of switching while holding a
689 	 * spin lock if we acquire a lock via a try operation.  This
690 	 * function shouldn't even be called for try locks, so panic if
691 	 * that happens.
692 	 */
693 	if (flags & LOP_TRYLOCK)
694 		panic("%s should not be called for try lock operations",
695 		    __func__);
696 
697 	w = lock->lo_witness;
698 	class = lock->lo_class;
699 	td = curthread;
700 	file = fixup_filename(file);
701 
702 	if (class->lc_flags & LC_SLEEPLOCK) {
703 		/*
704 		 * Since spin locks include a critical section, this check
705 		 * implicitly enforces a lock order of all sleep locks before
706 		 * all spin locks.
707 		 */
708 		if (td->td_critnest != 0 && !kdb_active)
709 			panic("blockable sleep lock (%s) %s @ %s:%d",
710 			    class->lc_name, lock->lo_name, file, line);
711 
712 		/*
713 		 * If this is the first lock acquired then just return as
714 		 * no order checking is needed.
715 		 */
716 		if (td->td_sleeplocks == NULL)
717 			return;
718 		lock_list = &td->td_sleeplocks;
719 	} else {
720 		/*
721 		 * If this is the first lock, just return as no order
722 		 * checking is needed.  We check this in both if clauses
723 		 * here as unifying the check would require us to use a
724 		 * critical section to ensure we don't migrate while doing
725 		 * the check.  Note that if this is not the first lock, we
726 		 * are already in a critical section and are safe for the
727 		 * rest of the check.
728 		 */
729 		if (PCPU_GET(spinlocks) == NULL)
730 			return;
731 		lock_list = PCPU_PTR(spinlocks);
732 	}
733 
734 	/*
735 	 * Check to see if we are recursing on a lock we already own.  If
736 	 * so, make sure that we don't mismatch exclusive and shared lock
737 	 * acquires.
738 	 */
739 	lock1 = find_instance(*lock_list, lock);
740 	if (lock1 != NULL) {
741 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
742 		    (flags & LOP_EXCLUSIVE) == 0) {
743 			printf("shared lock of (%s) %s @ %s:%d\n",
744 			    class->lc_name, lock->lo_name, file, line);
745 			printf("while exclusively locked from %s:%d\n",
746 			    lock1->li_file, lock1->li_line);
747 			panic("share->excl");
748 		}
749 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
750 		    (flags & LOP_EXCLUSIVE) != 0) {
751 			printf("exclusive lock of (%s) %s @ %s:%d\n",
752 			    class->lc_name, lock->lo_name, file, line);
753 			printf("while share locked from %s:%d\n",
754 			    lock1->li_file, lock1->li_line);
755 			panic("excl->share");
756 		}
757 		return;
758 	}
759 
760 	/*
761 	 * Try locks do not block if they fail to acquire the lock, thus
762 	 * there is no danger of deadlocks or of switching while holding a
763 	 * spin lock if we acquire a lock via a try operation.
764 	 */
765 	if (flags & LOP_TRYLOCK)
766 		return;
767 
768 	/*
769 	 * Check for duplicate locks of the same type.  Note that we only
770 	 * have to check for this on the last lock we just acquired.  Any
771 	 * other cases will be caught as lock order violations.
772 	 */
773 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
774 	w1 = lock1->li_lock->lo_witness;
775 	if (w1 == w) {
776 		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK))
777 			return;
778 		w->w_same_squawked = 1;
779 		printf("acquiring duplicate lock of same type: \"%s\"\n",
780 			lock->lo_type);
781 		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
782 		    lock1->li_file, lock1->li_line);
783 		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
784 #ifdef KDB
785 		goto debugger;
786 #else
787 		return;
788 #endif
789 	}
790 	MPASS(!mtx_owned(&w_mtx));
791 	mtx_lock_spin(&w_mtx);
792 	/*
793 	 * If we have a known higher number just say ok
794 	 */
795 	if (witness_watch > 1 && w->w_level > w1->w_level) {
796 		mtx_unlock_spin(&w_mtx);
797 		return;
798 	}
799 	/*
800 	 * If we know that the the lock we are acquiring comes after
801 	 * the lock we most recently acquired in the lock order tree,
802 	 * then there is no need for any further checks.
803 	 */
804 	if (isitmydescendant(w1, w)) {
805 		mtx_unlock_spin(&w_mtx);
806 		return;
807 	}
808 	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
809 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
810 
811 			MPASS(j < WITNESS_COUNT);
812 			lock1 = &lle->ll_children[i];
813 			w1 = lock1->li_lock->lo_witness;
814 
815 			/*
816 			 * If this lock doesn't undergo witness checking,
817 			 * then skip it.
818 			 */
819 			if (w1 == NULL) {
820 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
821 				    ("lock missing witness structure"));
822 				continue;
823 			}
824 			/*
825 			 * If we are locking Giant and this is a sleepable
826 			 * lock, then skip it.
827 			 */
828 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
829 			    lock == &Giant.mtx_object)
830 				continue;
831 			/*
832 			 * If we are locking a sleepable lock and this lock
833 			 * is Giant, then skip it.
