xref: /freebsd/sys/kern/subr_witness.c (revision 53071ed1c96db7f89defc99c95b0ad1031d48f45)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 #define	LI_SLEEPABLE	0x00040000	/* Lock may be held while sleeping. */
135 
136 #ifndef WITNESS_COUNT
137 #define	WITNESS_COUNT 		1536
138 #endif
139 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
141 
142 /* Allocate 256 KB of stack data space */
143 #define	WITNESS_LO_DATA_COUNT	2048
144 
145 /* Prime, gives load factor of ~2 at full load */
146 #define	WITNESS_LO_HASH_SIZE	1021
147 
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define	LOCK_NCHILDREN	5
154 #define	LOCK_CHILDCOUNT	2048
155 
156 #define	MAX_W_NAME	64
157 
158 #define	FULLGRAPH_SBUF_SIZE	512
159 
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define	WITNESS_RELATED_MASK						\
172 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174 					  * observed. */
175 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178 
179 /* Descendant to ancestor flags */
180 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181 
182 /* Ancestor to descendant flags */
183 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184 
185 #define	WITNESS_INDEX_ASSERT(i)						\
186 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187 
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189 
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197 	struct lock_object	*li_lock;
198 	const char		*li_file;
199 	int			li_line;
200 	u_int			li_flags;
201 };
202 
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214 	struct lock_list_entry	*ll_next;
215 	struct lock_instance	ll_children[LOCK_NCHILDREN];
216 	u_int			ll_count;
217 };
218 
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224 	char  			w_name[MAX_W_NAME];
225 	uint32_t 		w_index;  /* Index in the relationship matrix */
226 	struct lock_class	*w_class;
227 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230 	const char		*w_file; /* File where last acquired */
231 	uint32_t 		w_line; /* Line where last acquired */
232 	uint32_t 		w_refcount;
233 	uint16_t 		w_num_ancestors; /* direct/indirect
234 						  * ancestor count */
235 	uint16_t 		w_num_descendants; /* direct/indirect
236 						    * descendant count */
237 	int16_t 		w_ddb_level;
238 	unsigned		w_displayed:1;
239 	unsigned		w_reversed:1;
240 };
241 
242 STAILQ_HEAD(witness_list, witness);
243 
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249 	struct witness	*wh_array[WITNESS_HASH_SIZE];
250 	uint32_t	wh_size;
251 	uint32_t	wh_count;
252 };
253 
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258 	uint16_t	from;
259 	uint16_t	to;
260 };
261 
262 struct witness_lock_order_data {
263 	struct stack			wlod_stack;
264 	struct witness_lock_order_key	wlod_key;
265 	struct witness_lock_order_data	*wlod_next;
266 };
267 
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data).
272  */
273 struct witness_lock_order_hash {
274 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275 	u_int	wloh_size;
276 	u_int	wloh_count;
277 };
278 
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 
284 struct witness_pendhelp {
285 	const char		*wh_type;
286 	struct lock_object	*wh_lock;
287 };
288 
289 struct witness_order_list_entry {
290 	const char		*w_name;
291 	struct lock_class	*w_class;
292 };
293 
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301 
302 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305 
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310 
311 	return (a->from == b->from && a->to == b->to);
312 }
313 
314 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
315 		    const char *fname);
316 static void	adopt(struct witness *parent, struct witness *child);
317 static int	blessed(struct witness *, struct witness *);
318 static void	depart(struct witness *w);
319 static struct witness	*enroll(const char *description,
320 			    struct lock_class *lock_class);
321 static struct lock_instance	*find_instance(struct lock_list_entry *list,
322 				    const struct lock_object *lock);
323 static int	isitmychild(struct witness *parent, struct witness *child);
324 static int	isitmydescendant(struct witness *parent, struct witness *child);
325 static void	itismychild(struct witness *parent, struct witness *child);
326 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void	witness_ddb_compute_levels(void);
333 static void	witness_ddb_display(int(*)(const char *fmt, ...));
334 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335 		    struct witness *, int indent);
336 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337 		    struct witness_list *list);
338 static void	witness_ddb_level_descendants(struct witness *parent, int l);
339 static void	witness_ddb_list(struct thread *td);
340 #endif
341 static void	witness_debugger(int cond, const char *msg);
342 static void	witness_free(struct witness *m);
343 static struct witness	*witness_get(void);
344 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
345 static struct witness	*witness_hash_get(const char *key);
346 static void	witness_hash_put(struct witness *w);
347 static void	witness_init_hash_tables(void);
348 static void	witness_increment_graph_generation(void);
349 static void	witness_lock_list_free(struct lock_list_entry *lle);
350 static struct lock_list_entry	*witness_lock_list_get(void);
351 static int	witness_lock_order_add(struct witness *parent,
352 		    struct witness *child);
353 static int	witness_lock_order_check(struct witness *parent,
354 		    struct witness *child);
355 static struct witness_lock_order_data	*witness_lock_order_get(
356 					    struct witness *parent,
357 					    struct witness *child);
358 static void	witness_list_lock(struct lock_instance *instance,
359 		    int (*prnt)(const char *fmt, ...));
360 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
361 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
362 static void	witness_setflag(struct lock_object *lock, int flag, int set);
363 
364 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
365     "Witness Locking");
366 
367 /*
368  * If set to 0, lock order checking is disabled.  If set to -1,
369  * witness is completely disabled.  Otherwise witness performs full
370  * lock order checking for all locks.  At runtime, lock order checking
371  * may be toggled.  However, witness cannot be reenabled once it is
372  * completely disabled.
373  */
374 static int witness_watch = 1;
375 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
376     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
377 
378 #ifdef KDB
379 /*
380  * When KDB is enabled and witness_kdb is 1, it will cause the system
381  * to drop into kdebug() when:
382  *	- a lock hierarchy violation occurs
383  *	- locks are held when going to sleep.
384  */
385 #ifdef WITNESS_KDB
386 int	witness_kdb = 1;
387 #else
388 int	witness_kdb = 0;
389 #endif
390 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
391 #endif /* KDB */
392 
393 #if defined(DDB) || defined(KDB)
394 /*
395  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
396  * to print a stack trace:
397  *	- a lock hierarchy violation occurs
398  *	- locks are held when going to sleep.
399  */
400 int	witness_trace = 1;
401 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
402 #endif /* DDB || KDB */
403 
404 #ifdef WITNESS_SKIPSPIN
405 int	witness_skipspin = 1;
406 #else
407 int	witness_skipspin = 0;
408 #endif
409 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
410 
411 int badstack_sbuf_size;
412 
413 int witness_count = WITNESS_COUNT;
414 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
415     &witness_count, 0, "");
416 
417 /*
418  * Output channel for witness messages.  By default we print to the console.
419  */
420 enum witness_channel {
421 	WITNESS_CONSOLE,
422 	WITNESS_LOG,
423 	WITNESS_NONE,
424 };
425 
426 static enum witness_channel witness_channel = WITNESS_CONSOLE;
427 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
428     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
429     "Output channel for warnings");
430 
431 /*
432  * Call this to print out the relations between locks.
433  */
434 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
435     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
436 
437 /*
438  * Call this to print out the witness faulty stacks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
442 
443 static struct mtx w_mtx;
444 
445 /* w_list */
446 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
447 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
448 
449 /* w_typelist */
450 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
451 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
452 
453 /* lock list */
454 static struct lock_list_entry *w_lock_list_free = NULL;
455 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
456 static u_int pending_cnt;
457 
458 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
459 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
460 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
461 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
462     "");
463 
464 static struct witness *w_data;
465 static uint8_t **w_rmatrix;
466 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
467 static struct witness_hash w_hash;	/* The witness hash table. */
468 
469 /* The lock order data hash */
470 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
471 static struct witness_lock_order_data *w_lofree = NULL;
472 static struct witness_lock_order_hash w_lohash;
473 static int w_max_used_index = 0;
474 static unsigned int w_generation = 0;
475 static const char w_notrunning[] = "Witness not running\n";
476 static const char w_stillcold[] = "Witness is still cold\n";
477 #ifdef __i386__
478 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
479 #endif
480 
481 static struct witness_order_list_entry order_lists[] = {
482 	/*
483 	 * sx locks
484 	 */
485 	{ "proctree", &lock_class_sx },
486 	{ "allproc", &lock_class_sx },
487 	{ "allprison", &lock_class_sx },
488 	{ NULL, NULL },
489 	/*
490 	 * Various mutexes
491 	 */
492 	{ "Giant", &lock_class_mtx_sleep },
493 	{ "pipe mutex", &lock_class_mtx_sleep },
494 	{ "sigio lock", &lock_class_mtx_sleep },
495 	{ "process group", &lock_class_mtx_sleep },
496 #ifdef	HWPMC_HOOKS
497 	{ "pmc-sleep", &lock_class_mtx_sleep },
498 #endif
499 	{ "process lock", &lock_class_mtx_sleep },
500 	{ "session", &lock_class_mtx_sleep },
501 	{ "uidinfo hash", &lock_class_rw },
502 	{ "time lock", &lock_class_mtx_sleep },
503 	{ NULL, NULL },
504 	/*
505 	 * umtx
506 	 */
507 	{ "umtx lock", &lock_class_mtx_sleep },
508 	{ NULL, NULL },
509 	/*
510 	 * Sockets
511 	 */
512 	{ "accept", &lock_class_mtx_sleep },
513 	{ "so_snd", &lock_class_mtx_sleep },
514 	{ "so_rcv", &lock_class_mtx_sleep },
515 	{ "sellck", &lock_class_mtx_sleep },
516 	{ NULL, NULL },
517 	/*
518 	 * Routing
519 	 */
520 	{ "so_rcv", &lock_class_mtx_sleep },
521 	{ "radix node head", &lock_class_rm },
522 	{ "rtentry", &lock_class_mtx_sleep },
523 	{ "ifaddr", &lock_class_mtx_sleep },
524 	{ NULL, NULL },
525 	/*
526 	 * IPv4 multicast:
527 	 * protocol locks before interface locks, after UDP locks.
528 	 */
529 	{ "in_multi_sx", &lock_class_sx },
530 	{ "udpinp", &lock_class_rw },
531 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
532 	{ "igmp_mtx", &lock_class_mtx_sleep },
533 	{ "ifnet_rw", &lock_class_rw },
534 	{ "if_addr_lock", &lock_class_mtx_sleep },
535 	{ NULL, NULL },
536 	/*
537 	 * IPv6 multicast:
538 	 * protocol locks before interface locks, after UDP locks.
