xref: /freebsd/sys/kern/subr_witness.c (revision 60fde7ce5d7bf5d94290720ea53db5701ab406a8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 
135 /* Define this to check for blessed mutexes */
136 #undef BLESSING
137 
138 #ifndef WITNESS_COUNT
139 #define	WITNESS_COUNT 		1536
140 #endif
141 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
142 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
143 
144 /* Allocate 256 KB of stack data space */
145 #define	WITNESS_LO_DATA_COUNT	2048
146 
147 /* Prime, gives load factor of ~2 at full load */
148 #define	WITNESS_LO_HASH_SIZE	1021
149 
150 /*
151  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
152  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
153  * probably be safe for the most part, but it's still a SWAG.
154  */
155 #define	LOCK_NCHILDREN	5
156 #define	LOCK_CHILDCOUNT	2048
157 
158 #define	MAX_W_NAME	64
159 
160 #define	FULLGRAPH_SBUF_SIZE	512
161 
162 /*
163  * These flags go in the witness relationship matrix and describe the
164  * relationship between any two struct witness objects.
165  */
166 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
167 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
168 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
169 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
170 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
171 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
172 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
173 #define	WITNESS_RELATED_MASK						\
174 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
175 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
176 					  * observed. */
177 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
178 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
179 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
180 
181 /* Descendant to ancestor flags */
182 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
183 
184 /* Ancestor to descendant flags */
185 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
186 
187 #define	WITNESS_INDEX_ASSERT(i)						\
188 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
189 
190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
191 
192 /*
193  * Lock instances.  A lock instance is the data associated with a lock while
194  * it is held by witness.  For example, a lock instance will hold the
195  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
196  * are held in a per-cpu list while sleep locks are held in per-thread list.
197  */
198 struct lock_instance {
199 	struct lock_object	*li_lock;
200 	const char		*li_file;
201 	int			li_line;
202 	u_int			li_flags;
203 };
204 
205 /*
206  * A simple list type used to build the list of locks held by a thread
207  * or CPU.  We can't simply embed the list in struct lock_object since a
208  * lock may be held by more than one thread if it is a shared lock.  Locks
209  * are added to the head of the list, so we fill up each list entry from
210  * "the back" logically.  To ease some of the arithmetic, we actually fill
211  * in each list entry the normal way (children[0] then children[1], etc.) but
212  * when we traverse the list we read children[count-1] as the first entry
213  * down to children[0] as the final entry.
214  */
215 struct lock_list_entry {
216 	struct lock_list_entry	*ll_next;
217 	struct lock_instance	ll_children[LOCK_NCHILDREN];
218 	u_int			ll_count;
219 };
220 
221 /*
222  * The main witness structure. One of these per named lock type in the system
223  * (for example, "vnode interlock").
224  */
225 struct witness {
226 	char  			w_name[MAX_W_NAME];
227 	uint32_t 		w_index;  /* Index in the relationship matrix */
228 	struct lock_class	*w_class;
229 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
230 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
231 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
232 	const char		*w_file; /* File where last acquired */
233 	uint32_t 		w_line; /* Line where last acquired */
234 	uint32_t 		w_refcount;
235 	uint16_t 		w_num_ancestors; /* direct/indirect
236 						  * ancestor count */
237 	uint16_t 		w_num_descendants; /* direct/indirect
238 						    * descendant count */
239 	int16_t 		w_ddb_level;
240 	unsigned		w_displayed:1;
241 	unsigned		w_reversed:1;
242 };
243 
244 STAILQ_HEAD(witness_list, witness);
245 
246 /*
247  * The witness hash table. Keys are witness names (const char *), elements are
248  * witness objects (struct witness *).
249  */
250 struct witness_hash {
251 	struct witness	*wh_array[WITNESS_HASH_SIZE];
252 	uint32_t	wh_size;
253 	uint32_t	wh_count;
254 };
255 
256 /*
257  * Key type for the lock order data hash table.
258  */
259 struct witness_lock_order_key {
260 	uint16_t	from;
261 	uint16_t	to;
262 };
263 
264 struct witness_lock_order_data {
265 	struct stack			wlod_stack;
266 	struct witness_lock_order_key	wlod_key;
267 	struct witness_lock_order_data	*wlod_next;
268 };
269 
270 /*
271  * The witness lock order data hash table. Keys are witness index tuples
272  * (struct witness_lock_order_key), elements are lock order data objects
273  * (struct witness_lock_order_data).
274  */
275 struct witness_lock_order_hash {
276 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
277 	u_int	wloh_size;
278 	u_int	wloh_count;
279 };
280 
281 #ifdef BLESSING
282 struct witness_blessed {
283 	const char	*b_lock1;
284 	const char	*b_lock2;
285 };
286 #endif
287 
288 struct witness_pendhelp {
289 	const char		*wh_type;
290 	struct lock_object	*wh_lock;
291 };
292 
293 struct witness_order_list_entry {
294 	const char		*w_name;
295 	struct lock_class	*w_class;
296 };
297 
298 /*
299  * Returns 0 if one of the locks is a spin lock and the other is not.
300  * Returns 1 otherwise.
301  */
302 static __inline int
303 witness_lock_type_equal(struct witness *w1, struct witness *w2)
304 {
305 
306 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
307 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
308 }
309 
310 static __inline int
311 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
312     const struct witness_lock_order_key *b)
313 {
314 
315 	return (a->from == b->from && a->to == b->to);
316 }
317 
318 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
319 		    const char *fname);
320 static void	adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int	blessed(struct witness *, struct witness *);
323 #endif
324 static void	depart(struct witness *w);
325 static struct witness	*enroll(const char *description,
326 			    struct lock_class *lock_class);
327 static struct lock_instance	*find_instance(struct lock_list_entry *list,
328 				    const struct lock_object *lock);
329 static int	isitmychild(struct witness *parent, struct witness *child);
330 static int	isitmydescendant(struct witness *parent, struct witness *child);
331 static void	itismychild(struct witness *parent, struct witness *child);
332 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
336 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
337 #ifdef DDB
338 static void	witness_ddb_compute_levels(void);
339 static void	witness_ddb_display(int(*)(const char *fmt, ...));
340 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
341 		    struct witness *, int indent);
342 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
343 		    struct witness_list *list);
344 static void	witness_ddb_level_descendants(struct witness *parent, int l);
345 static void	witness_ddb_list(struct thread *td);
346 #endif
347 static void	witness_debugger(int cond, const char *msg);
348 static void	witness_free(struct witness *m);
349 static struct witness	*witness_get(void);
350 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
351 static struct witness	*witness_hash_get(const char *key);
352 static void	witness_hash_put(struct witness *w);
353 static void	witness_init_hash_tables(void);
354 static void	witness_increment_graph_generation(void);
355 static void	witness_lock_list_free(struct lock_list_entry *lle);
356 static struct lock_list_entry	*witness_lock_list_get(void);
357 static int	witness_lock_order_add(struct witness *parent,
358 		    struct witness *child);
359 static int	witness_lock_order_check(struct witness *parent,
360 		    struct witness *child);
361 static struct witness_lock_order_data	*witness_lock_order_get(
362 					    struct witness *parent,
363 					    struct witness *child);
364 static void	witness_list_lock(struct lock_instance *instance,
365 		    int (*prnt)(const char *fmt, ...));
366 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
367 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
368 static void	witness_setflag(struct lock_object *lock, int flag, int set);
369 
370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
371     "Witness Locking");
372 
373 /*
374  * If set to 0, lock order checking is disabled.  If set to -1,
375  * witness is completely disabled.  Otherwise witness performs full
376  * lock order checking for all locks.  At runtime, lock order checking
377  * may be toggled.  However, witness cannot be reenabled once it is
378  * completely disabled.
379  */
380 static int witness_watch = 1;
381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
382     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
383 
384 #ifdef KDB
385 /*
386  * When KDB is enabled and witness_kdb is 1, it will cause the system
387  * to drop into kdebug() when:
388  *	- a lock hierarchy violation occurs
389  *	- locks are held when going to sleep.
390  */
391 #ifdef WITNESS_KDB
392 int	witness_kdb = 1;
393 #else
394 int	witness_kdb = 0;
395 #endif
396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
397 #endif /* KDB */
398 
399 #if defined(DDB) || defined(KDB)
400 /*
401  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *	- a lock hierarchy violation occurs
404  *	- locks are held when going to sleep.
405  */
406 int	witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* DDB || KDB */
409 
410 #ifdef WITNESS_SKIPSPIN
411 int	witness_skipspin = 1;
412 #else
413 int	witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416 
417 int badstack_sbuf_size;
418 
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
421     &witness_count, 0, "");
422 
423 /*
424  * Output channel for witness messages.  By default we print to the console.
425  */
426 enum witness_channel {
427 	WITNESS_CONSOLE,
428 	WITNESS_LOG,
429 	WITNESS_NONE,
430 };
431 
432 static enum witness_channel witness_channel = WITNESS_CONSOLE;
433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
434     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
435     "Output channel for warnings");
436 
437 /*
438  * Call this to print out the relations between locks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
442 
443 /*
444  * Call this to print out the witness faulty stacks.
445  */
446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
447     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
448 
449 static struct mtx w_mtx;
450 
451 /* w_list */
452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
454 
455 /* w_typelist */
456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
458 
459 /* lock list */
460 static struct lock_list_entry *w_lock_list_free = NULL;
461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
462 static u_int pending_cnt;
463 
464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
468     "");
469 
470 static struct witness *w_data;
471 static uint8_t **w_rmatrix;
472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
473 static struct witness_hash w_hash;	/* The witness hash table. */
474 
475 /* The lock order data hash */
476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
477 static struct witness_lock_order_data *w_lofree = NULL;
478 static struct witness_lock_order_hash w_lohash;
479 static int w_max_used_index = 0;
480 static unsigned int w_generation = 0;
481 static const char w_notrunning[] = "Witness not running\n";
482 static const char w_stillcold[] = "Witness is still cold\n";
483 
484 
485 static struct witness_order_list_entry order_lists[] = {
486 	/*
487 	 * sx locks
488 	 */
489 	{ "proctree", &lock_class_sx },
490 	{ "allproc", &lock_class_sx },
491 	{ "allprison", &lock_class_sx },
492 	{ NULL, NULL },
493 	/*
494 	 * Various mutexes
495 	 */
496 	{ "Giant", &lock_class_mtx_sleep },
497 	{ "pipe mutex", &lock_class_mtx_sleep },
498 	{ "sigio lock", &lock_class_mtx_sleep },
499 	{ "process group", &lock_class_mtx_sleep },
500 	{ "process lock", &lock_class_mtx_sleep },
501 	{ "session", &lock_class_mtx_sleep },
502 	{ "uidinfo hash", &lock_class_rw },
503 #ifdef	HWPMC_HOOKS
504 	{ "pmc-sleep", &lock_class_mtx_sleep },
505 #endif
506 	{ "time lock", &lock_class_mtx_sleep },
507 	{ NULL, NULL },
508 	/*
509 	 * umtx
510 	 */
511 	{ "umtx lock", &lock_class_mtx_sleep },
512 	{ NULL, NULL },
513 	/*
514 	 * Sockets
515 	 */
516 	{ "accept", &lock_class_mtx_sleep },
517 	{ "so_snd", &lock_class_mtx_sleep },
518 	{ "so_rcv", &lock_class_mtx_sleep },
519 	{ "sellck", &lock_class_mtx_sleep },
520 	{ NULL, NULL },
521 	/*
522 	 * Routing
523 	 */
524 	{ "so_rcv", &lock_class_mtx_sleep },
525 	{ "radix node head", &lock_class_rw },
526 	{ "rtentry", &lock_class_mtx_sleep },
527 	{ "ifaddr", &lock_class_mtx_sleep },
528 	{ NULL, NULL },
529 	/*
530 	 * IPv4 multicast:
531 	 * protocol locks before interface locks, after UDP locks.