834 			 */
835 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
836 			    lock1->li_lock == &Giant.mtx_object)
837 				continue;
838 			/*
839 			 * If we are locking a sleepable lock and this lock
840 			 * isn't sleepable, we want to treat it as a lock
841 			 * order violation to enfore a general lock order of
842 			 * sleepable locks before non-sleepable locks.
843 			 */
844 			if (!((lock->lo_flags & LO_SLEEPABLE) != 0 &&
845 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
846 			    /*
847 			     * Check the lock order hierarchy for a reveresal.
848 			     */
849 			    if (!isitmydescendant(w, w1))
850 				continue;
851 			/*
852 			 * We have a lock order violation, check to see if it
853 			 * is allowed or has already been yelled about.
854 			 */
855 			mtx_unlock_spin(&w_mtx);
856 #ifdef BLESSING
857 			/*
858 			 * If the lock order is blessed, just bail.  We don't
859 			 * look for other lock order violations though, which
860 			 * may be a bug.
861 			 */
862 			if (blessed(w, w1))
863 				return;
864 #endif
865 			if (lock1->li_lock == &Giant.mtx_object) {
866 				if (w1->w_Giant_squawked)
867 					return;
868 				else
869 					w1->w_Giant_squawked = 1;
870 			} else {
871 				if (w1->w_other_squawked)
872 					return;
873 				else
874 					w1->w_other_squawked = 1;
875 			}
876 			/*
877 			 * Ok, yell about it.
878 			 */
879 			printf("lock order reversal\n");
880 			/*
881 			 * Try to locate an earlier lock with
882 			 * witness w in our list.
883 			 */
884 			do {
885 				lock2 = &lle->ll_children[i];
886 				MPASS(lock2->li_lock != NULL);
887 				if (lock2->li_lock->lo_witness == w)
888 					break;
889 				if (i == 0 && lle->ll_next != NULL) {
890 					lle = lle->ll_next;
891 					i = lle->ll_count - 1;
892 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
893 				} else
894 					i--;
895 			} while (i >= 0);
896 			if (i < 0) {
897 				printf(" 1st %p %s (%s) @ %s:%d\n",
898 				    lock1->li_lock, lock1->li_lock->lo_name,
899 				    lock1->li_lock->lo_type, lock1->li_file,
900 				    lock1->li_line);
901 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
902 				    lock->lo_name, lock->lo_type, file, line);
903 			} else {
904 				printf(" 1st %p %s (%s) @ %s:%d\n",
905 				    lock2->li_lock, lock2->li_lock->lo_name,
906 				    lock2->li_lock->lo_type, lock2->li_file,
907 				    lock2->li_line);
908 				printf(" 2nd %p %s (%s) @ %s:%d\n",
909 				    lock1->li_lock, lock1->li_lock->lo_name,
910 				    lock1->li_lock->lo_type, lock1->li_file,
911 				    lock1->li_line);
912 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
913 				    lock->lo_name, lock->lo_type, file, line);
914 			}
915 #ifdef KDB
916 			goto debugger;
917 #else
918 			return;
919 #endif
920 		}
921 	}
922 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
923 	/*
924 	 * If requested, build a new lock order.  However, don't build a new
925 	 * relationship between a sleepable lock and Giant if it is in the
926 	 * wrong direction.  The correct lock order is that sleepable locks
927 	 * always come before Giant.
928 	 */
929 	if (flags & LOP_NEWORDER &&
930 	    !(lock1->li_lock == &Giant.mtx_object &&
931 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
932 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
933 		    lock->lo_type, lock1->li_lock->lo_type);
934 		if (!itismychild(lock1->li_lock->lo_witness, w))
935 			/* Witness is dead. */
936 			return;
937 	}
938 	mtx_unlock_spin(&w_mtx);
939 	return;
940 
941 #ifdef KDB
942 debugger:
943 	if (witness_trace)
944 		kdb_backtrace();
945 	if (witness_kdb)
946 		kdb_enter(__func__);
947 #endif
948 }
949 
950 void
951 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
952 {
953 	struct lock_list_entry **lock_list, *lle;
954 	struct lock_instance *instance;
955 	struct witness *w;
956 	struct thread *td;
957 
958 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
959 	    panicstr != NULL)
960 		return;
961 	w = lock->lo_witness;
962 	td = curthread;
963 	file = fixup_filename(file);
964 
965 	/* Determine lock list for this lock. */
966 	if (lock->lo_class->lc_flags & LC_SLEEPLOCK)
967 		lock_list = &td->td_sleeplocks;
968 	else
969 		lock_list = PCPU_PTR(spinlocks);
970 
971 	/* Check to see if we are recursing on a lock we already own. */
972 	instance = find_instance(*lock_list, lock);
973 	if (instance != NULL) {
974 		instance->li_flags++;
975 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
976 		    td->td_proc->p_pid, lock->lo_name,
977 		    instance->li_flags & LI_RECURSEMASK);
978 		instance->li_file = file;
979 		instance->li_line = line;
980 		return;
981 	}
982 
983 	/* Update per-witness last file and line acquire. */
984 	w->w_file = file;
985 	w->w_line = line;
986 
987 	/* Find the next open lock instance in the list and fill it. */
988 	lle = *lock_list;
989 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
990 		lle = witness_lock_list_get();
991 		if (lle == NULL)
992 			return;
993 		lle->ll_next = *lock_list;
994 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
995 		    td->td_proc->p_pid, lle);
996 		*lock_list = lle;
997 	}
998 	instance = &lle->ll_children[lle->ll_count++];
999 	instance->li_lock = lock;
1000 	instance->li_line = line;
1001 	instance->li_file = file;
1002 	if ((flags & LOP_EXCLUSIVE) != 0)
1003 		instance->li_flags = LI_EXCLUSIVE;
1004 	else
1005 		instance->li_flags = 0;
1006 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1007 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1008 }
1009 
1010 void
1011 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1012 {
1013 	struct lock_instance *instance;
1014 	struct lock_class *class;
1015 
