xref: /freebsd/sys/kern/subr_witness.c (revision 63f9a4cb2684a303e3eb2ffed39c03a2e2b28ae0)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of the `witness' lock verifier.  Originally implemented for
34  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
35  * classes in FreeBSD.
36  */
37 
38 /*
39  *	Main Entry: witness
40  *	Pronunciation: 'wit-n&s
41  *	Function: noun
42  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
43  *	    testimony, witness, from 2wit
44  *	Date: before 12th century
45  *	1 : attestation of a fact or event : TESTIMONY
46  *	2 : one that gives evidence; specifically : one who testifies in
47  *	    a cause or before a judicial tribunal
48  *	3 : one asked to be present at a transaction so as to be able to
49  *	    testify to its having taken place
50  *	4 : one who has personal knowledge of something
51  *	5 a : something serving as evidence or proof : SIGN
52  *	  b : public affirmation by word or example of usually
53  *	      religious faith or conviction <the heroic witness to divine
54  *	      life -- Pilot>
55  *	6 capitalized : a member of the Jehovah's Witnesses
56  */
57 
58 /*
59  * Special rules concerning Giant and lock orders:
60  *
61  * 1) Giant must be acquired before any other mutexes.  Stated another way,
62  *    no other mutex may be held when Giant is acquired.
63  *
64  * 2) Giant must be released when blocking on a sleepable lock.
65  *
66  * This rule is less obvious, but is a result of Giant providing the same
67  * semantics as spl().  Basically, when a thread sleeps, it must release
68  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
69  * 2).
70  *
71  * 3) Giant may be acquired before or after sleepable locks.
72  *
73  * This rule is also not quite as obvious.  Giant may be acquired after
74  * a sleepable lock because it is a non-sleepable lock and non-sleepable
75  * locks may always be acquired while holding a sleepable lock.  The second
76  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
77  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
78  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
79  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
80  * execute.  Thus, acquiring Giant both before and after a sleepable lock
81  * will not result in a lock order reversal.
82  */
83 
84 #include <sys/cdefs.h>
85 __FBSDID("$FreeBSD$");
86 
87 #include "opt_ddb.h"
88 #include "opt_witness.h"
89 
90 #include <sys/param.h>
91 #include <sys/bus.h>
92 #include <sys/kdb.h>
93 #include <sys/kernel.h>
94 #include <sys/ktr.h>
95 #include <sys/lock.h>
96 #include <sys/malloc.h>
97 #include <sys/mutex.h>
98 #include <sys/proc.h>
99 #include <sys/sysctl.h>
100 #include <sys/systm.h>
101 
102 #include <ddb/ddb.h>
103 
104 #include <machine/stdarg.h>
105 
106 /* Define this to check for blessed mutexes */
107 #undef BLESSING
108 
109 #define WITNESS_COUNT 200
110 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4)
111 /*
112  * XXX: This is somewhat bogus, as we assume here that at most 1024 threads
113  * will hold LOCK_NCHILDREN * 2 locks.  We handle failure ok, and we should
114  * probably be safe for the most part, but it's still a SWAG.
115  */
116 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2
117 
118 #define	WITNESS_NCHILDREN 6
119 
120 struct witness_child_list_entry;
121 
122 struct witness {
123 	const	char *w_name;
124 	struct	lock_class *w_class;
125 	STAILQ_ENTRY(witness) w_list;		/* List of all witnesses. */
126 	STAILQ_ENTRY(witness) w_typelist;	/* Witnesses of a type. */
127 	struct	witness_child_list_entry *w_children;	/* Great evilness... */
128 	const	char *w_file;
129 	int	w_line;
130 	u_int	w_level;
131 	u_int	w_refcount;
132 	u_char	w_Giant_squawked:1;
133 	u_char	w_other_squawked:1;
134 	u_char	w_same_squawked:1;
135 	u_char	w_displayed:1;
136 };
137 
138 struct witness_child_list_entry {
139 	struct	witness_child_list_entry *wcl_next;
140 	struct	witness *wcl_children[WITNESS_NCHILDREN];
141 	u_int	wcl_count;
142 };
143 
144 STAILQ_HEAD(witness_list, witness);
145 
146 #ifdef BLESSING
147 struct witness_blessed {
148 	const	char *b_lock1;
149 	const	char *b_lock2;
150 };
151 #endif
152 
153 struct witness_order_list_entry {
154 	const	char *w_name;
155 	struct	lock_class *w_class;
156 };
157 
158 #ifdef BLESSING
159 static int	blessed(struct witness *, struct witness *);
160 #endif
161 static int	depart(struct witness *w);
162 static struct	witness *enroll(const char *description,
163 				struct lock_class *lock_class);
164 static int	insertchild(struct witness *parent, struct witness *child);
165 static int	isitmychild(struct witness *parent, struct witness *child);
166 static int	isitmydescendant(struct witness *parent, struct witness *child);
167 static int	itismychild(struct witness *parent, struct witness *child);
168 static int	rebalancetree(struct witness_list *list);
169 static void	removechild(struct witness *parent, struct witness *child);
170 static int	reparentchildren(struct witness *newparent,
171 		    struct witness *oldparent);
172 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
173 static void	witness_displaydescendants(void(*)(const char *fmt, ...),
174 					   struct witness *, int indent);
175 static const char *fixup_filename(const char *file);
176 static void	witness_leveldescendents(struct witness *parent, int level);
177 static void	witness_levelall(void);
178 static struct	witness *witness_get(void);
179 static void	witness_free(struct witness *m);
180 static struct	witness_child_list_entry *witness_child_get(void);
181 static void	witness_child_free(struct witness_child_list_entry *wcl);
182 static struct	lock_list_entry *witness_lock_list_get(void);
183 static void	witness_lock_list_free(struct lock_list_entry *lle);
184 static struct	lock_instance *find_instance(struct lock_list_entry *lock_list,
185 					     struct lock_object *lock);
186 static void	witness_list_lock(struct lock_instance *instance);
187 #ifdef DDB
188 static void	witness_list(struct thread *td);
189 static void	witness_display_list(void(*prnt)(const char *fmt, ...),
190 				     struct witness_list *list);
191 static void	witness_display(void(*)(const char *fmt, ...));
192 #endif
193 
194 MALLOC_DEFINE(M_WITNESS, "witness", "witness structure");
195 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking");
196 
197 /*
198  * If set to 0, witness is disabled.  If set to 1, witness performs full lock
199  * order checking for all locks.  If set to 2 or higher, then witness skips
200  * the full lock order check if the lock being acquired is at a higher level
201  * (i.e. farther down in the tree) than the current lock.  This last mode is
202  * somewhat experimental and not considered fully safe.  At runtime, this
203  * value may be set to 0 to turn off witness.  witness is not allowed be
204  * turned on once it is turned off, however.
205  */
206 static int witness_watch = 1;
207 TUNABLE_INT("debug.witness.watch", &witness_watch);
208 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0,
209     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
210 
211 #ifdef KDB
212 /*
213  * When KDB is enabled and witness_kdb is set to 1, it will cause the system
214  * to drop into kdebug() when:
215  *	- a lock heirarchy violation occurs
216  *	- locks are held when going to sleep.
217  */
218 #ifdef WITNESS_KDB
219 int	witness_kdb = 1;
220 #else
221 int	witness_kdb = 0;
222 #endif
223 TUNABLE_INT("debug.witness.kdb", &witness_kdb);
224 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, "");
225 
226 /*
227  * When KDB is enabled and witness_trace is set to 1, it will cause the system
228  * to print a stack trace:
229  *	- a lock heirarchy violation occurs
230  *	- locks are held when going to sleep.
