xref: /freebsd/sys/kern/subr_witness.c (revision 559af1ec16576f9f3e41318d66147f4df4fb8e87)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 
135 /* Define this to check for blessed mutexes */
136 #undef BLESSING
137 
138 #ifndef WITNESS_COUNT
139 #define	WITNESS_COUNT 		1536
140 #endif
141 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
142 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
143 
144 /* Allocate 256 KB of stack data space */
145 #define	WITNESS_LO_DATA_COUNT	2048
146 
147 /* Prime, gives load factor of ~2 at full load */
148 #define	WITNESS_LO_HASH_SIZE	1021
149 
150 /*
151  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
152  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
153  * probably be safe for the most part, but it's still a SWAG.
154  */
155 #define	LOCK_NCHILDREN	5
156 #define	LOCK_CHILDCOUNT	2048
157 
158 #define	MAX_W_NAME	64
159 
160 #define	FULLGRAPH_SBUF_SIZE	512
161 
162 /*
163  * These flags go in the witness relationship matrix and describe the
164  * relationship between any two struct witness objects.
165  */
166 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
167 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
168 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
169 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
170 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
171 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
172 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
173 #define	WITNESS_RELATED_MASK						\
174 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
175 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
176 					  * observed. */
177 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
178 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
179 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
180 
181 /* Descendant to ancestor flags */
182 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
183 
184 /* Ancestor to descendant flags */
185 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
186 
187 #define	WITNESS_INDEX_ASSERT(i)						\
188 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
189 
190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
191 
192 /*
193  * Lock instances.  A lock instance is the data associated with a lock while
194  * it is held by witness.  For example, a lock instance will hold the
195  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
196  * are held in a per-cpu list while sleep locks are held in per-thread list.
197  */
198 struct lock_instance {
199 	struct lock_object	*li_lock;
200 	const char		*li_file;
201 	int			li_line;
202 	u_int			li_flags;
203 };
204 
205 /*
206  * A simple list type used to build the list of locks held by a thread
207  * or CPU.  We can't simply embed the list in struct lock_object since a
208  * lock may be held by more than one thread if it is a shared lock.  Locks
209  * are added to the head of the list, so we fill up each list entry from
210  * "the back" logically.  To ease some of the arithmetic, we actually fill
211  * in each list entry the normal way (children[0] then children[1], etc.) but
212  * when we traverse the list we read children[count-1] as the first entry
213  * down to children[0] as the final entry.
214  */
215 struct lock_list_entry {
216 	struct lock_list_entry	*ll_next;
217 	struct lock_instance	ll_children[LOCK_NCHILDREN];
218 	u_int			ll_count;
219 };
220 
221 /*
222  * The main witness structure. One of these per named lock type in the system
223  * (for example, "vnode interlock").
224  */
225 struct witness {
226 	char  			w_name[MAX_W_NAME];
227 	uint32_t 		w_index;  /* Index in the relationship matrix */
228 	struct lock_class	*w_class;
229 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
230 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
231 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
232 	const char		*w_file; /* File where last acquired */
233 	uint32_t 		w_line; /* Line where last acquired */
234 	uint32_t 		w_refcount;
235 	uint16_t 		w_num_ancestors; /* direct/indirect
236 						  * ancestor count */
237 	uint16_t 		w_num_descendants; /* direct/indirect
238 						    * descendant count */
239 	int16_t 		w_ddb_level;
240 	unsigned		w_displayed:1;
241 	unsigned		w_reversed:1;
242 };
243 
244 STAILQ_HEAD(witness_list, witness);
245 
246 /*
247  * The witness hash table. Keys are witness names (const char *), elements are
248  * witness objects (struct witness *).
249  */
250 struct witness_hash {
251 	struct witness	*wh_array[WITNESS_HASH_SIZE];
252 	uint32_t	wh_size;
253 	uint32_t	wh_count;
254 };
255 
256 /*
257  * Key type for the lock order data hash table.
258  */
259 struct witness_lock_order_key {
260 	uint16_t	from;
261 	uint16_t	to;
262 };
263 
264 struct witness_lock_order_data {
265 	struct stack			wlod_stack;
266 	struct witness_lock_order_key	wlod_key;
267 	struct witness_lock_order_data	*wlod_next;
268 };
269 
270 /*
271  * The witness lock order data hash table. Keys are witness index tuples
272  * (struct witness_lock_order_key), elements are lock order data objects
273  * (struct witness_lock_order_data).
274  */
275 struct witness_lock_order_hash {
276 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
277 	u_int	wloh_size;
278 	u_int	wloh_count;
279 };
280 
281 #ifdef BLESSING
282 struct witness_blessed {
283 	const char	*b_lock1;
284 	const char	*b_lock2;
285 };
286 #endif
287 
288 struct witness_pendhelp {
289 	const char		*wh_type;
290 	struct lock_object	*wh_lock;
291 };
292 
293 struct witness_order_list_entry {
294 	const char		*w_name;
295 	struct lock_class	*w_class;
296 };
297 
298 /*
299  * Returns 0 if one of the locks is a spin lock and the other is not.
300  * Returns 1 otherwise.
301  */
302 static __inline int
303 witness_lock_type_equal(struct witness *w1, struct witness *w2)
304 {
305 
306 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
307 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
308 }
309 
310 static __inline int
311 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
312     const struct witness_lock_order_key *b)
313 {
314 
315 	return (a->from == b->from && a->to == b->to);
316 }
317 
318 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
319 		    const char *fname);
320 static void	adopt(struct witness *parent, struct witness *child);
321 #ifdef BLESSING
322 static int	blessed(struct witness *, struct witness *);
323 #endif
324 static void	depart(struct witness *w);
325 static struct witness	*enroll(const char *description,
326 			    struct lock_class *lock_class);
327 static struct lock_instance	*find_instance(struct lock_list_entry *list,
328 				    const struct lock_object *lock);
329 static int	isitmychild(struct witness *parent, struct witness *child);
330 static int	isitmydescendant(struct witness *parent, struct witness *child);
331 static void	itismychild(struct witness *parent, struct witness *child);
332 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
333 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
334 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
335 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
336 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
337 #ifdef DDB
338 static void	witness_ddb_compute_levels(void);
339 static void	witness_ddb_display(int(*)(const char *fmt, ...));
340 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
341 		    struct witness *, int indent);
342 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
343 		    struct witness_list *list);
344 static void	witness_ddb_level_descendants(struct witness *parent, int l);
345 static void	witness_ddb_list(struct thread *td);
346 #endif
347 static void	witness_debugger(int cond, const char *msg);
348 static void	witness_free(struct witness *m);
349 static struct witness	*witness_get(void);
350 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
351 static struct witness	*witness_hash_get(const char *key);
352 static void	witness_hash_put(struct witness *w);
353 static void	witness_init_hash_tables(void);
354 static void	witness_increment_graph_generation(void);
355 static void	witness_lock_list_free(struct lock_list_entry *lle);
356 static struct lock_list_entry	*witness_lock_list_get(void);
357 static int	witness_lock_order_add(struct witness *parent,
358 		    struct witness *child);
359 static int	witness_lock_order_check(struct witness *parent,
360 		    struct witness *child);
361 static struct witness_lock_order_data	*witness_lock_order_get(
362 					    struct witness *parent,
363 					    struct witness *child);
364 static void	witness_list_lock(struct lock_instance *instance,
365 		    int (*prnt)(const char *fmt, ...));
366 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
367 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
368 static void	witness_setflag(struct lock_object *lock, int flag, int set);
369 
370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
371     "Witness Locking");
372 
373 /*
374  * If set to 0, lock order checking is disabled.  If set to -1,
375  * witness is completely disabled.  Otherwise witness performs full
376  * lock order checking for all locks.  At runtime, lock order checking
377  * may be toggled.  However, witness cannot be reenabled once it is
378  * completely disabled.
379  */
380 static int witness_watch = 1;
381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
382     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
383 
384 #ifdef KDB
385 /*
386  * When KDB is enabled and witness_kdb is 1, it will cause the system
387  * to drop into kdebug() when:
388  *	- a lock hierarchy violation occurs
389  *	- locks are held when going to sleep.
390  */
391 #ifdef WITNESS_KDB
392 int	witness_kdb = 1;
393 #else
394 int	witness_kdb = 0;
395 #endif
396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
397 #endif /* KDB */
398 
399 #if defined(DDB) || defined(KDB)
400 /*
401  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
402  * to print a stack trace:
403  *	- a lock hierarchy violation occurs
404  *	- locks are held when going to sleep.
405  */
406 int	witness_trace = 1;
407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
408 #endif /* DDB || KDB */
409 
410 #ifdef WITNESS_SKIPSPIN
411 int	witness_skipspin = 1;
412 #else
413 int	witness_skipspin = 0;
414 #endif
415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
416 
417 int badstack_sbuf_size;
418 
419 int witness_count = WITNESS_COUNT;
420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
421     &witness_count, 0, "");
422 
423 /*
424  * Output channel for witness messages.  By default we print to the console.
425  */
426 enum witness_channel {
427 	WITNESS_CONSOLE,
428 	WITNESS_LOG,
429 	WITNESS_NONE,
430 };
431 
432 static enum witness_channel witness_channel = WITNESS_CONSOLE;
433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
434     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
435     "Output channel for warnings");
436 
437 /*
438  * Call this to print out the relations between locks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
442 
443 /*
444  * Call this to print out the witness faulty stacks.
445  */
446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
447     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
448 
449 static struct mtx w_mtx;
450 
451 /* w_list */
452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
454 
455 /* w_typelist */
456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
458 
459 /* lock list */
460 static struct lock_list_entry *w_lock_list_free = NULL;
461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
462 static u_int pending_cnt;
463 
464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
468     "");
469 
470 static struct witness *w_data;
471 static uint8_t **w_rmatrix;
472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
473 static struct witness_hash w_hash;	/* The witness hash table. */
474 
475 /* The lock order data hash */
476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
477 static struct witness_lock_order_data *w_lofree = NULL;
478 static struct witness_lock_order_hash w_lohash;
479 static int w_max_used_index = 0;
480 static unsigned int w_generation = 0;
481 static const char w_notrunning[] = "Witness not running\n";
482 static const char w_stillcold[] = "Witness is still cold\n";
483 #ifdef __i386__
484 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
485 #endif
486 
487 static struct witness_order_list_entry order_lists[] = {
488 	/*
489 	 * sx locks
490 	 */
491 	{ "proctree", &lock_class_sx },
492 	{ "allproc", &lock_class_sx },
493 	{ "allprison", &lock_class_sx },
494 	{ NULL, NULL },
495 	/*
496 	 * Various mutexes
497 	 */
498 	{ "Giant", &lock_class_mtx_sleep },
499 	{ "pipe mutex", &lock_class_mtx_sleep },
500 	{ "sigio lock", &lock_class_mtx_sleep },
501 	{ "process group", &lock_class_mtx_sleep },
502 #ifdef	HWPMC_HOOKS
503 	{ "pmc-sleep", &lock_class_mtx_sleep },
504 #endif
505 	{ "process lock", &lock_class_mtx_sleep },
506 	{ "session", &lock_class_mtx_sleep },
507 	{ "uidinfo hash", &lock_class_rw },
508 	{ "time lock", &lock_class_mtx_sleep },
509 	{ NULL, NULL },
510 	/*
511 	 * umtx
512 	 */
513 	{ "umtx lock", &lock_class_mtx_sleep },
514 	{ NULL, NULL },
515 	/*
516 	 * Sockets
517 	 */
518 	{ "accept", &lock_class_mtx_sleep },
519 	{ "so_snd", &lock_class_mtx_sleep },
520 	{ "so_rcv", &lock_class_mtx_sleep },
521 	{ "sellck", &lock_class_mtx_sleep },
522 	{ NULL, NULL },
523 	/*
524 	 * Routing
525 	 */
526 	{ "so_rcv", &lock_class_mtx_sleep },
527 	{ "radix node head", &lock_class_rm },
528 	{ "rtentry", &lock_class_mtx_sleep },
529 	{ "ifaddr", &lock_class_mtx_sleep },
530 	{ NULL, NULL },
531 	/*
532 	 * IPv4 multicast:
533 	 * protocol locks before interface locks, after UDP locks.