1016 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1017 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1018 		return;
1019 	class = lock->lo_class;
1020 	file = fixup_filename(file);
1021 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1022 		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1023 		    class->lc_name, lock->lo_name, file, line);
1024 	if ((flags & LOP_TRYLOCK) == 0)
1025 		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1026 		    lock->lo_name, file, line);
1027 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1028 		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1029 		    class->lc_name, lock->lo_name, file, line);
1030 	instance = find_instance(curthread->td_sleeplocks, lock);
1031 	if (instance == NULL)
1032 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1033 		    class->lc_name, lock->lo_name, file, line);
1034 	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1035 		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1036 		    class->lc_name, lock->lo_name, file, line);
1037 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1038 		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1039 		    class->lc_name, lock->lo_name,
1040 		    instance->li_flags & LI_RECURSEMASK, file, line);
1041 	instance->li_flags |= LI_EXCLUSIVE;
1042 }
1043 
1044 void
1045 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1046     int line)
1047 {
1048 	struct lock_instance *instance;
1049 	struct lock_class *class;
1050 
1051 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1052 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1053 		return;
1054 	class = lock->lo_class;
1055 	file = fixup_filename(file);
1056 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1057 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1058 		    class->lc_name, lock->lo_name, file, line);
1059 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1060 		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1061 		    class->lc_name, lock->lo_name, file, line);
1062 	instance = find_instance(curthread->td_sleeplocks, lock);
1063 	if (instance == NULL)
1064 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1065 		    class->lc_name, lock->lo_name, file, line);
1066 	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1067 		panic("downgrade of shared lock (%s) %s @ %s:%d",
1068 		    class->lc_name, lock->lo_name, file, line);
1069 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1070 		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1071 		    class->lc_name, lock->lo_name,
1072 		    instance->li_flags & LI_RECURSEMASK, file, line);
1073 	instance->li_flags &= ~LI_EXCLUSIVE;
1074 }
1075 
1076 void
1077 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1078 {
1079 	struct lock_list_entry **lock_list, *lle;
1080 	struct lock_instance *instance;
1081 	struct lock_class *class;
1082 	struct thread *td;
1083 	register_t s;
1084 	int i, j;
1085 
1086 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1087 	    panicstr != NULL)
1088 		return;
1089 	td = curthread;
1090 	class = lock->lo_class;
1091 	file = fixup_filename(file);
1092 
1093 	/* Find lock instance associated with this lock. */
1094 	if (class->lc_flags & LC_SLEEPLOCK)
1095 		lock_list = &td->td_sleeplocks;
1096 	else
1097 		lock_list = PCPU_PTR(spinlocks);
1098 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1099 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1100 			instance = &(*lock_list)->ll_children[i];
1101 			if (instance->li_lock == lock)
1102 				goto found;
1103 		}
1104 	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1105 	    file, line);
1106 found:
1107 
1108 	/* First, check for shared/exclusive mismatches. */
1109 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1110 	    (flags & LOP_EXCLUSIVE) == 0) {
1111 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1112 		    lock->lo_name, file, line);
1113 		printf("while exclusively locked from %s:%d\n",
1114 		    instance->li_file, instance->li_line);
1115 		panic("excl->ushare");
1116 	}
1117 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1118 	    (flags & LOP_EXCLUSIVE) != 0) {
1119 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1120 		    lock->lo_name, file, line);
1121 		printf("while share locked from %s:%d\n", instance->li_file,
1122 		    instance->li_line);
1123 		panic("share->uexcl");
1124 	}
1125 
1126 	/* If we are recursed, unrecurse. */
1127 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1128 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1129 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1130 		    instance->li_flags);
1131 		instance->li_flags--;
1132 		return;
1133 	}
1134 
1135 	/* Otherwise, remove this item from the list. */
1136 	s = intr_disable();
1137 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1138 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1139 	    (*lock_list)->ll_count - 1);
1140 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1141 		(*lock_list)->ll_children[j] =
1142 		    (*lock_list)->ll_children[j + 1];
1143 	(*lock_list)->ll_count--;
1144 	intr_restore(s);
1145 
1146 	/* If this lock list entry is now empty, free it. */
1147 	if ((*lock_list)->ll_count == 0) {
1148 		lle = *lock_list;
1149 		*lock_list = lle->ll_next;
1150 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1151 		    td->td_proc->p_pid, lle);
1152 		witness_lock_list_free(lle);
1153 	}
1154 }
1155 
1156 /*
1157  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1158  * exempt Giant and sleepable locks from the checks as well.  If any
1159  * non-exempt locks are held, then a supplied message is printed to the
1160  * console along with a list of the offending locks.  If indicated in the
1161  * flags then a failure results in a panic as well.