231  */
232 int	witness_trace = 1;
233 TUNABLE_INT("debug.witness.trace", &witness_trace);
234 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, "");
235 #endif /* KDB */
236 
237 #ifdef WITNESS_SKIPSPIN
238 int	witness_skipspin = 1;
239 #else
240 int	witness_skipspin = 0;
241 #endif
242 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin);
243 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN,
244     &witness_skipspin, 0, "");
245 
246 static struct mtx w_mtx;
247 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
248 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
249 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
250 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
251 static struct witness_child_list_entry *w_child_free = NULL;
252 static struct lock_list_entry *w_lock_list_free = NULL;
253 
254 static struct witness w_data[WITNESS_COUNT];
255 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT];
256 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
257 
258 static struct witness_order_list_entry order_lists[] = {
259 	{ "proctree", &lock_class_sx },
260 	{ "allproc", &lock_class_sx },
261 	{ "Giant", &lock_class_mtx_sleep },
262 	{ "filedesc structure", &lock_class_mtx_sleep },
263 	{ "pipe mutex", &lock_class_mtx_sleep },
264 	{ "sigio lock", &lock_class_mtx_sleep },
265 	{ "process group", &lock_class_mtx_sleep },
266 	{ "process lock", &lock_class_mtx_sleep },
267 	{ "session", &lock_class_mtx_sleep },
268 	{ "uidinfo hash", &lock_class_mtx_sleep },
269 	{ "uidinfo struct", &lock_class_mtx_sleep },
270 	{ "allprison", &lock_class_mtx_sleep },
271 	{ NULL, NULL },
272 	/*
273 	 * Sockets
274 	 */
275 	{ "filedesc structure", &lock_class_mtx_sleep },
276 	{ "accept", &lock_class_mtx_sleep },
277 	{ "so_snd", &lock_class_mtx_sleep },
278 	{ "so_rcv", &lock_class_mtx_sleep },
279 	{ "sellck", &lock_class_mtx_sleep },
280 	{ NULL, NULL },
281 	/*
282 	 * Routing
283 	 */
284 	{ "so_rcv", &lock_class_mtx_sleep },
285 	{ "radix node head", &lock_class_mtx_sleep },
286 	{ "rtentry", &lock_class_mtx_sleep },
287 	{ "ifaddr", &lock_class_mtx_sleep },
288 	{ NULL, NULL },
289 	/*
290 	 * UNIX Domain Sockets
291 	 */
292 	{ "unp", &lock_class_mtx_sleep },
293 	{ "so_snd", &lock_class_mtx_sleep },
294 	{ NULL, NULL },
295 	/*
296 	 * UDP/IP
297 	 */
298 	{ "udp", &lock_class_mtx_sleep },
299 	{ "udpinp", &lock_class_mtx_sleep },
300 	{ "so_snd", &lock_class_mtx_sleep },
301 	{ NULL, NULL },
302 	/*
303 	 * TCP/IP
304 	 */
305 	{ "tcp", &lock_class_mtx_sleep },
306 	{ "tcpinp", &lock_class_mtx_sleep },
307 	{ "so_snd", &lock_class_mtx_sleep },
308 	{ NULL, NULL },
309 	/*
310 	 * SLIP
311 	 */
312 	{ "slip_mtx", &lock_class_mtx_sleep },
313 	{ "slip sc_mtx", &lock_class_mtx_sleep },
314 	{ NULL, NULL },
315 	/*
316 	 * netatalk
317 	 */
318 	{ "ddp_list_mtx", &lock_class_mtx_sleep },
319 	{ "ddp_mtx", &lock_class_mtx_sleep },
320 	{ NULL, NULL },
321 	/*
322 	 * BPF
323 	 */
324 	{ "bpf global lock", &lock_class_mtx_sleep },
325 	{ "bpf interface lock", &lock_class_mtx_sleep },
326 	{ "bpf cdev lock", &lock_class_mtx_sleep },
327 	{ NULL, NULL },
328 	/*
329 	 * spin locks
330 	 */
331 #ifdef SMP
332 	{ "ap boot", &lock_class_mtx_spin },
333 #endif
334 	{ "sio", &lock_class_mtx_spin },
335 #ifdef __i386__
336 	{ "cy", &lock_class_mtx_spin },
337 #endif
338 	{ "uart_hwmtx", &lock_class_mtx_spin },
339 	{ "sabtty", &lock_class_mtx_spin },
340 	{ "zstty", &lock_class_mtx_spin },
341 	{ "ng_node", &lock_class_mtx_spin },
342 	{ "ng_worklist", &lock_class_mtx_spin },
343 	{ "taskqueue_fast", &lock_class_mtx_spin },
344 	{ "intr table", &lock_class_mtx_spin },
345 	{ "ithread table lock", &lock_class_mtx_spin },
346 	{ "sleepq chain", &lock_class_mtx_spin },
347 	{ "sched lock", &lock_class_mtx_spin },
348 	{ "turnstile chain", &lock_class_mtx_spin },
349 	{ "td_contested", &lock_class_mtx_spin },
350 	{ "callout", &lock_class_mtx_spin },
351 	{ "entropy harvest mutex", &lock_class_mtx_spin },
352 	/*
353 	 * leaf locks
354 	 */
355 	{ "allpmaps", &lock_class_mtx_spin },
356 	{ "vm page queue free mutex", &lock_class_mtx_spin },
357 	{ "icu", &lock_class_mtx_spin },
358 #ifdef SMP
359 	{ "smp rendezvous", &lock_class_mtx_spin },
360 #if defined(__i386__) || defined(__amd64__)
361 	{ "tlb", &lock_class_mtx_spin },
362 #endif
363 #ifdef __sparc64__
364 	{ "ipi", &lock_class_mtx_spin },
365 #endif
366 #endif
367 	{ "clk", &lock_class_mtx_spin },
368 	{ "mutex profiling lock", &lock_class_mtx_spin },
369 	{ "kse zombie lock", &lock_class_mtx_spin },
370 	{ "ALD Queue", &lock_class_mtx_spin },
371 #ifdef __ia64__
372 	{ "MCA spin lock", &lock_class_mtx_spin },
373 #endif
374 #if defined(__i386__) || defined(__amd64__)
375 	{ "pcicfg", &lock_class_mtx_spin },
376 #endif
377 	{ NULL, NULL },
378 	{ NULL, NULL }
379 };
380 
381 #ifdef BLESSING
382 /*
383  * Pairs of locks which have been blessed
384  * Don't complain about order problems with blessed locks
385  */
386 static struct witness_blessed blessed_list[] = {
387 };
388 static int blessed_count =
389 	sizeof(blessed_list) / sizeof(struct witness_blessed);
390 #endif
391 
392 /*
393  * List of all locks in the system.
394  */
395 TAILQ_HEAD(, lock_object) all_locks = TAILQ_HEAD_INITIALIZER(all_locks);
396 
397 static struct mtx all_mtx = {
398 	{ &lock_class_mtx_sleep,	/* mtx_object.lo_class */
399 	  "All locks list",		/* mtx_object.lo_name */
400 	  "All locks list",		/* mtx_object.lo_type */
401 	  LO_INITIALIZED,		/* mtx_object.lo_flags */
402 	  { NULL, NULL },		/* mtx_object.lo_list */
403 	  NULL },			/* mtx_object.lo_witness */
404 	MTX_UNOWNED, 0			/* mtx_lock, mtx_recurse */
405 };
406 
407 /*
408  * This global is set to 0 once it becomes safe to use the witness code.
409  */
410 static int witness_cold = 1;
411 
412 /*
413  * Global variables for book keeping.
414  */
415 static int lock_cur_cnt;
416 static int lock_max_cnt;
417 
418 /*
419  * The WITNESS-enabled diagnostic code.
420  */
421 static void
422 witness_initialize(void *dummy __unused)
423 {
424 	struct lock_object *lock;
425 	struct witness_order_list_entry *order;
426 	struct witness *w, *w1;
427 	int i;
428 
429 	/*
430 	 * We have to release Giant before initializing its witness
431 	 * structure so that WITNESS doesn't get confused.