534 	 */
535 	{ "in_multi_sx", &lock_class_sx },
536 	{ "udpinp", &lock_class_rw },
537 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
538 	{ "igmp_mtx", &lock_class_mtx_sleep },
539 	{ "ifnet_rw", &lock_class_rw },
540 	{ "if_addr_lock", &lock_class_mtx_sleep },
541 	{ NULL, NULL },
542 	/*
543 	 * IPv6 multicast:
544 	 * protocol locks before interface locks, after UDP locks.
545 	 */
546 	{ "in6_multi_sx", &lock_class_sx },
547 	{ "udpinp", &lock_class_rw },
548 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
549 	{ "mld_mtx", &lock_class_mtx_sleep },
550 	{ "ifnet_rw", &lock_class_rw },
551 	{ "if_addr_lock", &lock_class_mtx_sleep },
552 	{ NULL, NULL },
553 	/*
554 	 * UNIX Domain Sockets
555 	 */
556 	{ "unp_link_rwlock", &lock_class_rw },
557 	{ "unp_list_lock", &lock_class_mtx_sleep },
558 	{ "unp", &lock_class_mtx_sleep },
559 	{ "so_snd", &lock_class_mtx_sleep },
560 	{ NULL, NULL },
561 	/*
562 	 * UDP/IP
563 	 */
564 	{ "udp", &lock_class_mtx_sleep },
565 	{ "udpinp", &lock_class_rw },
566 	{ "so_snd", &lock_class_mtx_sleep },
567 	{ NULL, NULL },
568 	/*
569 	 * TCP/IP
570 	 */
571 	{ "tcp", &lock_class_mtx_sleep },
572 	{ "tcpinp", &lock_class_rw },
573 	{ "so_snd", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 	/*
576 	 * BPF
577 	 */
578 	{ "bpf global lock", &lock_class_sx },
579 	{ "bpf interface lock", &lock_class_rw },
580 	{ "bpf cdev lock", &lock_class_mtx_sleep },
581 	{ NULL, NULL },
582 	/*
583 	 * NFS server
584 	 */
585 	{ "nfsd_mtx", &lock_class_mtx_sleep },
586 	{ "so_snd", &lock_class_mtx_sleep },
587 	{ NULL, NULL },
588 
589 	/*
590 	 * IEEE 802.11
591 	 */
592 	{ "802.11 com lock", &lock_class_mtx_sleep},
593 	{ NULL, NULL },
594 	/*
595 	 * Network drivers
596 	 */
597 	{ "network driver", &lock_class_mtx_sleep},
598 	{ NULL, NULL },
599 
600 	/*
601 	 * Netgraph
602 	 */
603 	{ "ng_node", &lock_class_mtx_sleep },
604 	{ "ng_worklist", &lock_class_mtx_sleep },
605 	{ NULL, NULL },
606 	/*
607 	 * CDEV
608 	 */
609 	{ "vm map (system)", &lock_class_mtx_sleep },
610 	{ "vnode interlock", &lock_class_mtx_sleep },
611 	{ "cdev", &lock_class_mtx_sleep },
612 	{ NULL, NULL },
613 	/*
614 	 * VM
615 	 */
616 	{ "vm map (user)", &lock_class_sx },
617 	{ "vm object", &lock_class_rw },
618 	{ "vm page", &lock_class_mtx_sleep },
619 	{ "pmap pv global", &lock_class_rw },
620 	{ "pmap", &lock_class_mtx_sleep },
621 	{ "pmap pv list", &lock_class_rw },
622 	{ "vm page free queue", &lock_class_mtx_sleep },
623 	{ "vm pagequeue", &lock_class_mtx_sleep },
624 	{ NULL, NULL },
625 	/*
626 	 * kqueue/VFS interaction
627 	 */
628 	{ "kqueue", &lock_class_mtx_sleep },
629 	{ "struct mount mtx", &lock_class_mtx_sleep },
630 	{ "vnode interlock", &lock_class_mtx_sleep },
631 	{ NULL, NULL },
632 	/*
633 	 * VFS namecache
634 	 */
635 	{ "ncvn", &lock_class_mtx_sleep },
636 	{ "ncbuc", &lock_class_rw },
637 	{ "vnode interlock", &lock_class_mtx_sleep },
638 	{ "ncneg", &lock_class_mtx_sleep },
639 	{ NULL, NULL },
640 	/*
641 	 * ZFS locking
642 	 */
643 	{ "dn->dn_mtx", &lock_class_sx },
644 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
645 	{ "db->db_mtx", &lock_class_sx },
646 	{ NULL, NULL },
647 	/*
648 	 * TCP log locks
649 	 */
650 	{ "TCP ID tree", &lock_class_rw },
651 	{ "tcp log id bucket", &lock_class_mtx_sleep },
652 	{ "tcpinp", &lock_class_rw },
653 	{ "TCP log expireq", &lock_class_mtx_sleep },
654 	{ NULL, NULL },
655 	/*
656 	 * spin locks
657 	 */
658 #ifdef SMP
659 	{ "ap boot", &lock_class_mtx_spin },
660 #endif
661 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
662 	{ "sio", &lock_class_mtx_spin },
663 #ifdef __i386__
664 	{ "cy", &lock_class_mtx_spin },
665 #endif
666 #ifdef __sparc64__
667 	{ "pcib_mtx", &lock_class_mtx_spin },
668 	{ "rtc_mtx", &lock_class_mtx_spin },
669 #endif
670 	{ "scc_hwmtx", &lock_class_mtx_spin },
671 	{ "uart_hwmtx", &lock_class_mtx_spin },
672 	{ "fast_taskqueue", &lock_class_mtx_spin },
673 	{ "intr table", &lock_class_mtx_spin },
674 	{ "process slock", &lock_class_mtx_spin },
675 	{ "syscons video lock", &lock_class_mtx_spin },
676 	{ "sleepq chain", &lock_class_mtx_spin },
677 	{ "rm_spinlock", &lock_class_mtx_spin },
678 	{ "turnstile chain", &lock_class_mtx_spin },
679 	{ "turnstile lock", &lock_class_mtx_spin },
680 	{ "sched lock", &lock_class_mtx_spin },
681 	{ "td_contested", &lock_class_mtx_spin },
682 	{ "callout", &lock_class_mtx_spin },
683 	{ "entropy harvest mutex", &lock_class_mtx_spin },
684 #ifdef SMP
685 	{ "smp rendezvous", &lock_class_mtx_spin },
686 #endif
687 #ifdef __powerpc__
688 	{ "tlb0", &lock_class_mtx_spin },
689 #endif
690 	{ NULL, NULL },
691 	{ "sched lock", &lock_class_mtx_spin },
692 #ifdef	HWPMC_HOOKS
693 	{ "pmc-per-proc", &lock_class_mtx_spin },
694 #endif
695 	{ NULL, NULL },
696 	/*
697 	 * leaf locks
698 	 */
699 	{ "intrcnt", &lock_class_mtx_spin },
700 	{ "icu", &lock_class_mtx_spin },
701 #if defined(SMP) && defined(__sparc64__)
702 	{ "ipi", &lock_class_mtx_spin },
703 #endif
704 #ifdef __i386__
705 	{ "allpmaps", &lock_class_mtx_spin },
706 	{ "descriptor tables", &lock_class_mtx_spin },
707 #endif
708 	{ "clk", &lock_class_mtx_spin },
709 	{ "cpuset", &lock_class_mtx_spin },
710 	{ "mprof lock", &lock_class_mtx_spin },
711 	{ "zombie lock", &lock_class_mtx_spin },
712 	{ "ALD Queue", &lock_class_mtx_spin },
713 #if defined(__i386__) || defined(__amd64__)
714 	{ "pcicfg", &lock_class_mtx_spin },
715 	{ "NDIS thread lock", &lock_class_mtx_spin },
716 #endif
717 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
718 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
719 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
720 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
721 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
722 #ifdef	HWPMC_HOOKS
723 	{ "pmc-leaf", &lock_class_mtx_spin },
724 #endif
725 	{ "blocked lock", &lock_class_mtx_spin },
726 	{ NULL, NULL },
727 	{ NULL, NULL }
728 };
729 
730 #ifdef BLESSING
731 /*
732  * Pairs of locks which have been blessed
733  * Don't complain about order problems with blessed locks
734  */
735 static struct witness_blessed blessed_list[] = {
736 };
737 #endif
738 
739 /*
740  * This global is set to 0 once it becomes safe to use the witness code.
741  */
742 static int witness_cold = 1;
743 
744 /*
745  * This global is set to 1 once the static lock orders have been enrolled
746  * so that a warning can be issued for any spin locks enrolled later.
747  */
748 static int witness_spin_warn = 0;
749 
750 /* Trim useless garbage from filenames. */
751 static const char *
752 fixup_filename(const char *file)
753 {
754 
755 	if (file == NULL)
756 		return (NULL);
757 	while (strncmp(file, "../", 3) == 0)
758 		file += 3;
759 	return (file);
760 }
761 
762 /*
763  * Calculate the size of early witness structures.
764  */
765 int
766 witness_startup_count(void)
767 {
768 	int sz;
769 
770 	sz = sizeof(struct witness) * witness_count;
771 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
772 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
773 	    (witness_count + 1);
774 
775 	return (sz);
776 }
777 
778 /*
779  * The WITNESS-enabled diagnostic code.  Note that the witness code does
780  * assume that the early boot is single-threaded at least until after this
781  * routine is completed.
782  */
783 void
784 witness_startup(void *mem)
785 {
786 	struct lock_object *lock;
787 	struct witness_order_list_entry *order;
788 	struct witness *w, *w1;
789 	uintptr_t p;
790 	int i;
791 
792 	p = (uintptr_t)mem;
793 	w_data = (void *)p;
794 	p += sizeof(struct witness) * witness_count;
795 
796 	w_rmatrix = (void *)p;
797 	p += sizeof(*w_rmatrix) * (witness_count + 1);
798 
799 	for (i = 0; i < witness_count + 1; i++) {
800 		w_rmatrix[i] = (void *)p;
801 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
802 	}
803 	badstack_sbuf_size = witness_count * 256;
804 
805 	/*
806 	 * We have to release Giant before initializing its witness
807 	 * structure so that WITNESS doesn't get confused.
