1 /*- 2 * Copyright (c) 2008 Isilon Systems, Inc. 3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 4 * Copyright (c) 1998 Berkeley Software Design, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Berkeley Software Design Inc's name may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 33 */ 34 35 /* 36 * Implementation of the `witness' lock verifier. Originally implemented for 37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 38 * classes in FreeBSD. 39 */ 40 41 /* 42 * Main Entry: witness 43 * Pronunciation: 'wit-n&s 44 * Function: noun 45 * Etymology: Middle English witnesse, from Old English witnes knowledge, 46 * testimony, witness, from 2wit 47 * Date: before 12th century 48 * 1 : attestation of a fact or event : TESTIMONY 49 * 2 : one that gives evidence; specifically : one who testifies in 50 * a cause or before a judicial tribunal 51 * 3 : one asked to be present at a transaction so as to be able to 52 * testify to its having taken place 53 * 4 : one who has personal knowledge of something 54 * 5 a : something serving as evidence or proof : SIGN 55 * b : public affirmation by word or example of usually 56 * religious faith or conviction <the heroic witness to divine 57 * life -- Pilot> 58 * 6 capitalized : a member of the Jehovah's Witnesses 59 */ 60 61 /* 62 * Special rules concerning Giant and lock orders: 63 * 64 * 1) Giant must be acquired before any other mutexes. Stated another way, 65 * no other mutex may be held when Giant is acquired. 66 * 67 * 2) Giant must be released when blocking on a sleepable lock. 68 * 69 * This rule is less obvious, but is a result of Giant providing the same 70 * semantics as spl(). Basically, when a thread sleeps, it must release 71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 72 * 2). 73 * 74 * 3) Giant may be acquired before or after sleepable locks. 75 * 76 * This rule is also not quite as obvious. Giant may be acquired after 77 * a sleepable lock because it is a non-sleepable lock and non-sleepable 78 * locks may always be acquired while holding a sleepable lock. The second 79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 83 * execute. Thus, acquiring Giant both before and after a sleepable lock 84 * will not result in a lock order reversal. 85 */ 86 87 #include <sys/cdefs.h> 88 __FBSDID("$FreeBSD$"); 89 90 #include "opt_ddb.h" 91 #include "opt_hwpmc_hooks.h" 92 #include "opt_stack.h" 93 #include "opt_witness.h" 94 95 #include <sys/param.h> 96 #include <sys/bus.h> 97 #include <sys/kdb.h> 98 #include <sys/kernel.h> 99 #include <sys/ktr.h> 100 #include <sys/lock.h> 101 #include <sys/malloc.h> 102 #include <sys/mutex.h> 103 #include <sys/priv.h> 104 #include <sys/proc.h> 105 #include <sys/sbuf.h> 106 #include <sys/sched.h> 107 #include <sys/stack.h> 108 #include <sys/sysctl.h> 109 #include <sys/systm.h> 110 111 #ifdef DDB 112 #include <ddb/ddb.h> 113 #endif 114 115 #include <machine/stdarg.h> 116 117 #if !defined(DDB) && !defined(STACK) 118 #error "DDB or STACK options are required for WITNESS" 119 #endif 120 121 /* Note that these traces do not work with KTR_ALQ. */ 122 #if 0 123 #define KTR_WITNESS KTR_SUBSYS 124 #else 125 #define KTR_WITNESS 0 126 #endif 127 128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 130 131 /* Define this to check for blessed mutexes */ 132 #undef BLESSING 133 134 #define WITNESS_COUNT 1024 135 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 136 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 137 #define WITNESS_PENDLIST 512 138 139 /* Allocate 256 KB of stack data space */ 140 #define WITNESS_LO_DATA_COUNT 2048 141 142 /* Prime, gives load factor of ~2 at full load */ 143 #define WITNESS_LO_HASH_SIZE 1021 144 145 /* 146 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 147 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 148 * probably be safe for the most part, but it's still a SWAG. 149 */ 150 #define LOCK_NCHILDREN 5 151 #define LOCK_CHILDCOUNT 2048 152 153 #define MAX_W_NAME 64 154 155 #define BADSTACK_SBUF_SIZE (256 * WITNESS_COUNT) 156 #define CYCLEGRAPH_SBUF_SIZE 8192 157 #define FULLGRAPH_SBUF_SIZE 32768 158 159 /* 160 * These flags go in the witness relationship matrix and describe the 161 * relationship between any two struct witness objects. 162 */ 163 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 164 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 165 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 166 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 167 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 168 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 169 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 170 #define WITNESS_RELATED_MASK \ 171 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 172 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 173 * observed. */ 174 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 175 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 176 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 177 178 /* Descendant to ancestor flags */ 179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 180 181 /* Ancestor to descendant flags */ 182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 183 184 #define WITNESS_INDEX_ASSERT(i) \ 185 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT) 186 187 MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 188 189 /* 190 * Lock instances. A lock instance is the data associated with a lock while 191 * it is held by witness. For example, a lock instance will hold the 192 * recursion count of a lock. Lock instances are held in lists. Spin locks 193 * are held in a per-cpu list while sleep locks are held in per-thread list. 194 */ 195 struct lock_instance { 196 struct lock_object *li_lock; 197 const char *li_file; 198 int li_line; 199 u_int li_flags; 200 }; 201 202 /* 203 * A simple list type used to build the list of locks held by a thread 204 * or CPU. We can't simply embed the list in struct lock_object since a 205 * lock may be held by more than one thread if it is a shared lock. Locks 206 * are added to the head of the list, so we fill up each list entry from 207 * "the back" logically. To ease some of the arithmetic, we actually fill 208 * in each list entry the normal way (children[0] then children[1], etc.) but 209 * when we traverse the list we read children[count-1] as the first entry 210 * down to children[0] as the final entry. 211 */ 212 struct lock_list_entry { 213 struct lock_list_entry *ll_next; 214 struct lock_instance ll_children[LOCK_NCHILDREN]; 215 u_int ll_count; 216 }; 217 218 /* 219 * The main witness structure. One of these per named lock type in the system 220 * (for example, "vnode interlock"). 221 */ 222 struct witness { 223 char w_name[MAX_W_NAME]; 224 uint32_t w_index; /* Index in the relationship matrix */ 225 struct lock_class *w_class; 226 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 227 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 228 struct witness *w_hash_next; /* Linked list in hash buckets. */ 229 const char *w_file; /* File where last acquired */ 230 uint32_t w_line; /* Line where last acquired */ 231 uint32_t w_refcount; 232 uint16_t w_num_ancestors; /* direct/indirect 233 * ancestor count */ 234 uint16_t w_num_descendants; /* direct/indirect 235 * descendant count */ 236 int16_t w_ddb_level; 237 int w_displayed:1; 238 int w_reversed:1; 239 }; 240 241 STAILQ_HEAD(witness_list, witness); 242 243 /* 244 * The witness hash table. Keys are witness names (const char *), elements are 245 * witness objects (struct witness *). 246 */ 247 struct witness_hash { 248 struct witness *wh_array[WITNESS_HASH_SIZE]; 249 uint32_t wh_size; 250 uint32_t wh_count; 251 }; 252 253 /* 254 * Key type for the lock order data hash table. 255 */ 256 struct witness_lock_order_key { 257 uint16_t from; 258 uint16_t to; 259 }; 260 261 struct witness_lock_order_data { 262 struct stack wlod_stack; 263 struct witness_lock_order_key wlod_key; 264 struct witness_lock_order_data *wlod_next; 265 }; 266 267 /* 268 * The witness lock order data hash table. Keys are witness index tuples 269 * (struct witness_lock_order_key), elements are lock order data objects 270 * (struct witness_lock_order_data). 271 */ 272 struct witness_lock_order_hash { 273 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 274 u_int wloh_size; 275 u_int wloh_count; 276 }; 277 278 #ifdef BLESSING 279 struct witness_blessed { 280 const char *b_lock1; 281 const char *b_lock2; 282 }; 283 #endif 284 285 struct witness_pendhelp { 286 const char *wh_type; 287 struct lock_object *wh_lock; 288 }; 289 290 struct witness_order_list_entry { 291 const char *w_name; 292 struct lock_class *w_class; 293 }; 294 295 /* 296 * Returns 0 if one of the locks is a spin lock and the other is not. 297 * Returns 1 otherwise. 