432 	 */
433 	mtx_unlock(&Giant);
434 	mtx_assert(&Giant, MA_NOTOWNED);
435 
436 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
437 	TAILQ_INSERT_HEAD(&all_locks, &all_mtx.mtx_object, lo_list);
438 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
439 	    MTX_NOWITNESS);
440 	for (i = 0; i < WITNESS_COUNT; i++)
441 		witness_free(&w_data[i]);
442 	for (i = 0; i < WITNESS_CHILDCOUNT; i++)
443 		witness_child_free(&w_childdata[i]);
444 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
445 		witness_lock_list_free(&w_locklistdata[i]);
446 
447 	/* First add in all the specified order lists. */
448 	for (order = order_lists; order->w_name != NULL; order++) {
449 		w = enroll(order->w_name, order->w_class);
450 		if (w == NULL)
451 			continue;
452 		w->w_file = "order list";
453 		for (order++; order->w_name != NULL; order++) {
454 			w1 = enroll(order->w_name, order->w_class);
455 			if (w1 == NULL)
456 				continue;
457 			w1->w_file = "order list";
458 			if (!itismychild(w, w1))
459 				panic("Not enough memory for static orders!");
460 			w = w1;
461 		}
462 	}
463 
464 	/* Iterate through all locks and add them to witness. */
465 	mtx_lock(&all_mtx);
466 	TAILQ_FOREACH(lock, &all_locks, lo_list) {
467 		if (lock->lo_flags & LO_WITNESS)
468 			lock->lo_witness = enroll(lock->lo_type,
469 			    lock->lo_class);
470 		else
471 			lock->lo_witness = NULL;
472 	}
473 	mtx_unlock(&all_mtx);
474 
475 	/* Mark the witness code as being ready for use. */
476 	atomic_store_rel_int(&witness_cold, 0);
477 
478 	mtx_lock(&Giant);
479 }
480 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, NULL)
481 
482 static int
483 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
484 {
485 	int error, value;
486 
487 	value = witness_watch;
488 	error = sysctl_handle_int(oidp, &value, 0, req);
489 	if (error != 0 || req->newptr == NULL)
490 		return (error);
491 	error = suser(req->td);
492 	if (error != 0)
493 		return (error);
494 	if (value == witness_watch)
495 		return (0);
496 	if (value != 0)
497 		return (EINVAL);
498 	witness_watch = 0;
499 	return (0);
500 }
501 
502 void
503 witness_init(struct lock_object *lock)
504 {
505 	struct lock_class *class;
506 
507 	class = lock->lo_class;
508 	if (lock->lo_flags & LO_INITIALIZED)
509 		panic("%s: lock (%s) %s is already initialized", __func__,
510 		    class->lc_name, lock->lo_name);
511 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
512 	    (class->lc_flags & LC_RECURSABLE) == 0)
513 		panic("%s: lock (%s) %s can not be recursable", __func__,
514 		    class->lc_name, lock->lo_name);
515 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
516 	    (class->lc_flags & LC_SLEEPABLE) == 0)
517 		panic("%s: lock (%s) %s can not be sleepable", __func__,
518 		    class->lc_name, lock->lo_name);
519 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
520 	    (class->lc_flags & LC_UPGRADABLE) == 0)
521 		panic("%s: lock (%s) %s can not be upgradable", __func__,
522 		    class->lc_name, lock->lo_name);
523 
524 	mtx_lock(&all_mtx);
525 	TAILQ_INSERT_TAIL(&all_locks, lock, lo_list);
526 	lock->lo_flags |= LO_INITIALIZED;
527 	lock_cur_cnt++;
528 	if (lock_cur_cnt > lock_max_cnt)
529 		lock_max_cnt = lock_cur_cnt;
530 	mtx_unlock(&all_mtx);
531 	if (!witness_cold && witness_watch != 0 && panicstr == NULL &&
532 	    (lock->lo_flags & LO_WITNESS) != 0)
533 		lock->lo_witness = enroll(lock->lo_type, class);
534 	else
535 		lock->lo_witness = NULL;
536 }
537 
538 void
539 witness_destroy(struct lock_object *lock)
540 {
541 	struct witness *w;
542 
543 	if (witness_cold)
544 		panic("lock (%s) %s destroyed while witness_cold",
545 		    lock->lo_class->lc_name, lock->lo_name);
546 	if ((lock->lo_flags & LO_INITIALIZED) == 0)
547 		panic("%s: lock (%s) %s is not initialized", __func__,
548 		    lock->lo_class->lc_name, lock->lo_name);
549 
550 	/* XXX: need to verify that no one holds the lock */
551 	w = lock->lo_witness;
552 	if (w != NULL) {
553 		mtx_lock_spin(&w_mtx);
554 		MPASS(w->w_refcount > 0);
555 		w->w_refcount--;
556 
557 		/*
558 		 * Lock is already released if we have an allocation failure
559 		 * and depart() fails.
560 		 */
561 		if (w->w_refcount != 0 || depart(w))
562 			mtx_unlock_spin(&w_mtx);
563 	}
564 
565 	mtx_lock(&all_mtx);
566 	lock_cur_cnt--;
567 	TAILQ_REMOVE(&all_locks, lock, lo_list);
568 	lock->lo_flags &= ~LO_INITIALIZED;
569 	mtx_unlock(&all_mtx);
570 }
571 
572 #ifdef DDB
573 static void
574 witness_display_list(void(*prnt)(const char *fmt, ...),
575 		     struct witness_list *list)
576 {
577 	struct witness *w;
578 
579 	STAILQ_FOREACH(w, list, w_typelist) {
580 		if (w->w_file == NULL || w->w_level > 0)
581 			continue;
582 		/*
583 		 * This lock has no anscestors, display its descendants.
584 		 */
585 		witness_displaydescendants(prnt, w, 0);
586 	}
587 }
588 
589 static void
590 witness_display(void(*prnt)(const char *fmt, ...))
591 {
592 	struct witness *w;
593 
594 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
595 	witness_levelall();
596 
597 	/* Clear all the displayed flags. */
598 	STAILQ_FOREACH(w, &w_all, w_list) {
599 		w->w_displayed = 0;
600 	}
601 
602 	/*
603 	 * First, handle sleep locks which have been acquired at least
604 	 * once.
605 	 */
606 	prnt("Sleep locks:\n");
607 	witness_display_list(prnt, &w_sleep);
608 
609 	/*
610 	 * Now do spin locks which have been acquired at least once.
611 	 */
612 	prnt("\nSpin locks:\n");
613 	witness_display_list(prnt, &w_spin);
614 
615 	/*
616 	 * Finally, any locks which have not been acquired yet.
617 	 */
618 	prnt("\nLocks which were never acquired:\n");
619 	STAILQ_FOREACH(w, &w_all, w_list) {
620 		if (w->w_file != NULL || w->w_refcount == 0)
621 			continue;
622 		prnt("%s\n", w->w_name);
623 	}
624 }
625 #endif /* DDB */
626 
627 /* Trim useless garbage from filenames. */
628 static const char *
629 fixup_filename(const char *file)
630 {
631 
632 	if (file == NULL)
633 		return (NULL);
634 	while (strncmp(file, "../", 3) == 0)
635 		file += 3;
636 	return (file);
637 }
638 
639 int
640 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
641 {
642 
643 	if (witness_watch == 0 || panicstr != NULL)
644 		return (0);
645 
646 	/* Require locks that witness knows about. */
647 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
648 	    lock2->lo_witness == NULL)
649 		return (EINVAL);
650 
651 	MPASS(!mtx_owned(&w_mtx));
652 	mtx_lock_spin(&w_mtx);
653 
654 	/*
655 	 * If we already have either an explicit or implied lock order that
656 	 * is the other way around, then return an error.
657 	 */
658 	if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
659 		mtx_unlock_spin(&w_mtx);
660 		return (EDOOFUS);
661 	}
662 
663 	/* Try to add the new order. */
664 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
665 	    lock2->lo_type, lock1->lo_type);
666 	if (!itismychild(lock1->lo_witness, lock2->lo_witness))
667 		return (ENOMEM);
668 	mtx_unlock_spin(&w_mtx);
669 	return (0);
670 }
671 
672 void
673 witness_checkorder(struct lock_object *lock, int flags, const char *file,
674     int line)
675 {
676 	struct lock_list_entry **lock_list, *lle;
677 	struct lock_instance *lock1, *lock2;
678 	struct lock_class *class;
679 	struct witness *w, *w1;
680 	struct thread *td;
681 	int i, j;
682 
683 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
684 	    panicstr != NULL)
685 		return;
686 
687 	/*
688 	 * Try locks do not block if they fail to acquire the lock, thus
689 	 * there is no danger of deadlocks or of switching while holding a
690 	 * spin lock if we acquire a lock via a try operation.  This
691 	 * function shouldn't even be called for try locks, so panic if
692 	 * that happens.
693 	 */
694 	if (flags & LOP_TRYLOCK)
695 		panic("%s should not be called for try lock operations",
696 		    __func__);
697 
698 	w = lock->lo_witness;
699 	class = lock->lo_class;
700 	td = curthread;
701 	file = fixup_filename(file);
702 
703 	if (class->lc_flags & LC_SLEEPLOCK) {
704 		/*
705 		 * Since spin locks include a critical section, this check
706 		 * implicitly enforces a lock order of all sleep locks before
707 		 * all spin locks.