532 	 */
533 	{ "udpinp", &lock_class_rw },
534 	{ "in_multi_mtx", &lock_class_mtx_sleep },
535 	{ "igmp_mtx", &lock_class_mtx_sleep },
536 	{ "if_addr_lock", &lock_class_rw },
537 	{ NULL, NULL },
538 	/*
539 	 * IPv6 multicast:
540 	 * protocol locks before interface locks, after UDP locks.
541 	 */
542 	{ "udpinp", &lock_class_rw },
543 	{ "in6_multi_mtx", &lock_class_mtx_sleep },
544 	{ "mld_mtx", &lock_class_mtx_sleep },
545 	{ "if_addr_lock", &lock_class_rw },
546 	{ NULL, NULL },
547 	/*
548 	 * UNIX Domain Sockets
549 	 */
550 	{ "unp_link_rwlock", &lock_class_rw },
551 	{ "unp_list_lock", &lock_class_mtx_sleep },
552 	{ "unp", &lock_class_mtx_sleep },
553 	{ "so_snd", &lock_class_mtx_sleep },
554 	{ NULL, NULL },
555 	/*
556 	 * UDP/IP
557 	 */
558 	{ "udp", &lock_class_rw },
559 	{ "udpinp", &lock_class_rw },
560 	{ "so_snd", &lock_class_mtx_sleep },
561 	{ NULL, NULL },
562 	/*
563 	 * TCP/IP
564 	 */
565 	{ "tcp", &lock_class_rw },
566 	{ "tcpinp", &lock_class_rw },
567 	{ "so_snd", &lock_class_mtx_sleep },
568 	{ NULL, NULL },
569 	/*
570 	 * BPF
571 	 */
572 	{ "bpf global lock", &lock_class_mtx_sleep },
573 	{ "bpf interface lock", &lock_class_rw },
574 	{ "bpf cdev lock", &lock_class_mtx_sleep },
575 	{ NULL, NULL },
576 	/*
577 	 * NFS server
578 	 */
579 	{ "nfsd_mtx", &lock_class_mtx_sleep },
580 	{ "so_snd", &lock_class_mtx_sleep },
581 	{ NULL, NULL },
582 
583 	/*
584 	 * IEEE 802.11
585 	 */
586 	{ "802.11 com lock", &lock_class_mtx_sleep},
587 	{ NULL, NULL },
588 	/*
589 	 * Network drivers
590 	 */
591 	{ "network driver", &lock_class_mtx_sleep},
592 	{ NULL, NULL },
593 
594 	/*
595 	 * Netgraph
596 	 */
597 	{ "ng_node", &lock_class_mtx_sleep },
598 	{ "ng_worklist", &lock_class_mtx_sleep },
599 	{ NULL, NULL },
600 	/*
601 	 * CDEV
602 	 */
603 	{ "vm map (system)", &lock_class_mtx_sleep },
604 	{ "vm pagequeue", &lock_class_mtx_sleep },
605 	{ "vnode interlock", &lock_class_mtx_sleep },
606 	{ "cdev", &lock_class_mtx_sleep },
607 	{ NULL, NULL },
608 	/*
609 	 * VM
610 	 */
611 	{ "vm map (user)", &lock_class_sx },
612 	{ "vm object", &lock_class_rw },
613 	{ "vm page", &lock_class_mtx_sleep },
614 	{ "vm pagequeue", &lock_class_mtx_sleep },
615 	{ "pmap pv global", &lock_class_rw },
616 	{ "pmap", &lock_class_mtx_sleep },
617 	{ "pmap pv list", &lock_class_rw },
618 	{ "vm page free queue", &lock_class_mtx_sleep },
619 	{ NULL, NULL },
620 	/*
621 	 * kqueue/VFS interaction
622 	 */
623 	{ "kqueue", &lock_class_mtx_sleep },
624 	{ "struct mount mtx", &lock_class_mtx_sleep },
625 	{ "vnode interlock", &lock_class_mtx_sleep },
626 	{ NULL, NULL },
627 	/*
628 	 * VFS namecache
629 	 */
630 	{ "ncvn", &lock_class_mtx_sleep },
631 	{ "ncbuc", &lock_class_rw },
632 	{ "vnode interlock", &lock_class_mtx_sleep },
633 	{ "ncneg", &lock_class_mtx_sleep },
634 	{ NULL, NULL },
635 	/*
636 	 * ZFS locking
637 	 */
638 	{ "dn->dn_mtx", &lock_class_sx },
639 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
640 	{ "db->db_mtx", &lock_class_sx },
641 	{ NULL, NULL },
642 	/*
643 	 * TCP log locks
644 	 */
645 	{ "TCP ID tree", &lock_class_rw },
646 	{ "tcp log id bucket", &lock_class_mtx_sleep },
647 	{ "tcpinp", &lock_class_rw },
648 	{ "TCP log expireq", &lock_class_mtx_sleep },
649 	{ NULL, NULL },
650 	/*
651 	 * spin locks
652 	 */
653 #ifdef SMP
654 	{ "ap boot", &lock_class_mtx_spin },
655 #endif
656 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
657 	{ "sio", &lock_class_mtx_spin },
658 #ifdef __i386__
659 	{ "cy", &lock_class_mtx_spin },
660 #endif
661 #ifdef __sparc64__
662 	{ "pcib_mtx", &lock_class_mtx_spin },
663 	{ "rtc_mtx", &lock_class_mtx_spin },
664 #endif
665 	{ "scc_hwmtx", &lock_class_mtx_spin },
666 	{ "uart_hwmtx", &lock_class_mtx_spin },
667 	{ "fast_taskqueue", &lock_class_mtx_spin },
668 	{ "intr table", &lock_class_mtx_spin },
669 #ifdef	HWPMC_HOOKS
670 	{ "pmc-per-proc", &lock_class_mtx_spin },
671 #endif
672 	{ "process slock", &lock_class_mtx_spin },
673 	{ "syscons video lock", &lock_class_mtx_spin },
674 	{ "sleepq chain", &lock_class_mtx_spin },
675 	{ "rm_spinlock", &lock_class_mtx_spin },
676 	{ "turnstile chain", &lock_class_mtx_spin },
677 	{ "turnstile lock", &lock_class_mtx_spin },
678 	{ "sched lock", &lock_class_mtx_spin },
679 	{ "td_contested", &lock_class_mtx_spin },
680 	{ "callout", &lock_class_mtx_spin },
681 	{ "entropy harvest mutex", &lock_class_mtx_spin },
682 #ifdef SMP
683 	{ "smp rendezvous", &lock_class_mtx_spin },
684 #endif
685 #ifdef __powerpc__
686 	{ "tlb0", &lock_class_mtx_spin },
687 #endif
688 	/*
689 	 * leaf locks
690 	 */
691 	{ "intrcnt", &lock_class_mtx_spin },
692 	{ "icu", &lock_class_mtx_spin },
693 #if defined(SMP) && defined(__sparc64__)
694 	{ "ipi", &lock_class_mtx_spin },
695 #endif
696 #ifdef __i386__
697 	{ "allpmaps", &lock_class_mtx_spin },
698 	{ "descriptor tables", &lock_class_mtx_spin },
699 #endif
700 	{ "clk", &lock_class_mtx_spin },
701 	{ "cpuset", &lock_class_mtx_spin },
702 	{ "mprof lock", &lock_class_mtx_spin },
703 	{ "zombie lock", &lock_class_mtx_spin },
704 	{ "ALD Queue", &lock_class_mtx_spin },
705 #if defined(__i386__) || defined(__amd64__)
706 	{ "pcicfg", &lock_class_mtx_spin },
707 	{ "NDIS thread lock", &lock_class_mtx_spin },
708 #endif
709 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
710 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
711 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
712 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
713 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
714 #ifdef	HWPMC_HOOKS
715 	{ "pmc-leaf", &lock_class_mtx_spin },
716 #endif
717 	{ "blocked lock", &lock_class_mtx_spin },
718 	{ NULL, NULL },
719 	{ NULL, NULL }
720 };
721 
722 #ifdef BLESSING
723 /*
724  * Pairs of locks which have been blessed
725  * Don't complain about order problems with blessed locks
726  */
727 static struct witness_blessed blessed_list[] = {
728 };
729 #endif
730 
731 /*
732  * This global is set to 0 once it becomes safe to use the witness code.
733  */
734 static int witness_cold = 1;
735 
736 /*
737  * This global is set to 1 once the static lock orders have been enrolled
738  * so that a warning can be issued for any spin locks enrolled later.
739  */
740 static int witness_spin_warn = 0;
741 
742 /* Trim useless garbage from filenames. */
743 static const char *
744 fixup_filename(const char *file)
745 {
746 
747 	if (file == NULL)
748 		return (NULL);
749 	while (strncmp(file, "../", 3) == 0)
750 		file += 3;
751 	return (file);
752 }
753 
754 /*
755  * Calculate the size of early witness structures.
756  */
757 int
758 witness_startup_count(void)
759 {
760 	int sz;
761 
762 	sz = sizeof(struct witness) * witness_count;
763 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
764 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
765 	    (witness_count + 1);
766 
767 	return (sz);
768 }
769 
770 /*
771  * The WITNESS-enabled diagnostic code.  Note that the witness code does
772  * assume that the early boot is single-threaded at least until after this
773  * routine is completed.
774  */
775 void
776 witness_startup(void *mem)
777 {
778 	struct lock_object *lock;
779 	struct witness_order_list_entry *order;
780 	struct witness *w, *w1;
781 	uintptr_t p;
782 	int i;
783 
784 	p = (uintptr_t)mem;
785 	w_data = (void *)p;
786 	p += sizeof(struct witness) * witness_count;
787 
788 	w_rmatrix = (void *)p;
789 	p += sizeof(*w_rmatrix) * (witness_count + 1);
790 
791 	for (i = 0; i < witness_count + 1; i++) {
792 		w_rmatrix[i] = (void *)p;
793 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
794 	}
795 	badstack_sbuf_size = witness_count * 256;
796 
797 	/*
798 	 * We have to release Giant before initializing its witness
799 	 * structure so that WITNESS doesn't get confused.