298 */ 299 static __inline int 300 witness_lock_type_equal(struct witness *w1, struct witness *w2) 301 { 302 303 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 304 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 305 } 306 307 static __inline int 308 witness_lock_order_key_empty(const struct witness_lock_order_key *key) 309 { 310 311 return (key->from == 0 && key->to == 0); 312 } 313 314 static __inline int 315 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 316 const struct witness_lock_order_key *b) 317 { 318 319 return (a->from == b->from && a->to == b->to); 320 } 321 322 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 323 const char *fname); 324 #ifdef KDB 325 static void _witness_debugger(int cond, const char *msg); 326 #endif 327 static void adopt(struct witness *parent, struct witness *child); 328 #ifdef BLESSING 329 static int blessed(struct witness *, struct witness *); 330 #endif 331 static void depart(struct witness *w); 332 static struct witness *enroll(const char *description, 333 struct lock_class *lock_class); 334 static struct lock_instance *find_instance(struct lock_list_entry *list, 335 struct lock_object *lock); 336 static int isitmychild(struct witness *parent, struct witness *child); 337 static int isitmydescendant(struct witness *parent, struct witness *child); 338 static void itismychild(struct witness *parent, struct witness *child); 339 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 340 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 341 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 342 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 343 #ifdef DDB 344 static void witness_ddb_compute_levels(void); 345 static void witness_ddb_display(void(*)(const char *fmt, ...)); 346 static void witness_ddb_display_descendants(void(*)(const char *fmt, ...), 347 struct witness *, int indent); 348 static void witness_ddb_display_list(void(*prnt)(const char *fmt, ...), 349 struct witness_list *list); 350 static void witness_ddb_level_descendants(struct witness *parent, int l); 351 static void witness_ddb_list(struct thread *td); 352 #endif 353 static void witness_free(struct witness *m); 354 static struct witness *witness_get(void); 355 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 356 static struct witness *witness_hash_get(const char *key); 357 static void witness_hash_put(struct witness *w); 358 static void witness_init_hash_tables(void); 359 static void witness_increment_graph_generation(void); 360 static void witness_lock_list_free(struct lock_list_entry *lle); 361 static struct lock_list_entry *witness_lock_list_get(void); 362 static int witness_lock_order_add(struct witness *parent, 363 struct witness *child); 364 static int witness_lock_order_check(struct witness *parent, 365 struct witness *child); 366 static struct witness_lock_order_data *witness_lock_order_get( 367 struct witness *parent, 368 struct witness *child); 369 static void witness_list_lock(struct lock_instance *instance); 370 371 #ifdef KDB 372 #define witness_debugger(c) _witness_debugger(c, __func__) 373 #else 374 #define witness_debugger(c) 375 #endif 376 377 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking"); 378 379 /* 380 * If set to 0, lock order checking is disabled. If set to -1, 381 * witness is completely disabled. Otherwise witness performs full 382 * lock order checking for all locks. At runtime, lock order checking 383 * may be toggled. However, witness cannot be reenabled once it is 384 * completely disabled. 385 */ 386 static int witness_watch = 1; 387 TUNABLE_INT("debug.witness.watch", &witness_watch); 388 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, 389 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 390 391 #ifdef KDB 392 /* 393 * When KDB is enabled and witness_kdb is 1, it will cause the system 394 * to drop into kdebug() when: 395 * - a lock hierarchy violation occurs 396 * - locks are held when going to sleep. 397 */ 398 #ifdef WITNESS_KDB 399 int witness_kdb = 1; 400 #else 401 int witness_kdb = 0; 402 #endif 403 TUNABLE_INT("debug.witness.kdb", &witness_kdb); 404 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, ""); 405 406 /* 407 * When KDB is enabled and witness_trace is 1, it will cause the system 408 * to print a stack trace: 409 * - a lock hierarchy violation occurs 410 * - locks are held when going to sleep. 411 */ 412 int witness_trace = 1; 413 TUNABLE_INT("debug.witness.trace", &witness_trace); 414 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, ""); 415 #endif /* KDB */ 416 417 #ifdef WITNESS_SKIPSPIN 418 int witness_skipspin = 1; 419 #else 420 int witness_skipspin = 0; 421 #endif 422 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin); 423 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 424 0, ""); 425 426 /* 427 * Call this to print out the relations between locks. 428 */ 429 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 430 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 431 432 /* 433 * Call this to print out the witness faulty stacks. 434 */ 435 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 436 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 437 438 static struct mtx w_mtx; 439 440 /* w_list */ 441 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 442 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 443 444 /* w_typelist */ 445 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 446 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 447 448 /* lock list */ 449 static struct lock_list_entry *w_lock_list_free = NULL; 450 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 451 static u_int pending_cnt; 452 453 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 454 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 455 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 456 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 457 ""); 458 459 static struct witness *w_data; 460 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1]; 461 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 462 static struct witness_hash w_hash; /* The witness hash table. */ 463 464 /* The lock order data hash */ 465 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 466 static struct witness_lock_order_data *w_lofree = NULL; 467 static struct witness_lock_order_hash w_lohash; 468 static int w_max_used_index = 0; 469 static unsigned int w_generation = 0; 470 static const char *w_notrunning = "Witness not running\n"; 471 static const char *w_stillcold = "Witness is still cold\n"; 472 473 474 static struct witness_order_list_entry order_lists[] = { 475 /* 476 * sx locks 477 */ 478 { "proctree", &lock_class_sx }, 479 { "allproc", &lock_class_sx }, 480 { "allprison", &lock_class_sx }, 481 { NULL, NULL }, 482 /* 483 * Various mutexes 484 */ 485 { "Giant", &lock_class_mtx_sleep }, 486 { "pipe mutex", &lock_class_mtx_sleep }, 487 { "sigio lock", &lock_class_mtx_sleep }, 488 { "process group", &lock_class_mtx_sleep }, 489 { "process lock", &lock_class_mtx_sleep }, 490 { "session", &lock_class_mtx_sleep }, 491 { "uidinfo hash", &lock_class_rw }, 492 #ifdef HWPMC_HOOKS 493 { "pmc-sleep", &lock_class_mtx_sleep }, 494 #endif 495 { NULL, NULL }, 496 /* 497 * Sockets 498 */ 499 { "accept", &lock_class_mtx_sleep }, 500 { "so_snd", &lock_class_mtx_sleep }, 501 { "so_rcv", &lock_class_mtx_sleep }, 502 { "sellck", &lock_class_mtx_sleep }, 503 { NULL, NULL }, 504 /* 505 * Routing 506 */ 507 { "so_rcv", &lock_class_mtx_sleep }, 508 { "radix node head", &lock_class_rw }, 509 { "rtentry", &lock_class_mtx_sleep }, 510 { "ifaddr", &lock_class_mtx_sleep }, 511 { NULL, NULL }, 512 /* 513 * Multicast - protocol locks before interface locks, after UDP locks. 514 */ 515 { "udpinp", &lock_class_rw }, 516 { "in_multi_mtx", &lock_class_mtx_sleep }, 517 { "igmp_mtx", &lock_class_mtx_sleep }, 518 { "if_addr_mtx", &lock_class_mtx_sleep }, 519 { NULL, NULL }, 520 /* 521 * UNIX Domain Sockets 522 */ 523 { "unp", &lock_class_mtx_sleep }, 524 { "so_snd", &lock_class_mtx_sleep }, 525 { NULL, NULL }, 526 /* 527 * UDP/IP 528 */ 529 { "udp", &lock_class_rw }, 530 { "udpinp", &lock_class_rw }, 531 { "so_snd", &lock_class_mtx_sleep }, 532 { NULL, NULL }, 533 /* 534 * TCP/IP 535 */ 536 { "tcp", &lock_class_rw }, 537 { "tcpinp", &lock_class_rw }, 538 { "so_snd", &lock_class_mtx_sleep }, 539 { NULL, NULL }, 540 /* 541 * SLIP 542 */ 543 { "slip_mtx", &lock_class_mtx_sleep }, 544 { "slip sc_mtx", &lock_class_mtx_sleep }, 545 { NULL, NULL }, 546 /* 547 * netatalk 548 */ 549 { "ddp_list_mtx", &lock_class_mtx_sleep }, 550 { "ddp_mtx", &lock_class_mtx_sleep }, 551 { NULL, NULL }, 552 /* 553 * BPF 554 */ 555 { "bpf global lock", &lock_class_mtx_sleep }, 556 { "bpf interface lock", &lock_class_mtx_sleep }, 557 { "bpf cdev lock", &lock_class_mtx_sleep }, 558 { NULL, NULL }, 559 /* 560 * NFS server 561 */ 562 { "nfsd_mtx", &lock_class_mtx_sleep }, 563 { "so_snd", &lock_class_mtx_sleep }, 564 { NULL, NULL }, 565 566 /* 567 * IEEE 802.11 568 */ 569 { "802.11 com lock", &lock_class_mtx_sleep}, 570 { NULL, NULL }, 571 /* 572 * Network drivers 573 */ 574 { "network driver", &lock_class_mtx_sleep}, 575 { NULL, NULL }, 576 577 /* 578 * Netgraph 579 */ 580 { "ng_node", &lock_class_mtx_sleep }, 581 { "ng_worklist", &lock_class_mtx_sleep }, 582 { NULL, NULL }, 583 /* 584 * CDEV 585 */ 586 { "system map", &lock_class_mtx_sleep }, 587 { "vm page queue mutex", &lock_class_mtx_sleep }, 588 { "vnode interlock", &lock_class_mtx_sleep }, 589 { "cdev", &lock_class_mtx_sleep }, 590 { NULL, NULL }, 591 /* 592 * kqueue/VFS interaction 593 */ 594 { "kqueue", &lock_class_mtx_sleep }, 595 { "struct mount mtx", &lock_class_mtx_sleep }, 596 { "vnode interlock", &lock_class_mtx_sleep }, 597 { NULL, NULL }, 598 /* 599 * spin locks 600 */ 601 #ifdef SMP 602 { "ap boot", &lock_class_mtx_spin }, 603 #endif 604 { "rm.mutex_mtx", &lock_class_mtx_spin }, 605 { "sio", &lock_class_mtx_spin }, 606 { "scrlock", &lock_class_mtx_spin }, 607 #ifdef __i386__ 608 { "cy", &lock_class_mtx_spin }, 609 #endif 610 #ifdef __sparc64__ 611 { "pcib_mtx", &lock_class_mtx_spin }, 612 { "rtc_mtx", &lock_class_mtx_spin }, 613 #endif 614 { "scc_hwmtx", &lock_class_mtx_spin }, 615 { "uart_hwmtx", &lock_class_mtx_spin }, 616 { "fast_taskqueue", &lock_class_mtx_spin }, 617 { "intr table", &lock_class_mtx_spin }, 618 #ifdef HWPMC_HOOKS 619 { "pmc-per-proc", &lock_class_mtx_spin }, 620 #endif 621 { "process slock", &lock_class_mtx_spin }, 622 { "sleepq chain", &lock_class_mtx_spin }, 623 { "umtx lock", &lock_class_mtx_spin }, 624 { "rm_spinlock", &lock_class_mtx_spin }, 625 { "turnstile chain", &lock_class_mtx_spin }, 626 { "turnstile lock", &lock_class_mtx_spin }, 627 { "sched lock", &lock_class_mtx_spin }, 628 { "td_contested", &lock_class_mtx_spin }, 629 { "callout", &lock_class_mtx_spin }, 630 { "entropy harvest mutex", &lock_class_mtx_spin }, 631 { "syscons video lock", &lock_class_mtx_spin }, 632 { "time lock", &lock_class_mtx_spin }, 633 #ifdef SMP 634 { "smp rendezvous", &lock_class_mtx_spin }, 635 #endif 636 #ifdef __powerpc__ 637 { "tlb0", &lock_class_mtx_spin }, 638 #endif 639 /* 640 * leaf locks 641 */ 642 { "intrcnt", &lock_class_mtx_spin }, 643 { "icu", &lock_class_mtx_spin }, 644 #if defined(SMP) && defined(__sparc64__) 645 { "ipi", &lock_class_mtx_spin }, 646 #endif 647 #ifdef __i386__ 648 { "allpmaps", &lock_class_mtx_spin }, 649 { "descriptor tables", &lock_class_mtx_spin }, 650 #endif 651 { "clk", &lock_class_mtx_spin }, 652 { "cpuset", &lock_class_mtx_spin }, 653 { "mprof lock", &lock_class_mtx_spin }, 654 { "zombie lock", &lock_class_mtx_spin }, 655 { "ALD Queue", &lock_class_mtx_spin }, 656 #ifdef __ia64__ 657 { "MCA spin lock", &lock_class_mtx_spin }, 658 #endif 659 #if defined(__i386__) || defined(__amd64__) 660 { "pcicfg", &lock_class_mtx_spin }, 661 { "NDIS thread lock", &lock_class_mtx_spin }, 662 #endif 663 { "tw_osl_io_lock", &lock_class_mtx_spin }, 664 { "tw_osl_q_lock", &lock_class_mtx_spin }, 665 { "tw_cl_io_lock", &lock_class_mtx_spin }, 666 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 667 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 668 #ifdef HWPMC_HOOKS 669 { "pmc-leaf", &lock_class_mtx_spin }, 670 #endif 671 { "blocked lock", &lock_class_mtx_spin }, 672 { NULL, NULL }, 673 { NULL, NULL } 674 }; 675 676 #ifdef BLESSING 677 /* 678 * Pairs of locks which have been blessed 679 * Don't complain about order problems with blessed locks 680 */ 681 static struct witness_blessed blessed_list[] = { 682 }; 683 static int blessed_count = 684 sizeof(blessed_list) / sizeof(struct witness_blessed); 685 #endif 686 687 /* 688 * This global is set to 0 once it becomes safe to use the witness code. 689 */ 690 static int witness_cold = 1; 691 692 /* 693 * This global is set to 1 once the static lock orders have been enrolled 694 * so that a warning can be issued for any spin locks enrolled later. 