1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Systems, Inc. 5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 6 * Copyright (c) 1998 Berkeley Software Design, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Berkeley Software Design Inc's name may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 34 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 35 */ 36 37 /* 38 * Implementation of the `witness' lock verifier. Originally implemented for 39 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 40 * classes in FreeBSD. 41 */ 42 43 /* 44 * Main Entry: witness 45 * Pronunciation: 'wit-n&s 46 * Function: noun 47 * Etymology: Middle English witnesse, from Old English witnes knowledge, 48 * testimony, witness, from 2wit 49 * Date: before 12th century 50 * 1 : attestation of a fact or event : TESTIMONY 51 * 2 : one that gives evidence; specifically : one who testifies in 52 * a cause or before a judicial tribunal 53 * 3 : one asked to be present at a transaction so as to be able to 54 * testify to its having taken place 55 * 4 : one who has personal knowledge of something 56 * 5 a : something serving as evidence or proof : SIGN 57 * b : public affirmation by word or example of usually 58 * religious faith or conviction <the heroic witness to divine 59 * life -- Pilot> 60 * 6 capitalized : a member of the Jehovah's Witnesses 61 */ 62 63 /* 64 * Special rules concerning Giant and lock orders: 65 * 66 * 1) Giant must be acquired before any other mutexes. Stated another way, 67 * no other mutex may be held when Giant is acquired. 68 * 69 * 2) Giant must be released when blocking on a sleepable lock. 70 * 71 * This rule is less obvious, but is a result of Giant providing the same 72 * semantics as spl(). Basically, when a thread sleeps, it must release 73 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 74 * 2). 75 * 76 * 3) Giant may be acquired before or after sleepable locks. 77 * 78 * This rule is also not quite as obvious. Giant may be acquired after 79 * a sleepable lock because it is a non-sleepable lock and non-sleepable 80 * locks may always be acquired while holding a sleepable lock. The second 81 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 82 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 83 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 84 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 85 * execute. Thus, acquiring Giant both before and after a sleepable lock 86 * will not result in a lock order reversal. 87 */ 88 89 #include <sys/cdefs.h> 90 __FBSDID("$FreeBSD$"); 91 92 #include "opt_ddb.h" 93 #include "opt_hwpmc_hooks.h" 94 #include "opt_stack.h" 95 #include "opt_witness.h" 96 97 #include <sys/param.h> 98 #include <sys/bus.h> 99 #include <sys/kdb.h> 100 #include <sys/kernel.h> 101 #include <sys/ktr.h> 102 #include <sys/lock.h> 103 #include <sys/malloc.h> 104 #include <sys/mutex.h> 105 #include <sys/priv.h> 106 #include <sys/proc.h> 107 #include <sys/sbuf.h> 108 #include <sys/sched.h> 109 #include <sys/stack.h> 110 #include <sys/sysctl.h> 111 #include <sys/syslog.h> 112 #include <sys/systm.h> 113 114 #ifdef DDB 115 #include <ddb/ddb.h> 116 #endif 117 118 #include <machine/stdarg.h> 119 120 #if !defined(DDB) && !defined(STACK) 121 #error "DDB or STACK options are required for WITNESS" 122 #endif 123 124 /* Note that these traces do not work with KTR_ALQ. */ 125 #if 0 126 #define KTR_WITNESS KTR_SUBSYS 127 #else 128 #define KTR_WITNESS 0 129 #endif 130 131 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 132 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 133 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 134 #define LI_SLEEPABLE 0x00040000 /* Lock may be held while sleeping. */ 135 136 #ifndef WITNESS_COUNT 137 #define WITNESS_COUNT 1536 138 #endif 139 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 140 #define WITNESS_PENDLIST (512 + (MAXCPU * 4)) 141 142 /* Allocate 256 KB of stack data space */ 143 #define WITNESS_LO_DATA_COUNT 2048 144 145 /* Prime, gives load factor of ~2 at full load */ 146 #define WITNESS_LO_HASH_SIZE 1021 147 148 /* 149 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 150 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 151 * probably be safe for the most part, but it's still a SWAG. 152 */ 153 #define LOCK_NCHILDREN 5 154 #define LOCK_CHILDCOUNT 2048 155 156 #define MAX_W_NAME 64 157 158 #define FULLGRAPH_SBUF_SIZE 512 159 160 /* 161 * These flags go in the witness relationship matrix and describe the 162 * relationship between any two struct witness objects. 