808 	 */
809 	mtx_unlock(&Giant);
810 	mtx_assert(&Giant, MA_NOTOWNED);
811 
812 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
813 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
814 	    MTX_NOWITNESS | MTX_NOPROFILE);
815 	for (i = witness_count - 1; i >= 0; i--) {
816 		w = &w_data[i];
817 		memset(w, 0, sizeof(*w));
818 		w_data[i].w_index = i;	/* Witness index never changes. */
819 		witness_free(w);
820 	}
821 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
822 	    ("%s: Invalid list of free witness objects", __func__));
823 
824 	/* Witness with index 0 is not used to aid in debugging. */
825 	STAILQ_REMOVE_HEAD(&w_free, w_list);
826 	w_free_cnt--;
827 
828 	for (i = 0; i < witness_count; i++) {
829 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
830 		    (witness_count + 1));
831 	}
832 
833 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
834 		witness_lock_list_free(&w_locklistdata[i]);
835 	witness_init_hash_tables();
836 
837 	/* First add in all the specified order lists. */
838 	for (order = order_lists; order->w_name != NULL; order++) {
839 		w = enroll(order->w_name, order->w_class);
840 		if (w == NULL)
841 			continue;
842 		w->w_file = "order list";
843 		for (order++; order->w_name != NULL; order++) {
844 			w1 = enroll(order->w_name, order->w_class);
845 			if (w1 == NULL)
846 				continue;
847 			w1->w_file = "order list";
848 			itismychild(w, w1);
849 			w = w1;
850 		}
851 	}
852 	witness_spin_warn = 1;
853 
854 	/* Iterate through all locks and add them to witness. */
855 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
856 		lock = pending_locks[i].wh_lock;
857 		KASSERT(lock->lo_flags & LO_WITNESS,
858 		    ("%s: lock %s is on pending list but not LO_WITNESS",
859 		    __func__, lock->lo_name));
860 		lock->lo_witness = enroll(pending_locks[i].wh_type,
861 		    LOCK_CLASS(lock));
862 	}
863 
864 	/* Mark the witness code as being ready for use. */
865 	witness_cold = 0;
866 
867 	mtx_lock(&Giant);
868 }
869 
870 void
871 witness_init(struct lock_object *lock, const char *type)
872 {
873 	struct lock_class *class;
874 
875 	/* Various sanity checks. */
876 	class = LOCK_CLASS(lock);
877 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
878 	    (class->lc_flags & LC_RECURSABLE) == 0)
879 		kassert_panic("%s: lock (%s) %s can not be recursable",
880 		    __func__, class->lc_name, lock->lo_name);
881 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
882 	    (class->lc_flags & LC_SLEEPABLE) == 0)
883 		kassert_panic("%s: lock (%s) %s can not be sleepable",
884 		    __func__, class->lc_name, lock->lo_name);
885 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
886 	    (class->lc_flags & LC_UPGRADABLE) == 0)
887 		kassert_panic("%s: lock (%s) %s can not be upgradable",
888 		    __func__, class->lc_name, lock->lo_name);
889 
890 	/*
891 	 * If we shouldn't watch this lock, then just clear lo_witness.
892 	 * Otherwise, if witness_cold is set, then it is too early to
893 	 * enroll this lock, so defer it to witness_initialize() by adding
894 	 * it to the pending_locks list.  If it is not too early, then enroll
895 	 * the lock now.
896 	 */
897 	if (witness_watch < 1 || panicstr != NULL ||
898 	    (lock->lo_flags & LO_WITNESS) == 0)
899 		lock->lo_witness = NULL;
900 	else if (witness_cold) {
901 		pending_locks[pending_cnt].wh_lock = lock;
902 		pending_locks[pending_cnt++].wh_type = type;
903 		if (pending_cnt > WITNESS_PENDLIST)
904 			panic("%s: pending locks list is too small, "
905 			    "increase WITNESS_PENDLIST\n",
906 			    __func__);
907 	} else
908 		lock->lo_witness = enroll(type, class);
909 }
910 
911 void
912 witness_destroy(struct lock_object *lock)
913 {
914 	struct lock_class *class;
915 	struct witness *w;
916 
917 	class = LOCK_CLASS(lock);
918 
919 	if (witness_cold)
920 		panic("lock (%s) %s destroyed while witness_cold",
921 		    class->lc_name, lock->lo_name);
922 
923 	/* XXX: need to verify that no one holds the lock */
924 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
925 		return;
926 	w = lock->lo_witness;
927 
928 	mtx_lock_spin(&w_mtx);
929 	MPASS(w->w_refcount > 0);
930 	w->w_refcount--;
931 
932 	if (w->w_refcount == 0)
933 		depart(w);
934 	mtx_unlock_spin(&w_mtx);
935 }
936 
937 #ifdef DDB
938 static void
939 witness_ddb_compute_levels(void)
940 {
941 	struct witness *w;
942 
943 	/*
944 	 * First clear all levels.
945 	 */
946 	STAILQ_FOREACH(w, &w_all, w_list)
947 		w->w_ddb_level = -1;
948 
949 	/*
950 	 * Look for locks with no parents and level all their descendants.
951 	 */
952 	STAILQ_FOREACH(w, &w_all, w_list) {
953 
954 		/* If the witness has ancestors (is not a root), skip it. */
955 		if (w->w_num_ancestors > 0)
956 			continue;
957 		witness_ddb_level_descendants(w, 0);
958 	}
959 }
960 
961 static void
962 witness_ddb_level_descendants(struct witness *w, int l)
963 {
964 	int i;
965 
966 	if (w->w_ddb_level >= l)
967 		return;
968 
969 	w->w_ddb_level = l;
970 	l++;
971 
972 	for (i = 1; i <= w_max_used_index; i++) {
973 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
974 			witness_ddb_level_descendants(&w_data[i], l);
975 	}
976 }
977 
978 static void
979 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
980     struct witness *w, int indent)
981 {
982 	int i;
983 
984  	for (i = 0; i < indent; i++)
985  		prnt(" ");
986 	prnt("%s (type: %s, depth: %d, active refs: %d)",
987 	     w->w_name, w->w_class->lc_name,
988 	     w->w_ddb_level, w->w_refcount);
989  	if (w->w_displayed) {
990  		prnt(" -- (already displayed)\n");
991  		return;
992  	}
993  	w->w_displayed = 1;
994 	if (w->w_file != NULL && w->w_line != 0)
995 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
996 		    w->w_line);
997 	else
998 		prnt(" -- never acquired\n");
999 	indent++;
1000 	WITNESS_INDEX_ASSERT(w->w_index);
1001 	for (i = 1; i <= w_max_used_index; i++) {
1002 		if (db_pager_quit)
1003 			return;
1004 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1005 			witness_ddb_display_descendants(prnt, &w_data[i],
1006 			    indent);
1007 	}
1008 }
1009 
1010 static void
1011 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1012     struct witness_list *list)
1013 {
1014 	struct witness *w;
1015 
1016 	STAILQ_FOREACH(w, list, w_typelist) {
1017 		if (w->w_file == NULL || w->w_ddb_level > 0)
1018 			continue;
1019 
1020 		/* This lock has no anscestors - display its descendants. */
1021 		witness_ddb_display_descendants(prnt, w, 0);
1022 		if (db_pager_quit)
1023 			return;
1024 	}
1025 }
1026 
1027 static void
1028 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1029 {
1030 	struct witness *w;
1031 
1032 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1033 	witness_ddb_compute_levels();
1034 
1035 	/* Clear all the displayed flags. */
1036 	STAILQ_FOREACH(w, &w_all, w_list)
1037 		w->w_displayed = 0;
1038 
1039 	/*
1040 	 * First, handle sleep locks which have been acquired at least
1041 	 * once.
1042 	 */
1043 	prnt("Sleep locks:\n");
1044 	witness_ddb_display_list(prnt, &w_sleep);
1045 	if (db_pager_quit)
1046 		return;
1047 
1048 	/*
1049 	 * Now do spin locks which have been acquired at least once.
1050 	 */
1051 	prnt("\nSpin locks:\n");
1052 	witness_ddb_display_list(prnt, &w_spin);
1053 	if (db_pager_quit)
1054 		return;
1055 
1056 	/*
1057 	 * Finally, any locks which have not been acquired yet.
1058 	 */
1059 	prnt("\nLocks which were never acquired:\n");
1060 	STAILQ_FOREACH(w, &w_all, w_list) {
1061 		if (w->w_file != NULL || w->w_refcount == 0)
1062 			continue;
1063 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1064 		    w->w_class->lc_name, w->w_ddb_level);
1065 		if (db_pager_quit)
1066 			return;
1067 	}
1068 }
1069 #endif /* DDB */
1070 
1071 int
1072 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1073 {
1074 
1075 	if (witness_watch == -1 || panicstr != NULL)
1076 		return (0);
1077 
1078 	/* Require locks that witness knows about. */
1079 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1080 	    lock2->lo_witness == NULL)
1081 		return (EINVAL);
1082 
1083 	mtx_assert(&w_mtx, MA_NOTOWNED);
1084 	mtx_lock_spin(&w_mtx);
1085 
1086 	/*
1087 	 * If we already have either an explicit or implied lock order that
1088 	 * is the other way around, then return an error.
1089 	 */
1090 	if (witness_watch &&
1091 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1092 		mtx_unlock_spin(&w_mtx);
1093 		return (EDOOFUS);
1094 	}
1095 
1096 	/* Try to add the new order. */
1097 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1098 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1099 	itismychild(lock1->lo_witness, lock2->lo_witness);
1100 	mtx_unlock_spin(&w_mtx);
1101 	return (0);
1102 }
1103 
1104 void
1105 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1106     int line, struct lock_object *interlock)
1107 {
1108 	struct lock_list_entry *lock_list, *lle;
1109 	struct lock_instance *lock1, *lock2, *plock;
1110 	struct lock_class *class, *iclass;
1111 	struct witness *w, *w1;
1112 	struct thread *td;
1113 	int i, j;
1114 
1115 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1116 	    panicstr != NULL)
1117 		return;
1118 
1119 	w = lock->lo_witness;
1120 	class = LOCK_CLASS(lock);
1121 	td = curthread;
1122 
1123 	if (class->lc_flags & LC_SLEEPLOCK) {
1124 
1125 		/*
1126 		 * Since spin locks include a critical section, this check
1127 		 * implicitly enforces a lock order of all sleep locks before
1128 		 * all spin locks.
1129 		 */
1130 		if (td->td_critnest != 0 && !kdb_active)
1131 			kassert_panic("acquiring blockable sleep lock with "
1132 			    "spinlock or critical section held (%s) %s @ %s:%d",
1133 			    class->lc_name, lock->lo_name,
1134 			    fixup_filename(file), line);
1135 
1136 		/*
1137 		 * If this is the first lock acquired then just return as
1138 		 * no order checking is needed.
1139 		 */
1140 		lock_list = td->td_sleeplocks;
1141 		if (lock_list == NULL || lock_list->ll_count == 0)
1142 			return;
1143 	} else {
1144 
1145 		/*
1146 		 * If this is the first lock, just return as no order
1147 		 * checking is needed.  Avoid problems with thread
1148 		 * migration pinning the thread while checking if
1149 		 * spinlocks are held.  If at least one spinlock is held
1150 		 * the thread is in a safe path and it is allowed to
1151 		 * unpin it.
1152 		 */
1153 		sched_pin();
1154 		lock_list = PCPU_GET(spinlocks);
1155 		if (lock_list == NULL || lock_list->ll_count == 0) {
1156 			sched_unpin();
1157 			return;
1158 		}
1159 		sched_unpin();
1160 	}
1161 
1162 	/*
1163 	 * Check to see if we are recursing on a lock we already own.  If
1164 	 * so, make sure that we don't mismatch exclusive and shared lock
1165 	 * acquires.
1166 	 */
1167 	lock1 = find_instance(lock_list, lock);
1168 	if (lock1 != NULL) {
1169 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1170 		    (flags & LOP_EXCLUSIVE) == 0) {
1171 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1172 			    class->lc_name, lock->lo_name,
1173 			    fixup_filename(file), line);
1174 			witness_output("while exclusively locked from %s:%d\n",
1175 			    fixup_filename(lock1->li_file), lock1->li_line);
1176 			kassert_panic("excl->share");
1177 		}
1178 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1179 		    (flags & LOP_EXCLUSIVE) != 0) {
1180 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1181 			    class->lc_name, lock->lo_name,
1182 			    fixup_filename(file), line);
1183 			witness_output("while share locked from %s:%d\n",
1184 			    fixup_filename(lock1->li_file), lock1->li_line);
1185 			kassert_panic("share->excl");
1186 		}
1187 		return;
1188 	}
1189 
1190 	/* Warn if the interlock is not locked exactly once. */
1191 	if (interlock != NULL) {
1192 		iclass = LOCK_CLASS(interlock);
1193 		lock1 = find_instance(lock_list, interlock);
1194 		if (lock1 == NULL)
1195 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1196 			    iclass->lc_name, interlock->lo_name,
1197 			    fixup_filename(file), line);
1198 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1199 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1200 			    iclass->lc_name, interlock->lo_name,
1201 			    fixup_filename(file), line);
1202 	}
1203 
1204 	/*
1205 	 * Find the previously acquired lock, but ignore interlocks.