695 */ 696 static int witness_spin_warn = 0; 697 698 /* 699 * The WITNESS-enabled diagnostic code. Note that the witness code does 700 * assume that the early boot is single-threaded at least until after this 701 * routine is completed. 702 */ 703 static void 704 witness_initialize(void *dummy __unused) 705 { 706 struct lock_object *lock; 707 struct witness_order_list_entry *order; 708 struct witness *w, *w1; 709 int i; 710 711 w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS, 712 M_NOWAIT | M_ZERO); 713 714 /* 715 * We have to release Giant before initializing its witness 716 * structure so that WITNESS doesn't get confused. 717 */ 718 mtx_unlock(&Giant); 719 mtx_assert(&Giant, MA_NOTOWNED); 720 721 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 722 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 723 MTX_NOWITNESS | MTX_NOPROFILE); 724 for (i = WITNESS_COUNT - 1; i >= 0; i--) { 725 w = &w_data[i]; 726 memset(w, 0, sizeof(*w)); 727 w_data[i].w_index = i; /* Witness index never changes. */ 728 witness_free(w); 729 } 730 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 731 ("%s: Invalid list of free witness objects", __func__)); 732 733 /* Witness with index 0 is not used to aid in debugging. */ 734 STAILQ_REMOVE_HEAD(&w_free, w_list); 735 w_free_cnt--; 736 737 memset(w_rmatrix, 0, 738 (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1))); 739 740 for (i = 0; i < LOCK_CHILDCOUNT; i++) 741 witness_lock_list_free(&w_locklistdata[i]); 742 witness_init_hash_tables(); 743 744 /* First add in all the specified order lists. */ 745 for (order = order_lists; order->w_name != NULL; order++) { 746 w = enroll(order->w_name, order->w_class); 747 if (w == NULL) 748 continue; 749 w->w_file = "order list"; 750 for (order++; order->w_name != NULL; order++) { 751 w1 = enroll(order->w_name, order->w_class); 752 if (w1 == NULL) 753 continue; 754 w1->w_file = "order list"; 755 itismychild(w, w1); 756 w = w1; 757 } 758 } 759 witness_spin_warn = 1; 760 761 /* Iterate through all locks and add them to witness. */ 762 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 763 lock = pending_locks[i].wh_lock; 764 KASSERT(lock->lo_flags & LO_WITNESS, 765 ("%s: lock %s is on pending list but not LO_WITNESS", 766 __func__, lock->lo_name)); 767 lock->lo_witness = enroll(pending_locks[i].wh_type, 768 LOCK_CLASS(lock)); 769 } 770 771 /* Mark the witness code as being ready for use. */ 772 witness_cold = 0; 773 774 mtx_lock(&Giant); 775 } 776 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 777 NULL); 778 779 void 780 witness_init(struct lock_object *lock, const char *type) 781 { 782 struct lock_class *class; 783 784 /* Various sanity checks. */ 785 class = LOCK_CLASS(lock); 786 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 787 (class->lc_flags & LC_RECURSABLE) == 0) 788 panic("%s: lock (%s) %s can not be recursable", __func__, 789 class->lc_name, lock->lo_name); 790 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 791 (class->lc_flags & LC_SLEEPABLE) == 0) 792 panic("%s: lock (%s) %s can not be sleepable", __func__, 793 class->lc_name, lock->lo_name); 794 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 795 (class->lc_flags & LC_UPGRADABLE) == 0) 796 panic("%s: lock (%s) %s can not be upgradable", __func__, 797 class->lc_name, lock->lo_name); 798 799 /* 800 * If we shouldn't watch this lock, then just clear lo_witness. 801 * Otherwise, if witness_cold is set, then it is too early to 802 * enroll this lock, so defer it to witness_initialize() by adding 803 * it to the pending_locks list. If it is not too early, then enroll 804 * the lock now. 805 */ 806 if (witness_watch < 1 || panicstr != NULL || 807 (lock->lo_flags & LO_WITNESS) == 0) 808 lock->lo_witness = NULL; 809 else if (witness_cold) { 810 pending_locks[pending_cnt].wh_lock = lock; 811 pending_locks[pending_cnt++].wh_type = type; 812 if (pending_cnt > WITNESS_PENDLIST) 813 panic("%s: pending locks list is too small, bump it\n", 814 __func__); 815 } else 816 lock->lo_witness = enroll(type, class); 817 } 818 819 void 820 witness_destroy(struct lock_object *lock) 821 { 822 struct lock_class *class; 823 struct witness *w; 824 825 class = LOCK_CLASS(lock); 826 827 if (witness_cold) 828 panic("lock (%s) %s destroyed while witness_cold", 829 class->lc_name, lock->lo_name); 830 831 /* XXX: need to verify that no one holds the lock */ 832 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 833 return; 834 w = lock->lo_witness; 835 836 mtx_lock_spin(&w_mtx); 837 MPASS(w->w_refcount > 0); 838 w->w_refcount--; 839 840 if (w->w_refcount == 0) 841 depart(w); 842 mtx_unlock_spin(&w_mtx); 843 } 844 845 #ifdef DDB 846 static void 847 witness_ddb_compute_levels(void) 848 { 849 struct witness *w; 850 851 /* 852 * First clear all levels. 853 */ 854 STAILQ_FOREACH(w, &w_all, w_list) 855 w->w_ddb_level = -1; 856 857 /* 858 * Look for locks with no parents and level all their descendants. 859 */ 860 STAILQ_FOREACH(w, &w_all, w_list) { 861 862 /* If the witness has ancestors (is not a root), skip it. */ 863 if (w->w_num_ancestors > 0) 864 continue; 865 witness_ddb_level_descendants(w, 0); 866 } 867 } 868 869 static void 870 witness_ddb_level_descendants(struct witness *w, int l) 871 { 872 int i; 873 874 if (w->w_ddb_level >= l) 875 return; 876 877 w->w_ddb_level = l; 878 l++; 879 880 for (i = 1; i <= w_max_used_index; i++) { 881 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 882 witness_ddb_level_descendants(&w_data[i], l); 883 } 884 } 885 886 static void 887 witness_ddb_display_descendants(void(*prnt)(const char *fmt, ...), 888 struct witness *w, int indent) 889 { 890 int i; 891 892 for (i = 0; i < indent; i++) 893 prnt(" "); 894 prnt("%s (type: %s, depth: %d, active refs: %d)", 895 w->w_name, w->w_class->lc_name, 896 w->w_ddb_level, w->w_refcount); 897 if (w->w_displayed) { 898 prnt(" -- (already displayed)\n"); 899 return; 900 } 901 w->w_displayed = 1; 902 if (w->w_file != NULL && w->w_line != 0) 903 prnt(" -- last acquired @ %s:%d\n", w->w_file, 904 w->w_line); 905 else 906 prnt(" -- never acquired\n"); 907 indent++; 908 WITNESS_INDEX_ASSERT(w->w_index); 909 for (i = 1; i <= w_max_used_index; i++) { 910 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 911 witness_ddb_display_descendants(prnt, &w_data[i], 912 indent); 913 } 914 } 915 916 static void 917 witness_ddb_display_list(void(*prnt)(const char *fmt, ...), 918 struct witness_list *list) 919 { 920 struct witness *w; 921 922 STAILQ_FOREACH(w, list, w_typelist) { 923 if (w->w_file == NULL || w->w_ddb_level > 0) 924 continue; 925 926 /* This lock has no anscestors - display its descendants. */ 927 witness_ddb_display_descendants(prnt, w, 0); 928 } 929 } 930 931 static void 932 witness_ddb_display(void(*prnt)(const char *fmt, ...)) 933 { 934 struct witness *w; 935 936 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 937 witness_ddb_compute_levels(); 938 939 /* Clear all the displayed flags. */ 940 STAILQ_FOREACH(w, &w_all, w_list) 941 w->w_displayed = 0; 942 943 /* 944 * First, handle sleep locks which have been acquired at least 945 * once. 946 */ 947 prnt("Sleep locks:\n"); 948 witness_ddb_display_list(prnt, &w_sleep); 949 950 /* 951 * Now do spin locks which have been acquired at least once. 952 */ 953 prnt("\nSpin locks:\n"); 954 witness_ddb_display_list(prnt, &w_spin); 955 956 /* 957 * Finally, any locks which have not been acquired yet. 958 */ 959 prnt("\nLocks which were never acquired:\n"); 960 STAILQ_FOREACH(w, &w_all, w_list) { 961 if (w->w_file != NULL || w->w_refcount == 0) 962 continue; 963 prnt("%s (type: %s, depth: %d)\n", w->w_name, 964 w->w_class->lc_name, w->w_ddb_level); 965 } 966 } 967 #endif /* DDB */ 968 969 /* Trim useless garbage from filenames. */ 970 static const char * 971 fixup_filename(const char *file) 972 { 973 974 if (file == NULL) 975 return (NULL); 976 while (strncmp(file, "../", 3) == 0) 977 file += 3; 978 return (file); 979 } 980 981 int 982 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 983 { 984 985 if (witness_watch == -1 || panicstr != NULL) 986 return (0); 987 988 /* Require locks that witness knows about. */ 989 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 990 lock2->lo_witness == NULL) 991 return (EINVAL); 992 993 mtx_assert(&w_mtx, MA_NOTOWNED); 994 mtx_lock_spin(&w_mtx); 995 996 /* 997 * If we already have either an explicit or implied lock order that 998 * is the other way around, then return an error. 