163 */ 164 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 165 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 166 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 167 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 168 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 169 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 170 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 171 #define WITNESS_RELATED_MASK \ 172 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 173 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 174 * observed. */ 175 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 176 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 177 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 178 179 /* Descendant to ancestor flags */ 180 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 181 182 /* Ancestor to descendant flags */ 183 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 184 185 #define WITNESS_INDEX_ASSERT(i) \ 186 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count) 187 188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 189 190 /* 191 * Lock instances. A lock instance is the data associated with a lock while 192 * it is held by witness. For example, a lock instance will hold the 193 * recursion count of a lock. Lock instances are held in lists. Spin locks 194 * are held in a per-cpu list while sleep locks are held in per-thread list. 195 */ 196 struct lock_instance { 197 struct lock_object *li_lock; 198 const char *li_file; 199 int li_line; 200 u_int li_flags; 201 }; 202 203 /* 204 * A simple list type used to build the list of locks held by a thread 205 * or CPU. We can't simply embed the list in struct lock_object since a 206 * lock may be held by more than one thread if it is a shared lock. Locks 207 * are added to the head of the list, so we fill up each list entry from 208 * "the back" logically. To ease some of the arithmetic, we actually fill 209 * in each list entry the normal way (children[0] then children[1], etc.) but 210 * when we traverse the list we read children[count-1] as the first entry 211 * down to children[0] as the final entry. 212 */ 213 struct lock_list_entry { 214 struct lock_list_entry *ll_next; 215 struct lock_instance ll_children[LOCK_NCHILDREN]; 216 u_int ll_count; 217 }; 218 219 /* 220 * The main witness structure. One of these per named lock type in the system 221 * (for example, "vnode interlock"). 222 */ 223 struct witness { 224 char w_name[MAX_W_NAME]; 225 uint32_t w_index; /* Index in the relationship matrix */ 226 struct lock_class *w_class; 227 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 228 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 229 struct witness *w_hash_next; /* Linked list in hash buckets. */ 230 const char *w_file; /* File where last acquired */ 231 uint32_t w_line; /* Line where last acquired */ 232 uint32_t w_refcount; 233 uint16_t w_num_ancestors; /* direct/indirect 234 * ancestor count */ 235 uint16_t w_num_descendants; /* direct/indirect 236 * descendant count */ 237 int16_t w_ddb_level; 238 unsigned w_displayed:1; 239 unsigned w_reversed:1; 240 }; 241 242 STAILQ_HEAD(witness_list, witness); 243 244 /* 245 * The witness hash table. Keys are witness names (const char *), elements are 246 * witness objects (struct witness *). 247 */ 248 struct witness_hash { 249 struct witness *wh_array[WITNESS_HASH_SIZE]; 250 uint32_t wh_size; 251 uint32_t wh_count; 252 }; 253 254 /* 255 * Key type for the lock order data hash table. 256 */ 257 struct witness_lock_order_key { 258 uint16_t from; 259 uint16_t to; 260 }; 261 262 struct witness_lock_order_data { 263 struct stack wlod_stack; 264 struct witness_lock_order_key wlod_key; 265 struct witness_lock_order_data *wlod_next; 266 }; 267 268 /* 269 * The witness lock order data hash table. Keys are witness index tuples 270 * (struct witness_lock_order_key), elements are lock order data objects 271 * (struct witness_lock_order_data). 