708 		 */
709 		if (td->td_critnest != 0 && !kdb_active)
710 			panic("blockable sleep lock (%s) %s @ %s:%d",
711 			    class->lc_name, lock->lo_name, file, line);
712 
713 		/*
714 		 * If this is the first lock acquired then just return as
715 		 * no order checking is needed.
716 		 */
717 		if (td->td_sleeplocks == NULL)
718 			return;
719 		lock_list = &td->td_sleeplocks;
720 	} else {
721 		/*
722 		 * If this is the first lock, just return as no order
723 		 * checking is needed.  We check this in both if clauses
724 		 * here as unifying the check would require us to use a
725 		 * critical section to ensure we don't migrate while doing
726 		 * the check.  Note that if this is not the first lock, we
727 		 * are already in a critical section and are safe for the
728 		 * rest of the check.
729 		 */
730 		if (PCPU_GET(spinlocks) == NULL)
731 			return;
732 		lock_list = PCPU_PTR(spinlocks);
733 	}
734 
735 	/*
736 	 * Check to see if we are recursing on a lock we already own.  If
737 	 * so, make sure that we don't mismatch exclusive and shared lock
738 	 * acquires.
739 	 */
740 	lock1 = find_instance(*lock_list, lock);
741 	if (lock1 != NULL) {
742 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
743 		    (flags & LOP_EXCLUSIVE) == 0) {
744 			printf("shared lock of (%s) %s @ %s:%d\n",
745 			    class->lc_name, lock->lo_name, file, line);
746 			printf("while exclusively locked from %s:%d\n",
747 			    lock1->li_file, lock1->li_line);
748 			panic("share->excl");
749 		}
750 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
751 		    (flags & LOP_EXCLUSIVE) != 0) {
752 			printf("exclusive lock of (%s) %s @ %s:%d\n",
753 			    class->lc_name, lock->lo_name, file, line);
754 			printf("while share locked from %s:%d\n",
755 			    lock1->li_file, lock1->li_line);
756 			panic("excl->share");
757 		}
758 		return;
759 	}
760 
761 	/*
762 	 * Try locks do not block if they fail to acquire the lock, thus
763 	 * there is no danger of deadlocks or of switching while holding a
764 	 * spin lock if we acquire a lock via a try operation.
765 	 */
766 	if (flags & LOP_TRYLOCK)
767 		return;
768 
769 	/*
770 	 * Check for duplicate locks of the same type.  Note that we only
771 	 * have to check for this on the last lock we just acquired.  Any
772 	 * other cases will be caught as lock order violations.
773 	 */
774 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
775 	w1 = lock1->li_lock->lo_witness;
776 	if (w1 == w) {
777 		if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK))
778 			return;
779 		w->w_same_squawked = 1;
780 		printf("acquiring duplicate lock of same type: \"%s\"\n",
781 			lock->lo_type);
782 		printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name,
783 		    lock1->li_file, lock1->li_line);
784 		printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line);
785 #ifdef KDB
786 		goto debugger;
787 #else
788 		return;
789 #endif
790 	}
791 	MPASS(!mtx_owned(&w_mtx));
792 	mtx_lock_spin(&w_mtx);
793 	/*
794 	 * If we have a known higher number just say ok
795 	 */
796 	if (witness_watch > 1 && w->w_level > w1->w_level) {
797 		mtx_unlock_spin(&w_mtx);
798 		return;
799 	}
800 	/*
801 	 * If we know that the the lock we are acquiring comes after
802 	 * the lock we most recently acquired in the lock order tree,
803 	 * then there is no need for any further checks.
804 	 */
805 	if (isitmydescendant(w1, w)) {
806 		mtx_unlock_spin(&w_mtx);
807 		return;
808 	}
809 	for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) {
810 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
811 
812 			MPASS(j < WITNESS_COUNT);
813 			lock1 = &lle->ll_children[i];
814 			w1 = lock1->li_lock->lo_witness;
815 
816 			/*
817 			 * If this lock doesn't undergo witness checking,
818 			 * then skip it.
819 			 */
820 			if (w1 == NULL) {
821 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
822 				    ("lock missing witness structure"));
823 				continue;
824 			}
825 			/*
826 			 * If we are locking Giant and this is a sleepable
827 			 * lock, then skip it.
828 			 */
829 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
830 			    lock == &Giant.mtx_object)
831 				continue;
832 			/*
833 			 * If we are locking a sleepable lock and this lock
834 			 * is Giant, then skip it.
835 			 */
836 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
837 			    lock1->li_lock == &Giant.mtx_object)
838 				continue;
839 			/*
840 			 * If we are locking a sleepable lock and this lock
841 			 * isn't sleepable, we want to treat it as a lock
842 			 * order violation to enfore a general lock order of
843 			 * sleepable locks before non-sleepable locks.
844 			 */
845 			if (!((lock->lo_flags & LO_SLEEPABLE) != 0 &&
846 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
847 			    /*
848 			     * Check the lock order hierarchy for a reveresal.
849 			     */
850 			    if (!isitmydescendant(w, w1))
851 				continue;
852 			/*
853 			 * We have a lock order violation, check to see if it
854 			 * is allowed or has already been yelled about.
855 			 */
856 			mtx_unlock_spin(&w_mtx);
857 #ifdef BLESSING
858 			/*
859 			 * If the lock order is blessed, just bail.  We don't
860 			 * look for other lock order violations though, which
861 			 * may be a bug.
862 			 */
863 			if (blessed(w, w1))
864 				return;
865 #endif
866 			if (lock1->li_lock == &Giant.mtx_object) {
867 				if (w1->w_Giant_squawked)
868 					return;
869 				else
870 					w1->w_Giant_squawked = 1;
871 			} else {
872 				if (w1->w_other_squawked)
873 					return;
874 				else
875 					w1->w_other_squawked = 1;
876 			}
877 			/*
878 			 * Ok, yell about it.
879 			 */
880 			printf("lock order reversal\n");
881 			/*
882 			 * Try to locate an earlier lock with
883 			 * witness w in our list.
884 			 */
885 			do {
886 				lock2 = &lle->ll_children[i];
887 				MPASS(lock2->li_lock != NULL);
888 				if (lock2->li_lock->lo_witness == w)
889 					break;
890 				if (i == 0 && lle->ll_next != NULL) {
891 					lle = lle->ll_next;
892 					i = lle->ll_count - 1;
893 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
894 				} else
895 					i--;
896 			} while (i >= 0);
897 			if (i < 0) {
898 				printf(" 1st %p %s (%s) @ %s:%d\n",
899 				    lock1->li_lock, lock1->li_lock->lo_name,
900 				    lock1->li_lock->lo_type, lock1->li_file,
901 				    lock1->li_line);
902 				printf(" 2nd %p %s (%s) @ %s:%d\n", lock,
903 				    lock->lo_name, lock->lo_type, file, line);
904 			} else {
905 				printf(" 1st %p %s (%s) @ %s:%d\n",
906 				    lock2->li_lock, lock2->li_lock->lo_name,
907 				    lock2->li_lock->lo_type, lock2->li_file,
908 				    lock2->li_line);
909 				printf(" 2nd %p %s (%s) @ %s:%d\n",
910 				    lock1->li_lock, lock1->li_lock->lo_name,
911 				    lock1->li_lock->lo_type, lock1->li_file,
912 				    lock1->li_line);
913 				printf(" 3rd %p %s (%s) @ %s:%d\n", lock,
914 				    lock->lo_name, lock->lo_type, file, line);
915 			}
916 #ifdef KDB
917 			goto debugger;
918 #else
919 			return;
920 #endif
921 		}
922 	}
923 	lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1];
924 	/*
925 	 * If requested, build a new lock order.  However, don't build a new
926 	 * relationship between a sleepable lock and Giant if it is in the
927 	 * wrong direction.  The correct lock order is that sleepable locks
928 	 * always come before Giant.