999 */ 1000 if (witness_watch && 1001 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1002 mtx_unlock_spin(&w_mtx); 1003 return (EDOOFUS); 1004 } 1005 1006 /* Try to add the new order. */ 1007 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1008 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1009 itismychild(lock1->lo_witness, lock2->lo_witness); 1010 mtx_unlock_spin(&w_mtx); 1011 return (0); 1012 } 1013 1014 void 1015 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1016 int line, struct lock_object *interlock) 1017 { 1018 struct lock_list_entry *lock_list, *lle; 1019 struct lock_instance *lock1, *lock2, *plock; 1020 struct lock_class *class; 1021 struct witness *w, *w1; 1022 struct thread *td; 1023 int i, j; 1024 1025 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1026 panicstr != NULL) 1027 return; 1028 1029 w = lock->lo_witness; 1030 class = LOCK_CLASS(lock); 1031 td = curthread; 1032 file = fixup_filename(file); 1033 1034 if (class->lc_flags & LC_SLEEPLOCK) { 1035 1036 /* 1037 * Since spin locks include a critical section, this check 1038 * implicitly enforces a lock order of all sleep locks before 1039 * all spin locks. 1040 */ 1041 if (td->td_critnest != 0 && !kdb_active) 1042 panic("blockable sleep lock (%s) %s @ %s:%d", 1043 class->lc_name, lock->lo_name, file, line); 1044 1045 /* 1046 * If this is the first lock acquired then just return as 1047 * no order checking is needed. 1048 */ 1049 lock_list = td->td_sleeplocks; 1050 if (lock_list == NULL || lock_list->ll_count == 0) 1051 return; 1052 } else { 1053 1054 /* 1055 * If this is the first lock, just return as no order 1056 * checking is needed. Avoid problems with thread 1057 * migration pinning the thread while checking if 1058 * spinlocks are held. If at least one spinlock is held 1059 * the thread is in a safe path and it is allowed to 1060 * unpin it. 1061 */ 1062 sched_pin(); 1063 lock_list = PCPU_GET(spinlocks); 1064 if (lock_list == NULL || lock_list->ll_count == 0) { 1065 sched_unpin(); 1066 return; 1067 } 1068 sched_unpin(); 1069 } 1070 1071 /* 1072 * Check to see if we are recursing on a lock we already own. If 1073 * so, make sure that we don't mismatch exclusive and shared lock 1074 * acquires. 1075 */ 1076 lock1 = find_instance(lock_list, lock); 1077 if (lock1 != NULL) { 1078 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1079 (flags & LOP_EXCLUSIVE) == 0) { 1080 printf("shared lock of (%s) %s @ %s:%d\n", 1081 class->lc_name, lock->lo_name, file, line); 1082 printf("while exclusively locked from %s:%d\n", 1083 lock1->li_file, lock1->li_line); 1084 panic("share->excl"); 1085 } 1086 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1087 (flags & LOP_EXCLUSIVE) != 0) { 1088 printf("exclusive lock of (%s) %s @ %s:%d\n", 1089 class->lc_name, lock->lo_name, file, line); 1090 printf("while share locked from %s:%d\n", 1091 lock1->li_file, lock1->li_line); 1092 panic("excl->share"); 1093 } 1094 return; 1095 } 1096 1097 /* 1098 * Find the previously acquired lock, but ignore interlocks. 1099 */ 1100 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1101 if (interlock != NULL && plock->li_lock == interlock) { 1102 if (lock_list->ll_count > 1) 1103 plock = 1104 &lock_list->ll_children[lock_list->ll_count - 2]; 1105 else { 1106 lle = lock_list->ll_next; 1107 1108 /* 1109 * The interlock is the only lock we hold, so 1110 * simply return. 1111 */ 1112 if (lle == NULL) 1113 return; 1114 plock = &lle->ll_children[lle->ll_count - 1]; 1115 } 1116 } 1117 1118 /* 1119 * Try to perform most checks without a lock. If this succeeds we 1120 * can skip acquiring the lock and return success. 1121 */ 1122 w1 = plock->li_lock->lo_witness; 1123 if (witness_lock_order_check(w1, w)) 1124 return; 1125 1126 /* 1127 * Check for duplicate locks of the same type. Note that we only 1128 * have to check for this on the last lock we just acquired. Any 1129 * other cases will be caught as lock order violations. 1130 */ 1131 mtx_lock_spin(&w_mtx); 1132 witness_lock_order_add(w1, w); 1133 if (w1 == w) { 1134 i = w->w_index; 1135 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1136 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1137 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1138 w->w_reversed = 1; 1139 mtx_unlock_spin(&w_mtx); 1140 printf( 1141 "acquiring duplicate lock of same type: \"%s\"\n", 1142 w->w_name); 1143 printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1144 plock->li_file, plock->li_line); 1145 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line); 1146 witness_debugger(1); 1147 } else 1148 mtx_unlock_spin(&w_mtx); 1149 return; 1150 } 1151 mtx_assert(&w_mtx, MA_OWNED); 1152 1153 /* 1154 * If we know that the the lock we are acquiring comes after 1155 * the lock we most recently acquired in the lock order tree, 1156 * then there is no need for any further checks. 1157 */ 1158 if (isitmychild(w1, w)) 1159 goto out; 1160 1161 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1162 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1163 1164 MPASS(j < WITNESS_COUNT); 1165 lock1 = &lle->ll_children[i]; 1166 1167 /* 1168 * Ignore the interlock the first time we see it. 1169 */ 1170 if (interlock != NULL && interlock == lock1->li_lock) { 1171 interlock = NULL; 1172 continue; 1173 } 1174 1175 /* 1176 * If this lock doesn't undergo witness checking, 1177 * then skip it. 1178 */ 1179 w1 = lock1->li_lock->lo_witness; 1180 if (w1 == NULL) { 1181 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1182 ("lock missing witness structure")); 1183 continue; 1184 } 1185 1186 /* 1187 * If we are locking Giant and this is a sleepable 1188 * lock, then skip it. 1189 */ 1190 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1191 lock == &Giant.lock_object) 1192 continue; 1193 1194 /* 1195 * If we are locking a sleepable lock and this lock 1196 * is Giant, then skip it. 1197 */ 1198 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1199 lock1->li_lock == &Giant.lock_object) 1200 continue; 1201 1202 /* 1203 * If we are locking a sleepable lock and this lock 1204 * isn't sleepable, we want to treat it as a lock 1205 * order violation to enfore a general lock order of 1206 * sleepable locks before non-sleepable locks. 1207 */ 1208 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1209 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1210 goto reversal; 1211 1212 /* 1213 * If we are locking Giant and this is a non-sleepable 1214 * lock, then treat it as a reversal. 1215 */ 1216 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1217 lock == &Giant.lock_object) 1218 goto reversal; 1219 1220 /* 1221 * Check the lock order hierarchy for a reveresal. 1222 */ 1223 if (!isitmydescendant(w, w1)) 1224 continue; 1225 reversal: 1226 1227 /* 1228 * We have a lock order violation, check to see if it 1229 * is allowed or has already been yelled about. 1230 */ 1231 #ifdef BLESSING 1232 1233 /* 1234 * If the lock order is blessed, just bail. We don't 1235 * look for other lock order violations though, which 1236 * may be a bug. 1237 */ 1238 if (blessed(w, w1)) 1239 goto out; 1240 #endif 1241 1242 /* Bail if this violation is known */ 1243 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1244 goto out; 1245 1246 /* Record this as a violation */ 1247 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1248 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1249 w->w_reversed = w1->w_reversed = 1; 1250 witness_increment_graph_generation(); 1251 mtx_unlock_spin(&w_mtx); 1252 1253 /* 1254 * Ok, yell about it. 1255 */ 1256 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1257 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1258 printf( 1259 "lock order reversal: (sleepable after non-sleepable)\n"); 1260 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1261 && lock == &Giant.lock_object) 1262 printf( 1263 "lock order reversal: (Giant after non-sleepable)\n"); 1264 else 1265 printf("lock order reversal:\n"); 1266 1267 /* 1268 * Try to locate an earlier lock with 1269 * witness w in our list. 1270 */ 1271 do { 1272 lock2 = &lle->ll_children[i]; 1273 MPASS(lock2->li_lock != NULL); 1274 if (lock2->li_lock->lo_witness == w) 1275 break; 1276 if (i == 0 && lle->ll_next != NULL) { 1277 lle = lle->ll_next; 1278 i = lle->ll_count - 1; 1279 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1280 } else 1281 i--; 1282 } while (i >= 0); 1283 if (i < 0) { 1284 printf(" 1st %p %s (%s) @ %s:%d\n", 1285 lock1->li_lock, lock1->li_lock->lo_name, 1286 w1->w_name, lock1->li_file, lock1->li_line); 1287 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1288 lock->lo_name, w->w_name, file, line); 1289 } else { 1290 printf(" 1st %p %s (%s) @ %s:%d\n", 1291 lock2->li_lock, lock2->li_lock->lo_name, 1292 lock2->li_lock->lo_witness->w_name, 1293 lock2->li_file, lock2->li_line); 1294 printf(" 2nd %p %s (%s) @ %s:%d\n", 1295 lock1->li_lock, lock1->li_lock->lo_name, 1296 w1->w_name, lock1->li_file, lock1->li_line); 1297 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1298 lock->lo_name, w->w_name, file, line); 1299 } 1300 witness_debugger(1); 1301 return; 1302 } 1303 } 1304 1305 /* 1306 * If requested, build a new lock order. However, don't build a new 1307 * relationship between a sleepable lock and Giant if it is in the 1308 * wrong direction. The correct lock order is that sleepable locks 1309 * always come before Giant. 1310 */ 1311 if (flags & LOP_NEWORDER && 1312 !