272 */ 273 struct witness_lock_order_hash { 274 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 275 u_int wloh_size; 276 u_int wloh_count; 277 }; 278 279 struct witness_blessed { 280 const char *b_lock1; 281 const char *b_lock2; 282 }; 283 284 struct witness_pendhelp { 285 const char *wh_type; 286 struct lock_object *wh_lock; 287 }; 288 289 struct witness_order_list_entry { 290 const char *w_name; 291 struct lock_class *w_class; 292 }; 293 294 /* 295 * Returns 0 if one of the locks is a spin lock and the other is not. 296 * Returns 1 otherwise. 297 */ 298 static __inline int 299 witness_lock_type_equal(struct witness *w1, struct witness *w2) 300 { 301 302 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 303 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 304 } 305 306 static __inline int 307 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 308 const struct witness_lock_order_key *b) 309 { 310 311 return (a->from == b->from && a->to == b->to); 312 } 313 314 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 315 const char *fname); 316 static void adopt(struct witness *parent, struct witness *child); 317 static int blessed(struct witness *, struct witness *); 318 static void depart(struct witness *w); 319 static struct witness *enroll(const char *description, 320 struct lock_class *lock_class); 321 static struct lock_instance *find_instance(struct lock_list_entry *list, 322 const struct lock_object *lock); 323 static int isitmychild(struct witness *parent, struct witness *child); 324 static int isitmydescendant(struct witness *parent, struct witness *child); 325 static void itismychild(struct witness *parent, struct witness *child); 326 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 327 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 328 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 329 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS); 330 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 331 #ifdef DDB 332 static void witness_ddb_compute_levels(void); 333 static void witness_ddb_display(int(*)(const char *fmt, ...)); 334 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 335 struct witness *, int indent); 336 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 337 struct witness_list *list); 338 static void witness_ddb_level_descendants(struct witness *parent, int l); 339 static void witness_ddb_list(struct thread *td); 340 #endif 341 static void witness_debugger(int cond, const char *msg); 342 static void witness_free(struct witness *m); 343 static struct witness *witness_get(void); 344 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 345 static struct witness *witness_hash_get(const char *key); 346 static void witness_hash_put(struct witness *w); 347 static void witness_init_hash_tables(void); 348 static void witness_increment_graph_generation(void); 349 static void witness_lock_list_free(struct lock_list_entry *lle); 350 static struct lock_list_entry *witness_lock_list_get(void); 351 static int witness_lock_order_add(struct witness *parent, 352 struct witness *child); 353 static int witness_lock_order_check(struct witness *parent, 354 struct witness *child); 355 static struct witness_lock_order_data *witness_lock_order_get( 356 struct witness *parent, 357 struct witness *child); 358 static void witness_list_lock(struct lock_instance *instance, 359 int (*prnt)(const char *fmt, ...)); 360 static int witness_output(const char *fmt, ...) __printflike(1, 2); 361 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0); 362 static void witness_setflag(struct lock_object *lock, int flag, int set); 363 364 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 365 "Witness Locking"); 366 367 /* 368 * If set to 0, lock order checking is disabled. If set to -1, 369 * witness is completely disabled. Otherwise witness performs full 370 * lock order checking for all locks. At runtime, lock order checking 371 * may be toggled. However, witness cannot be reenabled once it is 372 * completely disabled. 373 */ 374 static int witness_watch = 1; 375 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0, 376 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 377 378 #ifdef KDB 379 /* 380 * When KDB is enabled and witness_kdb is 1, it will cause the system 381 * to drop into kdebug() when: 382 * - a lock hierarchy violation occurs 383 * - locks are held when going to sleep. 