1206 	 */
1207 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1208 	if (interlock != NULL && plock->li_lock == interlock) {
1209 		if (lock_list->ll_count > 1)
1210 			plock =
1211 			    &lock_list->ll_children[lock_list->ll_count - 2];
1212 		else {
1213 			lle = lock_list->ll_next;
1214 
1215 			/*
1216 			 * The interlock is the only lock we hold, so
1217 			 * simply return.
1218 			 */
1219 			if (lle == NULL)
1220 				return;
1221 			plock = &lle->ll_children[lle->ll_count - 1];
1222 		}
1223 	}
1224 
1225 	/*
1226 	 * Try to perform most checks without a lock.  If this succeeds we
1227 	 * can skip acquiring the lock and return success.  Otherwise we redo
1228 	 * the check with the lock held to handle races with concurrent updates.
1229 	 */
1230 	w1 = plock->li_lock->lo_witness;
1231 	if (witness_lock_order_check(w1, w))
1232 		return;
1233 
1234 	mtx_lock_spin(&w_mtx);
1235 	if (witness_lock_order_check(w1, w)) {
1236 		mtx_unlock_spin(&w_mtx);
1237 		return;
1238 	}
1239 	witness_lock_order_add(w1, w);
1240 
1241 	/*
1242 	 * Check for duplicate locks of the same type.  Note that we only
1243 	 * have to check for this on the last lock we just acquired.  Any
1244 	 * other cases will be caught as lock order violations.
1245 	 */
1246 	if (w1 == w) {
1247 		i = w->w_index;
1248 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1249 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1250 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1251 			w->w_reversed = 1;
1252 			mtx_unlock_spin(&w_mtx);
1253 			witness_output(
1254 			    "acquiring duplicate lock of same type: \"%s\"\n",
1255 			    w->w_name);
1256 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1257 			    fixup_filename(plock->li_file), plock->li_line);
1258 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1259 			    fixup_filename(file), line);
1260 			witness_debugger(1, __func__);
1261 		} else
1262 			mtx_unlock_spin(&w_mtx);
1263 		return;
1264 	}
1265 	mtx_assert(&w_mtx, MA_OWNED);
1266 
1267 	/*
1268 	 * If we know that the lock we are acquiring comes after
1269 	 * the lock we most recently acquired in the lock order tree,
1270 	 * then there is no need for any further checks.
1271 	 */
1272 	if (isitmychild(w1, w))
1273 		goto out;
1274 
1275 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1276 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1277 
1278 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1279 			lock1 = &lle->ll_children[i];
1280 
1281 			/*
1282 			 * Ignore the interlock.
1283 			 */
1284 			if (interlock == lock1->li_lock)
1285 				continue;
1286 
1287 			/*
1288 			 * If this lock doesn't undergo witness checking,
1289 			 * then skip it.
1290 			 */
1291 			w1 = lock1->li_lock->lo_witness;
1292 			if (w1 == NULL) {
1293 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1294 				    ("lock missing witness structure"));
1295 				continue;
1296 			}
1297 
1298 			/*
1299 			 * If we are locking Giant and this is a sleepable
1300 			 * lock, then skip it.
1301 			 */
1302 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 &&
1303 			    lock == &Giant.lock_object)
1304 				continue;
1305 
1306 			/*
1307 			 * If we are locking a sleepable lock and this lock
1308 			 * is Giant, then skip it.
1309 			 */
1310 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1311 			    lock1->li_lock == &Giant.lock_object)
1312 				continue;
1313 
1314 			/*
1315 			 * If we are locking a sleepable lock and this lock
1316 			 * isn't sleepable, we want to treat it as a lock
1317 			 * order violation to enfore a general lock order of
1318 			 * sleepable locks before non-sleepable locks.
1319 			 */
1320 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1321 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1322 				goto reversal;
1323 
1324 			/*
1325 			 * If we are locking Giant and this is a non-sleepable
1326 			 * lock, then treat it as a reversal.
1327 			 */
1328 			if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 &&
1329 			    lock == &Giant.lock_object)
1330 				goto reversal;
1331 
1332 			/*
1333 			 * Check the lock order hierarchy for a reveresal.
1334 			 */
1335 			if (!isitmydescendant(w, w1))
1336 				continue;
1337 		reversal:
1338 
1339 			/*
1340 			 * We have a lock order violation, check to see if it
1341 			 * is allowed or has already been yelled about.
1342 			 */
1343 #ifdef BLESSING
1344 
1345 			/*
1346 			 * If the lock order is blessed, just bail.  We don't
1347 			 * look for other lock order violations though, which
1348 			 * may be a bug.
1349 			 */
1350 			if (blessed(w, w1))
1351 				goto out;
1352 #endif
1353 
1354 			/* Bail if this violation is known */
1355 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1356 				goto out;
1357 
1358 			/* Record this as a violation */
1359 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1360 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1361 			w->w_reversed = w1->w_reversed = 1;
1362 			witness_increment_graph_generation();
1363 			mtx_unlock_spin(&w_mtx);
1364 
1365 #ifdef WITNESS_NO_VNODE
1366 			/*
1367 			 * There are known LORs between VNODE locks. They are
1368 			 * not an indication of a bug. VNODE locks are flagged
1369 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1370 			 * is between 2 VNODE locks.
1371 			 */
1372 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1373 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1374 				return;
1375 #endif
1376 
1377 			/*
1378 			 * Ok, yell about it.
1379 			 */
1380 			if (((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1381 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0))
1382 				witness_output(
1383 		"lock order reversal: (sleepable after non-sleepable)\n");
1384 			else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0
1385 			    && lock == &Giant.lock_object)
1386 				witness_output(
1387 		"lock order reversal: (Giant after non-sleepable)\n");
1388 			else
1389 				witness_output("lock order reversal:\n");
1390 
1391 			/*
1392 			 * Try to locate an earlier lock with
1393 			 * witness w in our list.
1394 			 */
1395 			do {
1396 				lock2 = &lle->ll_children[i];
1397 				MPASS(lock2->li_lock != NULL);
1398 				if (lock2->li_lock->lo_witness == w)
1399 					break;
1400 				if (i == 0 && lle->ll_next != NULL) {
1401 					lle = lle->ll_next;
1402 					i = lle->ll_count - 1;
1403 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1404 				} else
1405 					i--;
1406 			} while (i >= 0);
1407 			if (i < 0) {
1408 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1409 				    lock1->li_lock, lock1->li_lock->lo_name,
1410 				    w1->w_name, fixup_filename(lock1->li_file),
1411 				    lock1->li_line);
1412 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1413 				    lock->lo_name, w->w_name,
1414 				    fixup_filename(file), line);
1415 			} else {
1416 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1417 				    lock2->li_lock, lock2->li_lock->lo_name,
1418 				    lock2->li_lock->lo_witness->w_name,
1419 				    fixup_filename(lock2->li_file),
1420 				    lock2->li_line);
1421 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1422 				    lock1->li_lock, lock1->li_lock->lo_name,
1423 				    w1->w_name, fixup_filename(lock1->li_file),
1424 				    lock1->li_line);
1425 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1426 				    lock->lo_name, w->w_name,
1427 				    fixup_filename(file), line);
1428 			}
1429 			witness_debugger(1, __func__);
1430 			return;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * If requested, build a new lock order.  However, don't build a new
1436 	 * relationship between a sleepable lock and Giant if it is in the
1437 	 * wrong direction.  The correct lock order is that sleepable locks
1438 	 * always come before Giant.
1439 	 */
1440 	if (flags & LOP_NEWORDER &&
1441 	    !(plock->li_lock == &Giant.lock_object &&
1442 	    (lock->lo_flags & LO_SLEEPABLE) != 0)) {
1443 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1444 		    w->w_name, plock->li_lock->lo_witness->w_name);
1445 		itismychild(plock->li_lock->lo_witness, w);
1446 	}
1447 out:
1448 	mtx_unlock_spin(&w_mtx);
1449 }
1450 
1451 void
1452 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1453 {
1454 	struct lock_list_entry **lock_list, *lle;
1455 	struct lock_instance *instance;
1456 	struct witness *w;
1457 	struct thread *td;
1458 
1459 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1460 	    panicstr != NULL)
1461 		return;
1462 	w = lock->lo_witness;
1463 	td = curthread;
1464 
1465 	/* Determine lock list for this lock. */
1466 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1467 		lock_list = &td->td_sleeplocks;
1468 	else
1469 		lock_list = PCPU_PTR(spinlocks);
1470 
1471 	/* Check to see if we are recursing on a lock we already own. */
1472 	instance = find_instance(*lock_list, lock);
1473 	if (instance != NULL) {
1474 		instance->li_flags++;
1475 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1476 		    td->td_proc->p_pid, lock->lo_name,
1477 		    instance->li_flags & LI_RECURSEMASK);
1478 		instance->li_file = file;
1479 		instance->li_line = line;
1480 		return;
1481 	}
1482 
1483 	/* Update per-witness last file and line acquire. */
1484 	w->w_file = file;
1485 	w->w_line = line;
1486 
1487 	/* Find the next open lock instance in the list and fill it. */
1488 	lle = *lock_list;
1489 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1490 		lle = witness_lock_list_get();
1491 		if (lle == NULL)
1492 			return;
1493 		lle->ll_next = *lock_list;
1494 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1495 		    td->td_proc->p_pid, lle);
1496 		*lock_list = lle;
1497 	}
1498 	instance = &lle->ll_children[lle->ll_count++];
1499 	instance->li_lock = lock;
1500 	instance->li_line = line;
1501 	instance->li_file = file;
1502 	if ((flags & LOP_EXCLUSIVE) != 0)
1503 		instance->li_flags = LI_EXCLUSIVE;
1504 	else
1505 		instance->li_flags = 0;
1506 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1507 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1508 }
1509 
1510 void
1511 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1512 {
1513 	struct lock_instance *instance;
1514 	struct lock_class *class;
1515 
1516 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1517 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1518 		return;
1519 	class = LOCK_CLASS(lock);
1520 	if (witness_watch) {
1521 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1522 			kassert_panic(
1523 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1524 			    class->lc_name, lock->lo_name,
1525 			    fixup_filename(file), line);
1526 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1527 			kassert_panic(
1528 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1529 			    class->lc_name, lock->lo_name,
1530 			    fixup_filename(file), line);
1531 	}
1532 	instance = find_instance(curthread->td_sleeplocks, lock);
1533 	if (instance == NULL) {
1534 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1535 		    class->lc_name, lock->lo_name,
1536 		    fixup_filename(file), line);
1537 		return;
1538 	}
1539 	if (witness_watch) {
1540 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1541 			kassert_panic(
1542 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1543 			    class->lc_name, lock->lo_name,
1544 			    fixup_filename(file), line);
1545 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1546 			kassert_panic(
1547 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1548 			    class->lc_name, lock->lo_name,
1549 			    instance->li_flags & LI_RECURSEMASK,
1550 			    fixup_filename(file), line);
1551 	}
1552 	instance->li_flags |= LI_EXCLUSIVE;
1553 }
1554 
1555 void
1556 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1557     int line)
1558 {
1559 	struct lock_instance *instance;
1560 	struct lock_class *class;
1561 
1562 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1563 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
1564 		return;
1565 	class = LOCK_CLASS(lock);
1566 	if (witness_watch) {
1567 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1568 			kassert_panic(
1569 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1570 			    class->lc_name, lock->lo_name,
1571 			    fixup_filename(file), line);
1572 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1573 			kassert_panic(
1574 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1575 			    class->lc_name, lock->lo_name,
1576 			    fixup_filename(file), line);
1577 	}
1578 	instance = find_instance(curthread->td_sleeplocks, lock);
1579 	if (instance == NULL) {
1580 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1581 		    class->lc_name, lock->lo_name,
1582 		    fixup_filename(file), line);
1583 		return;
1584 	}
1585 	if (witness_watch) {
1586 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1587 			kassert_panic(
1588 			    "downgrade of shared lock (%s) %s @ %s:%d",
1589 			    class->lc_name, lock->lo_name,
1590 			    fixup_filename(file), line);
1591 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1592 			kassert_panic(
1593 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1594 			    class->lc_name, lock->lo_name,
1595 			    instance->li_flags & LI_RECURSEMASK,
1596 			    fixup_filename(file), line);
1597 	}
1598 	instance->li_flags &= ~LI_EXCLUSIVE;
1599 }
1600 
1601 void
1602 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1603 {
1604 	struct lock_list_entry **lock_list, *lle;
1605 	struct lock_instance *instance;
1606 	struct lock_class *class;
1607 	struct thread *td;
1608 	register_t s;
1609 	int i, j;
1610 
1611 	if (witness_cold || lock->lo_witness == NULL || panicstr != NULL)
1612 		return;
1613 	td = curthread;
1614 	class = LOCK_CLASS(lock);
1615 
1616 	/* Find lock instance associated with this lock. */
1617 	if (class->lc_flags & LC_SLEEPLOCK)
1618 		lock_list = &td->td_sleeplocks;
1619 	else
1620 		lock_list = PCPU_PTR(spinlocks);
1621 	lle = *lock_list;
1622 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1623 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1624 			instance = &(*lock_list)->ll_children[i];
1625 			if (instance->li_lock == lock)
1626 				goto found;
1627 		}
1628 
1629 	/*
1630 	 * When disabling WITNESS through witness_watch we could end up in
1631 	 * having registered locks in the td_sleeplocks queue.