539 	 */
540 	{ "in6_multi_sx", &lock_class_sx },
541 	{ "udpinp", &lock_class_rw },
542 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
543 	{ "mld_mtx", &lock_class_mtx_sleep },
544 	{ "ifnet_rw", &lock_class_rw },
545 	{ "if_addr_lock", &lock_class_mtx_sleep },
546 	{ NULL, NULL },
547 	/*
548 	 * UNIX Domain Sockets
549 	 */
550 	{ "unp_link_rwlock", &lock_class_rw },
551 	{ "unp_list_lock", &lock_class_mtx_sleep },
552 	{ "unp", &lock_class_mtx_sleep },
553 	{ "so_snd", &lock_class_mtx_sleep },
554 	{ NULL, NULL },
555 	/*
556 	 * UDP/IP
557 	 */
558 	{ "udp", &lock_class_mtx_sleep },
559 	{ "udpinp", &lock_class_rw },
560 	{ "so_snd", &lock_class_mtx_sleep },
561 	{ NULL, NULL },
562 	/*
563 	 * TCP/IP
564 	 */
565 	{ "tcp", &lock_class_mtx_sleep },
566 	{ "tcpinp", &lock_class_rw },
567 	{ "so_snd", &lock_class_mtx_sleep },
568 	{ NULL, NULL },
569 	/*
570 	 * BPF
571 	 */
572 	{ "bpf global lock", &lock_class_sx },
573 	{ "bpf cdev lock", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 	/*
576 	 * NFS server
577 	 */
578 	{ "nfsd_mtx", &lock_class_mtx_sleep },
579 	{ "so_snd", &lock_class_mtx_sleep },
580 	{ NULL, NULL },
581 
582 	/*
583 	 * IEEE 802.11
584 	 */
585 	{ "802.11 com lock", &lock_class_mtx_sleep},
586 	{ NULL, NULL },
587 	/*
588 	 * Network drivers
589 	 */
590 	{ "network driver", &lock_class_mtx_sleep},
591 	{ NULL, NULL },
592 
593 	/*
594 	 * Netgraph
595 	 */
596 	{ "ng_node", &lock_class_mtx_sleep },
597 	{ "ng_worklist", &lock_class_mtx_sleep },
598 	{ NULL, NULL },
599 	/*
600 	 * CDEV
601 	 */
602 	{ "vm map (system)", &lock_class_mtx_sleep },
603 	{ "vnode interlock", &lock_class_mtx_sleep },
604 	{ "cdev", &lock_class_mtx_sleep },
605 	{ "devthrd", &lock_class_mtx_sleep },
606 	{ NULL, NULL },
607 	/*
608 	 * VM
609 	 */
610 	{ "vm map (user)", &lock_class_sx },
611 	{ "vm object", &lock_class_rw },
612 	{ "vm page", &lock_class_mtx_sleep },
613 	{ "pmap pv global", &lock_class_rw },
614 	{ "pmap", &lock_class_mtx_sleep },
615 	{ "pmap pv list", &lock_class_rw },
616 	{ "vm page free queue", &lock_class_mtx_sleep },
617 	{ "vm pagequeue", &lock_class_mtx_sleep },
618 	{ NULL, NULL },
619 	/*
620 	 * kqueue/VFS interaction
621 	 */
622 	{ "kqueue", &lock_class_mtx_sleep },
623 	{ "struct mount mtx", &lock_class_mtx_sleep },
624 	{ "vnode interlock", &lock_class_mtx_sleep },
625 	{ NULL, NULL },
626 	/*
627 	 * VFS namecache
628 	 */
629 	{ "ncvn", &lock_class_mtx_sleep },
630 	{ "ncbuc", &lock_class_rw },
631 	{ "vnode interlock", &lock_class_mtx_sleep },
632 	{ "ncneg", &lock_class_mtx_sleep },
633 	{ NULL, NULL },
634 	/*
635 	 * ZFS locking
636 	 */
637 	{ "dn->dn_mtx", &lock_class_sx },
638 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
639 	{ "db->db_mtx", &lock_class_sx },
640 	{ NULL, NULL },
641 	/*
642 	 * TCP log locks
643 	 */
644 	{ "TCP ID tree", &lock_class_rw },
645 	{ "tcp log id bucket", &lock_class_mtx_sleep },
646 	{ "tcpinp", &lock_class_rw },
647 	{ "TCP log expireq", &lock_class_mtx_sleep },
648 	{ NULL, NULL },
649 	/*
650 	 * spin locks
651 	 */
652 #ifdef SMP
653 	{ "ap boot", &lock_class_mtx_spin },
654 #endif
655 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
656 	{ "sio", &lock_class_mtx_spin },
657 #ifdef __i386__
658 	{ "cy", &lock_class_mtx_spin },
659 #endif
660 	{ "scc_hwmtx", &lock_class_mtx_spin },
661 	{ "uart_hwmtx", &lock_class_mtx_spin },
662 	{ "fast_taskqueue", &lock_class_mtx_spin },
663 	{ "intr table", &lock_class_mtx_spin },
664 	{ "process slock", &lock_class_mtx_spin },
665 	{ "syscons video lock", &lock_class_mtx_spin },
666 	{ "sleepq chain", &lock_class_mtx_spin },
667 	{ "rm_spinlock", &lock_class_mtx_spin },
668 	{ "turnstile chain", &lock_class_mtx_spin },
669 	{ "turnstile lock", &lock_class_mtx_spin },
670 	{ "sched lock", &lock_class_mtx_spin },
671 	{ "td_contested", &lock_class_mtx_spin },
672 	{ "callout", &lock_class_mtx_spin },
673 	{ "entropy harvest mutex", &lock_class_mtx_spin },
674 #ifdef SMP
675 	{ "smp rendezvous", &lock_class_mtx_spin },
676 #endif
677 #ifdef __powerpc__
678 	{ "tlb0", &lock_class_mtx_spin },
679 #endif
680 	{ NULL, NULL },
681 	{ "sched lock", &lock_class_mtx_spin },
682 #ifdef	HWPMC_HOOKS
683 	{ "pmc-per-proc", &lock_class_mtx_spin },
684 #endif
685 	{ NULL, NULL },
686 	/*
687 	 * leaf locks
688 	 */
689 	{ "intrcnt", &lock_class_mtx_spin },
690 	{ "icu", &lock_class_mtx_spin },
691 #ifdef __i386__
692 	{ "allpmaps", &lock_class_mtx_spin },
693 	{ "descriptor tables", &lock_class_mtx_spin },
694 #endif
695 	{ "clk", &lock_class_mtx_spin },
696 	{ "cpuset", &lock_class_mtx_spin },
697 	{ "mprof lock", &lock_class_mtx_spin },
698 	{ "zombie lock", &lock_class_mtx_spin },
699 	{ "ALD Queue", &lock_class_mtx_spin },
700 #if defined(__i386__) || defined(__amd64__)
701 	{ "pcicfg", &lock_class_mtx_spin },
702 	{ "NDIS thread lock", &lock_class_mtx_spin },
703 #endif
704 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
705 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
706 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
707 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
708 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
709 #ifdef	HWPMC_HOOKS
710 	{ "pmc-leaf", &lock_class_mtx_spin },
711 #endif
712 	{ "blocked lock", &lock_class_mtx_spin },
713 	{ NULL, NULL },
714 	{ NULL, NULL }
715 };
716 
717 /*
718  * Pairs of locks which have been blessed.  Witness does not complain about
719  * order problems with blessed lock pairs.  Please do not add an entry to the
720  * table without an explanatory comment.
721  */
722 static struct witness_blessed blessed_list[] = {
723 	/*
724 	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
725 	 * both lock orders, so a deadlock cannot happen as a result of this
726 	 * LOR.
727 	 */
728 	{ "dirhash",	"bufwait" },
729 
730 	/*
731 	 * A UFS vnode may be locked in vget() while a buffer belonging to the
732 	 * parent directory vnode is locked.
733 	 */
734 	{ "ufs",	"bufwait" },
735 };
736 
737 /*
738  * This global is set to 0 once it becomes safe to use the witness code.
739  */
740 static int witness_cold = 1;
741 
742 /*
743  * This global is set to 1 once the static lock orders have been enrolled
744  * so that a warning can be issued for any spin locks enrolled later.
745  */
746 static int witness_spin_warn = 0;
747 
748 /* Trim useless garbage from filenames. */
749 static const char *
750 fixup_filename(const char *file)
751 {
752 
753 	if (file == NULL)
754 		return (NULL);
755 	while (strncmp(file, "../", 3) == 0)
756 		file += 3;
757 	return (file);
758 }
759 
760 /*
761  * Calculate the size of early witness structures.
762  */
763 int
764 witness_startup_count(void)
765 {
766 	int sz;
767 
768 	sz = sizeof(struct witness) * witness_count;
769 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
770 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
771 	    (witness_count + 1);
772 
773 	return (sz);
774 }
775 
776 /*
777  * The WITNESS-enabled diagnostic code.  Note that the witness code does
778  * assume that the early boot is single-threaded at least until after this
779  * routine is completed.
780  */
781 void
782 witness_startup(void *mem)
783 {
784 	struct lock_object *lock;
785 	struct witness_order_list_entry *order;
786 	struct witness *w, *w1;
787 	uintptr_t p;
788 	int i;
789 
790 	p = (uintptr_t)mem;
791 	w_data = (void *)p;
792 	p += sizeof(struct witness) * witness_count;
793 
794 	w_rmatrix = (void *)p;
795 	p += sizeof(*w_rmatrix) * (witness_count + 1);
796 
797 	for (i = 0; i < witness_count + 1; i++) {
798 		w_rmatrix[i] = (void *)p;
799 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
800 	}
801 	badstack_sbuf_size = witness_count * 256;
802 
803 	/*
804 	 * We have to release Giant before initializing its witness
805 	 * structure so that WITNESS doesn't get confused.
806 	 */
807 	mtx_unlock(&Giant);
808 	mtx_assert(&Giant, MA_NOTOWNED);
809 
810 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
811 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
812 	    MTX_NOWITNESS | MTX_NOPROFILE);
813 	for (i = witness_count - 1; i >= 0; i--) {
814 		w = &w_data[i];
815 		memset(w, 0, sizeof(*w));
816 		w_data[i].w_index = i;	/* Witness index never changes. */
817 		witness_free(w);
818 	}
819 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
820 	    ("%s: Invalid list of free witness objects", __func__));
821 
822 	/* Witness with index 0 is not used to aid in debugging. */
823 	STAILQ_REMOVE_HEAD(&w_free, w_list);
824 	w_free_cnt--;
825 
826 	for (i = 0; i < witness_count; i++) {
827 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
828 		    (witness_count + 1));
829 	}
830 
831 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
832 		witness_lock_list_free(&w_locklistdata[i]);
833 	witness_init_hash_tables();
834 
835 	/* First add in all the specified order lists. */
836 	for (order = order_lists; order->w_name != NULL; order++) {
837 		w = enroll(order->w_name, order->w_class);
838 		if (w == NULL)
839 			continue;
840 		w->w_file = "order list";
841 		for (order++; order->w_name != NULL; order++) {
842 			w1 = enroll(order->w_name, order->w_class);
843 			if (w1 == NULL)
844 				continue;
845 			w1->w_file = "order list";
846 			itismychild(w, w1);
847 			w = w1;
848 		}
849 	}
850 	witness_spin_warn = 1;
851 
852 	/* Iterate through all locks and add them to witness. */
853 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
854 		lock = pending_locks[i].wh_lock;
855 		KASSERT(lock->lo_flags & LO_WITNESS,
856 		    ("%s: lock %s is on pending list but not LO_WITNESS",
857 		    __func__, lock->lo_name));
858 		lock->lo_witness = enroll(pending_locks[i].wh_type,
859 		    LOCK_CLASS(lock));
860 	}
861 
862 	/* Mark the witness code as being ready for use. */
863 	witness_cold = 0;
864 
865 	mtx_lock(&Giant);
866 }
867 
868 void
869 witness_init(struct lock_object *lock, const char *type)
870 {
871 	struct lock_class *class;
872 
873 	/* Various sanity checks. */
874 	class = LOCK_CLASS(lock);
875 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
876 	    (class->lc_flags & LC_RECURSABLE) == 0)
877 		kassert_panic("%s: lock (%s) %s can not be recursable",
878 		    __func__, class->lc_name, lock->lo_name);
879 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
880 	    (class->lc_flags & LC_SLEEPABLE) == 0)
881 		kassert_panic("%s: lock (%s) %s can not be sleepable",
882 		    __func__, class->lc_name, lock->lo_name);
883 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
884 	    (class->lc_flags & LC_UPGRADABLE) == 0)
885 		kassert_panic("%s: lock (%s) %s can not be upgradable",
886 		    __func__, class->lc_name, lock->lo_name);
887 
888 	/*
889 	 * If we shouldn't watch this lock, then just clear lo_witness.