800 	 */
801 	mtx_unlock(&Giant);
802 	mtx_assert(&Giant, MA_NOTOWNED);
803 
804 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
805 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
806 	    MTX_NOWITNESS | MTX_NOPROFILE);
807 	for (i = witness_count - 1; i >= 0; i--) {
808 		w = &w_data[i];
809 		memset(w, 0, sizeof(*w));
810 		w_data[i].w_index = i;	/* Witness index never changes. */
811 		witness_free(w);
812 	}
813 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
814 	    ("%s: Invalid list of free witness objects", __func__));
815 
816 	/* Witness with index 0 is not used to aid in debugging. */
817 	STAILQ_REMOVE_HEAD(&w_free, w_list);
818 	w_free_cnt--;
819 
820 	for (i = 0; i < witness_count; i++) {
821 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
822 		    (witness_count + 1));
823 	}
824 
825 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
826 		witness_lock_list_free(&w_locklistdata[i]);
827 	witness_init_hash_tables();
828 
829 	/* First add in all the specified order lists. */
830 	for (order = order_lists; order->w_name != NULL; order++) {
831 		w = enroll(order->w_name, order->w_class);
832 		if (w == NULL)
833 			continue;
834 		w->w_file = "order list";
835 		for (order++; order->w_name != NULL; order++) {
836 			w1 = enroll(order->w_name, order->w_class);
837 			if (w1 == NULL)
838 				continue;
839 			w1->w_file = "order list";
840 			itismychild(w, w1);
841 			w = w1;
842 		}
843 	}
844 	witness_spin_warn = 1;
845 
846 	/* Iterate through all locks and add them to witness. */
847 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
848 		lock = pending_locks[i].wh_lock;
849 		KASSERT(lock->lo_flags & LO_WITNESS,
850 		    ("%s: lock %s is on pending list but not LO_WITNESS",
851 		    __func__, lock->lo_name));
852 		lock->lo_witness = enroll(pending_locks[i].wh_type,
853 		    LOCK_CLASS(lock));
854 	}
855 
856 	/* Mark the witness code as being ready for use. */
857 	witness_cold = 0;
858 
859 	mtx_lock(&Giant);
860 }
861 
862 void
863 witness_init(struct lock_object *lock, const char *type)
864 {
865 	struct lock_class *class;
866 
867 	/* Various sanity checks. */
868 	class = LOCK_CLASS(lock);
869 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
870 	    (class->lc_flags & LC_RECURSABLE) == 0)
871 		kassert_panic("%s: lock (%s) %s can not be recursable",
872 		    __func__, class->lc_name, lock->lo_name);
873 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
874 	    (class->lc_flags & LC_SLEEPABLE) == 0)
875 		kassert_panic("%s: lock (%s) %s can not be sleepable",
876 		    __func__, class->lc_name, lock->lo_name);
877 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
878 	    (class->lc_flags & LC_UPGRADABLE) == 0)
879 		kassert_panic("%s: lock (%s) %s can not be upgradable",
880 		    __func__, class->lc_name, lock->lo_name);
881 
882 	/*
883 	 * If we shouldn't watch this lock, then just clear lo_witness.
884 	 * Otherwise, if witness_cold is set, then it is too early to
885 	 * enroll this lock, so defer it to witness_initialize() by adding
886 	 * it to the pending_locks list.  If it is not too early, then enroll
887 	 * the lock now.
888 	 */
889 	if (witness_watch < 1 || panicstr != NULL ||
890 	    (lock->lo_flags & LO_WITNESS) == 0)
891 		lock->lo_witness = NULL;
892 	else if (witness_cold) {
893 		pending_locks[pending_cnt].wh_lock = lock;
894 		pending_locks[pending_cnt++].wh_type = type;
895 		if (pending_cnt > WITNESS_PENDLIST)
896 			panic("%s: pending locks list is too small, "
897 			    "increase WITNESS_PENDLIST\n",
898 			    __func__);
899 	} else
900 		lock->lo_witness = enroll(type, class);
901 }
902 
903 void
904 witness_destroy(struct lock_object *lock)
905 {
906 	struct lock_class *class;
907 	struct witness *w;
908 
909 	class = LOCK_CLASS(lock);
910 
911 	if (witness_cold)
912 		panic("lock (%s) %s destroyed while witness_cold",
913 		    class->lc_name, lock->lo_name);
914 
915 	/* XXX: need to verify that no one holds the lock */
916 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
917 		return;
918 	w = lock->lo_witness;
919 
920 	mtx_lock_spin(&w_mtx);
921 	MPASS(w->w_refcount > 0);
922 	w->w_refcount--;
923 
924 	if (w->w_refcount == 0)
925 		depart(w);
926 	mtx_unlock_spin(&w_mtx);
927 }
928 
929 #ifdef DDB
930 static void
931 witness_ddb_compute_levels(void)
932 {
933 	struct witness *w;
934 
935 	/*
936 	 * First clear all levels.
937 	 */
938 	STAILQ_FOREACH(w, &w_all, w_list)
939 		w->w_ddb_level = -1;
940 
941 	/*
942 	 * Look for locks with no parents and level all their descendants.
943 	 */
944 	STAILQ_FOREACH(w, &w_all, w_list) {
945 
946 		/* If the witness has ancestors (is not a root), skip it. */
947 		if (w->w_num_ancestors > 0)
948 			continue;
949 		witness_ddb_level_descendants(w, 0);
950 	}
951 }
952 
953 static void
954 witness_ddb_level_descendants(struct witness *w, int l)
955 {
956 	int i;
957 
958 	if (w->w_ddb_level >= l)
959 		return;
960 
961 	w->w_ddb_level = l;
962 	l++;
963 
964 	for (i = 1; i <= w_max_used_index; i++) {
965 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
966 			witness_ddb_level_descendants(&w_data[i], l);
967 	}
968 }
969 
970 static void
971 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
972     struct witness *w, int indent)
973 {
974 	int i;
975 
976  	for (i = 0; i < indent; i++)
977  		prnt(" ");
978 	prnt("%s (type: %s, depth: %d, active refs: %d)",
979 	     w->w_name, w->w_class->lc_name,
980 	     w->w_ddb_level, w->w_refcount);
981  	if (w->w_displayed) {
982  		prnt(" -- (already displayed)\n");
983  		return;
984  	}
985  	w->w_displayed = 1;
986 	if (w->w_file != NULL && w->w_line != 0)
987 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
988 		    w->w_line);
989 	else
990 		prnt(" -- never acquired\n");
991 	indent++;
992 	WITNESS_INDEX_ASSERT(w->w_index);
993 	for (i = 1; i <= w_max_used_index; i++) {
994 		if (db_pager_quit)
995 			return;
996 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
997 			witness_ddb_display_descendants(prnt, &w_data[i],
998 			    indent);
999 	}
1000 }
1001 
1002 static void
1003 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1004     struct witness_list *list)
1005 {
1006 	struct witness *w;
1007 
1008 	STAILQ_FOREACH(w, list, w_typelist) {
1009 		if (w->w_file == NULL || w->w_ddb_level > 0)
1010 			continue;
1011 
1012 		/* This lock has no anscestors - display its descendants. */
1013 		witness_ddb_display_descendants(prnt, w, 0);
1014 		if (db_pager_quit)
1015 			return;
1016 	}
1017 }
1018 
1019 static void
1020 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1021 {
1022 	struct witness *w;
1023 
1024 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1025 	witness_ddb_compute_levels();
1026 
1027 	/* Clear all the displayed flags. */
1028 	STAILQ_FOREACH(w, &w_all, w_list)
1029 		w->w_displayed = 0;
1030 
1031 	/*
1032 	 * First, handle sleep locks which have been acquired at least
1033 	 * once.
1034 	 */
1035 	prnt("Sleep locks:\n");
1036 	witness_ddb_display_list(prnt, &w_sleep);
1037 	if (db_pager_quit)
1038 		return;
1039 
1040 	/*
1041 	 * Now do spin locks which have been acquired at least once.
1042 	 */
1043 	prnt("\nSpin locks:\n");
1044 	witness_ddb_display_list(prnt, &w_spin);
1045 	if (db_pager_quit)
1046 		return;
1047 
1048 	/*
1049 	 * Finally, any locks which have not been acquired yet.
1050 	 */
1051 	prnt("\nLocks which were never acquired:\n");
1052 	STAILQ_FOREACH(w, &w_all, w_list) {
1053 		if (w->w_file != NULL || w->w_refcount == 0)
1054 			continue;
1055 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1056 		    w->w_class->lc_name, w->w_ddb_level);
1057 		if (db_pager_quit)
1058 			return;
1059 	}
1060 }
1061 #endif /* DDB */
1062 
1063 int
1064 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1065 {
1066 
1067 	if (witness_watch == -1 || panicstr != NULL)
1068 		return (0);
1069 
1070 	/* Require locks that witness knows about. */
1071 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1072 	    lock2->lo_witness == NULL)
1073 		return (EINVAL);
1074 
1075 	mtx_assert(&w_mtx, MA_NOTOWNED);
1076 	mtx_lock_spin(&w_mtx);
1077 
1078 	/*
1079 	 * If we already have either an explicit or implied lock order that
1080 	 * is the other way around, then return an error.
1081 	 */
1082 	if (witness_watch &&
1083 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1084 		mtx_unlock_spin(&w_mtx);
1085 		return (EDOOFUS);
1086 	}
1087 
1088 	/* Try to add the new order. */
1089 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1090 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1091 	itismychild(lock1->lo_witness, lock2->lo_witness);
1092 	mtx_unlock_spin(&w_mtx);
1093 	return (0);
1094 }
1095 
1096 void
1097 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1098     int line, struct lock_object *interlock)
1099 {
1100 	struct lock_list_entry *lock_list, *lle;
1101 	struct lock_instance *lock1, *lock2, *plock;
1102 	struct lock_class *class, *iclass;
1103 	struct witness *w, *w1;
1104 	struct thread *td;
1105 	int i, j;
1106 
1107 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1108 	    panicstr != NULL)
1109 		return;
1110 
1111 	w = lock->lo_witness;
1112 	class = LOCK_CLASS(lock);
1113 	td = curthread;
1114 
1115 	if (class->lc_flags & LC_SLEEPLOCK) {
1116 
1117 		/*
1118 		 * Since spin locks include a critical section, this check
1119 		 * implicitly enforces a lock order of all sleep locks before
1120 		 * all spin locks.
1121 		 */
1122 		if (td->td_critnest != 0 && !kdb_active)
1123 			kassert_panic("acquiring blockable sleep lock with "
1124 			    "spinlock or critical section held (%s) %s @ %s:%d",
1125 			    class->lc_name, lock->lo_name,
1126 			    fixup_filename(file), line);
1127 
1128 		/*
1129 		 * If this is the first lock acquired then just return as
1130 		 * no order checking is needed.
1131 		 */
1132 		lock_list = td->td_sleeplocks;
1133 		if (lock_list == NULL || lock_list->ll_count == 0)
1134 			return;
1135 	} else {
1136 
1137 		/*
1138 		 * If this is the first lock, just return as no order
1139 		 * checking is needed.  Avoid problems with thread
1140 		 * migration pinning the thread while checking if
1141 		 * spinlocks are held.  If at least one spinlock is held
1142 		 * the thread is in a safe path and it is allowed to
1143 		 * unpin it.
1144 		 */
1145 		sched_pin();
1146 		lock_list = PCPU_GET(spinlocks);
1147 		if (lock_list == NULL || lock_list->ll_count == 0) {
1148 			sched_unpin();
1149 			return;
1150 		}
1151 		sched_unpin();
1152 	}
1153 
1154 	/*
1155 	 * Check to see if we are recursing on a lock we already own.  If
1156 	 * so, make sure that we don't mismatch exclusive and shared lock
1157 	 * acquires.
1158 	 */
1159 	lock1 = find_instance(lock_list, lock);
1160 	if (lock1 != NULL) {
1161 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1162 		    (flags & LOP_EXCLUSIVE) == 0) {
1163 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1164 			    class->lc_name, lock->lo_name,
1165 			    fixup_filename(file), line);
1166 			witness_output("while exclusively locked from %s:%d\n",
1167 			    fixup_filename(lock1->li_file), lock1->li_line);
1168 			kassert_panic("excl->share");
1169 		}
1170 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1171 		    (flags & LOP_EXCLUSIVE) != 0) {
1172 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1173 			    class->lc_name, lock->lo_name,
1174 			    fixup_filename(file), line);
1175 			witness_output("while share locked from %s:%d\n",
1176 			    fixup_filename(lock1->li_file), lock1->li_line);
1177 			kassert_panic("share->excl");
1178 		}
1179 		return;
1180 	}
1181 
1182 	/* Warn if the interlock is not locked exactly once. */
1183 	if (interlock != NULL) {
1184 		iclass = LOCK_CLASS(interlock);
1185 		lock1 = find_instance(lock_list, interlock);
1186 		if (lock1 == NULL)
1187 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1188 			    iclass->lc_name, interlock->lo_name,
1189 			    fixup_filename(file), line);
1190 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1191 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1192 			    iclass->lc_name, interlock->lo_name,
1193 			    fixup_filename(file), line);
1194 	}
1195 
1196 	/*
1197 	 * Find the previously acquired lock, but ignore interlocks.