1632 	 * We have to make sure we flush these queues, so just search for
1633 	 * eventual register locks and remove them.
1634 	 */
1635 	if (witness_watch > 0) {
1636 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1637 		    lock->lo_name, fixup_filename(file), line);
1638 		return;
1639 	} else {
1640 		return;
1641 	}
1642 found:
1643 
1644 	/* First, check for shared/exclusive mismatches. */
1645 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1646 	    (flags & LOP_EXCLUSIVE) == 0) {
1647 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1648 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1649 		witness_output("while exclusively locked from %s:%d\n",
1650 		    fixup_filename(instance->li_file), instance->li_line);
1651 		kassert_panic("excl->ushare");
1652 	}
1653 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1654 	    (flags & LOP_EXCLUSIVE) != 0) {
1655 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1656 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1657 		witness_output("while share locked from %s:%d\n",
1658 		    fixup_filename(instance->li_file),
1659 		    instance->li_line);
1660 		kassert_panic("share->uexcl");
1661 	}
1662 	/* If we are recursed, unrecurse. */
1663 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1664 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1665 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1666 		    instance->li_flags);
1667 		instance->li_flags--;
1668 		return;
1669 	}
1670 	/* The lock is now being dropped, check for NORELEASE flag */
1671 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1672 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1673 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1674 		kassert_panic("lock marked norelease");
1675 	}
1676 
1677 	/* Otherwise, remove this item from the list. */
1678 	s = intr_disable();
1679 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1680 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1681 	    (*lock_list)->ll_count - 1);
1682 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1683 		(*lock_list)->ll_children[j] =
1684 		    (*lock_list)->ll_children[j + 1];
1685 	(*lock_list)->ll_count--;
1686 	intr_restore(s);
1687 
1688 	/*
1689 	 * In order to reduce contention on w_mtx, we want to keep always an
1690 	 * head object into lists so that frequent allocation from the
1691 	 * free witness pool (and subsequent locking) is avoided.
1692 	 * In order to maintain the current code simple, when the head
1693 	 * object is totally unloaded it means also that we do not have
1694 	 * further objects in the list, so the list ownership needs to be
1695 	 * hand over to another object if the current head needs to be freed.
1696 	 */
1697 	if ((*lock_list)->ll_count == 0) {
1698 		if (*lock_list == lle) {
1699 			if (lle->ll_next == NULL)
1700 				return;
1701 		} else
1702 			lle = *lock_list;
1703 		*lock_list = lle->ll_next;
1704 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1705 		    td->td_proc->p_pid, lle);
1706 		witness_lock_list_free(lle);
1707 	}
1708 }
1709 
1710 void
1711 witness_thread_exit(struct thread *td)
1712 {
1713 	struct lock_list_entry *lle;
1714 	int i, n;
1715 
1716 	lle = td->td_sleeplocks;
1717 	if (lle == NULL || panicstr != NULL)
1718 		return;
1719 	if (lle->ll_count != 0) {
1720 		for (n = 0; lle != NULL; lle = lle->ll_next)
1721 			for (i = lle->ll_count - 1; i >= 0; i--) {
1722 				if (n == 0)
1723 					witness_output(
1724 		    "Thread %p exiting with the following locks held:\n", td);
1725 				n++;
1726 				witness_list_lock(&lle->ll_children[i],
1727 				    witness_output);
1728 
1729 			}
1730 		kassert_panic(
1731 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1732 	}
1733 	witness_lock_list_free(lle);
1734 }
1735 
1736 /*
1737  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1738  * exempt Giant and sleepable locks from the checks as well.  If any
1739  * non-exempt locks are held, then a supplied message is printed to the
1740  * output channel along with a list of the offending locks.  If indicated in the
1741  * flags then a failure results in a panic as well.
1742  */
1743 int
1744 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1745 {
1746 	struct lock_list_entry *lock_list, *lle;
1747 	struct lock_instance *lock1;
1748 	struct thread *td;
1749 	va_list ap;
1750 	int i, n;
1751 
1752 	if (witness_cold || witness_watch < 1 || panicstr != NULL)
1753 		return (0);
1754 	n = 0;
1755 	td = curthread;
1756 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1757 		for (i = lle->ll_count - 1; i >= 0; i--) {
1758 			lock1 = &lle->ll_children[i];
1759 			if (lock1->li_lock == lock)
1760 				continue;
1761 			if (flags & WARN_GIANTOK &&
1762 			    lock1->li_lock == &Giant.lock_object)
1763 				continue;
1764 			if (flags & WARN_SLEEPOK &&
1765 			    (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0)
1766 				continue;
1767 			if (n == 0) {
1768 				va_start(ap, fmt);
1769 				vprintf(fmt, ap);
1770 				va_end(ap);
1771 				printf(" with the following %slocks held:\n",
1772 				    (flags & WARN_SLEEPOK) != 0 ?
1773 				    "non-sleepable " : "");
1774 			}
1775 			n++;
1776 			witness_list_lock(lock1, printf);
1777 		}
1778 
1779 	/*
1780 	 * Pin the thread in order to avoid problems with thread migration.
1781 	 * Once that all verifies are passed about spinlocks ownership,
1782 	 * the thread is in a safe path and it can be unpinned.
1783 	 */
1784 	sched_pin();
1785 	lock_list = PCPU_GET(spinlocks);
1786 	if (lock_list != NULL && lock_list->ll_count != 0) {
1787 		sched_unpin();
1788 
1789 		/*
1790 		 * We should only have one spinlock and as long as
1791 		 * the flags cannot match for this locks class,
1792 		 * check if the first spinlock is the one curthread
1793 		 * should hold.
1794 		 */
1795 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1796 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1797 		    lock1->li_lock == lock && n == 0)
1798 			return (0);
1799 
1800 		va_start(ap, fmt);
1801 		vprintf(fmt, ap);
1802 		va_end(ap);
1803 		printf(" with the following %slocks held:\n",
1804 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1805 		n += witness_list_locks(&lock_list, printf);
1806 	} else
1807 		sched_unpin();
1808 	if (flags & WARN_PANIC && n)
1809 		kassert_panic("%s", __func__);
1810 	else
1811 		witness_debugger(n, __func__);
1812 	return (n);
1813 }
1814 
1815 const char *
1816 witness_file(struct lock_object *lock)
1817 {
1818 	struct witness *w;
1819 
1820 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1821 		return ("?");
1822 	w = lock->lo_witness;
1823 	return (w->w_file);
1824 }
1825 
1826 int
1827 witness_line(struct lock_object *lock)
1828 {
1829 	struct witness *w;
1830 
1831 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1832 		return (0);
1833 	w = lock->lo_witness;
1834 	return (w->w_line);
1835 }
1836 
1837 static struct witness *
1838 enroll(const char *description, struct lock_class *lock_class)
1839 {
1840 	struct witness *w;
1841 
1842 	MPASS(description != NULL);
1843 
1844 	if (witness_watch == -1 || panicstr != NULL)
1845 		return (NULL);
1846 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1847 		if (witness_skipspin)
1848 			return (NULL);
1849 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1850 		kassert_panic("lock class %s is not sleep or spin",
1851 		    lock_class->lc_name);
1852 		return (NULL);
1853 	}
1854 
1855 	mtx_lock_spin(&w_mtx);
1856 	w = witness_hash_get(description);
1857 	if (w)
1858 		goto found;
1859 	if ((w = witness_get()) == NULL)
1860 		return (NULL);
1861 	MPASS(strlen(description) < MAX_W_NAME);
1862 	strcpy(w->w_name, description);
1863 	w->w_class = lock_class;
1864 	w->w_refcount = 1;
1865 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1866 	if (lock_class->lc_flags & LC_SPINLOCK) {
1867 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1868 		w_spin_cnt++;
1869 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1870 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1871 		w_sleep_cnt++;
1872 	}
1873 
1874 	/* Insert new witness into the hash */
1875 	witness_hash_put(w);
1876 	witness_increment_graph_generation();
1877 	mtx_unlock_spin(&w_mtx);
1878 	return (w);
1879 found:
1880 	w->w_refcount++;
1881 	if (w->w_refcount == 1)
1882 		w->w_class = lock_class;
1883 	mtx_unlock_spin(&w_mtx);
1884 	if (lock_class != w->w_class)
1885 		kassert_panic(
1886 		    "lock (%s) %s does not match earlier (%s) lock",
1887 		    description, lock_class->lc_name,
1888 		    w->w_class->lc_name);
1889 	return (w);
1890 }
1891 
1892 static void
1893 depart(struct witness *w)
1894 {
1895 
1896 	MPASS(w->w_refcount == 0);
1897 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1898 		w_sleep_cnt--;
1899 	} else {
1900 		w_spin_cnt--;
1901 	}
1902 	/*
1903 	 * Set file to NULL as it may point into a loadable module.
1904 	 */
1905 	w->w_file = NULL;
1906 	w->w_line = 0;
1907 	witness_increment_graph_generation();
1908 }
1909 
1910 
1911 static void
1912 adopt(struct witness *parent, struct witness *child)
1913 {
1914 	int pi, ci, i, j;
1915 
1916 	if (witness_cold == 0)
1917 		mtx_assert(&w_mtx, MA_OWNED);
1918 
1919 	/* If the relationship is already known, there's no work to be done. */
1920 	if (isitmychild(parent, child))
1921 		return;
1922 
1923 	/* When the structure of the graph changes, bump up the generation. */
1924 	witness_increment_graph_generation();
1925 
1926 	/*
1927 	 * The hard part ... create the direct relationship, then propagate all
1928 	 * indirect relationships.