1162  */
1163 int
1164 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1165 {
1166 	struct lock_list_entry *lle;
1167 	struct lock_instance *lock1;
1168 	struct thread *td;
1169 	va_list ap;
1170 	int i, n;
1171 
1172 	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1173 		return (0);
1174 	n = 0;
1175 	td = curthread;
1176 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1177 		for (i = lle->ll_count - 1; i >= 0; i--) {
1178 			lock1 = &lle->ll_children[i];
1179 			if (lock1->li_lock == lock)
1180 				continue;
1181 			if (flags & WARN_GIANTOK &&
1182 			    lock1->li_lock == &Giant.mtx_object)
1183 				continue;
1184 			if (flags & WARN_SLEEPOK &&
1185 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1186 				continue;
1187 			if (n == 0) {
1188 				va_start(ap, fmt);
1189 				vprintf(fmt, ap);
1190 				va_end(ap);
1191 				printf(" with the following");
1192 				if (flags & WARN_SLEEPOK)
1193 					printf(" non-sleepable");
1194 				printf(" locks held:\n");
1195 			}
1196 			n++;
1197 			witness_list_lock(lock1);
1198 		}
1199 	if (PCPU_GET(spinlocks) != NULL) {
1200 		/*
1201 		 * Since we already hold a spinlock preemption is
1202 		 * already blocked.
1203 		 */
1204 		if (n == 0) {
1205 			va_start(ap, fmt);
1206 			vprintf(fmt, ap);
1207 			va_end(ap);
1208 			printf(" with the following");
1209 			if (flags & WARN_SLEEPOK)
1210 				printf(" non-sleepable");
1211 			printf(" locks held:\n");
1212 		}
1213 		n += witness_list_locks(PCPU_PTR(spinlocks));
1214 	}
1215 	if (flags & WARN_PANIC && n)
1216 		panic("witness_warn");
1217 #ifdef KDB
1218 	else if (witness_kdb && n)
1219 		kdb_enter(__func__);
1220 	else if (witness_trace && n)
1221 		kdb_backtrace();
1222 #endif
1223 	return (n);
1224 }
1225 
1226 const char *
1227 witness_file(struct lock_object *lock)
1228 {
1229 	struct witness *w;
1230 
1231 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1232 		return ("?");
1233 	w = lock->lo_witness;
1234 	return (w->w_file);
1235 }
1236 
1237 int
1238 witness_line(struct lock_object *lock)
1239 {
1240 	struct witness *w;
1241 
1242 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1243 		return (0);
1244 	w = lock->lo_witness;
1245 	return (w->w_line);
1246 }
1247 
1248 static struct witness *
1249 enroll(const char *description, struct lock_class *lock_class)
1250 {
1251 	struct witness *w;
1252 
1253 	if (witness_watch == 0 || panicstr != NULL)
1254 		return (NULL);
1255 	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1256 		return (NULL);
1257 	mtx_lock_spin(&w_mtx);
1258 	STAILQ_FOREACH(w, &w_all, w_list) {
1259 		if (w->w_name == description || (w->w_refcount > 0 &&
1260 		    strcmp(description, w->w_name) == 0)) {
1261 			w->w_refcount++;
1262 			mtx_unlock_spin(&w_mtx);
1263 			if (lock_class != w->w_class)
1264 				panic(
1265 				"lock (%s) %s does not match earlier (%s) lock",
1266 				    description, lock_class->lc_name,
1267 				    w->w_class->lc_name);
1268 			return (w);
1269 		}
1270 	}
1271 	/*
1272 	 * This isn't quite right, as witness_cold is still 0 while we
1273 	 * enroll all the locks initialized before witness_initialize().
1274 	 */
1275 	if ((lock_class->lc_flags & LC_SPINLOCK) && !witness_cold) {
1276 		mtx_unlock_spin(&w_mtx);
1277 		panic("spin lock %s not in order list", description);
1278 	}
1279 	if ((w = witness_get()) == NULL)
1280 		return (NULL);
1281 	w->w_name = description;
1282 	w->w_class = lock_class;
1283 	w->w_refcount = 1;
1284 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1285 	if (lock_class->lc_flags & LC_SPINLOCK)
1286 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1287 	else if (lock_class->lc_flags & LC_SLEEPLOCK)
1288 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1289 	else {
1290 		mtx_unlock_spin(&w_mtx);
1291 		panic("lock class %s is not sleep or spin",
1292 		    lock_class->lc_name);
1293 	}
1294 	mtx_unlock_spin(&w_mtx);
1295 	return (w);
1296 }
1297 
1298 /* Don't let the door bang you on the way out... */
1299 static int
1300 depart(struct witness *w)
1301 {
1302 	struct witness_child_list_entry *wcl, *nwcl;
1303 	struct witness_list *list;
1304 	struct witness *parent;
1305 
1306 	MPASS(w->w_refcount == 0);
1307 	if (w->w_class->lc_flags & LC_SLEEPLOCK)
1308 		list = &w_sleep;
1309 	else
1310 		list = &w_spin;
1311 	/*
1312 	 * First, we run through the entire tree looking for any
1313 	 * witnesses that the outgoing witness is a child of.  For
1314 	 * each parent that we find, we reparent all the direct
1315 	 * children of the outgoing witness to its parent.