890 	 * Otherwise, if witness_cold is set, then it is too early to
891 	 * enroll this lock, so defer it to witness_initialize() by adding
892 	 * it to the pending_locks list.  If it is not too early, then enroll
893 	 * the lock now.
894 	 */
895 	if (witness_watch < 1 || KERNEL_PANICKED() ||
896 	    (lock->lo_flags & LO_WITNESS) == 0)
897 		lock->lo_witness = NULL;
898 	else if (witness_cold) {
899 		pending_locks[pending_cnt].wh_lock = lock;
900 		pending_locks[pending_cnt++].wh_type = type;
901 		if (pending_cnt > WITNESS_PENDLIST)
902 			panic("%s: pending locks list is too small, "
903 			    "increase WITNESS_PENDLIST\n",
904 			    __func__);
905 	} else
906 		lock->lo_witness = enroll(type, class);
907 }
908 
909 void
910 witness_destroy(struct lock_object *lock)
911 {
912 	struct lock_class *class;
913 	struct witness *w;
914 
915 	class = LOCK_CLASS(lock);
916 
917 	if (witness_cold)
918 		panic("lock (%s) %s destroyed while witness_cold",
919 		    class->lc_name, lock->lo_name);
920 
921 	/* XXX: need to verify that no one holds the lock */
922 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
923 		return;
924 	w = lock->lo_witness;
925 
926 	mtx_lock_spin(&w_mtx);
927 	MPASS(w->w_refcount > 0);
928 	w->w_refcount--;
929 
930 	if (w->w_refcount == 0)
931 		depart(w);
932 	mtx_unlock_spin(&w_mtx);
933 }
934 
935 #ifdef DDB
936 static void
937 witness_ddb_compute_levels(void)
938 {
939 	struct witness *w;
940 
941 	/*
942 	 * First clear all levels.
943 	 */
944 	STAILQ_FOREACH(w, &w_all, w_list)
945 		w->w_ddb_level = -1;
946 
947 	/*
948 	 * Look for locks with no parents and level all their descendants.
949 	 */
950 	STAILQ_FOREACH(w, &w_all, w_list) {
951 
952 		/* If the witness has ancestors (is not a root), skip it. */
953 		if (w->w_num_ancestors > 0)
954 			continue;
955 		witness_ddb_level_descendants(w, 0);
956 	}
957 }
958 
959 static void
960 witness_ddb_level_descendants(struct witness *w, int l)
961 {
962 	int i;
963 
964 	if (w->w_ddb_level >= l)
965 		return;
966 
967 	w->w_ddb_level = l;
968 	l++;
969 
970 	for (i = 1; i <= w_max_used_index; i++) {
971 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
972 			witness_ddb_level_descendants(&w_data[i], l);
973 	}
974 }
975 
976 static void
977 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
978     struct witness *w, int indent)
979 {
980 	int i;
981 
982  	for (i = 0; i < indent; i++)
983  		prnt(" ");
984 	prnt("%s (type: %s, depth: %d, active refs: %d)",
985 	     w->w_name, w->w_class->lc_name,
986 	     w->w_ddb_level, w->w_refcount);
987  	if (w->w_displayed) {
988  		prnt(" -- (already displayed)\n");
989  		return;
990  	}
991  	w->w_displayed = 1;
992 	if (w->w_file != NULL && w->w_line != 0)
993 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
994 		    w->w_line);
995 	else
996 		prnt(" -- never acquired\n");
997 	indent++;
998 	WITNESS_INDEX_ASSERT(w->w_index);
999 	for (i = 1; i <= w_max_used_index; i++) {
1000 		if (db_pager_quit)
1001 			return;
1002 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1003 			witness_ddb_display_descendants(prnt, &w_data[i],
1004 			    indent);
1005 	}
1006 }
1007 
1008 static void
1009 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1010     struct witness_list *list)
1011 {
1012 	struct witness *w;
1013 
1014 	STAILQ_FOREACH(w, list, w_typelist) {
1015 		if (w->w_file == NULL || w->w_ddb_level > 0)
1016 			continue;
1017 
1018 		/* This lock has no anscestors - display its descendants. */
1019 		witness_ddb_display_descendants(prnt, w, 0);
1020 		if (db_pager_quit)
1021 			return;
1022 	}
1023 }
1024 
1025 static void
1026 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1027 {
1028 	struct witness *w;
1029 
1030 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1031 	witness_ddb_compute_levels();
1032 
1033 	/* Clear all the displayed flags. */
1034 	STAILQ_FOREACH(w, &w_all, w_list)
1035 		w->w_displayed = 0;
1036 
1037 	/*
1038 	 * First, handle sleep locks which have been acquired at least
1039 	 * once.
1040 	 */
1041 	prnt("Sleep locks:\n");
1042 	witness_ddb_display_list(prnt, &w_sleep);
1043 	if (db_pager_quit)
1044 		return;
1045 
1046 	/*
1047 	 * Now do spin locks which have been acquired at least once.
1048 	 */
1049 	prnt("\nSpin locks:\n");
1050 	witness_ddb_display_list(prnt, &w_spin);
1051 	if (db_pager_quit)
1052 		return;
1053 
1054 	/*
1055 	 * Finally, any locks which have not been acquired yet.
1056 	 */
1057 	prnt("\nLocks which were never acquired:\n");
1058 	STAILQ_FOREACH(w, &w_all, w_list) {
1059 		if (w->w_file != NULL || w->w_refcount == 0)
1060 			continue;
1061 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1062 		    w->w_class->lc_name, w->w_ddb_level);
1063 		if (db_pager_quit)
1064 			return;
1065 	}
1066 }
1067 #endif /* DDB */
1068 
1069 int
1070 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1071 {
1072 
1073 	if (witness_watch == -1 || KERNEL_PANICKED())
1074 		return (0);
1075 
1076 	/* Require locks that witness knows about. */
1077 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1078 	    lock2->lo_witness == NULL)
1079 		return (EINVAL);
1080 
1081 	mtx_assert(&w_mtx, MA_NOTOWNED);
1082 	mtx_lock_spin(&w_mtx);
1083 
1084 	/*
1085 	 * If we already have either an explicit or implied lock order that
1086 	 * is the other way around, then return an error.
1087 	 */
1088 	if (witness_watch &&
1089 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1090 		mtx_unlock_spin(&w_mtx);
1091 		return (EDOOFUS);
1092 	}
1093 
1094 	/* Try to add the new order. */
1095 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1096 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1097 	itismychild(lock1->lo_witness, lock2->lo_witness);
1098 	mtx_unlock_spin(&w_mtx);
1099 	return (0);
1100 }
1101 
1102 void
1103 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1104     int line, struct lock_object *interlock)
1105 {
1106 	struct lock_list_entry *lock_list, *lle;
1107 	struct lock_instance *lock1, *lock2, *plock;
1108 	struct lock_class *class, *iclass;
1109 	struct witness *w, *w1;
1110 	struct thread *td;
1111 	int i, j;
1112 
1113 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1114 	    KERNEL_PANICKED())
1115 		return;
1116 
1117 	w = lock->lo_witness;
1118 	class = LOCK_CLASS(lock);
1119 	td = curthread;
1120 
1121 	if (class->lc_flags & LC_SLEEPLOCK) {
1122 
1123 		/*
1124 		 * Since spin locks include a critical section, this check
1125 		 * implicitly enforces a lock order of all sleep locks before
1126 		 * all spin locks.
1127 		 */
1128 		if (td->td_critnest != 0 && !kdb_active)
1129 			kassert_panic("acquiring blockable sleep lock with "
1130 			    "spinlock or critical section held (%s) %s @ %s:%d",
1131 			    class->lc_name, lock->lo_name,
1132 			    fixup_filename(file), line);
1133 
1134 		/*
1135 		 * If this is the first lock acquired then just return as
1136 		 * no order checking is needed.
1137 		 */
1138 		lock_list = td->td_sleeplocks;
1139 		if (lock_list == NULL || lock_list->ll_count == 0)
1140 			return;
1141 	} else {
1142 
1143 		/*
1144 		 * If this is the first lock, just return as no order
1145 		 * checking is needed.  Avoid problems with thread
1146 		 * migration pinning the thread while checking if
1147 		 * spinlocks are held.  If at least one spinlock is held
1148 		 * the thread is in a safe path and it is allowed to
1149 		 * unpin it.
1150 		 */
1151 		sched_pin();
1152 		lock_list = PCPU_GET(spinlocks);
1153 		if (lock_list == NULL || lock_list->ll_count == 0) {
1154 			sched_unpin();
1155 			return;
1156 		}
1157 		sched_unpin();
1158 	}
1159 
1160 	/*
1161 	 * Check to see if we are recursing on a lock we already own.  If
1162 	 * so, make sure that we don't mismatch exclusive and shared lock
1163 	 * acquires.
1164 	 */
1165 	lock1 = find_instance(lock_list, lock);
1166 	if (lock1 != NULL) {
1167 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1168 		    (flags & LOP_EXCLUSIVE) == 0) {
1169 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1170 			    class->lc_name, lock->lo_name,
1171 			    fixup_filename(file), line);
1172 			witness_output("while exclusively locked from %s:%d\n",
1173 			    fixup_filename(lock1->li_file), lock1->li_line);
1174 			kassert_panic("excl->share");
1175 		}
1176 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1177 		    (flags & LOP_EXCLUSIVE) != 0) {
1178 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1179 			    class->lc_name, lock->lo_name,
1180 			    fixup_filename(file), line);
1181 			witness_output("while share locked from %s:%d\n",
1182 			    fixup_filename(lock1->li_file), lock1->li_line);
1183 			kassert_panic("share->excl");
1184 		}
1185 		return;
1186 	}
1187 
1188 	/* Warn if the interlock is not locked exactly once. */
1189 	if (interlock != NULL) {
1190 		iclass = LOCK_CLASS(interlock);
1191 		lock1 = find_instance(lock_list, interlock);
1192 		if (lock1 == NULL)
1193 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1194 			    iclass->lc_name, interlock->lo_name,
1195 			    fixup_filename(file), line);
1196 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1197 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1198 			    iclass->lc_name, interlock->lo_name,
1199 			    fixup_filename(file), line);
1200 	}
1201 
1202 	/*
1203 	 * Find the previously acquired lock, but ignore interlocks.
1204 	 */
1205 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1206 	if (interlock != NULL && plock->li_lock == interlock) {
1207 		if (lock_list->ll_count > 1)
1208 			plock =
1209 			    &lock_list->ll_children[lock_list->ll_count - 2];
1210 		else {
1211 			lle = lock_list->ll_next;
1212 
1213 			/*
1214 			 * The interlock is the only lock we hold, so
1215 			 * simply return.
1216 			 */
1217 			if (lle == NULL)
1218 				return;
1219 			plock = &lle->ll_children[lle->ll_count - 1];
1220 		}
1221 	}
1222 
1223 	/*
1224 	 * Try to perform most checks without a lock.  If this succeeds we
1225 	 * can skip acquiring the lock and return success.  Otherwise we redo
1226 	 * the check with the lock held to handle races with concurrent updates.