(plock->li_lock == &Giant.lock_object && 1313 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1314 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1315 w->w_name, plock->li_lock->lo_witness->w_name); 1316 itismychild(plock->li_lock->lo_witness, w); 1317 } 1318 out: 1319 mtx_unlock_spin(&w_mtx); 1320 } 1321 1322 void 1323 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1324 { 1325 struct lock_list_entry **lock_list, *lle; 1326 struct lock_instance *instance; 1327 struct witness *w; 1328 struct thread *td; 1329 1330 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1331 panicstr != NULL) 1332 return; 1333 w = lock->lo_witness; 1334 td = curthread; 1335 file = fixup_filename(file); 1336 1337 /* Determine lock list for this lock. */ 1338 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1339 lock_list = &td->td_sleeplocks; 1340 else 1341 lock_list = PCPU_PTR(spinlocks); 1342 1343 /* Check to see if we are recursing on a lock we already own. */ 1344 instance = find_instance(*lock_list, lock); 1345 if (instance != NULL) { 1346 instance->li_flags++; 1347 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1348 td->td_proc->p_pid, lock->lo_name, 1349 instance->li_flags & LI_RECURSEMASK); 1350 instance->li_file = file; 1351 instance->li_line = line; 1352 return; 1353 } 1354 1355 /* Update per-witness last file and line acquire. */ 1356 w->w_file = file; 1357 w->w_line = line; 1358 1359 /* Find the next open lock instance in the list and fill it. */ 1360 lle = *lock_list; 1361 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1362 lle = witness_lock_list_get(); 1363 if (lle == NULL) 1364 return; 1365 lle->ll_next = *lock_list; 1366 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1367 td->td_proc->p_pid, lle); 1368 *lock_list = lle; 1369 } 1370 instance = &lle->ll_children[lle->ll_count++]; 1371 instance->li_lock = lock; 1372 instance->li_line = line; 1373 instance->li_file = file; 1374 if ((flags & LOP_EXCLUSIVE) != 0) 1375 instance->li_flags = LI_EXCLUSIVE; 1376 else 1377 instance->li_flags = 0; 1378 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1379 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1380 } 1381 1382 void 1383 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1384 { 1385 struct lock_instance *instance; 1386 struct lock_class *class; 1387 1388 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1389 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1390 return; 1391 class = LOCK_CLASS(lock); 1392 file = fixup_filename(file); 1393 if (witness_watch) { 1394 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1395 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d", 1396 class->lc_name, lock->lo_name, file, line); 1397 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1398 panic("upgrade of non-sleep lock (%s) %s @ %s:%d", 1399 class->lc_name, lock->lo_name, file, line); 1400 } 1401 instance = find_instance(curthread->td_sleeplocks, lock); 1402 if (instance == NULL) 1403 panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1404 class->lc_name, lock->lo_name, file, line); 1405 if (witness_watch) { 1406 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1407 panic("upgrade of exclusive lock (%s) %s @ %s:%d", 1408 class->lc_name, lock->lo_name, file, line); 1409 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1410 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1411 class->lc_name, lock->lo_name, 1412 instance->li_flags & LI_RECURSEMASK, file, line); 1413 } 1414 instance->li_flags |= LI_EXCLUSIVE; 1415 } 1416 1417 void 1418 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1419 int line) 1420 { 1421 struct lock_instance *instance; 1422 struct lock_class *class; 1423 1424 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1425 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1426 return; 1427 class = LOCK_CLASS(lock); 1428 file = fixup_filename(file); 1429 if (witness_watch) { 1430 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1431 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d", 1432 class->lc_name, lock->lo_name, file, line); 1433 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1434 panic("downgrade of non-sleep lock (%s) %s @ %s:%d", 1435 class->lc_name, lock->lo_name, file, line); 1436 } 1437 instance = find_instance(curthread->td_sleeplocks, lock); 1438 if (instance == NULL) 1439 panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1440 class->lc_name, lock->lo_name, file, line); 1441 if (witness_watch) { 1442 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1443 panic("downgrade of shared lock (%s) %s @ %s:%d", 1444 class->lc_name, lock->lo_name, file, line); 1445 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1446 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1447 class->lc_name, lock->lo_name, 1448 instance->li_flags & LI_RECURSEMASK, file, line); 1449 } 1450 instance->li_flags &= ~LI_EXCLUSIVE; 1451 } 1452 1453 void 1454 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1455 { 1456 struct lock_list_entry **lock_list, *lle; 1457 struct lock_instance *instance; 1458 struct lock_class *class; 1459 struct thread *td; 1460 register_t s; 1461 int i, j; 1462 1463 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1464 return; 1465 td = curthread; 1466 class = LOCK_CLASS(lock); 1467 file = fixup_filename(file); 1468 1469 /* Find lock instance associated with this lock. */ 1470 if (class->lc_flags & LC_SLEEPLOCK) 1471 lock_list = &td->td_sleeplocks; 1472 else 1473 lock_list = PCPU_PTR(spinlocks); 1474 lle = *lock_list; 1475 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1476 for (i = 0; i < (*lock_list)->ll_count; i++) { 1477 instance = &(*lock_list)->ll_children[i]; 1478 if (instance->li_lock == lock) 1479 goto found; 1480 } 1481 1482 /* 1483 * When disabling WITNESS through witness_watch we could end up in 1484 * having registered locks in the td_sleeplocks queue. 1485 * We have to make sure we flush these queues, so just search for 1486 * eventual register locks and remove them. 1487 */ 1488 if (witness_watch > 0) 1489 panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1490 lock->lo_name, file, line); 1491 else 1492 return; 1493 found: 1494 1495 /* First, check for shared/exclusive mismatches. */ 1496 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1497 (flags & LOP_EXCLUSIVE) == 0) { 1498 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1499 lock->lo_name, file, line); 1500 printf("while exclusively locked from %s:%d\n", 1501 instance->li_file, instance->li_line); 1502 panic("excl->ushare"); 1503 } 1504 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1505 (flags & LOP_EXCLUSIVE) != 0) { 1506 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1507 lock->lo_name, file, line); 1508 printf("while share locked from %s:%d\n", instance->li_file, 1509 instance->li_line); 1510 panic("share->uexcl"); 1511 } 1512 1513 /* If we are recursed, unrecurse. */ 1514 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1515 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1516 td->td_proc->p_pid, instance->li_lock->lo_name, 1517 instance->li_flags); 1518 instance->li_flags--; 1519 return; 1520 } 1521 1522 /* Otherwise, remove this item from the list. */ 1523 s = intr_disable(); 1524 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1525 td->td_proc->p_pid, instance->li_lock->lo_name, 1526 (*lock_list)->ll_count - 1); 1527 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1528 (*lock_list)->ll_children[j] = 1529 (*lock_list)->ll_children[j + 1]; 1530 (*lock_list)->ll_count--; 1531 intr_restore(s); 1532 1533 /* 1534 * In order to reduce contention on w_mtx, we want to keep always an 1535 * head object into lists so that frequent allocation from the 1536 * free witness pool (and subsequent locking) is avoided. 1537 * In order to maintain the current code simple, when the head 1538 * object is totally unloaded it means also that we do not have 1539 * further objects in the list, so the list ownership needs to be 1540 * hand over to another object if the current head needs to be freed. 1541 */ 1542 if ((*lock_list)->ll_count == 0) { 1543 if (*lock_list == lle) { 1544 if (lle->ll_next == NULL) 1545 return; 1546 } else 1547 lle = *lock_list; 1548 *lock_list = lle->ll_next; 1549 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1550 td->td_proc->p_pid, lle); 1551 witness_lock_list_free(lle); 1552 } 1553 } 1554 1555 void 1556 witness_thread_exit(struct thread *td) 1557 { 1558 struct lock_list_entry *lle; 1559 int i, n; 1560 1561 lle = td->td_sleeplocks; 1562 if (lle == NULL || panicstr != NULL) 1563 return; 1564 if (lle->ll_count != 0) { 1565 for (n = 0; lle != NULL; lle = lle->ll_next) 1566 for (i = lle->ll_count - 1; i >= 0; i--) { 1567 if (n == 0) 1568 printf("Thread %p exiting with the following locks held:\n", 1569 td); 1570 n++; 1571 witness_list_lock(&lle->ll_children[i]); 1572 1573 } 1574 panic("Thread %p cannot exit while holding sleeplocks\n", td); 1575 } 1576 witness_lock_list_free(lle); 1577 } 1578 1579 /* 1580 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1581 * exempt Giant and sleepable locks from the checks as well. If any 1582 * non-exempt locks are held, then a supplied message is printed to the 1583 * console along with a list of the offending locks. If indicated in the 1584 * flags then a failure results in a panic as well. 1585 */ 1586 int 1587 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1588 { 1589 struct lock_list_entry *lock_list, *lle; 1590 struct lock_instance *lock1; 1591 struct thread *td; 1592 va_list ap; 1593 int i, n; 1594 1595 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1596 return (0); 1597 n = 0; 1598 td = curthread; 1599 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1600 for (i = lle->ll_count - 1; i >= 0; i--) { 1601 lock1 = &lle->ll_children[i]; 1602 if (lock1->li_lock == lock) 1603 continue; 1604 if (flags & WARN_GIANTOK && 1605 lock1->li_lock == &Giant.lock_object) 1606 continue; 1607 if (flags & WARN_SLEEPOK && 1608 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1609 continue; 1610 if (n == 0) { 1611 va_start(ap, fmt); 1612 vprintf(fmt, ap); 1613 va_end(ap); 1614 printf(" with the following"); 1615 if (flags & WARN_SLEEPOK) 1616 printf(" non-sleepable"); 1617 printf(" locks held:\n"); 1618 } 1619 n++; 1620 witness_list_lock(lock1); 1621 } 1622 1623 /* 1624 * Pin the thread in order to avoid problems with thread migration. 1625 * Once that all verifies are passed about spinlocks ownership, 1626 * the thread is in a safe path and it can be unpinned. 