1929 	 */
1930 	pi = parent->w_index;
1931 	ci = child->w_index;
1932 	WITNESS_INDEX_ASSERT(pi);
1933 	WITNESS_INDEX_ASSERT(ci);
1934 	MPASS(pi != ci);
1935 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1936 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1937 
1938 	/*
1939 	 * If parent was not already an ancestor of child,
1940 	 * then we increment the descendant and ancestor counters.
1941 	 */
1942 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1943 		parent->w_num_descendants++;
1944 		child->w_num_ancestors++;
1945 	}
1946 
1947 	/*
1948 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1949 	 * an ancestor of 'pi' during this loop.
1950 	 */
1951 	for (i = 1; i <= w_max_used_index; i++) {
1952 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1953 		    (i != pi))
1954 			continue;
1955 
1956 		/* Find each descendant of 'i' and mark it as a descendant. */
1957 		for (j = 1; j <= w_max_used_index; j++) {
1958 
1959 			/*
1960 			 * Skip children that are already marked as
1961 			 * descendants of 'i'.
1962 			 */
1963 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1964 				continue;
1965 
1966 			/*
1967 			 * We are only interested in descendants of 'ci'. Note
1968 			 * that 'ci' itself is counted as a descendant of 'ci'.
1969 			 */
1970 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1971 			    (j != ci))
1972 				continue;
1973 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1974 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1975 			w_data[i].w_num_descendants++;
1976 			w_data[j].w_num_ancestors++;
1977 
1978 			/*
1979 			 * Make sure we aren't marking a node as both an
1980 			 * ancestor and descendant. We should have caught
1981 			 * this as a lock order reversal earlier.
1982 			 */
1983 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1984 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1985 				printf("witness rmatrix paradox! [%d][%d]=%d "
1986 				    "both ancestor and descendant\n",
1987 				    i, j, w_rmatrix[i][j]);
1988 				kdb_backtrace();
1989 				printf("Witness disabled.\n");
1990 				witness_watch = -1;
1991 			}
1992 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1993 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1994 				printf("witness rmatrix paradox! [%d][%d]=%d "
1995 				    "both ancestor and descendant\n",
1996 				    j, i, w_rmatrix[j][i]);
1997 				kdb_backtrace();
1998 				printf("Witness disabled.\n");
1999 				witness_watch = -1;
2000 			}
2001 		}
2002 	}
2003 }
2004 
2005 static void
2006 itismychild(struct witness *parent, struct witness *child)
2007 {
2008 	int unlocked;
2009 
2010 	MPASS(child != NULL && parent != NULL);
2011 	if (witness_cold == 0)
2012 		mtx_assert(&w_mtx, MA_OWNED);
2013 
2014 	if (!witness_lock_type_equal(parent, child)) {
2015 		if (witness_cold == 0) {
2016 			unlocked = 1;
2017 			mtx_unlock_spin(&w_mtx);
2018 		} else {
2019 			unlocked = 0;
2020 		}
2021 		kassert_panic(
2022 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2023 		    "the same lock type", __func__, parent->w_name,
2024 		    parent->w_class->lc_name, child->w_name,
2025 		    child->w_class->lc_name);
2026 		if (unlocked)
2027 			mtx_lock_spin(&w_mtx);
2028 	}
2029 	adopt(parent, child);
2030 }
2031 
2032 /*
2033  * Generic code for the isitmy*() functions. The rmask parameter is the
2034  * expected relationship of w1 to w2.
2035  */
2036 static int
2037 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2038 {
2039 	unsigned char r1, r2;
2040 	int i1, i2;
2041 
2042 	i1 = w1->w_index;
2043 	i2 = w2->w_index;
2044 	WITNESS_INDEX_ASSERT(i1);
2045 	WITNESS_INDEX_ASSERT(i2);
2046 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2047 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2048 
2049 	/* The flags on one better be the inverse of the flags on the other */
2050 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2051 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2052 		/* Don't squawk if we're potentially racing with an update. */
2053 		if (!mtx_owned(&w_mtx))
2054 			return (0);
2055 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2056 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2057 		    "w_rmatrix[%d][%d] == %hhx\n",
2058 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2059 		    i2, i1, r2);
2060 		kdb_backtrace();
2061 		printf("Witness disabled.\n");
2062 		witness_watch = -1;
2063 	}
2064 	return (r1 & rmask);
2065 }
2066 
2067 /*
2068  * Checks if @child is a direct child of @parent.
2069  */
2070 static int
2071 isitmychild(struct witness *parent, struct witness *child)
2072 {
2073 
2074 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2075 }
2076 
2077 /*
2078  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2079  */
2080 static int
2081 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2082 {
2083 
2084 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2085 	    __func__));
2086 }
2087 
2088 #ifdef BLESSING
2089 static int
2090 blessed(struct witness *w1, struct witness *w2)
2091 {
2092 	int i;
2093 	struct witness_blessed *b;
2094 
2095 	for (i = 0; i < nitems(blessed_list); i++) {
2096 		b = &blessed_list[i];
2097 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2098 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2099 				return (1);
2100 			continue;
2101 		}
2102 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2103 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2104 				return (1);
2105 	}
2106 	return (0);
2107 }
2108 #endif
2109 
2110 static struct witness *
2111 witness_get(void)
2112 {
2113 	struct witness *w;
2114 	int index;
2115 
2116 	if (witness_cold == 0)
2117 		mtx_assert(&w_mtx, MA_OWNED);
2118 
2119 	if (witness_watch == -1) {
2120 		mtx_unlock_spin(&w_mtx);
2121 		return (NULL);
2122 	}
2123 	if (STAILQ_EMPTY(&w_free)) {
2124 		witness_watch = -1;
2125 		mtx_unlock_spin(&w_mtx);
2126 		printf("WITNESS: unable to allocate a new witness object\n");
2127 		return (NULL);
2128 	}
2129 	w = STAILQ_FIRST(&w_free);
2130 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2131 	w_free_cnt--;
2132 	index = w->w_index;
2133 	MPASS(index > 0 && index == w_max_used_index+1 &&
2134 	    index < witness_count);
2135 	bzero(w, sizeof(*w));
2136 	w->w_index = index;
2137 	if (index > w_max_used_index)
2138 		w_max_used_index = index;
2139 	return (w);
2140 }
2141 
2142 static void
2143 witness_free(struct witness *w)
2144 {
2145 
2146 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2147 	w_free_cnt++;
2148 }
2149 
2150 static struct lock_list_entry *
2151 witness_lock_list_get(void)
2152 {
2153 	struct lock_list_entry *lle;
2154 
2155 	if (witness_watch == -1)
2156 		return (NULL);
2157 	mtx_lock_spin(&w_mtx);
2158 	lle = w_lock_list_free;
2159 	if (lle == NULL) {
2160 		witness_watch = -1;
2161 		mtx_unlock_spin(&w_mtx);
2162 		printf("%s: witness exhausted\n", __func__);
2163 		return (NULL);
2164 	}
2165 	w_lock_list_free = lle->ll_next;
2166 	mtx_unlock_spin(&w_mtx);
2167 	bzero(lle, sizeof(*lle));
2168 	return (lle);
2169 }
2170 
2171 static void
2172 witness_lock_list_free(struct lock_list_entry *lle)
2173 {
2174 
2175 	mtx_lock_spin(&w_mtx);
2176 	lle->ll_next = w_lock_list_free;
2177 	w_lock_list_free = lle;
2178 	mtx_unlock_spin(&w_mtx);
2179 }
2180 
2181 static struct lock_instance *
2182 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2183 {
2184 	struct lock_list_entry *lle;
2185 	struct lock_instance *instance;
2186 	int i;
2187 
2188 	for (lle = list; lle != NULL; lle = lle->ll_next)
2189 		for (i = lle->ll_count - 1; i >= 0; i--) {
2190 			instance = &lle->ll_children[i];
2191 			if (instance->li_lock == lock)
2192 				return (instance);
2193 		}
2194 	return (NULL);
2195 }
2196 
2197 static void
2198 witness_list_lock(struct lock_instance *instance,
2199     int (*prnt)(const char *fmt, ...))
2200 {
2201 	struct lock_object *lock;
2202 
2203 	lock = instance->li_lock;
2204 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2205 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2206 	if (lock->lo_witness->w_name != lock->lo_name)
2207 		prnt(" (%s)", lock->lo_witness->w_name);
2208 	prnt(" r = %d (%p) locked @ %s:%d\n",
2209 	    instance->li_flags & LI_RECURSEMASK, lock,
2210 	    fixup_filename(instance->li_file), instance->li_line);
2211 }
2212 
2213 static int
2214 witness_output(const char *fmt, ...)
2215 {
2216 	va_list ap;
2217 	int ret;
2218 
2219 	va_start(ap, fmt);
2220 	ret = witness_voutput(fmt, ap);
2221 	va_end(ap);
2222 	return (ret);
2223 }
2224 
2225 static int
2226 witness_voutput(const char *fmt, va_list ap)
2227 {
2228 	int ret;
2229 
2230 	ret = 0;
2231 	switch (witness_channel) {
2232 	case WITNESS_CONSOLE:
2233 		ret = vprintf(fmt, ap);
2234 		break;
2235 	case WITNESS_LOG:
2236 		vlog(LOG_NOTICE, fmt, ap);
2237 		break;
2238 	case WITNESS_NONE:
2239 		break;
2240 	}
2241 	return (ret);
2242 }
2243 
2244 #ifdef DDB
2245 static int
2246 witness_thread_has_locks(struct thread *td)
2247 {
2248 
2249 	if (td->td_sleeplocks == NULL)
2250 		return (0);
2251 	return (td->td_sleeplocks->ll_count != 0);
2252 }
2253 
2254 static int
2255 witness_proc_has_locks(struct proc *p)
2256 {
2257 	struct thread *td;
2258 
2259 	FOREACH_THREAD_IN_PROC(p, td) {
2260 		if (witness_thread_has_locks(td))
2261 			return (1);
2262 	}
2263 	return (0);
2264 }
2265 #endif
2266 
2267 int
2268 witness_list_locks(struct lock_list_entry **lock_list,
2269     int (*prnt)(const char *fmt, ...))
2270 {
2271 	struct lock_list_entry *lle;
2272 	int i, nheld;
2273 
2274 	nheld = 0;
2275 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2276 		for (i = lle->ll_count - 1; i >= 0; i--) {
2277 			witness_list_lock(&lle->ll_children[i], prnt);
2278 			nheld++;
2279 		}
2280 	return (nheld);
2281 }
2282 
2283 /*
2284  * This is a bit risky at best.  We call this function when we have timed
2285  * out acquiring a spin lock, and we assume that the other CPU is stuck
2286  * with this lock held.  So, we go groveling around in the other CPU's
2287  * per-cpu data to try to find the lock instance for this spin lock to
2288  * see when it was last acquired.
2289  */
2290 void
2291 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2292     int (*prnt)(const char *fmt, ...))
2293 {
2294 	struct lock_instance *instance;
2295 	struct pcpu *pc;
2296 
2297 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2298 		return;
2299 	pc = pcpu_find(owner->td_oncpu);
2300 	instance = find_instance(pc->pc_spinlocks, lock);
2301 	if (instance != NULL)
2302 		witness_list_lock(instance, prnt);
2303 }
2304 
2305 void
2306 witness_save(struct lock_object *lock, const char **filep, int *linep)
2307 {
2308 	struct lock_list_entry *lock_list;
2309 	struct lock_instance *instance;
2310 	struct lock_class *class;
2311 
2312 	/*
2313 	 * This function is used independently in locking code to deal with
2314 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2315 	 * is gone.