1198 	 */
1199 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1200 	if (interlock != NULL && plock->li_lock == interlock) {
1201 		if (lock_list->ll_count > 1)
1202 			plock =
1203 			    &lock_list->ll_children[lock_list->ll_count - 2];
1204 		else {
1205 			lle = lock_list->ll_next;
1206 
1207 			/*
1208 			 * The interlock is the only lock we hold, so
1209 			 * simply return.
1210 			 */
1211 			if (lle == NULL)
1212 				return;
1213 			plock = &lle->ll_children[lle->ll_count - 1];
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * Try to perform most checks without a lock.  If this succeeds we
1219 	 * can skip acquiring the lock and return success.  Otherwise we redo
1220 	 * the check with the lock held to handle races with concurrent updates.
1221 	 */
1222 	w1 = plock->li_lock->lo_witness;
1223 	if (witness_lock_order_check(w1, w))
1224 		return;
1225 
1226 	mtx_lock_spin(&w_mtx);
1227 	if (witness_lock_order_check(w1, w)) {
1228 		mtx_unlock_spin(&w_mtx);
1229 		return;
1230 	}
1231 	witness_lock_order_add(w1, w);
1232 
1233 	/*
1234 	 * Check for duplicate locks of the same type.  Note that we only
1235 	 * have to check for this on the last lock we just acquired.  Any
1236 	 * other cases will be caught as lock order violations.
1237 	 */
1238 	if (w1 == w) {
1239 		i = w->w_index;
1240 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1241 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1242 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1243 			w->w_reversed = 1;
1244 			mtx_unlock_spin(&w_mtx);
1245 			witness_output(
1246 			    "acquiring duplicate lock of same type: \"%s\"\n",
1247 			    w->w_name);
1248 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1249 			    fixup_filename(plock->li_file), plock->li_line);
1250 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1251 			    fixup_filename(file), line);
1252 			witness_debugger(1, __func__);
1253 		} else
1254 			mtx_unlock_spin(&w_mtx);
1255 		return;
1256 	}
1257 	mtx_assert(&w_mtx, MA_OWNED);
1258 
1259 	/*
1260 	 * If we know that the lock we are acquiring comes after
1261 	 * the lock we most recently acquired in the lock order tree,
1262 	 * then there is no need for any further checks.
1263 	 */
1264 	if (isitmychild(w1, w))
1265 		goto out;
1266 
1267 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1268 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1269 
1270 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1271 			lock1 = &lle->ll_children[i];
1272 
1273 			/*
1274 			 * Ignore the interlock.
1275 			 */
1276 			if (interlock == lock1->li_lock)
1277 				continue;
1278 
1279 			/*
1280 			 * If this lock doesn't undergo witness checking,
1281 			 * then skip it.
1282 			 */
1283 			w1 = lock1->li_lock->lo_witness;
1284 			if (w1 == NULL) {
1285 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1286 				    ("lock missing witness structure"));
1287 				continue;
1288 			}
1289 
1290 			/*
1291 			 * If we are locking Giant and this is a sleepable
1292 			 * lock, then skip it.
1293 			 */
1294 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1295 			    lock == &Giant.lock_object)
1296 				continue;
1297 
1298 			/*
1299 			 * If we are locking a sleepable lock and this lock
1300 			 * is Giant, then skip it.
1301 			 */
1302 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1303 			    lock1->li_lock == &Giant.lock_object)
1304 				continue;
1305 
1306 			/*
1307 			 * If we are locking a sleepable lock and this lock
1308 			 * isn't sleepable, we want to treat it as a lock
1309 			 * order violation to enfore a general lock order of
1310 			 * sleepable locks before non-sleepable locks.
1311 			 */
1312 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1313 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1314 				goto reversal;
1315 
1316 			/*
1317 			 * If we are locking Giant and this is a non-sleepable
1318 			 * lock, then treat it as a reversal.
1319 			 */
1320 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1321 			    lock == &Giant.lock_object)
1322 				goto reversal;
1323 
1324 			/*
1325 			 * Check the lock order hierarchy for a reveresal.
1326 			 */
1327 			if (!isitmydescendant(w, w1))
1328 				continue;
1329 		reversal:
1330 
1331 			/*
1332 			 * We have a lock order violation, check to see if it
1333 			 * is allowed or has already been yelled about.
1334 			 */
1335 #ifdef BLESSING
1336 
1337 			/*
1338 			 * If the lock order is blessed, just bail.  We don't
1339 			 * look for other lock order violations though, which
1340 			 * may be a bug.
1341 			 */
1342 			if (blessed(w, w1))
1343 				goto out;
1344 #endif
1345 
1346 			/* Bail if this violation is known */
1347 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1348 				goto out;
1349 
1350 			/* Record this as a violation */
1351 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1352 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1353 			w->w_reversed = w1->w_reversed = 1;
1354 			witness_increment_graph_generation();
1355 			mtx_unlock_spin(&w_mtx);
1356 
1357 #ifdef WITNESS_NO_VNODE
1358 			/*
1359 			 * There are known LORs between VNODE locks. They are
1360 			 * not an indication of a bug. VNODE locks are flagged
1361 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1362 			 * is between 2 VNODE locks.
1363 			 */
1364 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1365 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1366 				return;
1367 #endif
1368 
1369 			/*
1370 			 * Ok, yell about it.
1371 			 */
1372 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1373 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1374 				witness_output(
1375 		"lock order reversal: (sleepable after non-sleepable)\n");
1376 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1377 			    && lock == &Giant.lock_object)
1378 				witness_output(
1379 		"lock order reversal: (Giant after non-sleepable)\n");
1380 			else
1381 				witness_output("lock order reversal:\n");
1382 
1383 			/*
1384 			 * Try to locate an earlier lock with
1385 			 * witness w in our list.
1386 			 */
1387 			do {
1388 				lock2 = &lle->ll_children[i];
1389 				MPASS(lock2->li_lock != NULL);
1390 				if (lock2->li_lock->lo_witness == w)
1391 					break;
1392 				if (i == 0 && lle->ll_next != NULL) {
1393 					lle = lle->ll_next;
1394 					i = lle->ll_count - 1;
1395 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1396 				} else
1397 					i--;
1398 			} while (i >= 0);
1399 			if (i < 0) {
1400 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1401 				    lock1->li_lock, lock1->li_lock->lo_name,
1402 				    w1->w_name, fixup_filename(lock1->li_file),
1403 				    lock1->li_line);
1404 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1405 				    lock->lo_name, w->w_name,
1406 				    fixup_filename(file), line);
1407 			} else {
1408 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1409 				    lock2->li_lock, lock2->li_lock->lo_name,
1410 				    lock2->li_lock->lo_witness->w_name,
1411 				    fixup_filename(lock2->li_file),
1412 				    lock2->li_line);
1413 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1414 				    lock1->li_lock, lock1->li_lock->lo_name,
1415 				    w1->w_name, fixup_filename(lock1->li_file),
1416 				    lock1->li_line);
1417 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1418 				    lock->lo_name, w->w_name,
1419 				    fixup_filename(file), line);
1420 			}
1421 			witness_debugger(1, __func__);
1422 			return;
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * If requested, build a new lock order.  However, don't build a new
1428 	 * relationship between a sleepable lock and Giant if it is in the
1429 	 * wrong direction.  The correct lock order is that sleepable locks
1430 	 * always come before Giant.
1431 	 */
1432 	if (flags & LOP_NEWORDER &&
1433 	    !(plock->li_lock == &Giant.lock_object &&
1434 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1435 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1436 		    w->w_name, plock->li_lock->lo_witness->w_name);
1437 		itismychild(plock->li_lock->lo_witness, w);
1438 	}
1439 out:
1440 	mtx_unlock_spin(&w_mtx);
1441 }
1442 
1443 void
1444 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1445 {
1446 	struct lock_list_entry **lock_list, *lle;
1447 	struct lock_instance *instance;
1448 	struct witness *w;
1449 	struct thread *td;
1450 
1451 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1452 	    panicstr != NULL)
1453 		return;
1454 	w = lock->lo_witness;
1455 	td = curthread;
1456 
1457 	/* Determine lock list for this lock. */
1458 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1459 		lock_list = &td->td_sleeplocks;
1460 	else
1461 		lock_list = PCPU_PTR(spinlocks);
1462 
1463 	/* Check to see if we are recursing on a lock we already own. */
1464 	instance = find_instance(*lock_list, lock);
1465 	if (instance != NULL) {
1466 		instance->li_flags++;
1467 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1468 		    td->td_proc->p_pid, lock->lo_name,
1469 		    instance->li_flags & LI_RECURSEMASK);
1470 		instance->li_file = file;
1471 		instance->li_line = line;
1472 		return;
1473 	}
1474 
1475 	/* Update per-witness last file and line acquire. */
1476 	w->w_file = file;
1477 	w->w_line = line;
1478 
1479 	/* Find the next open lock instance in the list and fill it. */
1480 	lle = *lock_list;
1481 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1482 		lle = witness_lock_list_get();
1483 		if (lle == NULL)
1484 			return;
1485 		lle->ll_next = *lock_list;
1486 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1487 		    td->td_proc->p_pid, lle);
1488 		*lock_list = lle;
1489 	}
1490 	instance = &lle->ll_children[lle->ll_count++];
1491 	instance->li_lock = lock;
1492 	instance->li_line = line;
1493 	instance->li_file = file;
1494 	if ((flags & LOP_EXCLUSIVE) != 0)
1495 		instance->li_flags = LI_EXCLUSIVE;
1496 	else
1497 		instance->li_flags = 0;
1498 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1499 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1500 }
1501 
1502 void
1503 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1504 {
1505 	struct lock_instance *instance;
1506 	struct lock_class *class;
1507 
1508 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1509 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1510 		return;
1511 	class = LOCK_CLASS(lock);
1512 	if (witness_watch) {
1513 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1514 			kassert_panic(
1515 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1516 			    class->lc_name, lock->lo_name,
1517 			    fixup_filename(file), line);
1518 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1519 			kassert_panic(
1520 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1521 			    class->lc_name, lock->lo_name,
1522 			    fixup_filename(file), line);
1523 	}
1524 	instance = find_instance(curthread->td_sleeplocks, lock);
1525 	if (instance == NULL) {
1526 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1527 		    class->lc_name, lock->lo_name,
1528 		    fixup_filename(file), line);
1529 		return;
1530 	}
1531 	if (witness_watch) {
1532 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1533 			kassert_panic(
1534 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1535 			    class->lc_name, lock->lo_name,
1536 			    fixup_filename(file), line);
1537 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1538 			kassert_panic(
1539 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1540 			    class->lc_name, lock->lo_name,
1541 			    instance->li_flags & LI_RECURSEMASK,
1542 			    fixup_filename(file), line);
1543 	}
1544 	instance->li_flags |= LI_EXCLUSIVE;
1545 }
1546 
1547 void
1548 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1549     int line)
1550 {
1551 	struct lock_instance *instance;
1552 	struct lock_class *class;
1553 
1554 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1555 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1556 		return;
1557 	class = LOCK_CLASS(lock);
1558 	if (witness_watch) {
1559 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1560 			kassert_panic(
1561 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1562 			    class->lc_name, lock->lo_name,
1563 			    fixup_filename(file), line);
1564 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1565 			kassert_panic(
1566 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1567 			    class->lc_name, lock->lo_name,
1568 			    fixup_filename(file), line);
1569 	}
1570 	instance = find_instance(curthread->td_sleeplocks, lock);
1571 	if (instance == NULL) {
1572 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1573 		    class->lc_name, lock->lo_name,
1574 		    fixup_filename(file), line);
1575 		return;
1576 	}
1577 	if (witness_watch) {
1578 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1579 			kassert_panic(
1580 			    "downgrade of shared lock (%s) %s @ %s:%d",
1581 			    class->lc_name, lock->lo_name,
1582 			    fixup_filename(file), line);
1583 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1584 			kassert_panic(
1585 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1586 			    class->lc_name, lock->lo_name,
1587 			    instance->li_flags & LI_RECURSEMASK,
1588 			    fixup_filename(file), line);
1589 	}
1590 	instance->li_flags &= ~LI_EXCLUSIVE;
1591 }
1592 
1593 void
1594 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1595 {
1596 	struct lock_list_entry **lock_list, *lle;
1597 	struct lock_instance *instance;
1598 	struct lock_class *class;
1599 	struct thread *td;
1600 	register_t s;
1601 	int i, j;
1602 
1603 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1604 		return;
1605 	td = curthread;
1606 	class = LOCK_CLASS(lock);
1607 
1608 	/* Find lock instance associated with this lock. */
1609 	if (class->lc_flags & LC_SLEEPLOCK)
1610 		lock_list = &td->td_sleeplocks;
1611 	else
1612 		lock_list = PCPU_PTR(spinlocks);
1613 	lle = *lock_list;
1614 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1615 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1616 			instance = &(*lock_list)->ll_children[i];
1617 			if (instance->li_lock == lock)
1618 				goto found;
1619 		}
1620 
1621 	/*
1622 	 * When disabling WITNESS through witness_watch we could end up in
1623 	 * having registered locks in the td_sleeplocks queue.