1627 */ 1628 sched_pin(); 1629 lock_list = PCPU_GET(spinlocks); 1630 if (lock_list != NULL && lock_list->ll_count != 0) { 1631 sched_unpin(); 1632 1633 /* 1634 * We should only have one spinlock and as long as 1635 * the flags cannot match for this locks class, 1636 * check if the first spinlock is the one curthread 1637 * should hold. 1638 */ 1639 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1640 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1641 lock1->li_lock == lock && n == 0) 1642 return (0); 1643 1644 va_start(ap, fmt); 1645 vprintf(fmt, ap); 1646 va_end(ap); 1647 printf(" with the following"); 1648 if (flags & WARN_SLEEPOK) 1649 printf(" non-sleepable"); 1650 printf(" locks held:\n"); 1651 n += witness_list_locks(&lock_list); 1652 } else 1653 sched_unpin(); 1654 if (flags & WARN_PANIC && n) 1655 panic("%s", __func__); 1656 else 1657 witness_debugger(n); 1658 return (n); 1659 } 1660 1661 const char * 1662 witness_file(struct lock_object *lock) 1663 { 1664 struct witness *w; 1665 1666 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1667 return ("?"); 1668 w = lock->lo_witness; 1669 return (w->w_file); 1670 } 1671 1672 int 1673 witness_line(struct lock_object *lock) 1674 { 1675 struct witness *w; 1676 1677 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1678 return (0); 1679 w = lock->lo_witness; 1680 return (w->w_line); 1681 } 1682 1683 static struct witness * 1684 enroll(const char *description, struct lock_class *lock_class) 1685 { 1686 struct witness *w; 1687 struct witness_list *typelist; 1688 1689 MPASS(description != NULL); 1690 1691 if (witness_watch == -1 || panicstr != NULL) 1692 return (NULL); 1693 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1694 if (witness_skipspin) 1695 return (NULL); 1696 else 1697 typelist = &w_spin; 1698 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) 1699 typelist = &w_sleep; 1700 else 1701 panic("lock class %s is not sleep or spin", 1702 lock_class->lc_name); 1703 1704 mtx_lock_spin(&w_mtx); 1705 w = witness_hash_get(description); 1706 if (w) 1707 goto found; 1708 if ((w = witness_get()) == NULL) 1709 return (NULL); 1710 MPASS(strlen(description) < MAX_W_NAME); 1711 strcpy(w->w_name, description); 1712 w->w_class = lock_class; 1713 w->w_refcount = 1; 1714 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1715 if (lock_class->lc_flags & LC_SPINLOCK) { 1716 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1717 w_spin_cnt++; 1718 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1719 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1720 w_sleep_cnt++; 1721 } 1722 1723 /* Insert new witness into the hash */ 1724 witness_hash_put(w); 1725 witness_increment_graph_generation(); 1726 mtx_unlock_spin(&w_mtx); 1727 return (w); 1728 found: 1729 w->w_refcount++; 1730 mtx_unlock_spin(&w_mtx); 1731 if (lock_class != w->w_class) 1732 panic( 1733 "lock (%s) %s does not match earlier (%s) lock", 1734 description, lock_class->lc_name, 1735 w->w_class->lc_name); 1736 return (w); 1737 } 1738 1739 static void 1740 depart(struct witness *w) 1741 { 1742 struct witness_list *list; 1743 1744 MPASS(w->w_refcount == 0); 1745 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1746 list = &w_sleep; 1747 w_sleep_cnt--; 1748 } else { 1749 list = &w_spin; 1750 w_spin_cnt--; 1751 } 1752 /* 1753 * Set file to NULL as it may point into a loadable module. 1754 */ 1755 w->w_file = NULL; 1756 w->w_line = 0; 1757 witness_increment_graph_generation(); 1758 } 1759 1760 1761 static void 1762 adopt(struct witness *parent, struct witness *child) 1763 { 1764 int pi, ci, i, j; 1765 1766 if (witness_cold == 0) 1767 mtx_assert(&w_mtx, MA_OWNED); 1768 1769 /* If the relationship is already known, there's no work to be done. */ 1770 if (isitmychild(parent, child)) 1771 return; 1772 1773 /* When the structure of the graph changes, bump up the generation. */ 1774 witness_increment_graph_generation(); 1775 1776 /* 1777 * The hard part ... create the direct relationship, then propagate all 1778 * indirect relationships. 1779 */ 1780 pi = parent->w_index; 1781 ci = child->w_index; 1782 WITNESS_INDEX_ASSERT(pi); 1783 WITNESS_INDEX_ASSERT(ci); 1784 MPASS(pi != ci); 1785 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1786 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1787 1788 /* 1789 * If parent was not already an ancestor of child, 1790 * then we increment the descendant and ancestor counters. 1791 */ 1792 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1793 parent->w_num_descendants++; 1794 child->w_num_ancestors++; 1795 } 1796 1797 /* 1798 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1799 * an ancestor of 'pi' during this loop. 1800 */ 1801 for (i = 1; i <= w_max_used_index; i++) { 1802 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1803 (i != pi)) 1804 continue; 1805 1806 /* Find each descendant of 'i' and mark it as a descendant. */ 1807 for (j = 1; j <= w_max_used_index; j++) { 1808 1809 /* 1810 * Skip children that are already marked as 1811 * descendants of 'i'. 1812 */ 1813 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1814 continue; 1815 1816 /* 1817 * We are only interested in descendants of 'ci'. Note 1818 * that 'ci' itself is counted as a descendant of 'ci'. 1819 */ 1820 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1821 (j != ci)) 1822 continue; 1823 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1824 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1825 w_data[i].w_num_descendants++; 1826 w_data[j].w_num_ancestors++; 1827 1828 /* 1829 * Make sure we aren't marking a node as both an 1830 * ancestor and descendant. We should have caught 1831 * this as a lock order reversal earlier. 1832 */ 1833 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1834 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1835 printf("witness rmatrix paradox! [%d][%d]=%d " 1836 "both ancestor and descendant\n", 1837 i, j, w_rmatrix[i][j]); 1838 kdb_backtrace(); 1839 printf("Witness disabled.\n"); 1840 witness_watch = -1; 1841 } 1842 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1843 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1844 printf("witness rmatrix paradox! [%d][%d]=%d " 1845 "both ancestor and descendant\n", 1846 j, i, w_rmatrix[j][i]); 1847 kdb_backtrace(); 1848 printf("Witness disabled.\n"); 1849 witness_watch = -1; 1850 } 1851 } 1852 } 1853 } 1854 1855 static void 1856 itismychild(struct witness *parent, struct witness *child) 1857 { 1858 1859 MPASS(child != NULL && parent != NULL); 1860 if (witness_cold == 0) 1861 mtx_assert(&w_mtx, MA_OWNED); 1862 1863 if (!witness_lock_type_equal(parent, child)) { 1864 if (witness_cold == 0) 1865 mtx_unlock_spin(&w_mtx); 1866 panic("%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 1867 "the same lock type", __func__, parent->w_name, 1868 parent->w_class->lc_name, child->w_name, 1869 child->w_class->lc_name); 1870 } 1871 adopt(parent, child); 1872 } 1873 1874 /* 1875 * Generic code for the isitmy*() functions. The rmask parameter is the 1876 * expected relationship of w1 to w2. 1877 */ 1878 static int 1879 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 1880 { 1881 unsigned char r1, r2; 1882 int i1, i2; 1883 1884 i1 = w1->w_index; 1885 i2 = w2->w_index; 1886 WITNESS_INDEX_ASSERT(i1); 1887 WITNESS_INDEX_ASSERT(i2); 1888 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 1889 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 1890 1891 /* The flags on one better be the inverse of the flags on the other */ 1892 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 1893 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 1894 printf("%s: rmatrix mismatch between %s (index %d) and %s " 1895 "(index %d): w_rmatrix[%d][%d] == %hhx but " 1896 "w_rmatrix[%d][%d] == %hhx\n", 1897 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 1898 i2, i1, r2); 1899 kdb_backtrace(); 1900 printf("Witness disabled.\n"); 1901 witness_watch = -1; 1902 } 1903 return (r1 & rmask); 1904 } 1905 1906 /* 1907 * Checks if @child is a direct child of @parent. 1908 */ 1909 static int 1910 isitmychild(struct witness *parent, struct witness *child) 1911 { 1912 1913 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 1914 } 1915 1916 /* 1917 * Checks if @descendant is a direct or inderect descendant of @ancestor. 1918 */ 1919 static int 1920 isitmydescendant(struct witness *ancestor, struct witness *descendant) 1921 { 1922 1923 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 1924 __func__)); 1925 } 1926 1927 #ifdef BLESSING 1928 static int 1929 blessed(struct witness *w1, struct witness *w2) 1930 { 1931 int i; 1932 struct witness_blessed *b; 1933 1934 for (i = 0; i < blessed_count; i++) { 1935 b = &blessed_list[i]; 1936 if (strcmp(w1->w_name, b->b_lock1) == 0) { 1937 if (strcmp(w2->w_name, b->b_lock2) == 0) 1938 return (1); 1939 continue; 1940 } 1941 if (strcmp(w1->w_name, b->b_lock2) == 0) 1942 if (strcmp(w2->w_name, b->b_lock1) == 0) 1943 return (1); 1944 } 1945 return (0); 1946 } 1947 #endif 1948 1949 static struct witness * 1950 witness_get(void) 1951 { 1952 struct witness *w; 1953 int index; 1954 1955 if (witness_cold == 0) 1956 mtx_assert(&w_mtx, MA_OWNED); 1957 1958 if (witness_watch == -1) { 1959 mtx_unlock_spin(&w_mtx); 1960 return (NULL); 1961 } 1962 if (STAILQ_EMPTY(&w_free)) { 1963 witness_watch = -1; 1964 mtx_unlock_spin(&w_mtx); 1965 printf("WITNESS: unable to allocate a new witness object\n"); 1966 return (NULL); 1967 } 1968 w = STAILQ_FIRST(&w_free); 1969 STAILQ_REMOVE_HEAD(&w_free, w_list); 1970 w_free_cnt--; 1971 index = w->w_index; 1972 MPASS(index > 0 && index == w_max_used_index+1 && 1973 index < WITNESS_COUNT); 1974 bzero(w, sizeof(*w)); 1975 w->w_index = index; 1976 if (index > w_max_used_index) 1977 w_max_used_index = index; 1978 return (w); 1979 } 1980 1981 static void 1982 witness_free(struct witness *w) 1983 { 1984 1985 STAILQ_INSERT_HEAD(&w_free, w, w_list); 1986 w_free_cnt++; 1987 } 1988 1989 static struct lock_list_entry * 1990 witness_lock_list_get(void) 1991 { 1992 struct lock_list_entry *lle; 1993 1994 if (witness_watch == -1) 1995 return (NULL); 1996 mtx_lock_spin(&w_mtx); 1997 lle = w_lock_list_free; 1998 if (lle == NULL) { 1999 witness_watch = -1; 2000 mtx_unlock_spin(&w_mtx); 2001 printf("%s: witness exhausted\n", __func__); 2002 return (NULL); 2003 } 2004 w_lock_list_free = lle->ll_next; 2005 mtx_unlock_spin(&w_mtx); 2006 bzero(lle, sizeof(*lle)); 2007 return (lle); 2008 } 2009 2010 static void 2011 witness_lock_list_free(struct lock_list_entry *lle) 2012 { 2013 2014 mtx_lock_spin(&w_mtx); 2015 lle->ll_next = w_lock_list_free; 2016 w_lock_list_free = lle; 2017 mtx_unlock_spin(&w_mtx); 2018 } 2019 2020 static struct lock_instance * 2021 find_instance(struct lock_list_entry *list, struct lock_object *lock) 2022 { 2023 struct lock_list_entry *lle; 2024 