384 */ 385 #ifdef WITNESS_KDB 386 int witness_kdb = 1; 387 #else 388 int witness_kdb = 0; 389 #endif 390 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, ""); 391 #endif /* KDB */ 392 393 #if defined(DDB) || defined(KDB) 394 /* 395 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system 396 * to print a stack trace: 397 * - a lock hierarchy violation occurs 398 * - locks are held when going to sleep. 399 */ 400 int witness_trace = 1; 401 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, ""); 402 #endif /* DDB || KDB */ 403 404 #ifdef WITNESS_SKIPSPIN 405 int witness_skipspin = 1; 406 #else 407 int witness_skipspin = 0; 408 #endif 409 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, ""); 410 411 int badstack_sbuf_size; 412 413 int witness_count = WITNESS_COUNT; 414 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 415 &witness_count, 0, ""); 416 417 /* 418 * Output channel for witness messages. By default we print to the console. 419 */ 420 enum witness_channel { 421 WITNESS_CONSOLE, 422 WITNESS_LOG, 423 WITNESS_NONE, 424 }; 425 426 static enum witness_channel witness_channel = WITNESS_CONSOLE; 427 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING | 428 CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A", 429 "Output channel for warnings"); 430 431 /* 432 * Call this to print out the relations between locks. 433 */ 434 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 435 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 436 437 /* 438 * Call this to print out the witness faulty stacks. 439 */ 440 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 441 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 442 443 static struct mtx w_mtx; 444 445 /* w_list */ 446 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 447 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 448 449 /* w_typelist */ 450 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 451 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 452 453 /* lock list */ 454 static struct lock_list_entry *w_lock_list_free = NULL; 455 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 456 static u_int pending_cnt; 457 458 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 459 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 460 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 461 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 462 ""); 463 464 static struct witness *w_data; 465 static uint8_t **w_rmatrix; 466 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 467 static struct witness_hash w_hash; /* The witness hash table. */ 468 469 /* The lock order data hash */ 470 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 471 static struct witness_lock_order_data *w_lofree = NULL; 472 static struct witness_lock_order_hash w_lohash; 473 static int w_max_used_index = 0; 474 static unsigned int w_generation = 0; 475 static const char w_notrunning[] = "Witness not running\n"; 476 static const char w_stillcold[] = "Witness is still cold\n"; 477 #ifdef __i386__ 478 static const char w_notallowed[] = "The sysctl is disabled on the arch\n"; 479 #endif 480 481 static struct witness_order_list_entry order_lists[] = { 482 /* 483 * sx locks 484 */ 485 { "proctree", &lock_class_sx }, 486 { "allproc", &lock_class_sx }, 487 { "allprison", &lock_class_sx }, 488 { NULL, NULL }, 489 /* 490 * Various mutexes 491 */ 492 { "Giant", &lock_class_mtx_sleep }, 493 { "pipe mutex", &lock_class_mtx_sleep }, 494 { "sigio lock", &lock_class_mtx_sleep }, 495 { "process group", &lock_class_mtx_sleep }, 496 #ifdef HWPMC_HOOKS 497 { "pmc-sleep", &lock_class_mtx_sleep }, 498 #endif 499 { "process lock", &lock_class_mtx_sleep }, 500 { "session", &lock_class_mtx_sleep }, 501 { "uidinfo hash", &lock_class_rw }, 502 { "time lock", &lock_class_mtx_sleep }, 503 { NULL, NULL }, 504 /* 505 * umtx 506 */ 507 { "umtx lock", &lock_class_mtx_sleep }, 508 { NULL, NULL }, 509 /* 510 * Sockets 511 */ 512 { "accept", &lock_class_mtx_sleep }, 513 { "so_snd", &lock_class_mtx_sleep }, 514 { "so_rcv", &lock_class_mtx_sleep }, 515 { "sellck", &lock_class_mtx_sleep }, 516 { NULL, NULL }, 517 /* 518 * Routing 519 */ 520 { "so_rcv", &lock_class_mtx_sleep }, 521 { "radix node head", &lock_class_rm }, 522 { "rtentry", &lock_class_mtx_sleep }, 523 { "ifaddr", &lock_class_mtx_sleep }, 524 { NULL, NULL }, 525 /* 526 * IPv4 multicast: 527 * protocol locks before interface locks, after UDP locks. 