1227 	 */
1228 	w1 = plock->li_lock->lo_witness;
1229 	if (witness_lock_order_check(w1, w))
1230 		return;
1231 
1232 	mtx_lock_spin(&w_mtx);
1233 	if (witness_lock_order_check(w1, w)) {
1234 		mtx_unlock_spin(&w_mtx);
1235 		return;
1236 	}
1237 	witness_lock_order_add(w1, w);
1238 
1239 	/*
1240 	 * Check for duplicate locks of the same type.  Note that we only
1241 	 * have to check for this on the last lock we just acquired.  Any
1242 	 * other cases will be caught as lock order violations.
1243 	 */
1244 	if (w1 == w) {
1245 		i = w->w_index;
1246 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1247 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1248 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1249 			w->w_reversed = 1;
1250 			mtx_unlock_spin(&w_mtx);
1251 			witness_output(
1252 			    "acquiring duplicate lock of same type: \"%s\"\n",
1253 			    w->w_name);
1254 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1255 			    fixup_filename(plock->li_file), plock->li_line);
1256 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1257 			    fixup_filename(file), line);
1258 			witness_debugger(1, __func__);
1259 		} else
1260 			mtx_unlock_spin(&w_mtx);
1261 		return;
1262 	}
1263 	mtx_assert(&w_mtx, MA_OWNED);
1264 
1265 	/*
1266 	 * If we know that the lock we are acquiring comes after
1267 	 * the lock we most recently acquired in the lock order tree,
1268 	 * then there is no need for any further checks.
1269 	 */
1270 	if (isitmychild(w1, w))
1271 		goto out;
1272 
1273 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1274 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1275 
1276 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1277 			lock1 = &lle->ll_children[i];
1278 
1279 			/*
1280 			 * Ignore the interlock.
1281 			 */
1282 			if (interlock == lock1->li_lock)
1283 				continue;
1284 
1285 			/*
1286 			 * If this lock doesn't undergo witness checking,
1287 			 * then skip it.
1288 			 */
1289 			w1 = lock1->li_lock->lo_witness;
1290 			if (w1 == NULL) {
1291 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1292 				    ("lock missing witness structure"));
1293 				continue;
1294 			}
1295 
1296 			/*
1297 			 * If we are locking Giant and this is a sleepable
1298 			 * lock, then skip it.
1299 			 */
1300 			if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1301 			    lock == &Giant.lock_object)
1302 				continue;
1303 
1304 			/*
1305 			 * If we are locking a sleepable lock and this lock
1306 			 * is Giant, then skip it.
1307 			 */
1308 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1309 			    (flags & LOP_NOSLEEP) == 0 &&
1310 			    lock1->li_lock == &Giant.lock_object)
1311 				continue;
1312 
1313 			/*
1314 			 * If we are locking a sleepable lock and this lock
1315 			 * isn't sleepable, we want to treat it as a lock
1316 			 * order violation to enfore a general lock order of
1317 			 * sleepable locks before non-sleepable locks.
1318 			 */
1319 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1320 			    (flags & LOP_NOSLEEP) == 0 &&
1321 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1322 				goto reversal;
1323 
1324 			/*
1325 			 * If we are locking Giant and this is a non-sleepable
1326 			 * lock, then treat it as a reversal.
1327 			 */
1328 			if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1329 			    lock == &Giant.lock_object)
1330 				goto reversal;
1331 
1332 			/*
1333 			 * Check the lock order hierarchy for a reveresal.
1334 			 */
1335 			if (!isitmydescendant(w, w1))
1336 				continue;
1337 		reversal:
1338 
1339 			/*
1340 			 * We have a lock order violation, check to see if it
1341 			 * is allowed or has already been yelled about.
1342 			 */
1343 
1344 			/* Bail if this violation is known */
1345 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1346 				goto out;
1347 
1348 			/* Record this as a violation */
1349 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1350 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1351 			w->w_reversed = w1->w_reversed = 1;
1352 			witness_increment_graph_generation();
1353 
1354 			/*
1355 			 * If the lock order is blessed, bail before logging
1356 			 * anything.  We don't look for other lock order
1357 			 * violations though, which may be a bug.
1358 			 */
1359 			if (blessed(w, w1))
1360 				goto out;
1361 			mtx_unlock_spin(&w_mtx);
1362 
1363 #ifdef WITNESS_NO_VNODE
1364 			/*
1365 			 * There are known LORs between VNODE locks. They are
1366 			 * not an indication of a bug. VNODE locks are flagged
1367 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1368 			 * is between 2 VNODE locks.
1369 			 */
1370 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1371 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1372 				return;
1373 #endif
1374 
1375 			/*
1376 			 * Ok, yell about it.
1377 			 */
1378 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1379 			    (flags & LOP_NOSLEEP) == 0 &&
1380 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1381 				witness_output(
1382 		"lock order reversal: (sleepable after non-sleepable)\n");
1383 			else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1384 			    && lock == &Giant.lock_object)
1385 				witness_output(
1386 		"lock order reversal: (Giant after non-sleepable)\n");
1387 			else
1388 				witness_output("lock order reversal:\n");
1389 
1390 			/*
1391 			 * Try to locate an earlier lock with
1392 			 * witness w in our list.
1393 			 */
1394 			do {
1395 				lock2 = &lle->ll_children[i];
1396 				MPASS(lock2->li_lock != NULL);
1397 				if (lock2->li_lock->lo_witness == w)
1398 					break;
1399 				if (i == 0 && lle->ll_next != NULL) {
1400 					lle = lle->ll_next;
1401 					i = lle->ll_count - 1;
1402 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1403 				} else
1404 					i--;
1405 			} while (i >= 0);
1406 			if (i < 0) {
1407 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1408 				    lock1->li_lock, lock1->li_lock->lo_name,
1409 				    w1->w_name, fixup_filename(lock1->li_file),
1410 				    lock1->li_line);
1411 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1412 				    lock->lo_name, w->w_name,
1413 				    fixup_filename(file), line);
1414 			} else {
1415 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1416 				    lock2->li_lock, lock2->li_lock->lo_name,
1417 				    lock2->li_lock->lo_witness->w_name,
1418 				    fixup_filename(lock2->li_file),
1419 				    lock2->li_line);
1420 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1421 				    lock1->li_lock, lock1->li_lock->lo_name,
1422 				    w1->w_name, fixup_filename(lock1->li_file),
1423 				    lock1->li_line);
1424 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1425 				    lock->lo_name, w->w_name,
1426 				    fixup_filename(file), line);
1427 			}
1428 			witness_debugger(1, __func__);
1429 			return;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * If requested, build a new lock order.  However, don't build a new
1435 	 * relationship between a sleepable lock and Giant if it is in the
1436 	 * wrong direction.  The correct lock order is that sleepable locks
1437 	 * always come before Giant.
1438 	 */
1439 	if (flags & LOP_NEWORDER &&
1440 	    !(plock->li_lock == &Giant.lock_object &&
1441 	    (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1442 	    (flags & LOP_NOSLEEP) == 0)) {
1443 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1444 		    w->w_name, plock->li_lock->lo_witness->w_name);
1445 		itismychild(plock->li_lock->lo_witness, w);
1446 	}
1447 out:
1448 	mtx_unlock_spin(&w_mtx);
1449 }
1450 
1451 void
1452 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1453 {
1454 	struct lock_list_entry **lock_list, *lle;
1455 	struct lock_instance *instance;
1456 	struct witness *w;
1457 	struct thread *td;
1458 
1459 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1460 	    KERNEL_PANICKED())
1461 		return;
1462 	w = lock->lo_witness;
1463 	td = curthread;
1464 
1465 	/* Determine lock list for this lock. */
1466 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1467 		lock_list = &td->td_sleeplocks;
1468 	else
1469 		lock_list = PCPU_PTR(spinlocks);
1470 
1471 	/* Check to see if we are recursing on a lock we already own. */
1472 	instance = find_instance(*lock_list, lock);
1473 	if (instance != NULL) {
1474 		instance->li_flags++;
1475 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1476 		    td->td_proc->p_pid, lock->lo_name,
1477 		    instance->li_flags & LI_RECURSEMASK);
1478 		instance->li_file = file;
1479 		instance->li_line = line;
1480 		return;
1481 	}
1482 
1483 	/* Update per-witness last file and line acquire. */
1484 	w->w_file = file;
1485 	w->w_line = line;
1486 
1487 	/* Find the next open lock instance in the list and fill it. */
1488 	lle = *lock_list;
1489 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1490 		lle = witness_lock_list_get();
1491 		if (lle == NULL)
1492 			return;
1493 		lle->ll_next = *lock_list;
1494 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1495 		    td->td_proc->p_pid, lle);
1496 		*lock_list = lle;
1497 	}
1498 	instance = &lle->ll_children[lle->ll_count++];
1499 	instance->li_lock = lock;
1500 	instance->li_line = line;
1501 	instance->li_file = file;
1502 	instance->li_flags = 0;
1503 	if ((flags & LOP_EXCLUSIVE) != 0)
1504 		instance->li_flags |= LI_EXCLUSIVE;
1505 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1506 		instance->li_flags |= LI_SLEEPABLE;
1507 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1508 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1509 }
1510 
1511 void
1512 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1513 {
1514 	struct lock_instance *instance;
1515 	struct lock_class *class;
1516 
1517 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1518 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1519 		return;
1520 	class = LOCK_CLASS(lock);
1521 	if (witness_watch) {
1522 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1523 			kassert_panic(
1524 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1525 			    class->lc_name, lock->lo_name,
1526 			    fixup_filename(file), line);
1527 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1528 			kassert_panic(
1529 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1530 			    class->lc_name, lock->lo_name,
1531 			    fixup_filename(file), line);
1532 	}
1533 	instance = find_instance(curthread->td_sleeplocks, lock);
1534 	if (instance == NULL) {
1535 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1536 		    class->lc_name, lock->lo_name,
1537 		    fixup_filename(file), line);
1538 		return;
1539 	}
1540 	if (witness_watch) {
1541 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1542 			kassert_panic(
1543 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1544 			    class->lc_name, lock->lo_name,
1545 			    fixup_filename(file), line);
1546 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1547 			kassert_panic(
1548 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1549 			    class->lc_name, lock->lo_name,
1550 			    instance->li_flags & LI_RECURSEMASK,
1551 			    fixup_filename(file), line);
1552 	}
1553 	instance->li_flags |= LI_EXCLUSIVE;
1554 }
1555 
1556 void
1557 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1558     int line)
1559 {
1560 	struct lock_instance *instance;
1561 	struct lock_class *class;
1562 
1563 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1564 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1565 		return;
1566 	class = LOCK_CLASS(lock);
1567 	if (witness_watch) {
1568 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1569 			kassert_panic(
1570 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1571 			    class->lc_name, lock->lo_name,
1572 			    fixup_filename(file), line);
1573 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1574 			kassert_panic(
1575 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1576 			    class->lc_name, lock->lo_name,
1577 			    fixup_filename(file), line);
1578 	}
1579 	instance = find_instance(curthread->td_sleeplocks, lock);
1580 	if (instance == NULL) {
1581 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1582 		    class->lc_name, lock->lo_name,
1583 		    fixup_filename(file), line);
1584 		return;
1585 	}
1586 	if (witness_watch) {
1587 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1588 			kassert_panic(
1589 			    "downgrade of shared lock (%s) %s @ %s:%d",
1590 			    class->lc_name, lock->lo_name,
1591 			    fixup_filename(file), line);
1592 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1593 			kassert_panic(
1594 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1595 			    class->lc_name, lock->lo_name,
1596 			    instance->li_flags & LI_RECURSEMASK,
1597 			    fixup_filename(file), line);
1598 	}
1599 	instance->li_flags &= ~LI_EXCLUSIVE;
1600 }
1601 
1602 void
1603 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1604 {
1605 	struct lock_list_entry **lock_list, *lle;
1606 	struct lock_instance *instance;
1607 	struct lock_class *class;
1608 	struct thread *td;
1609 	register_t s;
1610 	int i, j;
1611 
1612 	if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1613 		return;
1614 	td = curthread;
1615 	class = LOCK_CLASS(lock);
1616 
1617 	/* Find lock instance associated with this lock. */
1618 	if (class->lc_flags & LC_SLEEPLOCK)
1619 		lock_list = &td->td_sleeplocks;
1620 	else
1621 		lock_list = PCPU_PTR(spinlocks);
1622 	lle = *lock_list;
1623 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1624 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1625 			instance = &(*lock_list)->ll_children[i];
1626 			if (instance->li_lock == lock)
1627 				goto found;
1628 		}
1629 
1630 	/*
1631 	 * When disabling WITNESS through witness_watch we could end up in
1632 	 * having registered locks in the td_sleeplocks queue.