1624 	 * We have to make sure we flush these queues, so just search for
1625 	 * eventual register locks and remove them.
1626 	 */
1627 	if (witness_watch > 0) {
1628 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1629 		    lock->lo_name, fixup_filename(file), line);
1630 		return;
1631 	} else {
1632 		return;
1633 	}
1634 found:
1635 
1636 	/* First, check for shared/exclusive mismatches. */
1637 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1638 	    (flags & LOP_EXCLUSIVE) == 0) {
1639 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1640 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1641 		witness_output("while exclusively locked from %s:%d\n",
1642 		    fixup_filename(instance->li_file), instance->li_line);
1643 		kassert_panic("excl->ushare");
1644 	}
1645 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1646 	    (flags & LOP_EXCLUSIVE) != 0) {
1647 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1648 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1649 		witness_output("while share locked from %s:%d\n",
1650 		    fixup_filename(instance->li_file),
1651 		    instance->li_line);
1652 		kassert_panic("share->uexcl");
1653 	}
1654 	/* If we are recursed, unrecurse. */
1655 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1656 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1657 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1658 		    instance->li_flags);
1659 		instance->li_flags--;
1660 		return;
1661 	}
1662 	/* The lock is now being dropped, check for NORELEASE flag */
1663 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1664 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1665 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1666 		kassert_panic("lock marked norelease");
1667 	}
1668 
1669 	/* Otherwise, remove this item from the list. */
1670 	s = intr_disable();
1671 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1672 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1673 	    (*lock_list)->ll_count - 1);
1674 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1675 		(*lock_list)->ll_children[j] =
1676 		    (*lock_list)->ll_children[j + 1];
1677 	(*lock_list)->ll_count--;
1678 	intr_restore(s);
1679 
1680 	/*
1681 	 * In order to reduce contention on w_mtx, we want to keep always an
1682 	 * head object into lists so that frequent allocation from the
1683 	 * free witness pool (and subsequent locking) is avoided.
1684 	 * In order to maintain the current code simple, when the head
1685 	 * object is totally unloaded it means also that we do not have
1686 	 * further objects in the list, so the list ownership needs to be
1687 	 * hand over to another object if the current head needs to be freed.
1688 	 */
1689 	if ((*lock_list)->ll_count == 0) {
1690 		if (*lock_list == lle) {
1691 			if (lle->ll_next == NULL)
1692 				return;
1693 		} else
1694 			lle = *lock_list;
1695 		*lock_list = lle->ll_next;
1696 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1697 		    td->td_proc->p_pid, lle);
1698 		witness_lock_list_free(lle);
1699 	}
1700 }
1701 
1702 void
1703 witness_thread_exit(struct thread *td)
1704 {
1705 	struct lock_list_entry *lle;
1706 	int i, n;
1707 
1708 	lle = td->td_sleeplocks;
1709 	if (lle == NULL || panicstr != NULL)
1710 		return;
1711 	if (lle->ll_count != 0) {
1712 		for (n = 0; lle != NULL; lle = lle->ll_next)
1713 			for (i = lle->ll_count - 1; i >= 0; i--) {
1714 				if (n == 0)
1715 					witness_output(
1716 		    "Thread %p exiting with the following locks held:\n", td);
1717 				n++;
1718 				witness_list_lock(&lle->ll_children[i],
1719 				    witness_output);
1720 
1721 			}
1722 		kassert_panic(
1723 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1724 	}
1725 	witness_lock_list_free(lle);
1726 }
1727 
1728 /*
1729  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1730  * exempt Giant and sleepable locks from the checks as well.  If any
1731  * non-exempt locks are held, then a supplied message is printed to the
1732  * output channel along with a list of the offending locks.  If indicated in the
1733  * flags then a failure results in a panic as well.
1734  */
1735 int
1736 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1737 {
1738 	struct lock_list_entry *lock_list, *lle;
1739 	struct lock_instance *lock1;
1740 	struct thread *td;
1741 	va_list ap;
1742 	int i, n;
1743 
1744 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1745 		return (0);
1746 	n = 0;
1747 	td = curthread;
1748 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1749 		for (i = lle->ll_count - 1; i >= 0; i--) {
1750 			lock1 = &lle->ll_children[i];
1751 			if (lock1->li_lock == lock)
1752 				continue;
1753 			if (flags & WARN_GIANTOK &&
1754 			    lock1->li_lock == &Giant.lock_object)
1755 				continue;
1756 			if (flags & WARN_SLEEPOK &&
1757 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1758 				continue;
1759 			if (n == 0) {
1760 				va_start(ap, fmt);
1761 				vprintf(fmt, ap);
1762 				va_end(ap);
1763 				printf(" with the following %slocks held:\n",
1764 				    (flags & WARN_SLEEPOK) != 0 ?
1765 				    "non-sleepable " : "");
1766 			}
1767 			n++;
1768 			witness_list_lock(lock1, printf);
1769 		}
1770 
1771 	/*
1772 	 * Pin the thread in order to avoid problems with thread migration.
1773 	 * Once that all verifies are passed about spinlocks ownership,
1774 	 * the thread is in a safe path and it can be unpinned.
1775 	 */
1776 	sched_pin();
1777 	lock_list = PCPU_GET(spinlocks);
1778 	if (lock_list != NULL && lock_list->ll_count != 0) {
1779 		sched_unpin();
1780 
1781 		/*
1782 		 * We should only have one spinlock and as long as
1783 		 * the flags cannot match for this locks class,
1784 		 * check if the first spinlock is the one curthread
1785 		 * should hold.
1786 		 */
1787 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1788 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1789 		    lock1->li_lock == lock && n == 0)
1790 			return (0);
1791 
1792 		va_start(ap, fmt);
1793 		vprintf(fmt, ap);
1794 		va_end(ap);
1795 		printf(" with the following %slocks held:\n",
1796 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1797 		n += witness_list_locks(&lock_list, printf);
1798 	} else
1799 		sched_unpin();
1800 	if (flags & WARN_PANIC && n)
1801 		kassert_panic("%s", __func__);
1802 	else
1803 		witness_debugger(n, __func__);
1804 	return (n);
1805 }
1806 
1807 const char *
1808 witness_file(struct lock_object *lock)
1809 {
1810 	struct witness *w;
1811 
1812 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1813 		return ("?");
1814 	w = lock->lo_witness;
1815 	return (w->w_file);
1816 }
1817 
1818 int
1819 witness_line(struct lock_object *lock)
1820 {
1821 	struct witness *w;
1822 
1823 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1824 		return (0);
1825 	w = lock->lo_witness;
1826 	return (w->w_line);
1827 }
1828 
1829 static struct witness *
1830 enroll(const char *description, struct lock_class *lock_class)
1831 {
1832 	struct witness *w;
1833 
1834 	MPASS(description != NULL);
1835 
1836 	if (witness_watch == -1 || panicstr != NULL)
1837 		return (NULL);
1838 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1839 		if (witness_skipspin)
1840 			return (NULL);
1841 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1842 		kassert_panic("lock class %s is not sleep or spin",
1843 		    lock_class->lc_name);
1844 		return (NULL);
1845 	}
1846 
1847 	mtx_lock_spin(&w_mtx);
1848 	w = witness_hash_get(description);
1849 	if (w)
1850 		goto found;
1851 	if ((w = witness_get()) == NULL)
1852 		return (NULL);
1853 	MPASS(strlen(description) < MAX_W_NAME);
1854 	strcpy(w->w_name, description);
1855 	w->w_class = lock_class;
1856 	w->w_refcount = 1;
1857 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1858 	if (lock_class->lc_flags & LC_SPINLOCK) {
1859 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1860 		w_spin_cnt++;
1861 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1862 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1863 		w_sleep_cnt++;
1864 	}
1865 
1866 	/* Insert new witness into the hash */
1867 	witness_hash_put(w);
1868 	witness_increment_graph_generation();
1869 	mtx_unlock_spin(&w_mtx);
1870 	return (w);
1871 found:
1872 	w->w_refcount++;
1873 	if (w->w_refcount == 1)
1874 		w->w_class = lock_class;
1875 	mtx_unlock_spin(&w_mtx);
1876 	if (lock_class != w->w_class)
1877 		kassert_panic(
1878 		    "lock (%s) %s does not match earlier (%s) lock",
1879 		    description, lock_class->lc_name,
1880 		    w->w_class->lc_name);
1881 	return (w);
1882 }
1883 
1884 static void
1885 depart(struct witness *w)
1886 {
1887 
1888 	MPASS(w->w_refcount == 0);
1889 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1890 		w_sleep_cnt--;
1891 	} else {
1892 		w_spin_cnt--;
1893 	}
1894 	/*
1895 	 * Set file to NULL as it may point into a loadable module.
1896 	 */
1897 	w->w_file = NULL;
1898 	w->w_line = 0;
1899 	witness_increment_graph_generation();
1900 }
1901 
1902 
1903 static void
1904 adopt(struct witness *parent, struct witness *child)
1905 {
1906 	int pi, ci, i, j;
1907 
1908 	if (witness_cold == 0)
1909 		mtx_assert(&w_mtx, MA_OWNED);
1910 
1911 	/* If the relationship is already known, there's no work to be done. */
1912 	if (isitmychild(parent, child))
1913 		return;
1914 
1915 	/* When the structure of the graph changes, bump up the generation. */
1916 	witness_increment_graph_generation();
1917 
1918 	/*
1919 	 * The hard part ... create the direct relationship, then propagate all
1920 	 * indirect relationships.