528 */ 529 { "in_multi_sx", &lock_class_sx }, 530 { "udpinp", &lock_class_rw }, 531 { "in_multi_list_mtx", &lock_class_mtx_sleep }, 532 { "igmp_mtx", &lock_class_mtx_sleep }, 533 { "ifnet_rw", &lock_class_rw }, 534 { "if_addr_lock", &lock_class_mtx_sleep }, 535 { NULL, NULL }, 536 /* 537 * IPv6 multicast: 538 * protocol locks before interface locks, after UDP locks. 539 */ 540 { "in6_multi_sx", &lock_class_sx }, 541 { "udpinp", &lock_class_rw }, 542 { "in6_multi_list_mtx", &lock_class_mtx_sleep }, 543 { "mld_mtx", &lock_class_mtx_sleep }, 544 { "ifnet_rw", &lock_class_rw }, 545 { "if_addr_lock", &lock_class_mtx_sleep }, 546 { NULL, NULL }, 547 /* 548 * UNIX Domain Sockets 549 */ 550 { "unp_link_rwlock", &lock_class_rw }, 551 { "unp_list_lock", &lock_class_mtx_sleep }, 552 { "unp", &lock_class_mtx_sleep }, 553 { "so_snd", &lock_class_mtx_sleep }, 554 { NULL, NULL }, 555 /* 556 * UDP/IP 557 */ 558 { "udp", &lock_class_mtx_sleep }, 559 { "udpinp", &lock_class_rw }, 560 { "so_snd", &lock_class_mtx_sleep }, 561 { NULL, NULL }, 562 /* 563 * TCP/IP 564 */ 565 { "tcp", &lock_class_mtx_sleep }, 566 { "tcpinp", &lock_class_rw }, 567 { "so_snd", &lock_class_mtx_sleep }, 568 { NULL, NULL }, 569 /* 570 * BPF 571 */ 572 { "bpf global lock", &lock_class_sx }, 573 { "bpf cdev lock", &lock_class_mtx_sleep }, 574 { NULL, NULL }, 575 /* 576 * NFS server 577 */ 578 { "nfsd_mtx", &lock_class_mtx_sleep }, 579 { "so_snd", &lock_class_mtx_sleep }, 580 { NULL, NULL }, 581 582 /* 583 * IEEE 802.11 584 */ 585 { "802.11 com lock", &lock_class_mtx_sleep}, 586 { NULL, NULL }, 587 /* 588 * Network drivers 589 */ 590 { "network driver", &lock_class_mtx_sleep}, 591 { NULL, NULL }, 592 593 /* 594 * Netgraph 595 */ 596 { "ng_node", &lock_class_mtx_sleep }, 597 { "ng_worklist", &lock_class_mtx_sleep }, 598 { NULL, NULL }, 599 /* 600 * CDEV 601 */ 602 { "vm map (system)", &lock_class_mtx_sleep }, 603 { "vnode interlock", &lock_class_mtx_sleep }, 604 { "cdev", &lock_class_mtx_sleep }, 605 { "devthrd", &lock_class_mtx_sleep }, 606 { NULL, NULL }, 607 /* 608 * VM 609 */ 610 { "vm map (user)", &lock_class_sx }, 611 { "vm object", &lock_class_rw }, 612 { "vm page", &lock_class_mtx_sleep }, 613 { "pmap pv global", &lock_class_rw }, 614 { "pmap", &lock_class_mtx_sleep }, 615 { "pmap pv list", &lock_class_rw }, 616 { "vm page free queue", &lock_class_mtx_sleep }, 617 { "vm pagequeue", &lock_class_mtx_sleep }, 618 { NULL, NULL }, 619 /* 620 * kqueue/VFS interaction 621 */ 622 { "kqueue", &lock_class_mtx_sleep }, 623 { "struct mount mtx", &lock_class_mtx_sleep }, 624 { "vnode interlock", &lock_class_mtx_sleep }, 625 { NULL, NULL }, 626 /* 627 * VFS namecache 628 */ 629 { "ncvn", &lock_class_mtx_sleep }, 630 { "ncbuc", &lock_class_rw }, 631 { "vnode interlock", &lock_class_mtx_sleep }, 632 { "ncneg", &lock_class_mtx_sleep }, 633 { NULL, NULL }, 634 /* 635 * ZFS locking 636 */ 637 { "dn->dn_mtx", &lock_class_sx }, 638 { "dr->dt.di.dr_mtx", &lock_class_sx }, 639 { "db->db_mtx", &lock_class_sx }, 640 { NULL, NULL }, 641 /* 642 * TCP log locks 643 */ 644 { "TCP ID tree", &lock_class_rw }, 645 { "tcp log id bucket", &lock_class_mtx_sleep }, 646 { "tcpinp", &lock_class_rw }, 647 { "TCP log expireq", &lock_class_mtx_sleep }, 648 { NULL, NULL }, 649 /* 650 * spin locks 651 */ 652 #ifdef SMP 653 { "ap boot", &lock_class_mtx_spin }, 654 #endif 655 { "rm.mutex_mtx", &lock_class_mtx_spin }, 656 { "sio", &lock_class_mtx_spin }, 657 #ifdef __i386__ 658 { "cy", &lock_class_mtx_spin }, 659 #endif 660 { "scc_hwmtx", &lock_class_mtx_spin }, 661 { "uart_hwmtx", &lock_class_mtx_spin }, 662 { "fast_taskqueue", &lock_class_mtx_spin }, 663 { "intr table", &lock_class_mtx_spin }, 664 { "process slock", &lock_class_mtx_spin }, 665 { "syscons video lock", &lock_class_mtx_spin }, 666 { "sleepq chain", &lock_class_mtx_spin }, 667 { "rm_spinlock", &lock_class_mtx_spin }, 668 { "turnstile chain", &lock_class_mtx_spin }, 669 { "turnstile lock", &lock_class_mtx_spin }, 670 { "sched lock", &lock_class_mtx_spin }, 671 { "td_contested", &lock_class_mtx_spin }, 672 { "callout", &lock_class_mtx_spin }, 673 { "entropy harvest mutex", &lock_class_mtx_spin }, 674 #ifdef SMP 675 { "smp rendezvous", &lock_class_mtx_spin }, 676 #endif 677 #ifdef __powerpc__ 678 { "tlb0", &lock_class_mtx_spin }, 679 #endif 680 { NULL, NULL }, 681 { "sched lock", &lock_class_mtx_spin }, 682 #ifdef HWPMC_HOOKS 683 { "pmc-per-proc", &lock_class_mtx_spin }, 684 #endif 685 { NULL, NULL }, 686 /* 687 * leaf locks 688 */ 689 { "intrcnt", &lock_class_mtx_spin }, 690 { "icu", &lock_class_mtx_spin }, 691 #ifdef __i386__ 692 { "allpmaps", &lock_class_mtx_spin }, 693 { "descriptor tables", &lock_class_mtx_spin }, 694 #endif 695 { "clk", &lock_class_mtx_spin }, 696 { "cpuset", &lock_class_mtx_spin }, 697 { "mprof lock", &lock_class_mtx_spin }, 698 { "zombie lock", &lock_class_mtx_spin }, 699 { "ALD Queue", &lock_class_mtx_spin }, 700 #if defined(__i386__) || defined(__amd64__) 701 { "pcicfg", &lock_class_mtx_spin }, 702 { "NDIS thread lock", &lock_class_mtx_spin }, 703 #endif 704 { "tw_osl_io_lock", &lock_class_mtx_spin }, 705 { "tw_osl_q_lock", &lock_class_mtx_spin }, 706 { "tw_cl_io_lock", &lock_class_mtx_spin }, 707 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 708 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 709 #ifdef HWPMC_HOOKS 710 { "pmc-leaf", &lock_class_mtx_spin }, 711 #endif 712 { "blocked lock", &lock_class_mtx_spin }, 713 { NULL, NULL }, 714 { NULL, NULL } 715 }; 716 717 /* 718 * Pairs of locks which have been blessed. Witness does not complain about 719 * order problems with blessed lock pairs. Please do not add an entry to the 720 * table without an explanatory comment. 721 */ 722 static struct witness_blessed blessed_list[] = { 723 /* 724 * See the comment in ufs_dirhash.c. Basically, a vnode lock serializes 725 * both lock orders, so a deadlock cannot happen as a result of this 726 * LOR. 727 */ 728 { "dirhash", "bufwait" }, 729 730 /* 731 * A UFS vnode may be locked in vget() while a buffer belonging to the 732 * parent directory vnode is locked. 733 */ 734 { "ufs", "bufwait" }, 735 }; 736 737 /* 738 * This global is set to 0 once it becomes safe to use the witness code. 739 */ 740 static int witness_cold = 1; 741 742 /* 743 * This global is set to 1 once the static lock orders have been enrolled 744 * so that a warning can be issued for any spin locks enrolled later. 745 */ 746 static int witness_spin_warn = 0; 747 748 /* Trim useless garbage from filenames. */ 749 static const char * 750 fixup_filename(const char *file) 751 { 752 753 if (file == NULL) 754 return (NULL); 755 while (strncmp(file, "../", 3) == 0) 756 file += 3; 757 return (file); 758 } 759 760 /* 761 * Calculate the size of early witness structures. 762 */ 763 int 764 witness_startup_count(void) 765 { 766 int sz; 767 768 sz = sizeof(struct witness) * witness_count; 769 sz += sizeof(*w_rmatrix) * (witness_count + 1); 770 sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) * 771 (witness_count + 1); 772 773 return (sz); 774 } 775 776 /* 777 * The WITNESS-enabled diagnostic code. Note that the witness code does 778 * assume that the early boot is single-threaded at least until after this 779 * routine is completed. 780 */ 781 void 782 witness_startup(void *mem) 783 { 784 struct lock_object *lock; 785 struct witness_order_list_entry *order; 786 struct witness *w, *w1; 787 uintptr_t p; 788 int i; 789 790 p = (uintptr_t)mem; 791 w_data = (void *)p; 792 p += sizeof(struct witness) * witness_count; 793 794 w_rmatrix = (void *)p; 795 p += sizeof(*w_rmatrix) * (witness_count + 1); 796 797 for (i = 0; i < witness_count + 1; i++) { 798 w_rmatrix[i] = (void *)p; 799 p += sizeof(*w_rmatrix[i]) * (witness_count + 1); 800 } 801 badstack_sbuf_size = witness_count * 256; 802 803 /* 804 * We have to release Giant before initializing its witness 805 * structure so that WITNESS doesn't get confused. 