1633 	 * We have to make sure we flush these queues, so just search for
1634 	 * eventual register locks and remove them.
1635 	 */
1636 	if (witness_watch > 0) {
1637 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1638 		    lock->lo_name, fixup_filename(file), line);
1639 		return;
1640 	} else {
1641 		return;
1642 	}
1643 found:
1644 
1645 	/* First, check for shared/exclusive mismatches. */
1646 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1647 	    (flags & LOP_EXCLUSIVE) == 0) {
1648 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1649 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1650 		witness_output("while exclusively locked from %s:%d\n",
1651 		    fixup_filename(instance->li_file), instance->li_line);
1652 		kassert_panic("excl->ushare");
1653 	}
1654 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1655 	    (flags & LOP_EXCLUSIVE) != 0) {
1656 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1657 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1658 		witness_output("while share locked from %s:%d\n",
1659 		    fixup_filename(instance->li_file),
1660 		    instance->li_line);
1661 		kassert_panic("share->uexcl");
1662 	}
1663 	/* If we are recursed, unrecurse. */
1664 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1665 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1666 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1667 		    instance->li_flags);
1668 		instance->li_flags--;
1669 		return;
1670 	}
1671 	/* The lock is now being dropped, check for NORELEASE flag */
1672 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1673 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1674 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1675 		kassert_panic("lock marked norelease");
1676 	}
1677 
1678 	/* Otherwise, remove this item from the list. */
1679 	s = intr_disable();
1680 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1681 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1682 	    (*lock_list)->ll_count - 1);
1683 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1684 		(*lock_list)->ll_children[j] =
1685 		    (*lock_list)->ll_children[j + 1];
1686 	(*lock_list)->ll_count--;
1687 	intr_restore(s);
1688 
1689 	/*
1690 	 * In order to reduce contention on w_mtx, we want to keep always an
1691 	 * head object into lists so that frequent allocation from the
1692 	 * free witness pool (and subsequent locking) is avoided.
1693 	 * In order to maintain the current code simple, when the head
1694 	 * object is totally unloaded it means also that we do not have
1695 	 * further objects in the list, so the list ownership needs to be
1696 	 * hand over to another object if the current head needs to be freed.
1697 	 */
1698 	if ((*lock_list)->ll_count == 0) {
1699 		if (*lock_list == lle) {
1700 			if (lle->ll_next == NULL)
1701 				return;
1702 		} else
1703 			lle = *lock_list;
1704 		*lock_list = lle->ll_next;
1705 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1706 		    td->td_proc->p_pid, lle);
1707 		witness_lock_list_free(lle);
1708 	}
1709 }
1710 
1711 void
1712 witness_thread_exit(struct thread *td)
1713 {
1714 	struct lock_list_entry *lle;
1715 	int i, n;
1716 
1717 	lle = td->td_sleeplocks;
1718 	if (lle == NULL || KERNEL_PANICKED())
1719 		return;
1720 	if (lle->ll_count != 0) {
1721 		for (n = 0; lle != NULL; lle = lle->ll_next)
1722 			for (i = lle->ll_count - 1; i >= 0; i--) {
1723 				if (n == 0)
1724 					witness_output(
1725 		    "Thread %p exiting with the following locks held:\n", td);
1726 				n++;
1727 				witness_list_lock(&lle->ll_children[i],
1728 				    witness_output);
1729 
1730 			}
1731 		kassert_panic(
1732 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1733 	}
1734 	witness_lock_list_free(lle);
1735 }
1736 
1737 /*
1738  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1739  * exempt Giant and sleepable locks from the checks as well.  If any
1740  * non-exempt locks are held, then a supplied message is printed to the
1741  * output channel along with a list of the offending locks.  If indicated in the
1742  * flags then a failure results in a panic as well.
1743  */
1744 int
1745 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1746 {
1747 	struct lock_list_entry *lock_list, *lle;
1748 	struct lock_instance *lock1;
1749 	struct thread *td;
1750 	va_list ap;
1751 	int i, n;
1752 
1753 	if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1754 		return (0);
1755 	n = 0;
1756 	td = curthread;
1757 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1758 		for (i = lle->ll_count - 1; i >= 0; i--) {
1759 			lock1 = &lle->ll_children[i];
1760 			if (lock1->li_lock == lock)
1761 				continue;
1762 			if (flags & WARN_GIANTOK &&
1763 			    lock1->li_lock == &Giant.lock_object)
1764 				continue;
1765 			if (flags & WARN_SLEEPOK &&
1766 			    (lock1->li_flags & LI_SLEEPABLE) != 0)
1767 				continue;
1768 			if (n == 0) {
1769 				va_start(ap, fmt);
1770 				vprintf(fmt, ap);
1771 				va_end(ap);
1772 				printf(" with the following %slocks held:\n",
1773 				    (flags & WARN_SLEEPOK) != 0 ?
1774 				    "non-sleepable " : "");
1775 			}
1776 			n++;
1777 			witness_list_lock(lock1, printf);
1778 		}
1779 
1780 	/*
1781 	 * Pin the thread in order to avoid problems with thread migration.
1782 	 * Once that all verifies are passed about spinlocks ownership,
1783 	 * the thread is in a safe path and it can be unpinned.
1784 	 */
1785 	sched_pin();
1786 	lock_list = PCPU_GET(spinlocks);
1787 	if (lock_list != NULL && lock_list->ll_count != 0) {
1788 		sched_unpin();
1789 
1790 		/*
1791 		 * We should only have one spinlock and as long as
1792 		 * the flags cannot match for this locks class,
1793 		 * check if the first spinlock is the one curthread
1794 		 * should hold.
1795 		 */
1796 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1797 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1798 		    lock1->li_lock == lock && n == 0)
1799 			return (0);
1800 
1801 		va_start(ap, fmt);
1802 		vprintf(fmt, ap);
1803 		va_end(ap);
1804 		printf(" with the following %slocks held:\n",
1805 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1806 		n += witness_list_locks(&lock_list, printf);
1807 	} else
1808 		sched_unpin();
1809 	if (flags & WARN_PANIC && n)
1810 		kassert_panic("%s", __func__);
1811 	else
1812 		witness_debugger(n, __func__);
1813 	return (n);
1814 }
1815 
1816 const char *
1817 witness_file(struct lock_object *lock)
1818 {
1819 	struct witness *w;
1820 
1821 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1822 		return ("?");
1823 	w = lock->lo_witness;
1824 	return (w->w_file);
1825 }
1826 
1827 int
1828 witness_line(struct lock_object *lock)
1829 {
1830 	struct witness *w;
1831 
1832 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1833 		return (0);
1834 	w = lock->lo_witness;
1835 	return (w->w_line);
1836 }
1837 
1838 static struct witness *
1839 enroll(const char *description, struct lock_class *lock_class)
1840 {
1841 	struct witness *w;
1842 
1843 	MPASS(description != NULL);
1844 
1845 	if (witness_watch == -1 || KERNEL_PANICKED())
1846 		return (NULL);
1847 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1848 		if (witness_skipspin)
1849 			return (NULL);
1850 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1851 		kassert_panic("lock class %s is not sleep or spin",
1852 		    lock_class->lc_name);
1853 		return (NULL);
1854 	}
1855 
1856 	mtx_lock_spin(&w_mtx);
1857 	w = witness_hash_get(description);
1858 	if (w)
1859 		goto found;
1860 	if ((w = witness_get()) == NULL)
1861 		return (NULL);
1862 	MPASS(strlen(description) < MAX_W_NAME);
1863 	strcpy(w->w_name, description);
1864 	w->w_class = lock_class;
1865 	w->w_refcount = 1;
1866 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1867 	if (lock_class->lc_flags & LC_SPINLOCK) {
1868 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1869 		w_spin_cnt++;
1870 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1871 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1872 		w_sleep_cnt++;
1873 	}
1874 
1875 	/* Insert new witness into the hash */
1876 	witness_hash_put(w);
1877 	witness_increment_graph_generation();
1878 	mtx_unlock_spin(&w_mtx);
1879 	return (w);
1880 found:
1881 	w->w_refcount++;
1882 	if (w->w_refcount == 1)
1883 		w->w_class = lock_class;
1884 	mtx_unlock_spin(&w_mtx);
1885 	if (lock_class != w->w_class)
1886 		kassert_panic(
1887 		    "lock (%s) %s does not match earlier (%s) lock",
1888 		    description, lock_class->lc_name,
1889 		    w->w_class->lc_name);
1890 	return (w);
1891 }
1892 
1893 static void
1894 depart(struct witness *w)
1895 {
1896 
1897 	MPASS(w->w_refcount == 0);
1898 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1899 		w_sleep_cnt--;
1900 	} else {
1901 		w_spin_cnt--;
1902 	}
1903 	/*
1904 	 * Set file to NULL as it may point into a loadable module.
1905 	 */
1906 	w->w_file = NULL;
1907 	w->w_line = 0;
1908 	witness_increment_graph_generation();
1909 }
1910 
1911 static void
1912 adopt(struct witness *parent, struct witness *child)
1913 {
1914 	int pi, ci, i, j;
1915 
1916 	if (witness_cold == 0)
1917 		mtx_assert(&w_mtx, MA_OWNED);
1918 
1919 	/* If the relationship is already known, there's no work to be done. */
1920 	if (isitmychild(parent, child))
1921 		return;
1922 
1923 	/* When the structure of the graph changes, bump up the generation. */
1924 	witness_increment_graph_generation();
1925 
1926 	/*
1927 	 * The hard part ... create the direct relationship, then propagate all
1928 	 * indirect relationships.
1929 	 */
1930 	pi = parent->w_index;
1931 	ci = child->w_index;
1932 	WITNESS_INDEX_ASSERT(pi);
1933 	WITNESS_INDEX_ASSERT(ci);
1934 	MPASS(pi != ci);
1935 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1936 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1937 
1938 	/*
1939 	 * If parent was not already an ancestor of child,
1940 	 * then we increment the descendant and ancestor counters.