struct lock_instance *instance; 2025 int i; 2026 2027 for (lle = list; lle != NULL; lle = lle->ll_next) 2028 for (i = lle->ll_count - 1; i >= 0; i--) { 2029 instance = &lle->ll_children[i]; 2030 if (instance->li_lock == lock) 2031 return (instance); 2032 } 2033 return (NULL); 2034 } 2035 2036 static void 2037 witness_list_lock(struct lock_instance *instance) 2038 { 2039 struct lock_object *lock; 2040 2041 lock = instance->li_lock; 2042 printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2043 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2044 if (lock->lo_witness->w_name != lock->lo_name) 2045 printf(" (%s)", lock->lo_witness->w_name); 2046 printf(" r = %d (%p) locked @ %s:%d\n", 2047 instance->li_flags & LI_RECURSEMASK, lock, instance->li_file, 2048 instance->li_line); 2049 } 2050 2051 #ifdef DDB 2052 static int 2053 witness_thread_has_locks(struct thread *td) 2054 { 2055 2056 if (td->td_sleeplocks == NULL) 2057 return (0); 2058 return (td->td_sleeplocks->ll_count != 0); 2059 } 2060 2061 static int 2062 witness_proc_has_locks(struct proc *p) 2063 { 2064 struct thread *td; 2065 2066 FOREACH_THREAD_IN_PROC(p, td) { 2067 if (witness_thread_has_locks(td)) 2068 return (1); 2069 } 2070 return (0); 2071 } 2072 #endif 2073 2074 int 2075 witness_list_locks(struct lock_list_entry **lock_list) 2076 { 2077 struct lock_list_entry *lle; 2078 int i, nheld; 2079 2080 nheld = 0; 2081 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2082 for (i = lle->ll_count - 1; i >= 0; i--) { 2083 witness_list_lock(&lle->ll_children[i]); 2084 nheld++; 2085 } 2086 return (nheld); 2087 } 2088 2089 /* 2090 * This is a bit risky at best. We call this function when we have timed 2091 * out acquiring a spin lock, and we assume that the other CPU is stuck 2092 * with this lock held. So, we go groveling around in the other CPU's 2093 * per-cpu data to try to find the lock instance for this spin lock to 2094 * see when it was last acquired. 2095 */ 2096 void 2097 witness_display_spinlock(struct lock_object *lock, struct thread *owner) 2098 { 2099 struct lock_instance *instance; 2100 struct pcpu *pc; 2101 2102 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2103 return; 2104 pc = pcpu_find(owner->td_oncpu); 2105 instance = find_instance(pc->pc_spinlocks, lock); 2106 if (instance != NULL) 2107 witness_list_lock(instance); 2108 } 2109 2110 void 2111 witness_save(struct lock_object *lock, const char **filep, int *linep) 2112 { 2113 struct lock_list_entry *lock_list; 2114 struct lock_instance *instance; 2115 struct lock_class *class; 2116 2117 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2118 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2119 return; 2120 class = LOCK_CLASS(lock); 2121 if (class->lc_flags & LC_SLEEPLOCK) 2122 lock_list = curthread->td_sleeplocks; 2123 else { 2124 if (witness_skipspin) 2125 return; 2126 lock_list = PCPU_GET(spinlocks); 2127 } 2128 instance = find_instance(lock_list, lock); 2129 if (instance == NULL) 2130 panic("%s: lock (%s) %s not locked", __func__, 2131 class->lc_name, lock->lo_name); 2132 *filep = instance->li_file; 2133 *linep = instance->li_line; 2134 } 2135 2136 void 2137 witness_restore(struct lock_object *lock, const char *file, int line) 2138 { 2139 struct lock_list_entry *lock_list; 2140 struct lock_instance *instance; 2141 struct lock_class *class; 2142 2143 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2144 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2145 return; 2146 class = LOCK_CLASS(lock); 2147 if (class->lc_flags & LC_SLEEPLOCK) 2148 lock_list = curthread->td_sleeplocks; 2149 else { 2150 if (witness_skipspin) 2151 return; 2152 lock_list = PCPU_GET(spinlocks); 2153 } 2154 instance = find_instance(lock_list, lock); 2155 if (instance == NULL) 2156 panic("%s: lock (%s) %s not locked", __func__, 2157 class->lc_name, lock->lo_name); 2158 lock->lo_witness->w_file = file; 2159 lock->lo_witness->w_line = line; 2160 instance->li_file = file; 2161 instance->li_line = line; 2162 } 2163 2164 void 2165 witness_assert(struct lock_object *lock, int flags, const char *file, int line) 2166 { 2167 #ifdef INVARIANT_SUPPORT 2168 struct lock_instance *instance; 2169 struct lock_class *class; 2170 2171 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2172 return; 2173 class = LOCK_CLASS(lock); 2174 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2175 instance = find_instance(curthread->td_sleeplocks, lock); 2176 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2177 instance = find_instance(PCPU_GET(spinlocks), lock); 2178 else { 2179 panic("Lock (%s) %s is not sleep or spin!", 2180 class->lc_name, lock->lo_name); 2181 } 2182 file = fixup_filename(file); 2183 switch (flags) { 2184 case LA_UNLOCKED: 2185 if (instance != NULL) 2186 panic("Lock (%s) %s locked @ %s:%d.", 2187 class->lc_name, lock->lo_name, file, line); 2188 break; 2189 case LA_LOCKED: 2190 case LA_LOCKED | LA_RECURSED: 2191 case LA_LOCKED | LA_NOTRECURSED: 2192 case LA_SLOCKED: 2193 case LA_SLOCKED | LA_RECURSED: 2194 case LA_SLOCKED | LA_NOTRECURSED: 2195 case LA_XLOCKED: 2196 case LA_XLOCKED | LA_RECURSED: 2197 case LA_XLOCKED | LA_NOTRECURSED: 2198 if (instance == NULL) { 2199 panic("Lock (%s) %s not locked @ %s:%d.", 2200 class->lc_name, lock->lo_name, file, line); 2201 break; 2202 } 2203 if ((flags & LA_XLOCKED) != 0 && 2204 (instance->li_flags & LI_EXCLUSIVE) == 0) 2205 panic("Lock (%s) %s not exclusively locked @ %s:%d.", 2206 class->lc_name, lock->lo_name, file, line); 2207 if ((flags & LA_SLOCKED) != 0 && 2208 (instance->li_flags & LI_EXCLUSIVE) != 0) 2209 panic("Lock (%s) %s exclusively locked @ %s:%d.", 2210 class->lc_name, lock->lo_name, file, line); 2211 if ((flags & LA_RECURSED) != 0 && 2212 (instance->li_flags & LI_RECURSEMASK) == 0) 2213 panic("Lock (%s) %s not recursed @ %s:%d.", 2214 class->lc_name, lock->lo_name, file, line); 2215 if ((flags & LA_NOTRECURSED) != 0 && 2216 (instance->li_flags & LI_RECURSEMASK) != 0) 2217 panic("Lock (%s) %s recursed @ %s:%d.", 2218 class->lc_name, lock->lo_name, file, line); 2219 break; 2220 default: 2221 panic("Invalid lock assertion at %s:%d.", file, line); 2222 2223 } 2224 #endif /* INVARIANT_SUPPORT */ 2225 } 2226 2227 #ifdef DDB 2228 static void 2229 witness_ddb_list(struct thread *td) 2230 { 2231 2232 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2233 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2234 2235 if (witness_watch < 1) 2236 return; 2237 2238 witness_list_locks(&td->td_sleeplocks); 2239 2240 /* 2241 * We only handle spinlocks if td == curthread. This is somewhat broken 2242 * if td is currently executing on some other CPU and holds spin locks 2243 * as we won't display those locks. If we had a MI way of getting 2244 * the per-cpu data for a given cpu then we could use 2245 * td->td_oncpu to get the list of spinlocks for this thread 2246 * and "fix" this. 2247 * 2248 * That still wouldn't really fix this unless we locked the scheduler 2249 * lock or stopped the other CPU to make sure it wasn't changing the 2250 * list out from under us. It is probably best to just not try to 2251 * handle threads on other CPU's for now. 2252 */ 2253 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2254 witness_list_locks(PCPU_PTR(spinlocks)); 2255 } 2256 2257 DB_SHOW_COMMAND(locks, db_witness_list) 2258 { 2259 struct thread *td; 2260 2261 if (have_addr) 2262 td = db_lookup_thread(addr, TRUE); 2263 else 2264 td = kdb_thread; 2265 witness_ddb_list(td); 2266 } 2267 2268 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2269 { 2270 struct thread *td; 2271 struct proc *p; 2272 2273 /* 2274 * It would be nice to list only threads and processes that actually 2275 * held sleep locks, but that information is currently not exported 2276 * by WITNESS. 2277 */ 2278 FOREACH_PROC_IN_SYSTEM(p) { 2279 if (!witness_proc_has_locks(p)) 2280 continue; 2281 FOREACH_THREAD_IN_PROC(p, td) { 2282 if (!witness_thread_has_locks(td)) 2283 continue; 2284 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2285 p->p_comm, td, td->td_tid); 2286 witness_ddb_list(td); 2287 } 2288 } 2289 } 2290 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2291 2292 DB_SHOW_COMMAND(witness, db_witness_display) 2293 { 2294 2295 witness_ddb_display(db_printf); 2296 } 2297 #endif 2298 2299 static int 2300 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2301 { 2302 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2303 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2304 struct sbuf *sb; 2305 u_int w_rmatrix1, w_rmatrix2; 2306 int error, generation, i, j; 2307 2308 tmp_data1 = NULL; 2309 tmp_data2 = NULL; 2310 tmp_w1 = NULL; 2311 tmp_w2 = NULL; 2312 if (witness_watch < 1) { 2313 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2314 return (error); 2315 } 2316 if (witness_cold) { 2317 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2318 return (error); 2319 } 2320 error = 0; 2321 sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND); 2322 if (sb == NULL) 2323 return (ENOMEM); 2324 2325 /* Allocate and init temporary storage space. */ 2326 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2327 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2328 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2329 M_WAITOK | M_ZERO); 2330 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2331 M_WAITOK | M_ZERO); 2332 stack_zero(&tmp_data1->wlod_stack); 2333 stack_zero(&tmp_data2->wlod_stack); 2334 2335 restart: 2336 mtx_lock_spin(&w_mtx); 2337 generation = w_generation; 2338 mtx_unlock_spin(&w_mtx); 2339 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2340 w_lohash.wloh_count); 2341 for (i = 1; i < w_max_used_index; i++) { 2342 mtx_lock_spin(&w_mtx); 2343 if (generation != w_generation) { 2344 mtx_unlock_spin(&w_mtx); 2345 2346 /* The graph has changed, try again. */ 2347 req->oldidx = 0; 2348 sbuf_clear(sb); 2349 goto restart; 2350 } 2351 2352 w1 = &w_data[i]; 2353 if (w1->w_reversed == 0) { 2354 mtx_unlock_spin(&w_mtx); 2355 continue; 2356 } 2357 2358 /* Copy w1 locally so we can release the spin lock. */ 2359 *tmp_w1 = *w1; 2360 mtx_unlock_spin(&w_mtx); 2361 2362 if (tmp_w1->w_reversed == 0) 2363 continue; 2364 