1316 	 */
1317 	STAILQ_FOREACH(parent, list, w_typelist) {
1318 		if (!isitmychild(parent, w))
1319 			continue;
1320 		removechild(parent, w);
1321 		if (!reparentchildren(parent, w))
1322 			return (0);
1323 	}
1324 
1325 	/*
1326 	 * Now we go through and free up the child list of the
1327 	 * outgoing witness.
1328 	 */
1329 	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1330 		nwcl = wcl->wcl_next;
1331 		witness_child_free(wcl);
1332 	}
1333 
1334 	/*
1335 	 * Detach from various lists and free.
1336 	 */
1337 	STAILQ_REMOVE(list, w, witness, w_typelist);
1338 	STAILQ_REMOVE(&w_all, w, witness, w_list);
1339 	witness_free(w);
1340 
1341 	/* Finally, fixup the tree. */
1342 	return (rebalancetree(list));
1343 }
1344 
1345 /*
1346  * Prune an entire lock order tree.  We look for cases where a lock
1347  * is now both a descendant and a direct child of a given lock.  In
1348  * that case, we want to remove the direct child link from the tree.
1349  *
1350  * Returns false if insertchild() fails.
1351  */
1352 static int
1353 rebalancetree(struct witness_list *list)
1354 {
1355 	struct witness *child, *parent;
1356 
1357 	STAILQ_FOREACH(child, list, w_typelist) {
1358 		STAILQ_FOREACH(parent, list, w_typelist) {
1359 			if (!isitmychild(parent, child))
1360 				continue;
1361 			removechild(parent, child);
1362 			if (isitmydescendant(parent, child))
1363 				continue;
1364 			if (!insertchild(parent, child))
1365 				return (0);
1366 		}
1367 	}
1368 	witness_levelall();
1369 	return (1);
1370 }
1371 
1372 /*
1373  * Add "child" as a direct child of "parent".  Returns false if
1374  * we fail due to out of memory.
1375  */
1376 static int
1377 insertchild(struct witness *parent, struct witness *child)
1378 {
1379 	struct witness_child_list_entry **wcl;
1380 
1381 	MPASS(child != NULL && parent != NULL);
1382 
1383 	/*
1384 	 * Insert "child" after "parent"
1385 	 */
1386 	wcl = &parent->w_children;
1387 	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1388 		wcl = &(*wcl)->wcl_next;
1389 	if (*wcl == NULL) {
1390 		*wcl = witness_child_get();
1391 		if (*wcl == NULL)
1392 			return (0);
1393 	}
1394 	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1395 
1396 	return (1);
1397 }
1398 
1399 /*
1400  * Make all the direct descendants of oldparent be direct descendants
1401  * of newparent.
1402  */
1403 static int
1404 reparentchildren(struct witness *newparent, struct witness *oldparent)
1405 {
1406 	struct witness_child_list_entry *wcl;
1407 	int i;
1408 
1409 	/* Avoid making a witness a child of itself. */
1410 	MPASS(!isitmychild(oldparent, newparent));
1411 
1412 	for (wcl = oldparent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1413 		for (i = 0; i < wcl->wcl_count; i++)
1414 			if (!insertchild(newparent, wcl->wcl_children[i]))
1415 				return (0);
1416 	return (1);
1417 }
1418 
1419 static int
1420 itismychild(struct witness *parent, struct witness *child)
1421 {
1422 	struct witness_list *list;
1423 
1424 	MPASS(child != NULL && parent != NULL);
1425 	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1426 	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1427 		panic(
1428 		"%s: parent (%s) and child (%s) are not the same lock type",
1429 		    __func__, parent->w_class->lc_name,
1430 		    child->w_class->lc_name);
1431 
1432 	if (!insertchild(parent, child))
1433 		return (0);
1434 
1435 	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1436 		list = &w_sleep;
1437 	else
1438 		list = &w_spin;
1439 	return (rebalancetree(list));
1440 }
1441 
1442 static void
1443 removechild(struct witness *parent, struct witness *child)
1444 {
1445 	struct witness_child_list_entry **wcl, *wcl1;
1446 	int i;
1447 
1448 	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1449 		for (i = 0; i < (*wcl)->wcl_count; i++)
1450 			if ((*wcl)->wcl_children[i] == child)
1451 				goto found;
1452 	return;
1453 found:
1454 	(*wcl)->wcl_count--;
1455 	if ((*wcl)->wcl_count > i)
1456 		(*wcl)->wcl_children[i] =
1457 		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1458 	MPASS((*wcl)->wcl_children[i] != NULL);
1459 	if ((*wcl)->wcl_count != 0)
1460 		return;
1461 	wcl1 = *wcl;
1462 	*wcl = wcl1->wcl_next;
1463 	witness_child_free(wcl1);
1464 }
1465 
1466 static int
1467 isitmychild(struct witness *parent, struct witness *child)
1468 {
1469 	struct witness_child_list_entry *wcl;
1470 	int i;
1471 
1472 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1473 		for (i = 0; i < wcl->wcl_count; i++) {
1474 			if (wcl->wcl_children[i] == child)
1475 				return (1);
1476 		}
1477 	}
1478 	return (0);
1479 }
1480 
1481 static int
1482 isitmydescendant(struct witness *parent, struct witness *child)
1483 {
1484 	struct witness_child_list_entry *wcl;
1485 	int i, j;
1486 
1487 	if (isitmychild(parent, child))
1488 		return (1);
1489 	j = 0;
1490 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1491 		MPASS(j < 1000);
1492 		for (i = 0; i < wcl->wcl_count; i++) {
1493 			if (isitmydescendant(wcl->wcl_children[i], child))
1494 				return (1);
1495 		}
1496 		j++;
1497 	}
1498 	return (0);
1499 }
1500 
1501 static void
1502 witness_levelall (void)
1503 {
1504 	struct witness_list *list;
1505 	struct witness *w, *w1;
1506 
1507 	/*
1508 	 * First clear all levels.