806 */ 807 mtx_unlock(&Giant); 808 mtx_assert(&Giant, MA_NOTOWNED); 809 810 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 811 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 812 MTX_NOWITNESS | MTX_NOPROFILE); 813 for (i = witness_count - 1; i >= 0; i--) { 814 w = &w_data[i]; 815 memset(w, 0, sizeof(*w)); 816 w_data[i].w_index = i; /* Witness index never changes. */ 817 witness_free(w); 818 } 819 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 820 ("%s: Invalid list of free witness objects", __func__)); 821 822 /* Witness with index 0 is not used to aid in debugging. */ 823 STAILQ_REMOVE_HEAD(&w_free, w_list); 824 w_free_cnt--; 825 826 for (i = 0; i < witness_count; i++) { 827 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 828 (witness_count + 1)); 829 } 830 831 for (i = 0; i < LOCK_CHILDCOUNT; i++) 832 witness_lock_list_free(&w_locklistdata[i]); 833 witness_init_hash_tables(); 834 835 /* First add in all the specified order lists. */ 836 for (order = order_lists; order->w_name != NULL; order++) { 837 w = enroll(order->w_name, order->w_class); 838 if (w == NULL) 839 continue; 840 w->w_file = "order list"; 841 for (order++; order->w_name != NULL; order++) { 842 w1 = enroll(order->w_name, order->w_class); 843 if (w1 == NULL) 844 continue; 845 w1->w_file = "order list"; 846 itismychild(w, w1); 847 w = w1; 848 } 849 } 850 witness_spin_warn = 1; 851 852 /* Iterate through all locks and add them to witness. */ 853 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 854 lock = pending_locks[i].wh_lock; 855 KASSERT(lock->lo_flags & LO_WITNESS, 856 ("%s: lock %s is on pending list but not LO_WITNESS", 857 __func__, lock->lo_name)); 858 lock->lo_witness = enroll(pending_locks[i].wh_type, 859 LOCK_CLASS(lock)); 860 } 861 862 /* Mark the witness code as being ready for use. */ 863 witness_cold = 0; 864 865 mtx_lock(&Giant); 866 } 867 868 void 869 witness_init(struct lock_object *lock, const char *type) 870 { 871 struct lock_class *class; 872 873 /* Various sanity checks. */ 874 class = LOCK_CLASS(lock); 875 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 876 (class->lc_flags & LC_RECURSABLE) == 0) 877 kassert_panic("%s: lock (%s) %s can not be recursable", 878 __func__, class->lc_name, lock->lo_name); 879 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 880 (class->lc_flags & LC_SLEEPABLE) == 0) 881 kassert_panic("%s: lock (%s) %s can not be sleepable", 882 __func__, class->lc_name, lock->lo_name); 883 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 884 (class->lc_flags & LC_UPGRADABLE) == 0) 885 kassert_panic("%s: lock (%s) %s can not be upgradable", 886 __func__, class->lc_name, lock->lo_name); 887 888 /* 889 * If we shouldn't watch this lock, then just clear lo_witness. 890 * Otherwise, if witness_cold is set, then it is too early to 891 * enroll this lock, so defer it to witness_initialize() by adding 892 * it to the pending_locks list. If it is not too early, then enroll 893 * the lock now. 894 */ 895 if (witness_watch < 1 || KERNEL_PANICKED() || 896 (lock->lo_flags & LO_WITNESS) == 0) 897 lock->lo_witness = NULL; 898 else if (witness_cold) { 899 pending_locks[pending_cnt].wh_lock = lock; 900 pending_locks[pending_cnt++].wh_type = type; 901 if (pending_cnt > WITNESS_PENDLIST) 902 panic("%s: pending locks list is too small, " 903 "increase WITNESS_PENDLIST\n", 904 __func__); 905 } else 906 lock->lo_witness = enroll(type, class); 907 } 908 909 void 910 witness_destroy(struct lock_object *lock) 911 { 912 struct lock_class *class; 913 struct witness *w; 914 915 class = LOCK_CLASS(lock); 916 917 if (witness_cold) 918 panic("lock (%s) %s destroyed while witness_cold", 919 class->lc_name, lock->lo_name); 920 921 /* XXX: need to verify that no one holds the lock */ 922 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 923 return; 924 w = lock->lo_witness; 925 926 mtx_lock_spin(&w_mtx); 927 MPASS(w->w_refcount > 0); 928 w->w_refcount--; 929 930 if (w->w_refcount == 0) 931 depart(w); 932 mtx_unlock_spin(&w_mtx); 933 } 934 935 #ifdef DDB 936 static void 937 witness_ddb_compute_levels(void) 938 { 939 struct witness *w; 940 941 /* 942 * First clear all levels. 943 */ 944 STAILQ_FOREACH(w, &w_all, w_list) 945 w->w_ddb_level = -1; 946 947 /* 948 * Look for locks with no parents and level all their descendants. 