929 	 */
930 	if (flags & LOP_NEWORDER &&
931 	    !(lock1->li_lock == &Giant.mtx_object &&
932 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
933 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
934 		    lock->lo_type, lock1->li_lock->lo_type);
935 		if (!itismychild(lock1->li_lock->lo_witness, w))
936 			/* Witness is dead. */
937 			return;
938 	}
939 	mtx_unlock_spin(&w_mtx);
940 	return;
941 
942 #ifdef KDB
943 debugger:
944 	if (witness_trace)
945 		kdb_backtrace();
946 	if (witness_kdb)
947 		kdb_enter(__func__);
948 #endif
949 }
950 
951 void
952 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
953 {
954 	struct lock_list_entry **lock_list, *lle;
955 	struct lock_instance *instance;
956 	struct witness *w;
957 	struct thread *td;
958 
959 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
960 	    panicstr != NULL)
961 		return;
962 	w = lock->lo_witness;
963 	td = curthread;
964 	file = fixup_filename(file);
965 
966 	/* Determine lock list for this lock. */
967 	if (lock->lo_class->lc_flags & LC_SLEEPLOCK)
968 		lock_list = &td->td_sleeplocks;
969 	else
970 		lock_list = PCPU_PTR(spinlocks);
971 
972 	/* Check to see if we are recursing on a lock we already own. */
973 	instance = find_instance(*lock_list, lock);
974 	if (instance != NULL) {
975 		instance->li_flags++;
976 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
977 		    td->td_proc->p_pid, lock->lo_name,
978 		    instance->li_flags & LI_RECURSEMASK);
979 		instance->li_file = file;
980 		instance->li_line = line;
981 		return;
982 	}
983 
984 	/* Update per-witness last file and line acquire. */
985 	w->w_file = file;
986 	w->w_line = line;
987 
988 	/* Find the next open lock instance in the list and fill it. */
989 	lle = *lock_list;
990 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
991 		lle = witness_lock_list_get();
992 		if (lle == NULL)
993 			return;
994 		lle->ll_next = *lock_list;
995 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
996 		    td->td_proc->p_pid, lle);
997 		*lock_list = lle;
998 	}
999 	instance = &lle->ll_children[lle->ll_count++];
1000 	instance->li_lock = lock;
1001 	instance->li_line = line;
1002 	instance->li_file = file;
1003 	if ((flags & LOP_EXCLUSIVE) != 0)
1004 		instance->li_flags = LI_EXCLUSIVE;
1005 	else
1006 		instance->li_flags = 0;
1007 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1008 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1009 }
1010 
1011 void
1012 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1013 {
1014 	struct lock_instance *instance;
1015 	struct lock_class *class;
1016 
1017 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1018 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1019 		return;
1020 	class = lock->lo_class;
1021 	file = fixup_filename(file);
1022 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1023 		panic("upgrade of non-upgradable lock (%s) %s @ %s:%d",
1024 		    class->lc_name, lock->lo_name, file, line);
1025 	if ((flags & LOP_TRYLOCK) == 0)
1026 		panic("non-try upgrade of lock (%s) %s @ %s:%d", class->lc_name,
1027 		    lock->lo_name, file, line);
1028 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1029 		panic("upgrade of non-sleep lock (%s) %s @ %s:%d",
1030 		    class->lc_name, lock->lo_name, file, line);
1031 	instance = find_instance(curthread->td_sleeplocks, lock);
1032 	if (instance == NULL)
1033 		panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1034 		    class->lc_name, lock->lo_name, file, line);
1035 	if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1036 		panic("upgrade of exclusive lock (%s) %s @ %s:%d",
1037 		    class->lc_name, lock->lo_name, file, line);
1038 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1039 		panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1040 		    class->lc_name, lock->lo_name,
1041 		    instance->li_flags & LI_RECURSEMASK, file, line);
1042 	instance->li_flags |= LI_EXCLUSIVE;
1043 }
1044 
1045 void
1046 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1047     int line)
1048 {
1049 	struct lock_instance *instance;
1050 	struct lock_class *class;
1051 
1052 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1053 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1054 		return;
1055 	class = lock->lo_class;
1056 	file = fixup_filename(file);
1057 	if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1058 		panic("downgrade of non-upgradable lock (%s) %s @ %s:%d",
1059 		    class->lc_name, lock->lo_name, file, line);
1060 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1061 		panic("downgrade of non-sleep lock (%s) %s @ %s:%d",
1062 		    class->lc_name, lock->lo_name, file, line);
1063 	instance = find_instance(curthread->td_sleeplocks, lock);
1064 	if (instance == NULL)
1065 		panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1066 		    class->lc_name, lock->lo_name, file, line);
1067 	if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1068 		panic("downgrade of shared lock (%s) %s @ %s:%d",
1069 		    class->lc_name, lock->lo_name, file, line);
1070 	if ((instance->li_flags & LI_RECURSEMASK) != 0)
1071 		panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1072 		    class->lc_name, lock->lo_name,
1073 		    instance->li_flags & LI_RECURSEMASK, file, line);
1074 	instance->li_flags &= ~LI_EXCLUSIVE;
1075 }
1076 
1077 void
1078 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1079 {
1080 	struct lock_list_entry **lock_list, *lle;
1081 	struct lock_instance *instance;
1082 	struct lock_class *class;
1083 	struct thread *td;
1084 	register_t s;
1085 	int i, j;
1086 
1087 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL ||
1088 	    panicstr != NULL)
1089 		return;
1090 	td = curthread;
1091 	class = lock->lo_class;
1092 	file = fixup_filename(file);
1093 
1094 	/* Find lock instance associated with this lock. */
1095 	if (class->lc_flags & LC_SLEEPLOCK)
1096 		lock_list = &td->td_sleeplocks;
1097 	else
1098 		lock_list = PCPU_PTR(spinlocks);
1099 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1100 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1101 			instance = &(*lock_list)->ll_children[i];
1102 			if (instance->li_lock == lock)
1103 				goto found;
1104 		}
1105 	panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name,
1106 	    file, line);
1107 found:
1108 
1109 	/* First, check for shared/exclusive mismatches. */
1110 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 &&
1111 	    (flags & LOP_EXCLUSIVE) == 0) {
1112 		printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name,
1113 		    lock->lo_name, file, line);
1114 		printf("while exclusively locked from %s:%d\n",
1115 		    instance->li_file, instance->li_line);
1116 		panic("excl->ushare");
1117 	}
1118 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 &&
1119 	    (flags & LOP_EXCLUSIVE) != 0) {
1120 		printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name,
1121 		    lock->lo_name, file, line);
1122 		printf("while share locked from %s:%d\n", instance->li_file,
1123 		    instance->li_line);
1124 		panic("share->uexcl");
1125 	}
1126 
1127 	/* If we are recursed, unrecurse. */
1128 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1129 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1130 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1131 		    instance->li_flags);
1132 		instance->li_flags--;
1133 		return;
1134 	}
1135 
1136 	/* Otherwise, remove this item from the list. */
1137 	s = intr_disable();
1138 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1139 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1140 	    (*lock_list)->ll_count - 1);
1141 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1142 		(*lock_list)->ll_children[j] =
1143 		    (*lock_list)->ll_children[j + 1];
1144 	(*lock_list)->ll_count--;
1145 	intr_restore(s);
1146 
1147 	/* If this lock list entry is now empty, free it. */
1148 	if ((*lock_list)->ll_count == 0) {
1149 		lle = *lock_list;
1150 		*lock_list = lle->ll_next;
1151 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1152 		    td->td_proc->p_pid, lle);
1153 		witness_lock_list_free(lle);
1154 	}
1155 }
1156 
1157 /*
1158  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1159  * exempt Giant and sleepable locks from the checks as well.  If any
1160  * non-exempt locks are held, then a supplied message is printed to the
1161  * console along with a list of the offending locks.  If indicated in the
1162  * flags then a failure results in a panic as well.
1163  */
1164 int
1165 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1166 {
1167 	struct lock_list_entry *lle;
1168 	struct lock_instance *lock1;
1169 	struct thread *td;
1170 	va_list ap;
1171 	int i, n;
1172 
1173 	if (witness_cold || witness_watch == 0 || panicstr != NULL)
1174 		return (0);
1175 	n = 0;
1176 	td = curthread;
1177 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1178 		for (i = lle->ll_count - 1; i >= 0; i--) {
1179 			lock1 = &lle->ll_children[i];
1180 			if (lock1->li_lock == lock)
1181 				continue;
1182 			if (flags & WARN_GIANTOK &&
1183 			    lock1->li_lock == &Giant.mtx_object)
1184 				continue;
1185 			if (flags & WARN_SLEEPOK &&
1186 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1187 				continue;
1188 			if (n == 0) {
1189 				va_start(ap, fmt);
1190 				vprintf(fmt, ap);
1191 				va_end(ap);
1192 				printf(" with the following");
1193 				if (flags & WARN_SLEEPOK)
1194 					printf(" non-sleepable");
1195 				printf(" locks held:\n");
1196 			}
1197 			n++;
1198 			witness_list_lock(lock1);
1199 		}
1200 	if (PCPU_GET(spinlocks) != NULL) {
1201 		/*
1202 		 * Since we already hold a spinlock preemption is
1203 		 * already blocked.