2316 	 */
2317 	if (SCHEDULER_STOPPED())
2318 		return;
2319 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2320 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2321 		return;
2322 	class = LOCK_CLASS(lock);
2323 	if (class->lc_flags & LC_SLEEPLOCK)
2324 		lock_list = curthread->td_sleeplocks;
2325 	else {
2326 		if (witness_skipspin)
2327 			return;
2328 		lock_list = PCPU_GET(spinlocks);
2329 	}
2330 	instance = find_instance(lock_list, lock);
2331 	if (instance == NULL) {
2332 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2333 		    class->lc_name, lock->lo_name);
2334 		return;
2335 	}
2336 	*filep = instance->li_file;
2337 	*linep = instance->li_line;
2338 }
2339 
2340 void
2341 witness_restore(struct lock_object *lock, const char *file, int line)
2342 {
2343 	struct lock_list_entry *lock_list;
2344 	struct lock_instance *instance;
2345 	struct lock_class *class;
2346 
2347 	/*
2348 	 * This function is used independently in locking code to deal with
2349 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2350 	 * is gone.
2351 	 */
2352 	if (SCHEDULER_STOPPED())
2353 		return;
2354 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2355 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2356 		return;
2357 	class = LOCK_CLASS(lock);
2358 	if (class->lc_flags & LC_SLEEPLOCK)
2359 		lock_list = curthread->td_sleeplocks;
2360 	else {
2361 		if (witness_skipspin)
2362 			return;
2363 		lock_list = PCPU_GET(spinlocks);
2364 	}
2365 	instance = find_instance(lock_list, lock);
2366 	if (instance == NULL)
2367 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2368 		    class->lc_name, lock->lo_name);
2369 	lock->lo_witness->w_file = file;
2370 	lock->lo_witness->w_line = line;
2371 	if (instance == NULL)
2372 		return;
2373 	instance->li_file = file;
2374 	instance->li_line = line;
2375 }
2376 
2377 void
2378 witness_assert(const struct lock_object *lock, int flags, const char *file,
2379     int line)
2380 {
2381 #ifdef INVARIANT_SUPPORT
2382 	struct lock_instance *instance;
2383 	struct lock_class *class;
2384 
2385 	if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL)
2386 		return;
2387 	class = LOCK_CLASS(lock);
2388 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2389 		instance = find_instance(curthread->td_sleeplocks, lock);
2390 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2391 		instance = find_instance(PCPU_GET(spinlocks), lock);
2392 	else {
2393 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2394 		    class->lc_name, lock->lo_name);
2395 		return;
2396 	}
2397 	switch (flags) {
2398 	case LA_UNLOCKED:
2399 		if (instance != NULL)
2400 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2401 			    class->lc_name, lock->lo_name,
2402 			    fixup_filename(file), line);
2403 		break;
2404 	case LA_LOCKED:
2405 	case LA_LOCKED | LA_RECURSED:
2406 	case LA_LOCKED | LA_NOTRECURSED:
2407 	case LA_SLOCKED:
2408 	case LA_SLOCKED | LA_RECURSED:
2409 	case LA_SLOCKED | LA_NOTRECURSED:
2410 	case LA_XLOCKED:
2411 	case LA_XLOCKED | LA_RECURSED:
2412 	case LA_XLOCKED | LA_NOTRECURSED:
2413 		if (instance == NULL) {
2414 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2415 			    class->lc_name, lock->lo_name,
2416 			    fixup_filename(file), line);
2417 			break;
2418 		}
2419 		if ((flags & LA_XLOCKED) != 0 &&
2420 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2421 			kassert_panic(
2422 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2423 			    class->lc_name, lock->lo_name,
2424 			    fixup_filename(file), line);
2425 		if ((flags & LA_SLOCKED) != 0 &&
2426 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2427 			kassert_panic(
2428 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2429 			    class->lc_name, lock->lo_name,
2430 			    fixup_filename(file), line);
2431 		if ((flags & LA_RECURSED) != 0 &&
2432 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2433 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2434 			    class->lc_name, lock->lo_name,
2435 			    fixup_filename(file), line);
2436 		if ((flags & LA_NOTRECURSED) != 0 &&
2437 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2438 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2439 			    class->lc_name, lock->lo_name,
2440 			    fixup_filename(file), line);
2441 		break;
2442 	default:
2443 		kassert_panic("Invalid lock assertion at %s:%d.",
2444 		    fixup_filename(file), line);
2445 
2446 	}
2447 #endif	/* INVARIANT_SUPPORT */
2448 }
2449 
2450 static void
2451 witness_setflag(struct lock_object *lock, int flag, int set)
2452 {
2453 	struct lock_list_entry *lock_list;
2454 	struct lock_instance *instance;
2455 	struct lock_class *class;
2456 
2457 	if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL)
2458 		return;
2459 	class = LOCK_CLASS(lock);
2460 	if (class->lc_flags & LC_SLEEPLOCK)
2461 		lock_list = curthread->td_sleeplocks;
2462 	else {
2463 		if (witness_skipspin)
2464 			return;
2465 		lock_list = PCPU_GET(spinlocks);
2466 	}
2467 	instance = find_instance(lock_list, lock);
2468 	if (instance == NULL) {
2469 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2470 		    class->lc_name, lock->lo_name);
2471 		return;
2472 	}
2473 
2474 	if (set)
2475 		instance->li_flags |= flag;
2476 	else
2477 		instance->li_flags &= ~flag;
2478 }
2479 
2480 void
2481 witness_norelease(struct lock_object *lock)
2482 {
2483 
2484 	witness_setflag(lock, LI_NORELEASE, 1);
2485 }
2486 
2487 void
2488 witness_releaseok(struct lock_object *lock)
2489 {
2490 
2491 	witness_setflag(lock, LI_NORELEASE, 0);
2492 }
2493 
2494 #ifdef DDB
2495 static void
2496 witness_ddb_list(struct thread *td)
2497 {
2498 
2499 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2500 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2501 
2502 	if (witness_watch < 1)
2503 		return;
2504 
2505 	witness_list_locks(&td->td_sleeplocks, db_printf);
2506 
2507 	/*
2508 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2509 	 * if td is currently executing on some other CPU and holds spin locks
2510 	 * as we won't display those locks.  If we had a MI way of getting
2511 	 * the per-cpu data for a given cpu then we could use
2512 	 * td->td_oncpu to get the list of spinlocks for this thread
2513 	 * and "fix" this.
2514 	 *
2515 	 * That still wouldn't really fix this unless we locked the scheduler
2516 	 * lock or stopped the other CPU to make sure it wasn't changing the
2517 	 * list out from under us.  It is probably best to just not try to
2518 	 * handle threads on other CPU's for now.
2519 	 */
2520 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2521 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2522 }
2523 
2524 DB_SHOW_COMMAND(locks, db_witness_list)
2525 {
2526 	struct thread *td;
2527 
2528 	if (have_addr)
2529 		td = db_lookup_thread(addr, true);
2530 	else
2531 		td = kdb_thread;
2532 	witness_ddb_list(td);
2533 }
2534 
2535 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2536 {
2537 	struct thread *td;
2538 	struct proc *p;
2539 
2540 	/*
2541 	 * It would be nice to list only threads and processes that actually
2542 	 * held sleep locks, but that information is currently not exported
2543 	 * by WITNESS.
2544 	 */
2545 	FOREACH_PROC_IN_SYSTEM(p) {
2546 		if (!witness_proc_has_locks(p))
2547 			continue;
2548 		FOREACH_THREAD_IN_PROC(p, td) {
2549 			if (!witness_thread_has_locks(td))
2550 				continue;
2551 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2552 			    p->p_comm, td, td->td_tid);
2553 			witness_ddb_list(td);
2554 			if (db_pager_quit)
2555 				return;
2556 		}
2557 	}
2558 }
2559 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2560 
2561 DB_SHOW_COMMAND(witness, db_witness_display)
2562 {
2563 
2564 	witness_ddb_display(db_printf);
2565 }
2566 #endif
2567 
2568 static void
2569 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2570 {
2571 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2572 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2573 	int generation, i, j;
2574 
2575 	tmp_data1 = NULL;
2576 	tmp_data2 = NULL;
2577 	tmp_w1 = NULL;
2578 	tmp_w2 = NULL;
2579 
2580 	/* Allocate and init temporary storage space. */
2581 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2582 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2583 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2584 	    M_WAITOK | M_ZERO);
2585 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2586 	    M_WAITOK | M_ZERO);
2587 	stack_zero(&tmp_data1->wlod_stack);
2588 	stack_zero(&tmp_data2->wlod_stack);
2589 
2590 restart:
2591 	mtx_lock_spin(&w_mtx);
2592 	generation = w_generation;
2593 	mtx_unlock_spin(&w_mtx);
2594 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2595 	    w_lohash.wloh_count);
2596 	for (i = 1; i < w_max_used_index; i++) {
2597 		mtx_lock_spin(&w_mtx);
2598 		if (generation != w_generation) {
2599 			mtx_unlock_spin(&w_mtx);
2600 
2601 			/* The graph has changed, try again. */
2602 			*oldidx = 0;
2603 			sbuf_clear(sb);
2604 			goto restart;
2605 		}
2606 
2607 		w1 = &w_data[i];
2608 		if (w1->w_reversed == 0) {
2609 			mtx_unlock_spin(&w_mtx);
2610 			continue;
2611 		}
2612 
2613 		/* Copy w1 locally so we can release the spin lock. */
2614 		*tmp_w1 = *w1;
2615 		mtx_unlock_spin(&w_mtx);
2616 
2617 		if (tmp_w1->w_reversed == 0)
2618 			continue;
2619 		for (j = 1; j < w_max_used_index; j++) {
2620 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2621 				continue;
2622 
2623 			mtx_lock_spin(&w_mtx);
2624 			if (generation != w_generation) {
2625 				mtx_unlock_spin(&w_mtx);
2626 
2627 				/* The graph has changed, try again. */
2628 				*oldidx = 0;
2629 				sbuf_clear(sb);
2630 				goto restart;
2631 			}
2632 
2633 			w2 = &w_data[j];
2634 			data1 = witness_lock_order_get(w1, w2);
2635 			data2 = witness_lock_order_get(w2, w1);
2636 
2637 			/*
2638 			 * Copy information locally so we can release the
2639 			 * spin lock.
2640 			 */
2641 			*tmp_w2 = *w2;
2642 
2643 			if (data1) {
2644 				stack_zero(&tmp_data1->wlod_stack);
2645 				stack_copy(&data1->wlod_stack,
2646 				    &tmp_data1->wlod_stack);
2647 			}
2648 			if (data2 && data2 != data1) {
2649 				stack_zero(&tmp_data2->wlod_stack);
2650 				stack_copy(&data2->wlod_stack,
2651 				    &tmp_data2->wlod_stack);
2652 			}
2653 			mtx_unlock_spin(&w_mtx);
2654 
2655 			sbuf_printf(sb,
2656 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2657 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2658 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2659 			if (data1) {
2660 				sbuf_printf(sb,
2661 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2662 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2663 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2664 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2665 				sbuf_printf(sb, "\n");
2666 			}
2667 			if (data2 && data2 != data1) {
2668 				sbuf_printf(sb,
2669 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2670 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2671 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2672 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2673 				sbuf_printf(sb, "\n");
2674 			}
2675 		}
2676 	}
2677 	mtx_lock_spin(&w_mtx);
2678 	if (generation != w_generation) {
2679 		mtx_unlock_spin(&w_mtx);
2680 
2681 		/*
2682 		 * The graph changed while we were printing stack data,
2683 		 * try again.