1941 	 */
1942 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1943 		parent->w_num_descendants++;
1944 		child->w_num_ancestors++;
1945 	}
1946 
1947 	/*
1948 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1949 	 * an ancestor of 'pi' during this loop.
1950 	 */
1951 	for (i = 1; i <= w_max_used_index; i++) {
1952 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1953 		    (i != pi))
1954 			continue;
1955 
1956 		/* Find each descendant of 'i' and mark it as a descendant. */
1957 		for (j = 1; j <= w_max_used_index; j++) {
1958 
1959 			/*
1960 			 * Skip children that are already marked as
1961 			 * descendants of 'i'.
1962 			 */
1963 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1964 				continue;
1965 
1966 			/*
1967 			 * We are only interested in descendants of 'ci'. Note
1968 			 * that 'ci' itself is counted as a descendant of 'ci'.
1969 			 */
1970 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1971 			    (j != ci))
1972 				continue;
1973 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1974 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1975 			w_data[i].w_num_descendants++;
1976 			w_data[j].w_num_ancestors++;
1977 
1978 			/*
1979 			 * Make sure we aren't marking a node as both an
1980 			 * ancestor and descendant. We should have caught
1981 			 * this as a lock order reversal earlier.
1982 			 */
1983 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1984 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1985 				printf("witness rmatrix paradox! [%d][%d]=%d "
1986 				    "both ancestor and descendant\n",
1987 				    i, j, w_rmatrix[i][j]);
1988 				kdb_backtrace();
1989 				printf("Witness disabled.\n");
1990 				witness_watch = -1;
1991 			}
1992 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
1993 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
1994 				printf("witness rmatrix paradox! [%d][%d]=%d "
1995 				    "both ancestor and descendant\n",
1996 				    j, i, w_rmatrix[j][i]);
1997 				kdb_backtrace();
1998 				printf("Witness disabled.\n");
1999 				witness_watch = -1;
2000 			}
2001 		}
2002 	}
2003 }
2004 
2005 static void
2006 itismychild(struct witness *parent, struct witness *child)
2007 {
2008 	int unlocked;
2009 
2010 	MPASS(child != NULL && parent != NULL);
2011 	if (witness_cold == 0)
2012 		mtx_assert(&w_mtx, MA_OWNED);
2013 
2014 	if (!witness_lock_type_equal(parent, child)) {
2015 		if (witness_cold == 0) {
2016 			unlocked = 1;
2017 			mtx_unlock_spin(&w_mtx);
2018 		} else {
2019 			unlocked = 0;
2020 		}
2021 		kassert_panic(
2022 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2023 		    "the same lock type", __func__, parent->w_name,
2024 		    parent->w_class->lc_name, child->w_name,
2025 		    child->w_class->lc_name);
2026 		if (unlocked)
2027 			mtx_lock_spin(&w_mtx);
2028 	}
2029 	adopt(parent, child);
2030 }
2031 
2032 /*
2033  * Generic code for the isitmy*() functions. The rmask parameter is the
2034  * expected relationship of w1 to w2.
2035  */
2036 static int
2037 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2038 {
2039 	unsigned char r1, r2;
2040 	int i1, i2;
2041 
2042 	i1 = w1->w_index;
2043 	i2 = w2->w_index;
2044 	WITNESS_INDEX_ASSERT(i1);
2045 	WITNESS_INDEX_ASSERT(i2);
2046 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2047 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2048 
2049 	/* The flags on one better be the inverse of the flags on the other */
2050 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2051 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2052 		/* Don't squawk if we're potentially racing with an update. */
2053 		if (!mtx_owned(&w_mtx))
2054 			return (0);
2055 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2056 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2057 		    "w_rmatrix[%d][%d] == %hhx\n",
2058 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2059 		    i2, i1, r2);
2060 		kdb_backtrace();
2061 		printf("Witness disabled.\n");
2062 		witness_watch = -1;
2063 	}
2064 	return (r1 & rmask);
2065 }
2066 
2067 /*
2068  * Checks if @child is a direct child of @parent.
2069  */
2070 static int
2071 isitmychild(struct witness *parent, struct witness *child)
2072 {
2073 
2074 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2075 }
2076 
2077 /*
2078  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2079  */
2080 static int
2081 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2082 {
2083 
2084 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2085 	    __func__));
2086 }
2087 
2088 static int
2089 blessed(struct witness *w1, struct witness *w2)
2090 {
2091 	int i;
2092 	struct witness_blessed *b;
2093 
2094 	for (i = 0; i < nitems(blessed_list); i++) {
2095 		b = &blessed_list[i];
2096 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2097 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2098 				return (1);
2099 			continue;
2100 		}
2101 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2102 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2103 				return (1);
2104 	}
2105 	return (0);
2106 }
2107 
2108 static struct witness *
2109 witness_get(void)
2110 {
2111 	struct witness *w;
2112 	int index;
2113 
2114 	if (witness_cold == 0)
2115 		mtx_assert(&w_mtx, MA_OWNED);
2116 
2117 	if (witness_watch == -1) {
2118 		mtx_unlock_spin(&w_mtx);
2119 		return (NULL);
2120 	}
2121 	if (STAILQ_EMPTY(&w_free)) {
2122 		witness_watch = -1;
2123 		mtx_unlock_spin(&w_mtx);
2124 		printf("WITNESS: unable to allocate a new witness object\n");
2125 		return (NULL);
2126 	}
2127 	w = STAILQ_FIRST(&w_free);
2128 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2129 	w_free_cnt--;
2130 	index = w->w_index;
2131 	MPASS(index > 0 && index == w_max_used_index+1 &&
2132 	    index < witness_count);
2133 	bzero(w, sizeof(*w));
2134 	w->w_index = index;
2135 	if (index > w_max_used_index)
2136 		w_max_used_index = index;
2137 	return (w);
2138 }
2139 
2140 static void
2141 witness_free(struct witness *w)
2142 {
2143 
2144 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2145 	w_free_cnt++;
2146 }
2147 
2148 static struct lock_list_entry *
2149 witness_lock_list_get(void)
2150 {
2151 	struct lock_list_entry *lle;
2152 
2153 	if (witness_watch == -1)
2154 		return (NULL);
2155 	mtx_lock_spin(&w_mtx);
2156 	lle = w_lock_list_free;
2157 	if (lle == NULL) {
2158 		witness_watch = -1;
2159 		mtx_unlock_spin(&w_mtx);
2160 		printf("%s: witness exhausted\n", __func__);
2161 		return (NULL);
2162 	}
2163 	w_lock_list_free = lle->ll_next;
2164 	mtx_unlock_spin(&w_mtx);
2165 	bzero(lle, sizeof(*lle));
2166 	return (lle);
2167 }
2168 
2169 static void
2170 witness_lock_list_free(struct lock_list_entry *lle)
2171 {
2172 
2173 	mtx_lock_spin(&w_mtx);
2174 	lle->ll_next = w_lock_list_free;
2175 	w_lock_list_free = lle;
2176 	mtx_unlock_spin(&w_mtx);
2177 }
2178 
2179 static struct lock_instance *
2180 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2181 {
2182 	struct lock_list_entry *lle;
2183 	struct lock_instance *instance;
2184 	int i;
2185 
2186 	for (lle = list; lle != NULL; lle = lle->ll_next)
2187 		for (i = lle->ll_count - 1; i >= 0; i--) {
2188 			instance = &lle->ll_children[i];
2189 			if (instance->li_lock == lock)
2190 				return (instance);
2191 		}
2192 	return (NULL);
2193 }
2194 
2195 static void
2196 witness_list_lock(struct lock_instance *instance,
2197     int (*prnt)(const char *fmt, ...))
2198 {
2199 	struct lock_object *lock;
2200 
2201 	lock = instance->li_lock;
2202 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2203 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2204 	if (lock->lo_witness->w_name != lock->lo_name)
2205 		prnt(" (%s)", lock->lo_witness->w_name);
2206 	prnt(" r = %d (%p) locked @ %s:%d\n",
2207 	    instance->li_flags & LI_RECURSEMASK, lock,
2208 	    fixup_filename(instance->li_file), instance->li_line);
2209 }
2210 
2211 static int
2212 witness_output(const char *fmt, ...)
2213 {
2214 	va_list ap;
2215 	int ret;
2216 
2217 	va_start(ap, fmt);
2218 	ret = witness_voutput(fmt, ap);
2219 	va_end(ap);
2220 	return (ret);
2221 }
2222 
2223 static int
2224 witness_voutput(const char *fmt, va_list ap)
2225 {
2226 	int ret;
2227 
2228 	ret = 0;
2229 	switch (witness_channel) {
2230 	case WITNESS_CONSOLE:
2231 		ret = vprintf(fmt, ap);
2232 		break;
2233 	case WITNESS_LOG:
2234 		vlog(LOG_NOTICE, fmt, ap);
2235 		break;
2236 	case WITNESS_NONE:
2237 		break;
2238 	}
2239 	return (ret);
2240 }
2241 
2242 #ifdef DDB
2243 static int
2244 witness_thread_has_locks(struct thread *td)
2245 {
2246 
2247 	if (td->td_sleeplocks == NULL)
2248 		return (0);
2249 	return (td->td_sleeplocks->ll_count != 0);
2250 }
2251 
2252 static int
2253 witness_proc_has_locks(struct proc *p)
2254 {
2255 	struct thread *td;
2256 
2257 	FOREACH_THREAD_IN_PROC(p, td) {
2258 		if (witness_thread_has_locks(td))
2259 			return (1);
2260 	}
2261 	return (0);
2262 }
2263 #endif
2264 
2265 int
2266 witness_list_locks(struct lock_list_entry **lock_list,
2267     int (*prnt)(const char *fmt, ...))
2268 {
2269 	struct lock_list_entry *lle;
2270 	int i, nheld;
2271 
2272 	nheld = 0;
2273 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2274 		for (i = lle->ll_count - 1; i >= 0; i--) {
2275 			witness_list_lock(&lle->ll_children[i], prnt);
2276 			nheld++;
2277 		}
2278 	return (nheld);
2279 }
2280 
2281 /*
2282  * This is a bit risky at best.  We call this function when we have timed
2283  * out acquiring a spin lock, and we assume that the other CPU is stuck
2284  * with this lock held.  So, we go groveling around in the other CPU's
2285  * per-cpu data to try to find the lock instance for this spin lock to
2286  * see when it was last acquired.
2287  */
2288 void
2289 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2290     int (*prnt)(const char *fmt, ...))
2291 {
2292 	struct lock_instance *instance;
2293 	struct pcpu *pc;
2294 
2295 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2296 		return;
2297 	pc = pcpu_find(owner->td_oncpu);
2298 	instance = find_instance(pc->pc_spinlocks, lock);
2299 	if (instance != NULL)
2300 		witness_list_lock(instance, prnt);
2301 }
2302 
2303 void
2304 witness_save(struct lock_object *lock, const char **filep, int *linep)
2305 {
2306 	struct lock_list_entry *lock_list;
2307 	struct lock_instance *instance;
2308 	struct lock_class *class;
2309 
2310 	/*
2311 	 * This function is used independently in locking code to deal with
2312 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2313 	 * is gone.