1509 	 */
1510 	STAILQ_FOREACH(w, &w_all, w_list) {
1511 		w->w_level = 0;
1512 	}
1513 
1514 	/*
1515 	 * Look for locks with no parent and level all their descendants.
1516 	 */
1517 	STAILQ_FOREACH(w, &w_all, w_list) {
1518 		/*
1519 		 * This is just an optimization, technically we could get
1520 		 * away just walking the all list each time.
1521 		 */
1522 		if (w->w_class->lc_flags & LC_SLEEPLOCK)
1523 			list = &w_sleep;
1524 		else
1525 			list = &w_spin;
1526 		STAILQ_FOREACH(w1, list, w_typelist) {
1527 			if (isitmychild(w1, w))
1528 				goto skip;
1529 		}
1530 		witness_leveldescendents(w, 0);
1531 	skip:
1532 		;	/* silence GCC 3.x */
1533 	}
1534 }
1535 
1536 static void
1537 witness_leveldescendents(struct witness *parent, int level)
1538 {
1539 	struct witness_child_list_entry *wcl;
1540 	int i;
1541 
1542 	if (parent->w_level < level)
1543 		parent->w_level = level;
1544 	level++;
1545 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1546 		for (i = 0; i < wcl->wcl_count; i++)
1547 			witness_leveldescendents(wcl->wcl_children[i], level);
1548 }
1549 
1550 static void
1551 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1552 			   struct witness *parent, int indent)
1553 {
1554 	struct witness_child_list_entry *wcl;
1555 	int i, level;
1556 
1557 	level = parent->w_level;
1558 	prnt("%-2d", level);
1559 	for (i = 0; i < indent; i++)
1560 		prnt(" ");
1561 	if (parent->w_refcount > 0)
1562 		prnt("%s", parent->w_name);
1563 	else
1564 		prnt("(dead)");
1565 	if (parent->w_displayed) {
1566 		prnt(" -- (already displayed)\n");
1567 		return;
1568 	}
1569 	parent->w_displayed = 1;
1570 	if (parent->w_refcount > 0) {
1571 		if (parent->w_file != NULL)
1572 			prnt(" -- last acquired @ %s:%d", parent->w_file,
1573 			    parent->w_line);
1574 	}
1575 	prnt("\n");
1576 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1577 		for (i = 0; i < wcl->wcl_count; i++)
1578 			    witness_displaydescendants(prnt,
1579 				wcl->wcl_children[i], indent + 1);
1580 }
1581 
1582 #ifdef BLESSING
1583 static int
1584 blessed(struct witness *w1, struct witness *w2)
1585 {
1586 	int i;
1587 	struct witness_blessed *b;
1588 
1589 	for (i = 0; i < blessed_count; i++) {
1590 		b = &blessed_list[i];
1591 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1592 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1593 				return (1);
1594 			continue;
1595 		}
1596 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1597 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1598 				return (1);
1599 	}
1600 	return (0);
1601 }
1602 #endif
1603 
1604 static struct witness *
1605 witness_get(void)
1606 {
1607 	struct witness *w;
1608 
1609 	if (witness_watch == 0) {
1610 		mtx_unlock_spin(&w_mtx);
1611 		return (NULL);
1612 	}
1613 	if (STAILQ_EMPTY(&w_free)) {
1614 		witness_watch = 0;
1615 		mtx_unlock_spin(&w_mtx);
1616 		printf("%s: witness exhausted\n", __func__);
1617 		return (NULL);
1618 	}
1619 	w = STAILQ_FIRST(&w_free);
1620 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1621 	bzero(w, sizeof(*w));
1622 	return (w);
1623 }
1624 
1625 static void
1626 witness_free(struct witness *w)
1627 {
1628 
1629 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1630 }
1631 
1632 static struct witness_child_list_entry *
1633 witness_child_get(void)
1634 {
1635 	struct witness_child_list_entry *wcl;
1636 
1637 	if (witness_watch == 0) {
1638 		mtx_unlock_spin(&w_mtx);
1639 		return (NULL);
1640 	}
1641 	wcl = w_child_free;
1642 	if (wcl == NULL) {
1643 		witness_watch = 0;
1644 		mtx_unlock_spin(&w_mtx);
1645 		printf("%s: witness exhausted\n", __func__);
1646 		return (NULL);
1647 	}
1648 	w_child_free = wcl->wcl_next;
1649 	bzero(wcl, sizeof(*wcl));
1650 	return (wcl);
1651 }
1652 
1653 static void
1654 witness_child_free(struct witness_child_list_entry *wcl)
1655 {
1656 
1657 	wcl->wcl_next = w_child_free;
1658 	w_child_free = wcl;
1659 }
1660 
1661 static struct lock_list_entry *
1662 witness_lock_list_get(void)
1663 {
1664 	struct lock_list_entry *lle;
1665 
1666 	if (witness_watch == 0)
1667 		return (NULL);
1668 	mtx_lock_spin(&w_mtx);
1669 	lle = w_lock_list_free;
1670 	if (lle == NULL) {
1671 		witness_watch = 0;
1672 		mtx_unlock_spin(&w_mtx);
1673 		printf("%s: witness exhausted\n", __func__);
1674 		return (NULL);
1675 	}
1676 	w_lock_list_free = lle->ll_next;
1677 	mtx_unlock_spin(&w_mtx);
1678 	bzero(lle, sizeof(*lle));
1679 	return (lle);
1680 }
1681 
1682 static void
1683 witness_lock_list_free(struct lock_list_entry *lle)