1204 		 */
1205 		if (n == 0) {
1206 			va_start(ap, fmt);
1207 			vprintf(fmt, ap);
1208 			va_end(ap);
1209 			printf(" with the following");
1210 			if (flags & WARN_SLEEPOK)
1211 				printf(" non-sleepable");
1212 			printf(" locks held:\n");
1213 		}
1214 		n += witness_list_locks(PCPU_PTR(spinlocks));
1215 	}
1216 	if (flags & WARN_PANIC && n)
1217 		panic("witness_warn");
1218 #ifdef KDB
1219 	else if (witness_kdb && n)
1220 		kdb_enter(__func__);
1221 	else if (witness_trace && n)
1222 		kdb_backtrace();
1223 #endif
1224 	return (n);
1225 }
1226 
1227 const char *
1228 witness_file(struct lock_object *lock)
1229 {
1230 	struct witness *w;
1231 
1232 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1233 		return ("?");
1234 	w = lock->lo_witness;
1235 	return (w->w_file);
1236 }
1237 
1238 int
1239 witness_line(struct lock_object *lock)
1240 {
1241 	struct witness *w;
1242 
1243 	if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL)
1244 		return (0);
1245 	w = lock->lo_witness;
1246 	return (w->w_line);
1247 }
1248 
1249 static struct witness *
1250 enroll(const char *description, struct lock_class *lock_class)
1251 {
1252 	struct witness *w;
1253 
1254 	if (witness_watch == 0 || panicstr != NULL)
1255 		return (NULL);
1256 	if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin)
1257 		return (NULL);
1258 	mtx_lock_spin(&w_mtx);
1259 	STAILQ_FOREACH(w, &w_all, w_list) {
1260 		if (w->w_name == description || (w->w_refcount > 0 &&
1261 		    strcmp(description, w->w_name) == 0)) {
1262 			w->w_refcount++;
1263 			mtx_unlock_spin(&w_mtx);
1264 			if (lock_class != w->w_class)
1265 				panic(
1266 				"lock (%s) %s does not match earlier (%s) lock",
1267 				    description, lock_class->lc_name,
1268 				    w->w_class->lc_name);
1269 			return (w);
1270 		}
1271 	}
1272 	/*
1273 	 * This isn't quite right, as witness_cold is still 0 while we
1274 	 * enroll all the locks initialized before witness_initialize().
1275 	 */
1276 	if ((lock_class->lc_flags & LC_SPINLOCK) && !witness_cold) {
1277 		mtx_unlock_spin(&w_mtx);
1278 		panic("spin lock %s not in order list", description);
1279 	}
1280 	if ((w = witness_get()) == NULL)
1281 		return (NULL);
1282 	w->w_name = description;
1283 	w->w_class = lock_class;
1284 	w->w_refcount = 1;
1285 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1286 	if (lock_class->lc_flags & LC_SPINLOCK)
1287 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1288 	else if (lock_class->lc_flags & LC_SLEEPLOCK)
1289 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1290 	else {
1291 		mtx_unlock_spin(&w_mtx);
1292 		panic("lock class %s is not sleep or spin",
1293 		    lock_class->lc_name);
1294 	}
1295 	mtx_unlock_spin(&w_mtx);
1296 	return (w);
1297 }
1298 
1299 /* Don't let the door bang you on the way out... */
1300 static int
1301 depart(struct witness *w)
1302 {
1303 	struct witness_child_list_entry *wcl, *nwcl;
1304 	struct witness_list *list;
1305 	struct witness *parent;
1306 
1307 	MPASS(w->w_refcount == 0);
1308 	if (w->w_class->lc_flags & LC_SLEEPLOCK)
1309 		list = &w_sleep;
1310 	else
1311 		list = &w_spin;
1312 	/*
1313 	 * First, we run through the entire tree looking for any
1314 	 * witnesses that the outgoing witness is a child of.  For
1315 	 * each parent that we find, we reparent all the direct
1316 	 * children of the outgoing witness to its parent.
1317 	 */
1318 	STAILQ_FOREACH(parent, list, w_typelist) {
1319 		if (!isitmychild(parent, w))
1320 			continue;
1321 		removechild(parent, w);
1322 		if (!reparentchildren(parent, w))
1323 			return (0);
1324 	}
1325 
1326 	/*
1327 	 * Now we go through and free up the child list of the
1328 	 * outgoing witness.
1329 	 */
1330 	for (wcl = w->w_children; wcl != NULL; wcl = nwcl) {
1331 		nwcl = wcl->wcl_next;
1332 		witness_child_free(wcl);
1333 	}
1334 
1335 	/*
1336 	 * Detach from various lists and free.
1337 	 */
1338 	STAILQ_REMOVE(list, w, witness, w_typelist);
1339 	STAILQ_REMOVE(&w_all, w, witness, w_list);
1340 	witness_free(w);
1341 
1342 	/* Finally, fixup the tree. */
1343 	return (rebalancetree(list));
1344 }
1345 
1346 /*
1347  * Prune an entire lock order tree.  We look for cases where a lock
1348  * is now both a descendant and a direct child of a given lock.  In
1349  * that case, we want to remove the direct child link from the tree.
1350  *
1351  * Returns false if insertchild() fails.
1352  */
1353 static int
1354 rebalancetree(struct witness_list *list)
1355 {
1356 	struct witness *child, *parent;
1357 
1358 	STAILQ_FOREACH(child, list, w_typelist) {
1359 		STAILQ_FOREACH(parent, list, w_typelist) {
1360 			if (!isitmychild(parent, child))
1361 				continue;
1362 			removechild(parent, child);
1363 			if (isitmydescendant(parent, child))
1364 				continue;
1365 			if (!insertchild(parent, child))
1366 				return (0);
1367 		}
1368 	}
1369 	witness_levelall();
1370 	return (1);
1371 }
1372 
1373 /*
1374  * Add "child" as a direct child of "parent".  Returns false if
1375  * we fail due to out of memory.
1376  */
1377 static int
1378 insertchild(struct witness *parent, struct witness *child)
1379 {
1380 	struct witness_child_list_entry **wcl;
1381 
1382 	MPASS(child != NULL && parent != NULL);
1383 
1384 	/*
1385 	 * Insert "child" after "parent"
1386 	 */
1387 	wcl = &parent->w_children;
1388 	while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN)
1389 		wcl = &(*wcl)->wcl_next;
1390 	if (*wcl == NULL) {
1391 		*wcl = witness_child_get();
1392 		if (*wcl == NULL)
1393 			return (0);
1394 	}
1395 	(*wcl)->wcl_children[(*wcl)->wcl_count++] = child;
1396 
1397 	return (1);
1398 }
1399 
1400 /*
1401  * Make all the direct descendants of oldparent be direct descendants
1402  * of newparent.