1921 	 */
1922 	pi = parent->w_index;
1923 	ci = child->w_index;
1924 	WITNESS_INDEX_ASSERT(pi);
1925 	WITNESS_INDEX_ASSERT(ci);
1926 	MPASS(pi != ci);
1927 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1928 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1929 
1930 	/*
1931 	 * If parent was not already an ancestor of child,
1932 	 * then we increment the descendant and ancestor counters.
1933 	 */
1934 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1935 		parent->w_num_descendants++;
1936 		child->w_num_ancestors++;
1937 	}
1938 
1939 	/*
1940 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1941 	 * an ancestor of 'pi' during this loop.
1942 	 */
1943 	for (i = 1; i <= w_max_used_index; i++) {
1944 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1945 		    (i != pi))
1946 			continue;
1947 
1948 		/* Find each descendant of 'i' and mark it as a descendant. */
1949 		for (j = 1; j <= w_max_used_index; j++) {
1950 
1951 			/*
1952 			 * Skip children that are already marked as
1953 			 * descendants of 'i'.
1954 			 */
1955 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1956 				continue;
1957 
1958 			/*
1959 			 * We are only interested in descendants of 'ci'. Note
1960 			 * that 'ci' itself is counted as a descendant of 'ci'.
1961 			 */
1962 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1963 			    (j != ci))
1964 				continue;
1965 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1966 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1967 			w_data[i].w_num_descendants++;
1968 			w_data[j].w_num_ancestors++;
1969 
1970 			/*
1971 			 * Make sure we aren't marking a node as both an
1972 			 * ancestor and descendant. We should have caught
1973 			 * this as a lock order reversal earlier.
1974 			 */
1975 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1976 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1977 				printf("witness rmatrix paradox! [%d][%d]=%d "
1978 				    "both ancestor and descendant\n",
1979 				    i, j, w_rmatrix[i][j]);
1980 				kdb_backtrace();
1981 				printf("Witness disabled.\n");
1982 				witness_watch = -1;
1983 			}
1984 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1985 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1986 				printf("witness rmatrix paradox! [%d][%d]=%d "
1987 				    "both ancestor and descendant\n",
1988 				    j, i, w_rmatrix[j][i]);
1989 				kdb_backtrace();
1990 				printf("Witness disabled.\n");
1991 				witness_watch = -1;
1992 			}
1993 		}
1994 	}
1995 }
1996 
1997 static void
1998 itismychild(struct witness *parent, struct witness *child)
1999 {
2000 	int unlocked;
2001 
2002 	MPASS(child != NULL && parent != NULL);
2003 	if (witness_cold == 0)
2004 		mtx_assert(&w_mtx, MA_OWNED);
2005 
2006 	if (!witness_lock_type_equal(parent, child)) {
2007 		if (witness_cold == 0) {
2008 			unlocked = 1;
2009 			mtx_unlock_spin(&w_mtx);
2010 		} else {
2011 			unlocked = 0;
2012 		}
2013 		kassert_panic(
2014 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2015 		    "the same lock type", __func__, parent->w_name,
2016 		    parent->w_class->lc_name, child->w_name,
2017 		    child->w_class->lc_name);
2018 		if (unlocked)
2019 			mtx_lock_spin(&w_mtx);
2020 	}
2021 	adopt(parent, child);
2022 }
2023 
2024 /*
2025  * Generic code for the isitmy*() functions. The rmask parameter is the
2026  * expected relationship of w1 to w2.
2027  */
2028 static int
2029 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2030 {
2031 	unsigned char r1, r2;
2032 	int i1, i2;
2033 
2034 	i1 = w1->w_index;
2035 	i2 = w2->w_index;
2036 	WITNESS_INDEX_ASSERT(i1);
2037 	WITNESS_INDEX_ASSERT(i2);
2038 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2039 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2040 
2041 	/* The flags on one better be the inverse of the flags on the other */
2042 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2043 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2044 		/* Don't squawk if we're potentially racing with an update. */
2045 		if (!mtx_owned(&w_mtx))
2046 			return (0);
2047 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2048 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2049 		    "w_rmatrix[%d][%d] == %hhx\n",
2050 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2051 		    i2, i1, r2);
2052 		kdb_backtrace();
2053 		printf("Witness disabled.\n");
2054 		witness_watch = -1;
2055 	}
2056 	return (r1 & rmask);
2057 }
2058 
2059 /*
2060  * Checks if @child is a direct child of @parent.
2061  */
2062 static int
2063 isitmychild(struct witness *parent, struct witness *child)
2064 {
2065 
2066 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2067 }
2068 
2069 /*
2070  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2071  */
2072 static int
2073 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2074 {
2075 
2076 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2077 	    __func__));
2078 }
2079 
2080 #ifdef BLESSING
2081 static int
2082 blessed(struct witness *w1, struct witness *w2)
2083 {
2084 	int i;
2085 	struct witness_blessed *b;
2086 
2087 	for (i = 0; i < nitems(blessed_list); i++) {
2088 		b = &blessed_list[i];
2089 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2090 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2091 				return (1);
2092 			continue;
2093 		}
2094 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2095 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2096 				return (1);
2097 	}
2098 	return (0);
2099 }
2100 #endif
2101 
2102 static struct witness *
2103 witness_get(void)
2104 {
2105 	struct witness *w;
2106 	int index;
2107 
2108 	if (witness_cold == 0)
2109 		mtx_assert(&w_mtx, MA_OWNED);
2110 
2111 	if (witness_watch == -1) {
2112 		mtx_unlock_spin(&w_mtx);
2113 		return (NULL);
2114 	}
2115 	if (STAILQ_EMPTY(&w_free)) {
2116 		witness_watch = -1;
2117 		mtx_unlock_spin(&w_mtx);
2118 		printf("WITNESS: unable to allocate a new witness object\n");
2119 		return (NULL);
2120 	}
2121 	w = STAILQ_FIRST(&w_free);
2122 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2123 	w_free_cnt--;
2124 	index = w->w_index;
2125 	MPASS(index > 0 && index == w_max_used_index+1 &&
2126 	    index < witness_count);
2127 	bzero(w, sizeof(*w));
2128 	w->w_index = index;
2129 	if (index > w_max_used_index)
2130 		w_max_used_index = index;
2131 	return (w);
2132 }
2133 
2134 static void
2135 witness_free(struct witness *w)
2136 {
2137 
2138 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2139 	w_free_cnt++;
2140 }
2141 
2142 static struct lock_list_entry *
2143 witness_lock_list_get(void)
2144 {
2145 	struct lock_list_entry *lle;
2146 
2147 	if (witness_watch == -1)
2148 		return (NULL);
2149 	mtx_lock_spin(&w_mtx);
2150 	lle = w_lock_list_free;
2151 	if (lle == NULL) {
2152 		witness_watch = -1;
2153 		mtx_unlock_spin(&w_mtx);
2154 		printf("%s: witness exhausted\n", __func__);
2155 		return (NULL);
2156 	}
2157 	w_lock_list_free = lle->ll_next;
2158 	mtx_unlock_spin(&w_mtx);
2159 	bzero(lle, sizeof(*lle));
2160 	return (lle);
2161 }
2162 
2163 static void
2164 witness_lock_list_free(struct lock_list_entry *lle)
2165 {
2166 
2167 	mtx_lock_spin(&w_mtx);
2168 	lle->ll_next = w_lock_list_free;
2169 	w_lock_list_free = lle;
2170 	mtx_unlock_spin(&w_mtx);
2171 }
2172 
2173 static struct lock_instance *
2174 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2175 {
2176 	struct lock_list_entry *lle;
2177 	struct lock_instance *instance;
2178 	int i;
2179 
2180 	for (lle = list; lle != NULL; lle = lle->ll_next)
2181 		for (i = lle->ll_count - 1; i >= 0; i--) {
2182 			instance = &lle->ll_children[i];
2183 			if (instance->li_lock == lock)
2184 				return (instance);
2185 		}
2186 	return (NULL);
2187 }
2188 
2189 static void
2190 witness_list_lock(struct lock_instance *instance,
2191     int (*prnt)(const char *fmt, ...))
2192 {
2193 	struct lock_object *lock;
2194 
2195 	lock = instance->li_lock;
2196 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2197 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2198 	if (lock->lo_witness->w_name != lock->lo_name)
2199 		prnt(" (%s)", lock->lo_witness->w_name);
2200 	prnt(" r = %d (%p) locked @ %s:%d\n",
2201 	    instance->li_flags & LI_RECURSEMASK, lock,
2202 	    fixup_filename(instance->li_file), instance->li_line);
2203 }
2204 
2205 static int
2206 witness_output(const char *fmt, ...)
2207 {
2208 	va_list ap;
2209 	int ret;
2210 
2211 	va_start(ap, fmt);
2212 	ret = witness_voutput(fmt, ap);
2213 	va_end(ap);
2214 	return (ret);
2215 }
2216 
2217 static int
2218 witness_voutput(const char *fmt, va_list ap)
2219 {
2220 	int ret;
2221 
2222 	ret = 0;
2223 	switch (witness_channel) {
2224 	case WITNESS_CONSOLE:
2225 		ret = vprintf(fmt, ap);
2226 		break;
2227 	case WITNESS_LOG:
2228 		vlog(LOG_NOTICE, fmt, ap);
2229 		break;
2230 	case WITNESS_NONE:
2231 		break;
2232 	}
2233 	return (ret);
2234 }
2235 
2236 #ifdef DDB
2237 static int
2238 witness_thread_has_locks(struct thread *td)
2239 {
2240 
2241 	if (td->td_sleeplocks == NULL)
2242 		return (0);
2243 	return (td->td_sleeplocks->ll_count != 0);
2244 }
2245 
2246 static int
2247 witness_proc_has_locks(struct proc *p)
2248 {
2249 	struct thread *td;
2250 
2251 	FOREACH_THREAD_IN_PROC(p, td) {
2252 		if (witness_thread_has_locks(td))
2253 			return (1);
2254 	}
2255 	return (0);
2256 }
2257 #endif
2258 
2259 int
2260 witness_list_locks(struct lock_list_entry **lock_list,
2261     int (*prnt)(const char *fmt, ...))
2262 {
2263 	struct lock_list_entry *lle;
2264 	int i, nheld;
2265 
2266 	nheld = 0;
2267 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2268 		for (i = lle->ll_count - 1; i >= 0; i--) {
2269 			witness_list_lock(&lle->ll_children[i], prnt);
2270 			nheld++;
2271 		}
2272 	return (nheld);
2273 }
2274 
2275 /*
2276  * This is a bit risky at best.  We call this function when we have timed
2277  * out acquiring a spin lock, and we assume that the other CPU is stuck
2278  * with this lock held.  So, we go groveling around in the other CPU's
2279  * per-cpu data to try to find the lock instance for this spin lock to
2280  * see when it was last acquired.
2281  */
2282 void
2283 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2284     int (*prnt)(const char *fmt, ...))
2285 {
2286 	struct lock_instance *instance;
2287 	struct pcpu *pc;
2288 
2289 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2290 		return;
2291 	pc = pcpu_find(owner->td_oncpu);
2292 	instance = find_instance(pc->pc_spinlocks, lock);
2293 	if (instance != NULL)
2294 		witness_list_lock(instance, prnt);
2295 }
2296 
2297 void
2298 witness_save(struct lock_object *lock, const char **filep, int *linep)
2299 {
2300 	struct lock_list_entry *lock_list;
2301 	struct lock_instance *instance;
2302 	struct lock_class *class;
2303 
2304 	/*
2305 	 * This function is used independently in locking code to deal with
2306 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2307 	 * is gone.