2684 		 */
2685 		*oldidx = 0;
2686 		sbuf_clear(sb);
2687 		goto restart;
2688 	}
2689 	mtx_unlock_spin(&w_mtx);
2690 
2691 	/* Free temporary storage space. */
2692 	free(tmp_data1, M_TEMP);
2693 	free(tmp_data2, M_TEMP);
2694 	free(tmp_w1, M_TEMP);
2695 	free(tmp_w2, M_TEMP);
2696 }
2697 
2698 static int
2699 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2700 {
2701 	struct sbuf *sb;
2702 	int error;
2703 
2704 	if (witness_watch < 1) {
2705 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2706 		return (error);
2707 	}
2708 	if (witness_cold) {
2709 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2710 		return (error);
2711 	}
2712 	error = 0;
2713 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2714 	if (sb == NULL)
2715 		return (ENOMEM);
2716 
2717 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2718 
2719 	sbuf_finish(sb);
2720 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2721 	sbuf_delete(sb);
2722 
2723 	return (error);
2724 }
2725 
2726 #ifdef DDB
2727 static int
2728 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2729 {
2730 
2731 	return (db_printf("%.*s", len, data));
2732 }
2733 
2734 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2735 {
2736 	struct sbuf sb;
2737 	char buffer[128];
2738 	size_t dummy;
2739 
2740 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2741 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2742 	sbuf_print_witness_badstacks(&sb, &dummy);
2743 	sbuf_finish(&sb);
2744 }
2745 #endif
2746 
2747 static int
2748 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2749 {
2750 	static const struct {
2751 		enum witness_channel channel;
2752 		const char *name;
2753 	} channels[] = {
2754 		{ WITNESS_CONSOLE, "console" },
2755 		{ WITNESS_LOG, "log" },
2756 		{ WITNESS_NONE, "none" },
2757 	};
2758 	char buf[16];
2759 	u_int i;
2760 	int error;
2761 
2762 	buf[0] = '\0';
2763 	for (i = 0; i < nitems(channels); i++)
2764 		if (witness_channel == channels[i].channel) {
2765 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2766 			break;
2767 		}
2768 
2769 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2770 	if (error != 0 || req->newptr == NULL)
2771 		return (error);
2772 
2773 	error = EINVAL;
2774 	for (i = 0; i < nitems(channels); i++)
2775 		if (strcmp(channels[i].name, buf) == 0) {
2776 			witness_channel = channels[i].channel;
2777 			error = 0;
2778 			break;
2779 		}
2780 	return (error);
2781 }
2782 
2783 static int
2784 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2785 {
2786 	struct witness *w;
2787 	struct sbuf *sb;
2788 	int error;
2789 
2790 #ifdef __i386__
2791 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2792 	return (error);
2793 #endif
2794 
2795 	if (witness_watch < 1) {
2796 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2797 		return (error);
2798 	}
2799 	if (witness_cold) {
2800 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2801 		return (error);
2802 	}
2803 	error = 0;
2804 
2805 	error = sysctl_wire_old_buffer(req, 0);
2806 	if (error != 0)
2807 		return (error);
2808 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2809 	if (sb == NULL)
2810 		return (ENOMEM);
2811 	sbuf_printf(sb, "\n");
2812 
2813 	mtx_lock_spin(&w_mtx);
2814 	STAILQ_FOREACH(w, &w_all, w_list)
2815 		w->w_displayed = 0;
2816 	STAILQ_FOREACH(w, &w_all, w_list)
2817 		witness_add_fullgraph(sb, w);
2818 	mtx_unlock_spin(&w_mtx);
2819 
2820 	/*
2821 	 * Close the sbuf and return to userland.
2822 	 */
2823 	error = sbuf_finish(sb);
2824 	sbuf_delete(sb);
2825 
2826 	return (error);
2827 }
2828 
2829 static int
2830 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2831 {
2832 	int error, value;
2833 
2834 	value = witness_watch;
2835 	error = sysctl_handle_int(oidp, &value, 0, req);
2836 	if (error != 0 || req->newptr == NULL)
2837 		return (error);
2838 	if (value > 1 || value < -1 ||
2839 	    (witness_watch == -1 && value != witness_watch))
2840 		return (EINVAL);
2841 	witness_watch = value;
2842 	return (0);
2843 }
2844 
2845 static void
2846 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2847 {
2848 	int i;
2849 
2850 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2851 		return;
2852 	w->w_displayed = 1;
2853 
2854 	WITNESS_INDEX_ASSERT(w->w_index);
2855 	for (i = 1; i <= w_max_used_index; i++) {
2856 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2857 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2858 			    w_data[i].w_name);
2859 			witness_add_fullgraph(sb, &w_data[i]);
2860 		}
2861 	}
2862 }
2863 
2864 /*
2865  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2866  * interprets the key as a string and reads until the null
2867  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2868  * hash value computed from the key.
2869  */
2870 static uint32_t
2871 witness_hash_djb2(const uint8_t *key, uint32_t size)
2872 {
2873 	unsigned int hash = 5381;
2874 	int i;
2875 
2876 	/* hash = hash * 33 + key[i] */
2877 	if (size)
2878 		for (i = 0; i < size; i++)
2879 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2880 	else
2881 		for (i = 0; key[i] != 0; i++)
2882 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2883 
2884 	return (hash);
2885 }
2886 
2887 
2888 /*
2889  * Initializes the two witness hash tables. Called exactly once from
2890  * witness_initialize().
2891  */
2892 static void
2893 witness_init_hash_tables(void)
2894 {
2895 	int i;
2896 
2897 	MPASS(witness_cold);
2898 
2899 	/* Initialize the hash tables. */
2900 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2901 		w_hash.wh_array[i] = NULL;
2902 
2903 	w_hash.wh_size = WITNESS_HASH_SIZE;
2904 	w_hash.wh_count = 0;
2905 
2906 	/* Initialize the lock order data hash. */
2907 	w_lofree = NULL;
2908 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2909 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2910 		w_lodata[i].wlod_next = w_lofree;
2911 		w_lofree = &w_lodata[i];
2912 	}
2913 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2914 	w_lohash.wloh_count = 0;
2915 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2916 		w_lohash.wloh_array[i] = NULL;
2917 }
2918 
2919 static struct witness *
2920 witness_hash_get(const char *key)
2921 {
2922 	struct witness *w;
2923 	uint32_t hash;
2924 
2925 	MPASS(key != NULL);
2926 	if (witness_cold == 0)
2927 		mtx_assert(&w_mtx, MA_OWNED);
2928 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2929 	w = w_hash.wh_array[hash];
2930 	while (w != NULL) {
2931 		if (strcmp(w->w_name, key) == 0)
2932 			goto out;
2933 		w = w->w_hash_next;
2934 	}
2935 
2936 out:
2937 	return (w);
2938 }
2939 
2940 static void
2941 witness_hash_put(struct witness *w)
2942 {
2943 	uint32_t hash;
2944 
2945 	MPASS(w != NULL);
2946 	MPASS(w->w_name != NULL);
2947 	if (witness_cold == 0)
2948 		mtx_assert(&w_mtx, MA_OWNED);
2949 	KASSERT(witness_hash_get(w->w_name) == NULL,
2950 	    ("%s: trying to add a hash entry that already exists!", __func__));
2951 	KASSERT(w->w_hash_next == NULL,
2952 	    ("%s: w->w_hash_next != NULL", __func__));
2953 
2954 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2955 	w->w_hash_next = w_hash.wh_array[hash];
2956 	w_hash.wh_array[hash] = w;
2957 	w_hash.wh_count++;
2958 }
2959 
2960 
2961 static struct witness_lock_order_data *
2962 witness_lock_order_get(struct witness *parent, struct witness *child)
2963 {
2964 	struct witness_lock_order_data *data = NULL;
2965 	struct witness_lock_order_key key;
2966 	unsigned int hash;
2967 
2968 	MPASS(parent != NULL && child != NULL);
2969 	key.from = parent->w_index;
2970 	key.to = child->w_index;
2971 	WITNESS_INDEX_ASSERT(key.from);
2972 	WITNESS_INDEX_ASSERT(key.to);
2973 	if ((w_rmatrix[parent->w_index][child->w_index]
2974 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2975 		goto out;
2976 
2977 	hash = witness_hash_djb2((const char*)&key,
2978 	    sizeof(key)) % w_lohash.wloh_size;
2979 	data = w_lohash.wloh_array[hash];
2980 	while (data != NULL) {
2981 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2982 			break;
2983 		data = data->wlod_next;
2984 	}
2985 
2986 out:
2987 	return (data);
2988 }
2989 
2990 /*
2991  * Verify that parent and child have a known relationship, are not the same,
2992  * and child is actually a child of parent.  This is done without w_mtx
2993  * to avoid contention in the common case.
2994  */
2995 static int
2996 witness_lock_order_check(struct witness *parent, struct witness *child)
2997 {
2998 
2999 	if (parent != child &&
3000 	    w_rmatrix[parent->w_index][child->w_index]
3001 	    & WITNESS_LOCK_ORDER_KNOWN &&
3002 	    isitmychild(parent, child))
3003 		return (1);
3004 
3005 	return (0);
3006 }
3007 
3008 static int
3009 witness_lock_order_add(struct witness *parent, struct witness *child)
3010 {
3011 	struct witness_lock_order_data *data = NULL;
3012 	struct witness_lock_order_key key;
3013 	unsigned int hash;
3014 
3015 	MPASS(parent != NULL && child != NULL);
3016 	key.from = parent->w_index;
3017 	key.to = child->w_index;
3018 	WITNESS_INDEX_ASSERT(key.from);
3019 	WITNESS_INDEX_ASSERT(key.to);
3020 	if (w_rmatrix[parent->w_index][child->w_index]
3021 	    & WITNESS_LOCK_ORDER_KNOWN)
3022 		return (1);
3023 
3024 	hash = witness_hash_djb2((const char*)&key,
3025 	    sizeof(key)) % w_lohash.wloh_size;
3026 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3027 	data = w_lofree;
3028 	if (data == NULL)
3029 		return (0);
3030 	w_lofree = data->wlod_next;
3031 	data->wlod_next = w_lohash.wloh_array[hash];
3032 	data->wlod_key = key;
3033 	w_lohash.wloh_array[hash] = data;
3034 	w_lohash.wloh_count++;
3035 	stack_zero(&data->wlod_stack);
3036 	stack_save(&data->wlod_stack);
3037 	return (1);
3038 }
3039 
3040 /* Call this whenever the structure of the witness graph changes. */
3041 static void
3042 witness_increment_graph_generation(void)
3043 {
3044 
3045 	if (witness_cold == 0)
3046 		mtx_assert(&w_mtx, MA_OWNED);
3047 	w_generation++;
3048 }
3049 
3050 static int
3051 witness_output_drain(void *arg __unused, const char *data, int len)
3052 {
3053 
3054 	witness_output("%.*s", len, data);
3055 	return (len);
3056 }
3057 
3058 static void
3059 witness_debugger(int cond, const char *msg)
3060 {
3061 	char buf[32];
3062 	struct sbuf sb;
3063 	struct stack st;
3064 
3065 	if (!cond)
3066 		return;
3067 
3068 	if (witness_trace) {
3069 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3070 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3071 
3072 		stack_zero(&st);
3073 		stack_save(&st);
3074 		witness_output("stack backtrace:\n");
3075 		stack_sbuf_print_ddb(&sb, &st);
3076 
3077 		sbuf_finish(&sb);
3078 	}
3079 
3080 #ifdef KDB
3081 	if (witness_kdb)
3082 		kdb_enter(KDB_WHY_WITNESS, msg);
3083 #endif
3084 }
3085