1684 {
1685 
1686 	mtx_lock_spin(&w_mtx);
1687 	lle->ll_next = w_lock_list_free;
1688 	w_lock_list_free = lle;
1689 	mtx_unlock_spin(&w_mtx);
1690 }
1691 
1692 static struct lock_instance *
1693 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1694 {
1695 	struct lock_list_entry *lle;
1696 	struct lock_instance *instance;
1697 	int i;
1698 
1699 	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1700 		for (i = lle->ll_count - 1; i >= 0; i--) {
1701 			instance = &lle->ll_children[i];
1702 			if (instance->li_lock == lock)
1703 				return (instance);
1704 		}
1705 	return (NULL);
1706 }
1707 
1708 static void
1709 witness_list_lock(struct lock_instance *instance)
1710 {
1711 	struct lock_object *lock;
1712 
1713 	lock = instance->li_lock;
1714 	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1715 	    "exclusive" : "shared", lock->lo_class->lc_name, lock->lo_name);
1716 	if (lock->lo_type != lock->lo_name)
1717 		printf(" (%s)", lock->lo_type);
1718 	printf(" r = %d (%p) locked @ %s:%d\n",
1719 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1720 	    instance->li_line);
1721 }
1722 
1723 #ifdef DDB
1724 static int
1725 witness_thread_has_locks(struct thread *td)
1726 {
1727 
1728 	return (td->td_sleeplocks != NULL);
1729 }
1730 
1731 static int
1732 witness_proc_has_locks(struct proc *p)
1733 {
1734 	struct thread *td;
1735 
1736 	FOREACH_THREAD_IN_PROC(p, td) {
1737 		if (witness_thread_has_locks(td))
1738 			return (1);
1739 	}
1740 	return (0);
1741 }
1742 #endif
1743 
1744 int
1745 witness_list_locks(struct lock_list_entry **lock_list)
1746 {
1747 	struct lock_list_entry *lle;
1748 	int i, nheld;
1749 
1750 	nheld = 0;
1751 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1752 		for (i = lle->ll_count - 1; i >= 0; i--) {
1753 			witness_list_lock(&lle->ll_children[i]);
1754 			nheld++;
1755 		}
1756 	return (nheld);
1757 }
1758 
1759 /*
1760  * This is a bit risky at best.  We call this function when we have timed
1761  * out acquiring a spin lock, and we assume that the other CPU is stuck
1762  * with this lock held.  So, we go groveling around in the other CPU's
1763  * per-cpu data to try to find the lock instance for this spin lock to
1764  * see when it was last acquired.
1765  */
1766 void
1767 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1768 {
1769 	struct lock_instance *instance;
1770 	struct pcpu *pc;
1771 
1772 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1773 		return;
1774 	pc = pcpu_find(owner->td_oncpu);
1775 	instance = find_instance(pc->pc_spinlocks, lock);
1776 	if (instance != NULL)
1777 		witness_list_lock(instance);
1778 }
1779 
1780 void
1781 witness_save(struct lock_object *lock, const char **filep, int *linep)
1782 {
1783 	struct lock_instance *instance;
1784 
1785 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1786 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1787 		return;
1788 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1789 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1790 		    lock->lo_class->lc_name, lock->lo_name);
1791 	instance = find_instance(curthread->td_sleeplocks, lock);
1792 	if (instance == NULL)
1793 		panic("%s: lock (%s) %s not locked", __func__,
1794 		    lock->lo_class->lc_name, lock->lo_name);
1795 	*filep = instance->li_file;
1796 	*linep = instance->li_line;
1797 }
1798 
1799 void
1800 witness_restore(struct lock_object *lock, const char *file, int line)
1801 {
1802 	struct lock_instance *instance;
1803 
1804 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1805 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1806 		return;
1807 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1808 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1809 		    lock->lo_class->lc_name, lock->lo_name);
1810 	instance = find_instance(curthread->td_sleeplocks, lock);
1811 	if (instance == NULL)
1812 		panic("%s: lock (%s) %s not locked", __func__,
1813 		    lock->lo_class->lc_name, lock->lo_name);
1814 	lock->lo_witness->w_file = file;
1815 	lock->lo_witness->w_line = line;
1816 	instance->li_file = file;
1817 	instance->li_line = line;
1818 }
1819 
1820 void
1821 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1822 {
1823 #ifdef INVARIANT_SUPPORT
1824 	struct lock_instance *instance;
1825 
1826 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1827 		return;
1828 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) != 0)
1829 		instance = find_instance(curthread->td_sleeplocks, lock);