1403  */
1404 static int
1405 reparentchildren(struct witness *newparent, struct witness *oldparent)
1406 {
1407 	struct witness_child_list_entry *wcl;
1408 	int i;
1409 
1410 	/* Avoid making a witness a child of itself. */
1411 	MPASS(!isitmychild(oldparent, newparent));
1412 
1413 	for (wcl = oldparent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1414 		for (i = 0; i < wcl->wcl_count; i++)
1415 			if (!insertchild(newparent, wcl->wcl_children[i]))
1416 				return (0);
1417 	return (1);
1418 }
1419 
1420 static int
1421 itismychild(struct witness *parent, struct witness *child)
1422 {
1423 	struct witness_list *list;
1424 
1425 	MPASS(child != NULL && parent != NULL);
1426 	if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) !=
1427 	    (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)))
1428 		panic(
1429 		"%s: parent (%s) and child (%s) are not the same lock type",
1430 		    __func__, parent->w_class->lc_name,
1431 		    child->w_class->lc_name);
1432 
1433 	if (!insertchild(parent, child))
1434 		return (0);
1435 
1436 	if (parent->w_class->lc_flags & LC_SLEEPLOCK)
1437 		list = &w_sleep;
1438 	else
1439 		list = &w_spin;
1440 	return (rebalancetree(list));
1441 }
1442 
1443 static void
1444 removechild(struct witness *parent, struct witness *child)
1445 {
1446 	struct witness_child_list_entry **wcl, *wcl1;
1447 	int i;
1448 
1449 	for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next)
1450 		for (i = 0; i < (*wcl)->wcl_count; i++)
1451 			if ((*wcl)->wcl_children[i] == child)
1452 				goto found;
1453 	return;
1454 found:
1455 	(*wcl)->wcl_count--;
1456 	if ((*wcl)->wcl_count > i)
1457 		(*wcl)->wcl_children[i] =
1458 		    (*wcl)->wcl_children[(*wcl)->wcl_count];
1459 	MPASS((*wcl)->wcl_children[i] != NULL);
1460 	if ((*wcl)->wcl_count != 0)
1461 		return;
1462 	wcl1 = *wcl;
1463 	*wcl = wcl1->wcl_next;
1464 	witness_child_free(wcl1);
1465 }
1466 
1467 static int
1468 isitmychild(struct witness *parent, struct witness *child)
1469 {
1470 	struct witness_child_list_entry *wcl;
1471 	int i;
1472 
1473 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1474 		for (i = 0; i < wcl->wcl_count; i++) {
1475 			if (wcl->wcl_children[i] == child)
1476 				return (1);
1477 		}
1478 	}
1479 	return (0);
1480 }
1481 
1482 static int
1483 isitmydescendant(struct witness *parent, struct witness *child)
1484 {
1485 	struct witness_child_list_entry *wcl;
1486 	int i, j;
1487 
1488 	if (isitmychild(parent, child))
1489 		return (1);
1490 	j = 0;
1491 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) {
1492 		MPASS(j < 1000);
1493 		for (i = 0; i < wcl->wcl_count; i++) {
1494 			if (isitmydescendant(wcl->wcl_children[i], child))
1495 				return (1);
1496 		}
1497 		j++;
1498 	}
1499 	return (0);
1500 }
1501 
1502 static void
1503 witness_levelall (void)
1504 {
1505 	struct witness_list *list;
1506 	struct witness *w, *w1;
1507 
1508 	/*
1509 	 * First clear all levels.
1510 	 */
1511 	STAILQ_FOREACH(w, &w_all, w_list) {
1512 		w->w_level = 0;
1513 	}
1514 
1515 	/*
1516 	 * Look for locks with no parent and level all their descendants.
1517 	 */
1518 	STAILQ_FOREACH(w, &w_all, w_list) {
1519 		/*
1520 		 * This is just an optimization, technically we could get
1521 		 * away just walking the all list each time.
1522 		 */
1523 		if (w->w_class->lc_flags & LC_SLEEPLOCK)
1524 			list = &w_sleep;
1525 		else
1526 			list = &w_spin;
1527 		STAILQ_FOREACH(w1, list, w_typelist) {
1528 			if (isitmychild(w1, w))
1529 				goto skip;
1530 		}
1531 		witness_leveldescendents(w, 0);
1532 	skip:
1533 		;	/* silence GCC 3.x */
1534 	}
1535 }
1536 
1537 static void
1538 witness_leveldescendents(struct witness *parent, int level)
1539 {
1540 	struct witness_child_list_entry *wcl;
1541 	int i;
1542 
1543 	if (parent->w_level < level)
1544 		parent->w_level = level;
1545 	level++;
1546 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1547 		for (i = 0; i < wcl->wcl_count; i++)
1548 			witness_leveldescendents(wcl->wcl_children[i], level);
1549 }
1550 
1551 static void
1552 witness_displaydescendants(void(*prnt)(const char *fmt, ...),
1553 			   struct witness *parent, int indent)
1554 {
1555 	struct witness_child_list_entry *wcl;
1556 	int i, level;
1557 
1558 	level = parent->w_level;
1559 	prnt("%-2d", level);
1560 	for (i = 0; i < indent; i++)
1561 		prnt(" ");
1562 	if (parent->w_refcount > 0)
1563 		prnt("%s", parent->w_name);
1564 	else
1565 		prnt("(dead)");
1566 	if (parent->w_displayed) {
1567 		prnt(" -- (already displayed)\n");
1568 		return;
1569 	}
1570 	parent->w_displayed = 1;
1571 	if (parent->w_refcount > 0) {
1572 		if (parent->w_file != NULL)
1573 			prnt(" -- last acquired @ %s:%d", parent->w_file,
1574 			    parent->w_line);
1575 	}
1576 	prnt("\n");
1577 	for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next)
1578 		for (i = 0; i < wcl->wcl_count; i++)
1579 			    witness_displaydescendants(prnt,
1580 				wcl->wcl_children[i], indent + 1);
1581 }
1582 
1583 #ifdef BLESSING
1584 static int
1585 blessed(struct witness *w1, struct witness *w2)
1586 {
1587 	int i;
1588 	struct witness_blessed *b;
1589 
1590 	for (i = 0; i < blessed_count; i++) {
1591 		b = &blessed_list[i];
1592 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
1593 			if (strcmp(w2->w_name, b->b_lock2) == 0)
1594 				return (1);
1595 			continue;
1596 		}
1597 		if (strcmp(w1->w_name, b->b_lock2) == 0)
1598 			if (strcmp(w2->w_name, b->b_lock1) == 0)
1599 				return (1);
1600 	}
1601 	return (0);
1602 }
1603 #endif
1604 
1605 static struct witness *
1606 witness_get(void)
1607 {
1608 	struct witness *w;
1609 
1610 	if (witness_watch == 0) {
1611 		mtx_unlock_spin(&w_mtx);
1612 		return (NULL);
1613 	}
1614 	if (STAILQ_EMPTY(&w_free)) {
1615 		witness_watch = 0;
1616 		mtx_unlock_spin(&w_mtx);
1617 		printf("%s: witness exhausted\n", __func__);
1618 		return (NULL);
1619 	}
1620 	w = STAILQ_FIRST(&w_free);
1621 	STAILQ_REMOVE_HEAD(&w_free, w_list);
1622 	bzero(w, sizeof(*w));
1623 	return (w);
1624 }
1625 
1626 static void
1627 witness_free(struct witness *w)
1628 {
1629 
1630 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
1631 }
1632 
1633 static struct witness_child_list_entry *
1634 witness_child_get(void)
1635 {
1636 	struct witness_child_list_entry *wcl;
1637 
1638 	if (witness_watch == 0) {
1639 		mtx_unlock_spin(&w_mtx);
1640 		return (NULL);
1641 	}
1642 	wcl = w_child_free;
1643 	if (wcl == NULL) {
1644 		witness_watch = 0;
1645 		mtx_unlock_spin(&w_mtx);
1646 		printf("%s: witness exhausted\n", __func__);
1647 		return (NULL);
1648 	}
1649 	w_child_free = wcl->wcl_next;
1650 	bzero(wcl, sizeof(*wcl));
1651 	return (wcl);
1652 }
1653 
1654 static void
1655 witness_child_free(struct witness_child_list_entry *wcl)
1656 {
1657 
1658 	wcl->wcl_next = w_child_free;
1659 	w_child_free = wcl;
1660 }
1661 
1662 static struct lock_list_entry *
1663 witness_lock_list_get(void)
1664 {
1665 	struct lock_list_entry *lle;
1666 
1667 	if (witness_watch == 0)
1668 		return (NULL);
1669 	mtx_lock_spin(&w_mtx);
1670 	lle = w_lock_list_free;
1671 	if (lle == NULL) {
1672 		witness_watch = 0;
1673 		mtx_unlock_spin(&w_mtx);
1674 		printf("%s: witness exhausted\n", __func__);
1675 		return (NULL);
1676 	}
1677 	w_lock_list_free = lle->ll_next;
1678 	mtx_unlock_spin(&w_mtx);
1679 	bzero(lle, sizeof(*lle));
1680 	return (lle);
1681 }
1682 
1683 static void
1684 witness_lock_list_free(struct lock_list_entry *lle)
1685 {
1686 
1687 	mtx_lock_spin(&w_mtx);
1688 	lle->ll_next = w_lock_list_free;
1689 	w_lock_list_free = lle;
1690 	mtx_unlock_spin(&w_mtx);
1691 }
1692 
1693 static struct lock_instance *
1694 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock)
1695 {
1696 	struct lock_list_entry *lle;
1697 	struct lock_instance *instance;
1698 	int i;
1699 
1700 	for (lle = lock_list; lle != NULL; lle = lle->ll_next)
1701 		for (i = lle->ll_count - 1; i >= 0; i--) {
1702 			instance = &lle->ll_children[i];
1703 			if (instance->li_lock == lock)
1704 				return (instance);
1705 		}
1706 	return (NULL);
1707 }
1708 
1709 static void
1710 witness_list_lock(struct lock_instance *instance)
1711 {
1712 	struct lock_object *lock;
1713 
1714 	lock = instance->li_lock;
1715 	printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
1716 	    "exclusive" : "shared", lock->lo_class->lc_name, lock->lo_name);
1717 	if (lock->lo_type != lock->lo_name)
1718 		printf(" (%s)", lock->lo_type);
1719 	printf(" r = %d (%p) locked @ %s:%d\n",
1720 	    instance->li_flags & LI_RECURSEMASK, lock, instance->li_file,
1721 	    instance->li_line);
1722 }
1723 
1724 int
1725 witness_list_locks(struct lock_list_entry **lock_list)
1726 {
1727 	struct lock_list_entry *lle;
1728 	int i, nheld;
1729 
1730 	nheld = 0;
1731 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
1732 		for (i = lle->ll_count - 1; i >= 0; i--) {
1733 			witness_list_lock(&lle->ll_children[i]);
1734 			nheld++;
1735 		}
1736 	return (nheld);
1737 }
1738 
1739 /*
1740  * This is a bit risky at best.  We call this function when we have timed
1741  * out acquiring a spin lock, and we assume that the other CPU is stuck
1742  * with this lock held.  So, we go groveling around in the other CPU's
1743  * per-cpu data to try to find the lock instance for this spin lock to
1744  * see when it was last acquired.