2308 	 */
2309 	if (SCHEDULER_STOPPED())
2310 		return;
2311 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2312 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2313 		return;
2314 	class = LOCK_CLASS(lock);
2315 	if (class->lc_flags & LC_SLEEPLOCK)
2316 		lock_list = curthread->td_sleeplocks;
2317 	else {
2318 		if (witness_skipspin)
2319 			return;
2320 		lock_list = PCPU_GET(spinlocks);
2321 	}
2322 	instance = find_instance(lock_list, lock);
2323 	if (instance == NULL) {
2324 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2325 		    class->lc_name, lock->lo_name);
2326 		return;
2327 	}
2328 	*filep = instance->li_file;
2329 	*linep = instance->li_line;
2330 }
2331 
2332 void
2333 witness_restore(struct lock_object *lock, const char *file, int line)
2334 {
2335 	struct lock_list_entry *lock_list;
2336 	struct lock_instance *instance;
2337 	struct lock_class *class;
2338 
2339 	/*
2340 	 * This function is used independently in locking code to deal with
2341 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2342 	 * is gone.
2343 	 */
2344 	if (SCHEDULER_STOPPED())
2345 		return;
2346 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2347 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2348 		return;
2349 	class = LOCK_CLASS(lock);
2350 	if (class->lc_flags & LC_SLEEPLOCK)
2351 		lock_list = curthread->td_sleeplocks;
2352 	else {
2353 		if (witness_skipspin)
2354 			return;
2355 		lock_list = PCPU_GET(spinlocks);
2356 	}
2357 	instance = find_instance(lock_list, lock);
2358 	if (instance == NULL)
2359 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2360 		    class->lc_name, lock->lo_name);
2361 	lock->lo_witness->w_file = file;
2362 	lock->lo_witness->w_line = line;
2363 	if (instance == NULL)
2364 		return;
2365 	instance->li_file = file;
2366 	instance->li_line = line;
2367 }
2368 
2369 void
2370 witness_assert(const struct lock_object *lock, int flags, const char *file,
2371     int line)
2372 {
2373 #ifdef INVARIANT_SUPPORT
2374 	struct lock_instance *instance;
2375 	struct lock_class *class;
2376 
2377 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2378 		return;
2379 	class = LOCK_CLASS(lock);
2380 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2381 		instance = find_instance(curthread->td_sleeplocks, lock);
2382 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2383 		instance = find_instance(PCPU_GET(spinlocks), lock);
2384 	else {
2385 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2386 		    class->lc_name, lock->lo_name);
2387 		return;
2388 	}
2389 	switch (flags) {
2390 	case LA_UNLOCKED:
2391 		if (instance != NULL)
2392 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2393 			    class->lc_name, lock->lo_name,
2394 			    fixup_filename(file), line);
2395 		break;
2396 	case LA_LOCKED:
2397 	case LA_LOCKED | LA_RECURSED:
2398 	case LA_LOCKED | LA_NOTRECURSED:
2399 	case LA_SLOCKED:
2400 	case LA_SLOCKED | LA_RECURSED:
2401 	case LA_SLOCKED | LA_NOTRECURSED:
2402 	case LA_XLOCKED:
2403 	case LA_XLOCKED | LA_RECURSED:
2404 	case LA_XLOCKED | LA_NOTRECURSED:
2405 		if (instance == NULL) {
2406 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2407 			    class->lc_name, lock->lo_name,
2408 			    fixup_filename(file), line);
2409 			break;
2410 		}
2411 		if ((flags & LA_XLOCKED) != 0 &&
2412 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2413 			kassert_panic(
2414 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2415 			    class->lc_name, lock->lo_name,
2416 			    fixup_filename(file), line);
2417 		if ((flags & LA_SLOCKED) != 0 &&
2418 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2419 			kassert_panic(
2420 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2421 			    class->lc_name, lock->lo_name,
2422 			    fixup_filename(file), line);
2423 		if ((flags & LA_RECURSED) != 0 &&
2424 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2425 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2426 			    class->lc_name, lock->lo_name,
2427 			    fixup_filename(file), line);
2428 		if ((flags & LA_NOTRECURSED) != 0 &&
2429 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2430 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2431 			    class->lc_name, lock->lo_name,
2432 			    fixup_filename(file), line);
2433 		break;
2434 	default:
2435 		kassert_panic("Invalid lock assertion at %s:%d.",
2436 		    fixup_filename(file), line);
2437 
2438 	}
2439 #endif	/* INVARIANT_SUPPORT */
2440 }
2441 
2442 static void
2443 witness_setflag(struct lock_object *lock, int flag, int set)
2444 {
2445 	struct lock_list_entry *lock_list;
2446 	struct lock_instance *instance;
2447 	struct lock_class *class;
2448 
2449 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2450 		return;
2451 	class = LOCK_CLASS(lock);
2452 	if (class->lc_flags & LC_SLEEPLOCK)
2453 		lock_list = curthread->td_sleeplocks;
2454 	else {
2455 		if (witness_skipspin)
2456 			return;
2457 		lock_list = PCPU_GET(spinlocks);
2458 	}
2459 	instance = find_instance(lock_list, lock);
2460 	if (instance == NULL) {
2461 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2462 		    class->lc_name, lock->lo_name);
2463 		return;
2464 	}
2465 
2466 	if (set)
2467 		instance->li_flags |= flag;
2468 	else
2469 		instance->li_flags &= ~flag;
2470 }
2471 
2472 void
2473 witness_norelease(struct lock_object *lock)
2474 {
2475 
2476 	witness_setflag(lock, LI_NORELEASE, 1);
2477 }
2478 
2479 void
2480 witness_releaseok(struct lock_object *lock)
2481 {
2482 
2483 	witness_setflag(lock, LI_NORELEASE, 0);
2484 }
2485 
2486 #ifdef DDB
2487 static void
2488 witness_ddb_list(struct thread *td)
2489 {
2490 
2491 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2492 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2493 
2494 	if (witness_watch < 1)
2495 		return;
2496 
2497 	witness_list_locks(&td->td_sleeplocks, db_printf);
2498 
2499 	/*
2500 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2501 	 * if td is currently executing on some other CPU and holds spin locks
2502 	 * as we won't display those locks.  If we had a MI way of getting
2503 	 * the per-cpu data for a given cpu then we could use
2504 	 * td->td_oncpu to get the list of spinlocks for this thread
2505 	 * and "fix" this.
2506 	 *
2507 	 * That still wouldn't really fix this unless we locked the scheduler
2508 	 * lock or stopped the other CPU to make sure it wasn't changing the
2509 	 * list out from under us.  It is probably best to just not try to
2510 	 * handle threads on other CPU's for now.
2511 	 */
2512 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2513 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2514 }
2515 
2516 DB_SHOW_COMMAND(locks, db_witness_list)
2517 {
2518 	struct thread *td;
2519 
2520 	if (have_addr)
2521 		td = db_lookup_thread(addr, true);
2522 	else
2523 		td = kdb_thread;
2524 	witness_ddb_list(td);
2525 }
2526 
2527 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2528 {
2529 	struct thread *td;
2530 	struct proc *p;
2531 
2532 	/*
2533 	 * It would be nice to list only threads and processes that actually
2534 	 * held sleep locks, but that information is currently not exported
2535 	 * by WITNESS.
2536 	 */
2537 	FOREACH_PROC_IN_SYSTEM(p) {
2538 		if (!witness_proc_has_locks(p))
2539 			continue;
2540 		FOREACH_THREAD_IN_PROC(p, td) {
2541 			if (!witness_thread_has_locks(td))
2542 				continue;
2543 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2544 			    p->p_comm, td, td->td_tid);
2545 			witness_ddb_list(td);
2546 			if (db_pager_quit)
2547 				return;
2548 		}
2549 	}
2550 }
2551 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2552 
2553 DB_SHOW_COMMAND(witness, db_witness_display)
2554 {
2555 
2556 	witness_ddb_display(db_printf);
2557 }
2558 #endif
2559 
2560 static void
2561 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2562 {
2563 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2564 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2565 	int generation, i, j;
2566 
2567 	tmp_data1 = NULL;
2568 	tmp_data2 = NULL;
2569 	tmp_w1 = NULL;
2570 	tmp_w2 = NULL;
2571 
2572 	/* Allocate and init temporary storage space. */
2573 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2574 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2575 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2576 	    M_WAITOK | M_ZERO);
2577 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2578 	    M_WAITOK | M_ZERO);
2579 	stack_zero(&tmp_data1->wlod_stack);
2580 	stack_zero(&tmp_data2->wlod_stack);
2581 
2582 restart:
2583 	mtx_lock_spin(&w_mtx);
2584 	generation = w_generation;
2585 	mtx_unlock_spin(&w_mtx);
2586 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2587 	    w_lohash.wloh_count);
2588 	for (i = 1; i < w_max_used_index; i++) {
2589 		mtx_lock_spin(&w_mtx);
2590 		if (generation != w_generation) {
2591 			mtx_unlock_spin(&w_mtx);
2592 
2593 			/* The graph has changed, try again. */
2594 			*oldidx = 0;
2595 			sbuf_clear(sb);
2596 			goto restart;
2597 		}
2598 
2599 		w1 = &w_data[i];
2600 		if (w1->w_reversed == 0) {
2601 			mtx_unlock_spin(&w_mtx);
2602 			continue;
2603 		}
2604 
2605 		/* Copy w1 locally so we can release the spin lock. */
2606 		*tmp_w1 = *w1;
2607 		mtx_unlock_spin(&w_mtx);
2608 
2609 		if (tmp_w1->w_reversed == 0)
2610 			continue;
2611 		for (j = 1; j < w_max_used_index; j++) {
2612 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2613 				continue;
2614 
2615 			mtx_lock_spin(&w_mtx);
2616 			if (generation != w_generation) {
2617 				mtx_unlock_spin(&w_mtx);
2618 
2619 				/* The graph has changed, try again. */
2620 				*oldidx = 0;
2621 				sbuf_clear(sb);
2622 				goto restart;
2623 			}
2624 
2625 			w2 = &w_data[j];
2626 			data1 = witness_lock_order_get(w1, w2);
2627 			data2 = witness_lock_order_get(w2, w1);
2628 
2629 			/*
2630 			 * Copy information locally so we can release the
2631 			 * spin lock.
2632 			 */
2633 			*tmp_w2 = *w2;
2634 
2635 			if (data1) {
2636 				stack_zero(&tmp_data1->wlod_stack);
2637 				stack_copy(&data1->wlod_stack,
2638 				    &tmp_data1->wlod_stack);
2639 			}
2640 			if (data2 && data2 != data1) {
2641 				stack_zero(&tmp_data2->wlod_stack);
2642 				stack_copy(&data2->wlod_stack,
2643 				    &tmp_data2->wlod_stack);
2644 			}
2645 			mtx_unlock_spin(&w_mtx);
2646 
2647 			sbuf_printf(sb,
2648 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2649 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2650 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2651 			if (data1) {
2652 				sbuf_printf(sb,
2653 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2654 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2655 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2656 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2657 				sbuf_printf(sb, "\n");
2658 			}
2659 			if (data2 && data2 != data1) {
2660 				sbuf_printf(sb,
2661 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2662 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2663 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2664 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2665 				sbuf_printf(sb, "\n");
2666 			}
2667 		}
2668 	}
2669 	mtx_lock_spin(&w_mtx);
2670 	if (generation != w_generation) {
2671 		mtx_unlock_spin(&w_mtx);
2672 
2673 		/*
2674 		 * The graph changed while we were printing stack data,
2675 		 * try again.