2314 	 */
2315 	if (SCHEDULER_STOPPED())
2316 		return;
2317 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2318 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2319 		return;
2320 	class = LOCK_CLASS(lock);
2321 	if (class->lc_flags & LC_SLEEPLOCK)
2322 		lock_list = curthread->td_sleeplocks;
2323 	else {
2324 		if (witness_skipspin)
2325 			return;
2326 		lock_list = PCPU_GET(spinlocks);
2327 	}
2328 	instance = find_instance(lock_list, lock);
2329 	if (instance == NULL) {
2330 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2331 		    class->lc_name, lock->lo_name);
2332 		return;
2333 	}
2334 	*filep = instance->li_file;
2335 	*linep = instance->li_line;
2336 }
2337 
2338 void
2339 witness_restore(struct lock_object *lock, const char *file, int line)
2340 {
2341 	struct lock_list_entry *lock_list;
2342 	struct lock_instance *instance;
2343 	struct lock_class *class;
2344 
2345 	/*
2346 	 * This function is used independently in locking code to deal with
2347 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2348 	 * is gone.
2349 	 */
2350 	if (SCHEDULER_STOPPED())
2351 		return;
2352 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2353 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2354 		return;
2355 	class = LOCK_CLASS(lock);
2356 	if (class->lc_flags & LC_SLEEPLOCK)
2357 		lock_list = curthread->td_sleeplocks;
2358 	else {
2359 		if (witness_skipspin)
2360 			return;
2361 		lock_list = PCPU_GET(spinlocks);
2362 	}
2363 	instance = find_instance(lock_list, lock);
2364 	if (instance == NULL)
2365 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2366 		    class->lc_name, lock->lo_name);
2367 	lock->lo_witness->w_file = file;
2368 	lock->lo_witness->w_line = line;
2369 	if (instance == NULL)
2370 		return;
2371 	instance->li_file = file;
2372 	instance->li_line = line;
2373 }
2374 
2375 void
2376 witness_assert(const struct lock_object *lock, int flags, const char *file,
2377     int line)
2378 {
2379 #ifdef INVARIANT_SUPPORT
2380 	struct lock_instance *instance;
2381 	struct lock_class *class;
2382 
2383 	if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2384 		return;
2385 	class = LOCK_CLASS(lock);
2386 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2387 		instance = find_instance(curthread->td_sleeplocks, lock);
2388 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2389 		instance = find_instance(PCPU_GET(spinlocks), lock);
2390 	else {
2391 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2392 		    class->lc_name, lock->lo_name);
2393 		return;
2394 	}
2395 	switch (flags) {
2396 	case LA_UNLOCKED:
2397 		if (instance != NULL)
2398 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2399 			    class->lc_name, lock->lo_name,
2400 			    fixup_filename(file), line);
2401 		break;
2402 	case LA_LOCKED:
2403 	case LA_LOCKED | LA_RECURSED:
2404 	case LA_LOCKED | LA_NOTRECURSED:
2405 	case LA_SLOCKED:
2406 	case LA_SLOCKED | LA_RECURSED:
2407 	case LA_SLOCKED | LA_NOTRECURSED:
2408 	case LA_XLOCKED:
2409 	case LA_XLOCKED | LA_RECURSED:
2410 	case LA_XLOCKED | LA_NOTRECURSED:
2411 		if (instance == NULL) {
2412 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2413 			    class->lc_name, lock->lo_name,
2414 			    fixup_filename(file), line);
2415 			break;
2416 		}
2417 		if ((flags & LA_XLOCKED) != 0 &&
2418 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2419 			kassert_panic(
2420 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2421 			    class->lc_name, lock->lo_name,
2422 			    fixup_filename(file), line);
2423 		if ((flags & LA_SLOCKED) != 0 &&
2424 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2425 			kassert_panic(
2426 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2427 			    class->lc_name, lock->lo_name,
2428 			    fixup_filename(file), line);
2429 		if ((flags & LA_RECURSED) != 0 &&
2430 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2431 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2432 			    class->lc_name, lock->lo_name,
2433 			    fixup_filename(file), line);
2434 		if ((flags & LA_NOTRECURSED) != 0 &&
2435 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2436 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2437 			    class->lc_name, lock->lo_name,
2438 			    fixup_filename(file), line);
2439 		break;
2440 	default:
2441 		kassert_panic("Invalid lock assertion at %s:%d.",
2442 		    fixup_filename(file), line);
2443 
2444 	}
2445 #endif	/* INVARIANT_SUPPORT */
2446 }
2447 
2448 static void
2449 witness_setflag(struct lock_object *lock, int flag, int set)
2450 {
2451 	struct lock_list_entry *lock_list;
2452 	struct lock_instance *instance;
2453 	struct lock_class *class;
2454 
2455 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2456 		return;
2457 	class = LOCK_CLASS(lock);
2458 	if (class->lc_flags & LC_SLEEPLOCK)
2459 		lock_list = curthread->td_sleeplocks;
2460 	else {
2461 		if (witness_skipspin)
2462 			return;
2463 		lock_list = PCPU_GET(spinlocks);
2464 	}
2465 	instance = find_instance(lock_list, lock);
2466 	if (instance == NULL) {
2467 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2468 		    class->lc_name, lock->lo_name);
2469 		return;
2470 	}
2471 
2472 	if (set)
2473 		instance->li_flags |= flag;
2474 	else
2475 		instance->li_flags &= ~flag;
2476 }
2477 
2478 void
2479 witness_norelease(struct lock_object *lock)
2480 {
2481 
2482 	witness_setflag(lock, LI_NORELEASE, 1);
2483 }
2484 
2485 void
2486 witness_releaseok(struct lock_object *lock)
2487 {
2488 
2489 	witness_setflag(lock, LI_NORELEASE, 0);
2490 }
2491 
2492 #ifdef DDB
2493 static void
2494 witness_ddb_list(struct thread *td)
2495 {
2496 
2497 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2498 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2499 
2500 	if (witness_watch < 1)
2501 		return;
2502 
2503 	witness_list_locks(&td->td_sleeplocks, db_printf);
2504 
2505 	/*
2506 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2507 	 * if td is currently executing on some other CPU and holds spin locks
2508 	 * as we won't display those locks.  If we had a MI way of getting
2509 	 * the per-cpu data for a given cpu then we could use
2510 	 * td->td_oncpu to get the list of spinlocks for this thread
2511 	 * and "fix" this.
2512 	 *
2513 	 * That still wouldn't really fix this unless we locked the scheduler
2514 	 * lock or stopped the other CPU to make sure it wasn't changing the
2515 	 * list out from under us.  It is probably best to just not try to
2516 	 * handle threads on other CPU's for now.
2517 	 */
2518 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2519 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2520 }
2521 
2522 DB_SHOW_COMMAND(locks, db_witness_list)
2523 {
2524 	struct thread *td;
2525 
2526 	if (have_addr)
2527 		td = db_lookup_thread(addr, true);
2528 	else
2529 		td = kdb_thread;
2530 	witness_ddb_list(td);
2531 }
2532 
2533 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2534 {
2535 	struct thread *td;
2536 	struct proc *p;
2537 
2538 	/*
2539 	 * It would be nice to list only threads and processes that actually
2540 	 * held sleep locks, but that information is currently not exported
2541 	 * by WITNESS.
2542 	 */
2543 	FOREACH_PROC_IN_SYSTEM(p) {
2544 		if (!witness_proc_has_locks(p))
2545 			continue;
2546 		FOREACH_THREAD_IN_PROC(p, td) {
2547 			if (!witness_thread_has_locks(td))
2548 				continue;
2549 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2550 			    p->p_comm, td, td->td_tid);
2551 			witness_ddb_list(td);
2552 			if (db_pager_quit)
2553 				return;
2554 		}
2555 	}
2556 }
2557 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2558 
2559 DB_SHOW_COMMAND(witness, db_witness_display)
2560 {
2561 
2562 	witness_ddb_display(db_printf);
2563 }
2564 #endif
2565 
2566 static void
2567 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2568 {
2569 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2570 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2571 	int generation, i, j;
2572 
2573 	tmp_data1 = NULL;
2574 	tmp_data2 = NULL;
2575 	tmp_w1 = NULL;
2576 	tmp_w2 = NULL;
2577 
2578 	/* Allocate and init temporary storage space. */
2579 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2580 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2581 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2582 	    M_WAITOK | M_ZERO);
2583 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2584 	    M_WAITOK | M_ZERO);
2585 	stack_zero(&tmp_data1->wlod_stack);
2586 	stack_zero(&tmp_data2->wlod_stack);
2587 
2588 restart:
2589 	mtx_lock_spin(&w_mtx);
2590 	generation = w_generation;
2591 	mtx_unlock_spin(&w_mtx);
2592 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2593 	    w_lohash.wloh_count);
2594 	for (i = 1; i < w_max_used_index; i++) {
2595 		mtx_lock_spin(&w_mtx);
2596 		if (generation != w_generation) {
2597 			mtx_unlock_spin(&w_mtx);
2598 
2599 			/* The graph has changed, try again. */
2600 			*oldidx = 0;
2601 			sbuf_clear(sb);
2602 			goto restart;
2603 		}
2604 
2605 		w1 = &w_data[i];
2606 		if (w1->w_reversed == 0) {
2607 			mtx_unlock_spin(&w_mtx);
2608 			continue;
2609 		}
2610 
2611 		/* Copy w1 locally so we can release the spin lock. */
2612 		*tmp_w1 = *w1;
2613 		mtx_unlock_spin(&w_mtx);
2614 
2615 		if (tmp_w1->w_reversed == 0)
2616 			continue;
2617 		for (j = 1; j < w_max_used_index; j++) {
2618 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2619 				continue;
2620 
2621 			mtx_lock_spin(&w_mtx);
2622 			if (generation != w_generation) {
2623 				mtx_unlock_spin(&w_mtx);
2624 
2625 				/* The graph has changed, try again. */
2626 				*oldidx = 0;
2627 				sbuf_clear(sb);
2628 				goto restart;
2629 			}
2630 
2631 			w2 = &w_data[j];
2632 			data1 = witness_lock_order_get(w1, w2);
2633 			data2 = witness_lock_order_get(w2, w1);
2634 
2635 			/*
2636 			 * Copy information locally so we can release the
2637 			 * spin lock.
2638 			 */
2639 			*tmp_w2 = *w2;
2640 
2641 			if (data1) {
2642 				stack_zero(&tmp_data1->wlod_stack);
2643 				stack_copy(&data1->wlod_stack,
2644 				    &tmp_data1->wlod_stack);
2645 			}
2646 			if (data2 && data2 != data1) {
2647 				stack_zero(&tmp_data2->wlod_stack);
2648 				stack_copy(&data2->wlod_stack,
2649 				    &tmp_data2->wlod_stack);
2650 			}
2651 			mtx_unlock_spin(&w_mtx);
2652 
2653 			if (blessed(tmp_w1, tmp_w2))
2654 				continue;
2655 
2656 			sbuf_printf(sb,
2657 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2658 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2659 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2660 			if (data1) {
2661 				sbuf_printf(sb,
2662 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2663 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2664 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2665 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2666 				sbuf_printf(sb, "\n");
2667 			}
2668 			if (data2 && data2 != data1) {
2669 				sbuf_printf(sb,
2670 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2671 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2672 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2673 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2674 				sbuf_printf(sb, "\n");
2675 			}
2676 		}
2677 	}
2678 	mtx_lock_spin(&w_mtx);
2679 	if (generation != w_generation) {
2680 		mtx_unlock_spin(&w_mtx);
2681 
2682 		/*
2683 		 * The graph changed while we were printing stack data,
2684 		 * try again.