1745  */
1746 void
1747 witness_display_spinlock(struct lock_object *lock, struct thread *owner)
1748 {
1749 	struct lock_instance *instance;
1750 	struct pcpu *pc;
1751 
1752 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
1753 		return;
1754 	pc = pcpu_find(owner->td_oncpu);
1755 	instance = find_instance(pc->pc_spinlocks, lock);
1756 	if (instance != NULL)
1757 		witness_list_lock(instance);
1758 }
1759 
1760 void
1761 witness_save(struct lock_object *lock, const char **filep, int *linep)
1762 {
1763 	struct lock_instance *instance;
1764 
1765 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1766 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1767 		return;
1768 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1769 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1770 		    lock->lo_class->lc_name, lock->lo_name);
1771 	instance = find_instance(curthread->td_sleeplocks, lock);
1772 	if (instance == NULL)
1773 		panic("%s: lock (%s) %s not locked", __func__,
1774 		    lock->lo_class->lc_name, lock->lo_name);
1775 	*filep = instance->li_file;
1776 	*linep = instance->li_line;
1777 }
1778 
1779 void
1780 witness_restore(struct lock_object *lock, const char *file, int line)
1781 {
1782 	struct lock_instance *instance;
1783 
1784 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1785 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1786 		return;
1787 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) == 0)
1788 		panic("%s: lock (%s) %s is not a sleep lock", __func__,
1789 		    lock->lo_class->lc_name, lock->lo_name);
1790 	instance = find_instance(curthread->td_sleeplocks, lock);
1791 	if (instance == NULL)
1792 		panic("%s: lock (%s) %s not locked", __func__,
1793 		    lock->lo_class->lc_name, lock->lo_name);
1794 	lock->lo_witness->w_file = file;
1795 	lock->lo_witness->w_line = line;
1796 	instance->li_file = file;
1797 	instance->li_line = line;
1798 }
1799 
1800 void
1801 witness_assert(struct lock_object *lock, int flags, const char *file, int line)
1802 {
1803 #ifdef INVARIANT_SUPPORT
1804 	struct lock_instance *instance;
1805 
1806 	if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL)
1807 		return;
1808 	if ((lock->lo_class->lc_flags & LC_SLEEPLOCK) != 0)
1809 		instance = find_instance(curthread->td_sleeplocks, lock);
1810 	else if ((lock->lo_class->lc_flags & LC_SPINLOCK) != 0)
1811 		instance = find_instance(PCPU_GET(spinlocks), lock);
1812 	else {
1813 		panic("Lock (%s) %s is not sleep or spin!",
1814 		    lock->lo_class->lc_name, lock->lo_name);
1815 	}
1816 	file = fixup_filename(file);
1817 	switch (flags) {
1818 	case LA_UNLOCKED:
1819 		if (instance != NULL)
1820 			panic("Lock (%s) %s locked @ %s:%d.",
1821 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1822 		break;
1823 	case LA_LOCKED:
1824 	case LA_LOCKED | LA_RECURSED:
1825 	case LA_LOCKED | LA_NOTRECURSED:
1826 	case LA_SLOCKED:
1827 	case LA_SLOCKED | LA_RECURSED:
1828 	case LA_SLOCKED | LA_NOTRECURSED:
1829 	case LA_XLOCKED:
1830 	case LA_XLOCKED | LA_RECURSED:
1831 	case LA_XLOCKED | LA_NOTRECURSED:
1832 		if (instance == NULL) {
1833 			panic("Lock (%s) %s not locked @ %s:%d.",
1834 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1835 			break;
1836 		}
1837 		if ((flags & LA_XLOCKED) != 0 &&
1838 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
1839 			panic("Lock (%s) %s not exclusively locked @ %s:%d.",
1840 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1841 		if ((flags & LA_SLOCKED) != 0 &&
1842 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
1843 			panic("Lock (%s) %s exclusively locked @ %s:%d.",
1844 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1845 		if ((flags & LA_RECURSED) != 0 &&
1846 		    (instance->li_flags & LI_RECURSEMASK) == 0)
1847 			panic("Lock (%s) %s not recursed @ %s:%d.",
1848 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1849 		if ((flags & LA_NOTRECURSED) != 0 &&
1850 		    (instance->li_flags & LI_RECURSEMASK) != 0)
1851 			panic("Lock (%s) %s recursed @ %s:%d.",
1852 			    lock->lo_class->lc_name, lock->lo_name, file, line);
1853 		break;
1854 	default:
1855 		panic("Invalid lock assertion at %s:%d.", file, line);
1856 
1857 	}
1858 #endif	/* INVARIANT_SUPPORT */
1859 }
1860 
1861 #ifdef DDB
1862 static void
1863 witness_list(struct thread *td)
1864 {
1865 
1866 	KASSERT(!witness_cold, ("%s: witness_cold", __func__));
1867 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
1868 
1869 	if (witness_watch == 0)
1870 		return;
1871 
1872 	witness_list_locks(&td->td_sleeplocks);
1873 
1874 	/*
1875 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
1876 	 * if td is currently executing on some other CPU and holds spin locks
1877 	 * as we won't display those locks.  If we had a MI way of getting
1878 	 * the per-cpu data for a given cpu then we could use
1879 	 * td->td_oncpu to get the list of spinlocks for this thread
1880 	 * and "fix" this.
1881 	 *
1882 	 * That still wouldn't really fix this unless we locked sched_lock
1883 	 * or stopped the other CPU to make sure it wasn't changing the list
1884 	 * out from under us.  It is probably best to just not try to handle
1885 	 * threads on other CPU's for now.
1886 	 */
1887 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
1888 		witness_list_locks(PCPU_PTR(spinlocks));
1889 }
1890 
1891 DB_SHOW_COMMAND(locks, db_witness_list)
1892 {
1893 	struct thread *td;
1894 	pid_t pid;
1895 	struct proc *p;
1896 
1897 	if (have_addr) {
1898 		pid = (addr % 16) + ((addr >> 4) % 16) * 10 +
1899 		    ((addr >> 8) % 16) * 100 + ((addr >> 12) % 16) * 1000 +
1900 		    ((addr >> 16) % 16) * 10000;
1901 		/* sx_slock(&allproc_lock); */
1902 		FOREACH_PROC_IN_SYSTEM(p) {
1903 			if (p->p_pid == pid)
1904 				break;
1905 		}
1906 		/* sx_sunlock(&allproc_lock); */
1907 		if (p == NULL) {
1908 			db_printf("pid %d not found\n", pid);
1909 			return;
1910 		}
1911 		FOREACH_THREAD_IN_PROC(p, td) {
1912 			witness_list(td);
1913 		}
1914 	} else {
1915 		td = curthread;
1916 		witness_list(td);
1917 	}
1918 }
1919 
1920 DB_SHOW_COMMAND(witness, db_witness_display)
1921 {
1922 
1923 	witness_display(db_printf);
1924 }
1925 #endif
1926