1830 	else if ((lock->lo_class->lc_flags & LC_SPINLOCK) != 0)
1831 		instance = find_instance(PCPU_GET(spinlocks), lock);
1832 	else {
1833 		panic("Lock (%s) %s is not sleep or spin!",
1834 		    lock->lo_class->lc_name, lock->lo_name);
1835 	}
1836 	file = fixup_filename(file);
1837 	switch (flags) {
1838 	case LA_UNLOCKED:
1839 		if (instance != NULL)
1840 			panic("Lock (%s) %s locked @ %s:%d.",
1841 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1842 		break;
1843 	case LA_LOCKED:
1844 	case LA_LOCKED | LA_RECURSED:
1845 	case LA_LOCKED | LA_NOTRECURSED:
1846 	case LA_SLOCKED:
1847 	case LA_SLOCKED | LA_RECURSED:
1848 	case LA_SLOCKED | LA_NOTRECURSED:
1849 	case LA_XLOCKED:
1850 	case LA_XLOCKED | LA_RECURSED:
1851 	case LA_XLOCKED | LA_NOTRECURSED:
1852 		if (instance == NULL) {
1853 			panic("Lock (%s) %s not locked @ %s:%d.",
1854 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1855 			break;
1856 		}
1857 		if ((flags & LA_XLOCKED) != 0 &&
1858 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1859 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1860 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1861 		if ((flags & LA_SLOCKED) != 0 &&
1862 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1863 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1864 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1865 		if ((flags & LA_RECURSED) != 0 &&
1866 		    (instance->li_flags & LI_RECURSEMASK) == 0)
1867 			panic("Lock (%s) %s not recursed @ %s:%d.",
1868 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1869 		if ((flags & LA_NOTRECURSED) != 0 &&
1870 		    (instance->li_flags & LI_RECURSEMASK) != 0)
1871 			panic("Lock (%s) %s recursed @ %s:%d.",
1872 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1873 		break;
1874 	default:
1875 		panic("Invalid lock assertion at %s:%d.", file, line);
1876 
1877 	}
1878 #endif	/* INVARIANT_SUPPORT */
1879 }
1880 
1881 #ifdef DDB
1882 static void
1883 witness_list(struct thread *td)
1884 {
1885 
1886 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1887 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1888 
1889 	if (witness_watch == 0)
1890 		return;
1891 
1892 	witness_list_locks(&td->td_sleeplocks);
1893 
1894 	/*
1895 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1896 	 * if td is currently executing on some other CPU and holds spin locks
1897 	 * as we won't display those locks.  If we had a MI way of getting
1898 	 * the per-cpu data for a given cpu then we could use
1899 	 * td->td_oncpu to get the list of spinlocks for this thread
1900 	 * and "fix" this.
1901 	 *
1902 	 * That still wouldn't really fix this unless we locked sched_lock
1903 	 * or stopped the other CPU to make sure it wasn't changing the list
1904 	 * out from under us.  It is probably best to just not try to handle
1905 	 * threads on other CPU's for now.
1906 	 */
1907 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1908 		witness_list_locks(PCPU_PTR(spinlocks));
1909 }
1910 
1911 DB_SHOW_COMMAND(locks, db_witness_list)
1912 {
1913 	struct thread *td;
1914 	pid_t pid;
1915 	struct proc *p;
1916 
1917 	if (have_addr) {
1918 		pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1919 		    ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1920 		    ((addr >> 16) % 16) * 10000;
1921 		/* sx_slock(&allproc_lock); */
1922 		FOREACH_PROC_IN_SYSTEM(p) {
1923 			if (p->p_pid == pid)
1924 				break;
1925 		}
1926 		/* sx_sunlock(&allproc_lock); */
1927 		if (p == NULL) {
1928 			db_printf("pid %d not found\n", pid);
1929 			return;
1930 		}
1931 		FOREACH_THREAD_IN_PROC(p, td) {
1932 			witness_list(td);
1933 		}
1934 	} else {
1935 		td = curthread;
1936 		witness_list(td);
1937 	}
1938 }
1939 
1940 DB_SHOW_COMMAND(alllocks, db_witness_list_all)
1941 {
1942 	struct thread *td;
1943 	struct proc *p;
1944 
1945 	/*
1946 	 * It would be nice to list only threads and processes that actually
1947 	 * held sleep locks, but that information is currently not exported
1948 	 * by WITNESS.
1949 	 */
1950 	FOREACH_PROC_IN_SYSTEM(p) {
1951 		if (!witness_proc_has_locks(p))
1952 			continue;
1953 		FOREACH_THREAD_IN_PROC(p, td) {
1954 			if (!witness_thread_has_locks(td))
1955 				continue;
1956 			printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
1957 			    p->p_comm, td, td->td_tid);
1958 			witness_list(td);
1959 		}
1960 	}
1961 }
1962 
1963 DB_SHOW_COMMAND(witness, db_witness_display)
1964 {
1965 
1966 	witness_display(db_printf);
1967 }
1968 #endif
1969