2676 		 */
2677 		*oldidx = 0;
2678 		sbuf_clear(sb);
2679 		goto restart;
2680 	}
2681 	mtx_unlock_spin(&w_mtx);
2682 
2683 	/* Free temporary storage space. */
2684 	free(tmp_data1, M_TEMP);
2685 	free(tmp_data2, M_TEMP);
2686 	free(tmp_w1, M_TEMP);
2687 	free(tmp_w2, M_TEMP);
2688 }
2689 
2690 static int
2691 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2692 {
2693 	struct sbuf *sb;
2694 	int error;
2695 
2696 	if (witness_watch < 1) {
2697 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2698 		return (error);
2699 	}
2700 	if (witness_cold) {
2701 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2702 		return (error);
2703 	}
2704 	error = 0;
2705 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2706 	if (sb == NULL)
2707 		return (ENOMEM);
2708 
2709 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2710 
2711 	sbuf_finish(sb);
2712 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2713 	sbuf_delete(sb);
2714 
2715 	return (error);
2716 }
2717 
2718 #ifdef DDB
2719 static int
2720 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2721 {
2722 
2723 	return (db_printf("%.*s", len, data));
2724 }
2725 
2726 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2727 {
2728 	struct sbuf sb;
2729 	char buffer[128];
2730 	size_t dummy;
2731 
2732 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2733 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2734 	sbuf_print_witness_badstacks(&sb, &dummy);
2735 	sbuf_finish(&sb);
2736 }
2737 #endif
2738 
2739 static int
2740 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2741 {
2742 	static const struct {
2743 		enum witness_channel channel;
2744 		const char *name;
2745 	} channels[] = {
2746 		{ WITNESS_CONSOLE, "console" },
2747 		{ WITNESS_LOG, "log" },
2748 		{ WITNESS_NONE, "none" },
2749 	};
2750 	char buf[16];
2751 	u_int i;
2752 	int error;
2753 
2754 	buf[0] = '\0';
2755 	for (i = 0; i < nitems(channels); i++)
2756 		if (witness_channel == channels[i].channel) {
2757 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2758 			break;
2759 		}
2760 
2761 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2762 	if (error != 0 || req->newptr == NULL)
2763 		return (error);
2764 
2765 	error = EINVAL;
2766 	for (i = 0; i < nitems(channels); i++)
2767 		if (strcmp(channels[i].name, buf) == 0) {
2768 			witness_channel = channels[i].channel;
2769 			error = 0;
2770 			break;
2771 		}
2772 	return (error);
2773 }
2774 
2775 static int
2776 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2777 {
2778 	struct witness *w;
2779 	struct sbuf *sb;
2780 	int error;
2781 
2782 	if (witness_watch < 1) {
2783 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2784 		return (error);
2785 	}
2786 	if (witness_cold) {
2787 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2788 		return (error);
2789 	}
2790 	error = 0;
2791 
2792 	error = sysctl_wire_old_buffer(req, 0);
2793 	if (error != 0)
2794 		return (error);
2795 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2796 	if (sb == NULL)
2797 		return (ENOMEM);
2798 	sbuf_printf(sb, "\n");
2799 
2800 	mtx_lock_spin(&w_mtx);
2801 	STAILQ_FOREACH(w, &w_all, w_list)
2802 		w->w_displayed = 0;
2803 	STAILQ_FOREACH(w, &w_all, w_list)
2804 		witness_add_fullgraph(sb, w);
2805 	mtx_unlock_spin(&w_mtx);
2806 
2807 	/*
2808 	 * Close the sbuf and return to userland.
2809 	 */
2810 	error = sbuf_finish(sb);
2811 	sbuf_delete(sb);
2812 
2813 	return (error);
2814 }
2815 
2816 static int
2817 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2818 {
2819 	int error, value;
2820 
2821 	value = witness_watch;
2822 	error = sysctl_handle_int(oidp, &value, 0, req);
2823 	if (error != 0 || req->newptr == NULL)
2824 		return (error);
2825 	if (value > 1 || value < -1 ||
2826 	    (witness_watch == -1 && value != witness_watch))
2827 		return (EINVAL);
2828 	witness_watch = value;
2829 	return (0);
2830 }
2831 
2832 static void
2833 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2834 {
2835 	int i;
2836 
2837 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2838 		return;
2839 	w->w_displayed = 1;
2840 
2841 	WITNESS_INDEX_ASSERT(w->w_index);
2842 	for (i = 1; i <= w_max_used_index; i++) {
2843 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2844 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2845 			    w_data[i].w_name);
2846 			witness_add_fullgraph(sb, &w_data[i]);
2847 		}
2848 	}
2849 }
2850 
2851 /*
2852  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2853  * interprets the key as a string and reads until the null
2854  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2855  * hash value computed from the key.
2856  */
2857 static uint32_t
2858 witness_hash_djb2(const uint8_t *key, uint32_t size)
2859 {
2860 	unsigned int hash = 5381;
2861 	int i;
2862 
2863 	/* hash = hash * 33 + key[i] */
2864 	if (size)
2865 		for (i = 0; i < size; i++)
2866 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2867 	else
2868 		for (i = 0; key[i] != 0; i++)
2869 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2870 
2871 	return (hash);
2872 }
2873 
2874 
2875 /*
2876  * Initializes the two witness hash tables. Called exactly once from
2877  * witness_initialize().
2878  */
2879 static void
2880 witness_init_hash_tables(void)
2881 {
2882 	int i;
2883 
2884 	MPASS(witness_cold);
2885 
2886 	/* Initialize the hash tables. */
2887 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2888 		w_hash.wh_array[i] = NULL;
2889 
2890 	w_hash.wh_size = WITNESS_HASH_SIZE;
2891 	w_hash.wh_count = 0;
2892 
2893 	/* Initialize the lock order data hash. */
2894 	w_lofree = NULL;
2895 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2896 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2897 		w_lodata[i].wlod_next = w_lofree;
2898 		w_lofree = &w_lodata[i];
2899 	}
2900 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2901 	w_lohash.wloh_count = 0;
2902 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2903 		w_lohash.wloh_array[i] = NULL;
2904 }
2905 
2906 static struct witness *
2907 witness_hash_get(const char *key)
2908 {
2909 	struct witness *w;
2910 	uint32_t hash;
2911 
2912 	MPASS(key != NULL);
2913 	if (witness_cold == 0)
2914 		mtx_assert(&w_mtx, MA_OWNED);
2915 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2916 	w = w_hash.wh_array[hash];
2917 	while (w != NULL) {
2918 		if (strcmp(w->w_name, key) == 0)
2919 			goto out;
2920 		w = w->w_hash_next;
2921 	}
2922 
2923 out:
2924 	return (w);
2925 }
2926 
2927 static void
2928 witness_hash_put(struct witness *w)
2929 {
2930 	uint32_t hash;
2931 
2932 	MPASS(w != NULL);
2933 	MPASS(w->w_name != NULL);
2934 	if (witness_cold == 0)
2935 		mtx_assert(&w_mtx, MA_OWNED);
2936 	KASSERT(witness_hash_get(w->w_name) == NULL,
2937 	    ("%s: trying to add a hash entry that already exists!", __func__));
2938 	KASSERT(w->w_hash_next == NULL,
2939 	    ("%s: w->w_hash_next != NULL", __func__));
2940 
2941 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2942 	w->w_hash_next = w_hash.wh_array[hash];
2943 	w_hash.wh_array[hash] = w;
2944 	w_hash.wh_count++;
2945 }
2946 
2947 
2948 static struct witness_lock_order_data *
2949 witness_lock_order_get(struct witness *parent, struct witness *child)
2950 {
2951 	struct witness_lock_order_data *data = NULL;
2952 	struct witness_lock_order_key key;
2953 	unsigned int hash;
2954 
2955 	MPASS(parent != NULL && child != NULL);
2956 	key.from = parent->w_index;
2957 	key.to = child->w_index;
2958 	WITNESS_INDEX_ASSERT(key.from);
2959 	WITNESS_INDEX_ASSERT(key.to);
2960 	if ((w_rmatrix[parent->w_index][child->w_index]
2961 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2962 		goto out;
2963 
2964 	hash = witness_hash_djb2((const char*)&key,
2965 	    sizeof(key)) % w_lohash.wloh_size;
2966 	data = w_lohash.wloh_array[hash];
2967 	while (data != NULL) {
2968 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2969 			break;
2970 		data = data->wlod_next;
2971 	}
2972 
2973 out:
2974 	return (data);
2975 }
2976 
2977 /*
2978  * Verify that parent and child have a known relationship, are not the same,
2979  * and child is actually a child of parent.  This is done without w_mtx
2980  * to avoid contention in the common case.
2981  */
2982 static int
2983 witness_lock_order_check(struct witness *parent, struct witness *child)
2984 {
2985 
2986 	if (parent != child &&
2987 	    w_rmatrix[parent->w_index][child->w_index]
2988 	    & WITNESS_LOCK_ORDER_KNOWN &&
2989 	    isitmychild(parent, child))
2990 		return (1);
2991 
2992 	return (0);
2993 }
2994 
2995 static int
2996 witness_lock_order_add(struct witness *parent, struct witness *child)
2997 {
2998 	struct witness_lock_order_data *data = NULL;
2999 	struct witness_lock_order_key key;
3000 	unsigned int hash;
3001 
3002 	MPASS(parent != NULL && child != NULL);
3003 	key.from = parent->w_index;
3004 	key.to = child->w_index;
3005 	WITNESS_INDEX_ASSERT(key.from);
3006 	WITNESS_INDEX_ASSERT(key.to);
3007 	if (w_rmatrix[parent->w_index][child->w_index]
3008 	    & WITNESS_LOCK_ORDER_KNOWN)
3009 		return (1);
3010 
3011 	hash = witness_hash_djb2((const char*)&key,
3012 	    sizeof(key)) % w_lohash.wloh_size;
3013 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3014 	data = w_lofree;
3015 	if (data == NULL)
3016 		return (0);
3017 	w_lofree = data->wlod_next;
3018 	data->wlod_next = w_lohash.wloh_array[hash];
3019 	data->wlod_key = key;
3020 	w_lohash.wloh_array[hash] = data;
3021 	w_lohash.wloh_count++;
3022 	stack_zero(&data->wlod_stack);
3023 	stack_save(&data->wlod_stack);
3024 	return (1);
3025 }
3026 
3027 /* Call this whenever the structure of the witness graph changes. */
3028 static void
3029 witness_increment_graph_generation(void)
3030 {
3031 
3032 	if (witness_cold == 0)
3033 		mtx_assert(&w_mtx, MA_OWNED);
3034 	w_generation++;
3035 }
3036 
3037 static int
3038 witness_output_drain(void *arg __unused, const char *data, int len)
3039 {
3040 
3041 	witness_output("%.*s", len, data);
3042 	return (len);
3043 }
3044 
3045 static void
3046 witness_debugger(int cond, const char *msg)
3047 {
3048 	char buf[32];
3049 	struct sbuf sb;
3050 	struct stack st;
3051 
3052 	if (!cond)
3053 		return;
3054 
3055 	if (witness_trace) {
3056 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3057 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3058 
3059 		stack_zero(&st);
3060 		stack_save(&st);
3061 		witness_output("stack backtrace:\n");
3062 		stack_sbuf_print_ddb(&sb, &st);
3063 
3064 		sbuf_finish(&sb);
3065 	}
3066 
3067 #ifdef KDB
3068 	if (witness_kdb)
3069 		kdb_enter(KDB_WHY_WITNESS, msg);
3070 #endif
3071 }
3072