2685 		 */
2686 		*oldidx = 0;
2687 		sbuf_clear(sb);
2688 		goto restart;
2689 	}
2690 	mtx_unlock_spin(&w_mtx);
2691 
2692 	/* Free temporary storage space. */
2693 	free(tmp_data1, M_TEMP);
2694 	free(tmp_data2, M_TEMP);
2695 	free(tmp_w1, M_TEMP);
2696 	free(tmp_w2, M_TEMP);
2697 }
2698 
2699 static int
2700 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2701 {
2702 	struct sbuf *sb;
2703 	int error;
2704 
2705 	if (witness_watch < 1) {
2706 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2707 		return (error);
2708 	}
2709 	if (witness_cold) {
2710 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2711 		return (error);
2712 	}
2713 	error = 0;
2714 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2715 	if (sb == NULL)
2716 		return (ENOMEM);
2717 
2718 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2719 
2720 	sbuf_finish(sb);
2721 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2722 	sbuf_delete(sb);
2723 
2724 	return (error);
2725 }
2726 
2727 #ifdef DDB
2728 static int
2729 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2730 {
2731 
2732 	return (db_printf("%.*s", len, data));
2733 }
2734 
2735 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2736 {
2737 	struct sbuf sb;
2738 	char buffer[128];
2739 	size_t dummy;
2740 
2741 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2742 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2743 	sbuf_print_witness_badstacks(&sb, &dummy);
2744 	sbuf_finish(&sb);
2745 }
2746 #endif
2747 
2748 static int
2749 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2750 {
2751 	static const struct {
2752 		enum witness_channel channel;
2753 		const char *name;
2754 	} channels[] = {
2755 		{ WITNESS_CONSOLE, "console" },
2756 		{ WITNESS_LOG, "log" },
2757 		{ WITNESS_NONE, "none" },
2758 	};
2759 	char buf[16];
2760 	u_int i;
2761 	int error;
2762 
2763 	buf[0] = '\0';
2764 	for (i = 0; i < nitems(channels); i++)
2765 		if (witness_channel == channels[i].channel) {
2766 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2767 			break;
2768 		}
2769 
2770 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2771 	if (error != 0 || req->newptr == NULL)
2772 		return (error);
2773 
2774 	error = EINVAL;
2775 	for (i = 0; i < nitems(channels); i++)
2776 		if (strcmp(channels[i].name, buf) == 0) {
2777 			witness_channel = channels[i].channel;
2778 			error = 0;
2779 			break;
2780 		}
2781 	return (error);
2782 }
2783 
2784 static int
2785 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2786 {
2787 	struct witness *w;
2788 	struct sbuf *sb;
2789 	int error;
2790 
2791 #ifdef __i386__
2792 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2793 	return (error);
2794 #endif
2795 
2796 	if (witness_watch < 1) {
2797 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2798 		return (error);
2799 	}
2800 	if (witness_cold) {
2801 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2802 		return (error);
2803 	}
2804 	error = 0;
2805 
2806 	error = sysctl_wire_old_buffer(req, 0);
2807 	if (error != 0)
2808 		return (error);
2809 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2810 	if (sb == NULL)
2811 		return (ENOMEM);
2812 	sbuf_printf(sb, "\n");
2813 
2814 	mtx_lock_spin(&w_mtx);
2815 	STAILQ_FOREACH(w, &w_all, w_list)
2816 		w->w_displayed = 0;
2817 	STAILQ_FOREACH(w, &w_all, w_list)
2818 		witness_add_fullgraph(sb, w);
2819 	mtx_unlock_spin(&w_mtx);
2820 
2821 	/*
2822 	 * Close the sbuf and return to userland.
2823 	 */
2824 	error = sbuf_finish(sb);
2825 	sbuf_delete(sb);
2826 
2827 	return (error);
2828 }
2829 
2830 static int
2831 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2832 {
2833 	int error, value;
2834 
2835 	value = witness_watch;
2836 	error = sysctl_handle_int(oidp, &value, 0, req);
2837 	if (error != 0 || req->newptr == NULL)
2838 		return (error);
2839 	if (value > 1 || value < -1 ||
2840 	    (witness_watch == -1 && value != witness_watch))
2841 		return (EINVAL);
2842 	witness_watch = value;
2843 	return (0);
2844 }
2845 
2846 static void
2847 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2848 {
2849 	int i;
2850 
2851 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2852 		return;
2853 	w->w_displayed = 1;
2854 
2855 	WITNESS_INDEX_ASSERT(w->w_index);
2856 	for (i = 1; i <= w_max_used_index; i++) {
2857 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2858 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2859 			    w_data[i].w_name);
2860 			witness_add_fullgraph(sb, &w_data[i]);
2861 		}
2862 	}
2863 }
2864 
2865 /*
2866  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2867  * interprets the key as a string and reads until the null
2868  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2869  * hash value computed from the key.
2870  */
2871 static uint32_t
2872 witness_hash_djb2(const uint8_t *key, uint32_t size)
2873 {
2874 	unsigned int hash = 5381;
2875 	int i;
2876 
2877 	/* hash = hash * 33 + key[i] */
2878 	if (size)
2879 		for (i = 0; i < size; i++)
2880 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2881 	else
2882 		for (i = 0; key[i] != 0; i++)
2883 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2884 
2885 	return (hash);
2886 }
2887 
2888 /*
2889  * Initializes the two witness hash tables. Called exactly once from
2890  * witness_initialize().
2891  */
2892 static void
2893 witness_init_hash_tables(void)
2894 {
2895 	int i;
2896 
2897 	MPASS(witness_cold);
2898 
2899 	/* Initialize the hash tables. */
2900 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2901 		w_hash.wh_array[i] = NULL;
2902 
2903 	w_hash.wh_size = WITNESS_HASH_SIZE;
2904 	w_hash.wh_count = 0;
2905 
2906 	/* Initialize the lock order data hash. */
2907 	w_lofree = NULL;
2908 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2909 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2910 		w_lodata[i].wlod_next = w_lofree;
2911 		w_lofree = &w_lodata[i];
2912 	}
2913 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2914 	w_lohash.wloh_count = 0;
2915 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2916 		w_lohash.wloh_array[i] = NULL;
2917 }
2918 
2919 static struct witness *
2920 witness_hash_get(const char *key)
2921 {
2922 	struct witness *w;
2923 	uint32_t hash;
2924 
2925 	MPASS(key != NULL);
2926 	if (witness_cold == 0)
2927 		mtx_assert(&w_mtx, MA_OWNED);
2928 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2929 	w = w_hash.wh_array[hash];
2930 	while (w != NULL) {
2931 		if (strcmp(w->w_name, key) == 0)
2932 			goto out;
2933 		w = w->w_hash_next;
2934 	}
2935 
2936 out:
2937 	return (w);
2938 }
2939 
2940 static void
2941 witness_hash_put(struct witness *w)
2942 {
2943 	uint32_t hash;
2944 
2945 	MPASS(w != NULL);
2946 	MPASS(w->w_name != NULL);
2947 	if (witness_cold == 0)
2948 		mtx_assert(&w_mtx, MA_OWNED);
2949 	KASSERT(witness_hash_get(w->w_name) == NULL,
2950 	    ("%s: trying to add a hash entry that already exists!", __func__));
2951 	KASSERT(w->w_hash_next == NULL,
2952 	    ("%s: w->w_hash_next != NULL", __func__));
2953 
2954 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2955 	w->w_hash_next = w_hash.wh_array[hash];
2956 	w_hash.wh_array[hash] = w;
2957 	w_hash.wh_count++;
2958 }
2959 
2960 static struct witness_lock_order_data *
2961 witness_lock_order_get(struct witness *parent, struct witness *child)
2962 {
2963 	struct witness_lock_order_data *data = NULL;
2964 	struct witness_lock_order_key key;
2965 	unsigned int hash;
2966 
2967 	MPASS(parent != NULL && child != NULL);
2968 	key.from = parent->w_index;
2969 	key.to = child->w_index;
2970 	WITNESS_INDEX_ASSERT(key.from);
2971 	WITNESS_INDEX_ASSERT(key.to);
2972 	if ((w_rmatrix[parent->w_index][child->w_index]
2973 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2974 		goto out;
2975 
2976 	hash = witness_hash_djb2((const char*)&key,
2977 	    sizeof(key)) % w_lohash.wloh_size;
2978 	data = w_lohash.wloh_array[hash];
2979 	while (data != NULL) {
2980 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2981 			break;
2982 		data = data->wlod_next;
2983 	}
2984 
2985 out:
2986 	return (data);
2987 }
2988 
2989 /*
2990  * Verify that parent and child have a known relationship, are not the same,
2991  * and child is actually a child of parent.  This is done without w_mtx
2992  * to avoid contention in the common case.
2993  */
2994 static int
2995 witness_lock_order_check(struct witness *parent, struct witness *child)
2996 {
2997 
2998 	if (parent != child &&
2999 	    w_rmatrix[parent->w_index][child->w_index]
3000 	    & WITNESS_LOCK_ORDER_KNOWN &&
3001 	    isitmychild(parent, child))
3002 		return (1);
3003 
3004 	return (0);
3005 }
3006 
3007 static int
3008 witness_lock_order_add(struct witness *parent, struct witness *child)
3009 {
3010 	struct witness_lock_order_data *data = NULL;
3011 	struct witness_lock_order_key key;
3012 	unsigned int hash;
3013 
3014 	MPASS(parent != NULL && child != NULL);
3015 	key.from = parent->w_index;
3016 	key.to = child->w_index;
3017 	WITNESS_INDEX_ASSERT(key.from);
3018 	WITNESS_INDEX_ASSERT(key.to);
3019 	if (w_rmatrix[parent->w_index][child->w_index]
3020 	    & WITNESS_LOCK_ORDER_KNOWN)
3021 		return (1);
3022 
3023 	hash = witness_hash_djb2((const char*)&key,
3024 	    sizeof(key)) % w_lohash.wloh_size;
3025 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3026 	data = w_lofree;
3027 	if (data == NULL)
3028 		return (0);
3029 	w_lofree = data->wlod_next;
3030 	data->wlod_next = w_lohash.wloh_array[hash];
3031 	data->wlod_key = key;
3032 	w_lohash.wloh_array[hash] = data;
3033 	w_lohash.wloh_count++;
3034 	stack_zero(&data->wlod_stack);
3035 	stack_save(&data->wlod_stack);
3036 	return (1);
3037 }
3038 
3039 /* Call this whenever the structure of the witness graph changes. */
3040 static void
3041 witness_increment_graph_generation(void)
3042 {
3043 
3044 	if (witness_cold == 0)
3045 		mtx_assert(&w_mtx, MA_OWNED);
3046 	w_generation++;
3047 }
3048 
3049 static int
3050 witness_output_drain(void *arg __unused, const char *data, int len)
3051 {
3052 
3053 	witness_output("%.*s", len, data);
3054 	return (len);
3055 }
3056 
3057 static void
3058 witness_debugger(int cond, const char *msg)
3059 {
3060 	char buf[32];
3061 	struct sbuf sb;
3062 	struct stack st;
3063 
3064 	if (!cond)
3065 		return;
3066 
3067 	if (witness_trace) {
3068 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3069 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3070 
3071 		stack_zero(&st);
3072 		stack_save(&st);
3073 		witness_output("stack backtrace:\n");
3074 		stack_sbuf_print_ddb(&sb, &st);
3075 
3076 		sbuf_finish(&sb);
3077 	}
3078 
3079 #ifdef KDB
3080 	if (witness_kdb)
3081 		kdb_enter(KDB_WHY_WITNESS, msg);
3082 #endif
3083 }
3084