for (j = 1; j < w_max_used_index; j++) { 2365 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2366 continue; 2367 2368 mtx_lock_spin(&w_mtx); 2369 if (generation != w_generation) { 2370 mtx_unlock_spin(&w_mtx); 2371 2372 /* The graph has changed, try again. */ 2373 req->oldidx = 0; 2374 sbuf_clear(sb); 2375 goto restart; 2376 } 2377 2378 w2 = &w_data[j]; 2379 data1 = witness_lock_order_get(w1, w2); 2380 data2 = witness_lock_order_get(w2, w1); 2381 2382 /* 2383 * Copy information locally so we can release the 2384 * spin lock. 2385 */ 2386 *tmp_w2 = *w2; 2387 w_rmatrix1 = (unsigned int)w_rmatrix[i][j]; 2388 w_rmatrix2 = (unsigned int)w_rmatrix[j][i]; 2389 2390 if (data1) { 2391 stack_zero(&tmp_data1->wlod_stack); 2392 stack_copy(&data1->wlod_stack, 2393 &tmp_data1->wlod_stack); 2394 } 2395 if (data2 && data2 != data1) { 2396 stack_zero(&tmp_data2->wlod_stack); 2397 stack_copy(&data2->wlod_stack, 2398 &tmp_data2->wlod_stack); 2399 } 2400 mtx_unlock_spin(&w_mtx); 2401 2402 sbuf_printf(sb, 2403 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2404 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2405 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2406 #if 0 2407 sbuf_printf(sb, 2408 "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n", 2409 tmp_w1->name, tmp_w2->w_name, w_rmatrix1, 2410 tmp_w2->name, tmp_w1->w_name, w_rmatrix2); 2411 #endif 2412 if (data1) { 2413 sbuf_printf(sb, 2414 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2415 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2416 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2417 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2418 sbuf_printf(sb, "\n"); 2419 } 2420 if (data2 && data2 != data1) { 2421 sbuf_printf(sb, 2422 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2423 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2424 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2425 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2426 sbuf_printf(sb, "\n"); 2427 } 2428 } 2429 } 2430 mtx_lock_spin(&w_mtx); 2431 if (generation != w_generation) { 2432 mtx_unlock_spin(&w_mtx); 2433 2434 /* 2435 * The graph changed while we were printing stack data, 2436 * try again. 2437 */ 2438 req->oldidx = 0; 2439 sbuf_clear(sb); 2440 goto restart; 2441 } 2442 mtx_unlock_spin(&w_mtx); 2443 2444 /* Free temporary storage space. */ 2445 free(tmp_data1, M_TEMP); 2446 free(tmp_data2, M_TEMP); 2447 free(tmp_w1, M_TEMP); 2448 free(tmp_w2, M_TEMP); 2449 2450 sbuf_finish(sb); 2451 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2452 sbuf_delete(sb); 2453 2454 return (error); 2455 } 2456 2457 static int 2458 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2459 { 2460 struct witness *w; 2461 struct sbuf *sb; 2462 int error; 2463 2464 if (witness_watch < 1) { 2465 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2466 return (error); 2467 } 2468 if (witness_cold) { 2469 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2470 return (error); 2471 } 2472 error = 0; 2473 sb = sbuf_new(NULL, NULL, FULLGRAPH_SBUF_SIZE, SBUF_FIXEDLEN); 2474 if (sb == NULL) 2475 return (ENOMEM); 2476 sbuf_printf(sb, "\n"); 2477 2478 mtx_lock_spin(&w_mtx); 2479 STAILQ_FOREACH(w, &w_all, w_list) 2480 w->w_displayed = 0; 2481 STAILQ_FOREACH(w, &w_all, w_list) 2482 witness_add_fullgraph(sb, w); 2483 mtx_unlock_spin(&w_mtx); 2484 2485 /* 2486 * While using SBUF_FIXEDLEN, check if the sbuf overflowed. 2487 */ 2488 if (sbuf_overflowed(sb)) { 2489 sbuf_delete(sb); 2490 panic("%s: sbuf overflowed, bump FULLGRAPH_SBUF_SIZE value\n", 2491 __func__); 2492 } 2493 2494 /* 2495 * Close the sbuf and return to userland. 2496 */ 2497 sbuf_finish(sb); 2498 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2499 sbuf_delete(sb); 2500 2501 return (error); 2502 } 2503 2504 static int 2505 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2506 { 2507 int error, value; 2508 2509 value = witness_watch; 2510 error = sysctl_handle_int(oidp, &value, 0, req); 2511 if (error != 0 || req->newptr == NULL) 2512 return (error); 2513 if (value > 1 || value < -1 || 2514 (witness_watch == -1 && value != witness_watch)) 2515 return (EINVAL); 2516 witness_watch = value; 2517 return (0); 2518 } 2519 2520 static void 2521 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2522 { 2523 int i; 2524 2525 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2526 return; 2527 w->w_displayed = 1; 2528 2529 WITNESS_INDEX_ASSERT(w->w_index); 2530 for (i = 1; i <= w_max_used_index; i++) { 2531 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2532 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2533 w_data[i].w_name); 2534 witness_add_fullgraph(sb, &w_data[i]); 2535 } 2536 } 2537 } 2538 2539 /* 2540 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2541 * interprets the key as a string and reads until the null 2542 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2543 * hash value computed from the key. 2544 */ 2545 static uint32_t 2546 witness_hash_djb2(const uint8_t *key, uint32_t size) 2547 { 2548 unsigned int hash = 5381; 2549 int i; 2550 2551 /* hash = hash * 33 + key[i] */ 2552 if (size) 2553 for (i = 0; i < size; i++) 2554 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2555 else 2556 for (i = 0; key[i] != 0; i++) 2557 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2558 2559 return (hash); 2560 } 2561 2562 2563 /* 2564 * Initializes the two witness hash tables. Called exactly once from 2565 * witness_initialize(). 2566 */ 2567 static void 2568 witness_init_hash_tables(void) 2569 { 2570 int i; 2571 2572 MPASS(witness_cold); 2573 2574 /* Initialize the hash tables. */ 2575 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2576 w_hash.wh_array[i] = NULL; 2577 2578 w_hash.wh_size = WITNESS_HASH_SIZE; 2579 w_hash.wh_count = 0; 2580 2581 /* Initialize the lock order data hash. */ 2582 w_lofree = NULL; 2583 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2584 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2585 w_lodata[i].wlod_next = w_lofree; 2586 w_lofree = &w_lodata[i]; 2587 } 2588 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2589 w_lohash.wloh_count = 0; 2590 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2591 w_lohash.wloh_array[i] = NULL; 2592 } 2593 2594 static struct witness * 2595 witness_hash_get(const char *key) 2596 { 2597 struct witness *w; 2598 uint32_t hash; 2599 2600 MPASS(key != NULL); 2601 if (witness_cold == 0) 2602 mtx_assert(&w_mtx, MA_OWNED); 2603 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2604 w = w_hash.wh_array[hash]; 2605 while (w != NULL) { 2606 if (strcmp(w->w_name, key) == 0) 2607 goto out; 2608 w = w->w_hash_next; 2609 } 2610 2611 out: 2612 return (w); 2613 } 2614 2615 static void 2616 witness_hash_put(struct witness *w) 2617 { 2618 uint32_t hash; 2619 2620 MPASS(w != NULL); 2621 MPASS(w->w_name != NULL); 2622 if (witness_cold == 0) 2623 mtx_assert(&w_mtx, MA_OWNED); 2624 KASSERT(witness_hash_get(w->w_name) == NULL, 2625 ("%s: trying to add a hash entry that already exists!", __func__)); 2626 KASSERT(w->w_hash_next == NULL, 2627 ("%s: w->w_hash_next != NULL", __func__)); 2628 2629 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2630 w->w_hash_next = w_hash.wh_array[hash]; 2631 w_hash.wh_array[hash] = w; 2632 w_hash.wh_count++; 2633 } 2634 2635 2636 static struct witness_lock_order_data * 2637 witness_lock_order_get(struct witness *parent, struct witness *child) 2638 { 2639 struct witness_lock_order_data *data = NULL; 2640 struct witness_lock_order_key key; 2641 unsigned int hash; 2642 2643 MPASS(parent != NULL && child != NULL); 2644 key.from = parent->w_index; 2645 key.to = child->w_index; 2646 WITNESS_INDEX_ASSERT(key.from); 2647 WITNESS_INDEX_ASSERT(key.to); 2648 if ((w_rmatrix[parent->w_index][child->w_index] 2649 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2650 goto out; 2651 2652 hash = witness_hash_djb2((const char*)&key, 2653 sizeof(key)) % w_lohash.wloh_size; 2654 data = w_lohash.wloh_array[hash]; 2655 while (data != NULL) { 2656 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2657 break; 2658 data = data->wlod_next; 2659 } 2660 2661 out: 2662 return (data); 2663 } 2664 2665 /* 2666 * Verify that parent and child have a known relationship, are not the same, 2667 * and child is actually a child of parent. This is done without w_mtx 2668 * to avoid contention in the common case. 2669 */ 2670 static int 2671 witness_lock_order_check(struct witness *parent, struct witness *child) 2672 { 2673 2674 if (parent != child && 2675 w_rmatrix[parent->w_index][child->w_index] 2676 & WITNESS_LOCK_ORDER_KNOWN && 2677 isitmychild(parent, child)) 2678 return (1); 2679 2680 return (0); 2681 } 2682 2683 static int 2684 witness_lock_order_add(struct witness *parent, struct witness *child) 2685 { 2686 struct witness_lock_order_data *data = NULL; 2687 struct witness_lock_order_key key; 2688 unsigned int hash; 2689 2690 MPASS(parent != NULL && child != NULL); 2691 key.from = parent->w_index; 2692 key.to = child->w_index; 2693 WITNESS_INDEX_ASSERT(key.from); 2694 WITNESS_INDEX_ASSERT(key.to); 2695 if (w_rmatrix[parent->w_index][child->w_index] 2696 & WITNESS_LOCK_ORDER_KNOWN) 2697 return (1); 2698 2699 hash = witness_hash_djb2((const char*)&key, 2700 sizeof(key)) % w_lohash.wloh_size; 2701 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 2702 data = w_lofree; 2703 if (data == NULL) 2704 return (0); 2705 w_lofree = data->wlod_next; 2706 data->wlod_next = w_lohash.wloh_array[hash]; 2707 data->wlod_key = key; 2708 w_lohash.wloh_array[hash] = data; 2709 w_lohash.wloh_count++; 2710 stack_zero(&data->wlod_stack); 2711 stack_save(&data->wlod_stack); 2712 return (1); 2713 } 2714 2715 /* Call this whenver the structure of the witness graph changes. */ 2716 static void 2717 witness_increment_graph_generation(void) 2718 { 2719 2720 if (witness_cold == 0) 2721 mtx_assert(&w_mtx, MA_OWNED); 2722 w_generation++; 2723 } 2724 2725 #ifdef KDB 2726 static void 2727 _witness_debugger(int cond, const char *msg) 2728 { 2729 2730 if (witness_trace && cond) 2731 kdb_backtrace(); 2732 if (witness_kdb && cond) 2733 kdb_enter(KDB_WHY_WITNESS, msg); 2734 } 2735 #endif 2736