949 */ 950 STAILQ_FOREACH(w, &w_all, w_list) { 951 952 /* If the witness has ancestors (is not a root), skip it. */ 953 if (w->w_num_ancestors > 0) 954 continue; 955 witness_ddb_level_descendants(w, 0); 956 } 957 } 958 959 static void 960 witness_ddb_level_descendants(struct witness *w, int l) 961 { 962 int i; 963 964 if (w->w_ddb_level >= l) 965 return; 966 967 w->w_ddb_level = l; 968 l++; 969 970 for (i = 1; i <= w_max_used_index; i++) { 971 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 972 witness_ddb_level_descendants(&w_data[i], l); 973 } 974 } 975 976 static void 977 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 978 struct witness *w, int indent) 979 { 980 int i; 981 982 for (i = 0; i < indent; i++) 983 prnt(" "); 984 prnt("%s (type: %s, depth: %d, active refs: %d)", 985 w->w_name, w->w_class->lc_name, 986 w->w_ddb_level, w->w_refcount); 987 if (w->w_displayed) { 988 prnt(" -- (already displayed)\n"); 989 return; 990 } 991 w->w_displayed = 1; 992 if (w->w_file != NULL && w->w_line != 0) 993 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 994 w->w_line); 995 else 996 prnt(" -- never acquired\n"); 997 indent++; 998 WITNESS_INDEX_ASSERT(w->w_index); 999 for (i = 1; i <= w_max_used_index; i++) { 1000 if (db_pager_quit) 1001 return; 1002 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 1003 witness_ddb_display_descendants(prnt, &w_data[i], 1004 indent); 1005 } 1006 } 1007 1008 static void 1009 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 1010 struct witness_list *list) 1011 { 1012 struct witness *w; 1013 1014 STAILQ_FOREACH(w, list, w_typelist) { 1015 if (w->w_file == NULL || w->w_ddb_level > 0) 1016 continue; 1017 1018 /* This lock has no anscestors - display its descendants. */ 1019 witness_ddb_display_descendants(prnt, w, 0); 1020 if (db_pager_quit) 1021 return; 1022 } 1023 } 1024 1025 static void 1026 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 1027 { 1028 struct witness *w; 1029 1030 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1031 witness_ddb_compute_levels(); 1032 1033 /* Clear all the displayed flags. */ 1034 STAILQ_FOREACH(w, &w_all, w_list) 1035 w->w_displayed = 0; 1036 1037 /* 1038 * First, handle sleep locks which have been acquired at least 1039 * once. 1040 */ 1041 prnt("Sleep locks:\n"); 1042 witness_ddb_display_list(prnt, &w_sleep); 1043 if (db_pager_quit) 1044 return; 1045 1046 /* 1047 * Now do spin locks which have been acquired at least once. 1048 */ 1049 prnt("\nSpin locks:\n"); 1050 witness_ddb_display_list(prnt, &w_spin); 1051 if (db_pager_quit) 1052 return; 1053 1054 /* 1055 * Finally, any locks which have not been acquired yet. 1056 */ 1057 prnt("\nLocks which were never acquired:\n"); 1058 STAILQ_FOREACH(w, &w_all, w_list) { 1059 if (w->w_file != NULL || w->w_refcount == 0) 1060 continue; 1061 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1062 w->w_class->lc_name, w->w_ddb_level); 1063 if (db_pager_quit) 1064 return; 1065 } 1066 } 1067 #endif /* DDB */ 1068 1069 int 1070 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1071 { 1072 1073 if (witness_watch == -1 || KERNEL_PANICKED()) 1074 return (0); 1075 1076 /* Require locks that witness knows about. */ 1077 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1078 lock2->lo_witness == NULL) 1079 return (EINVAL); 1080 1081 mtx_assert(&w_mtx, MA_NOTOWNED); 1082 mtx_lock_spin(&w_mtx); 1083 1084 /* 1085 * If we already have either an explicit or implied lock order that 1086 * is the other way around, then return an error. 1087 */ 1088 if (witness_watch && 1089 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1090 mtx_unlock_spin(&w_mtx); 1091 return (EDOOFUS); 1092 } 1093 1094 /* Try to add the new order. */ 1095 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1096 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1097 itismychild(lock1->lo_witness, lock2->lo_witness); 1098 mtx_unlock_spin(&w_mtx); 1099 return (0); 1100 } 1101 1102 void 1103 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1104 int line, struct lock_object *interlock) 1105 { 1106 struct lock_list_entry *lock_list, *lle; 1107 struct lock_instance *lock1, *lock2, *plock; 1108 struct lock_class *class, *iclass; 1109 struct witness *w, *w1; 1110 struct thread *td; 1111 int i, j; 1112 1113 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1114 KERNEL_PANICKED()) 1115 return; 1116 1117 w = lock->lo_witness; 1118 class = LOCK_CLASS(lock); 1119 td = curthread; 1120 1121 if (class->lc_flags & LC_SLEEPLOCK) { 1122 1123 /* 1124 * Since spin locks include a critical section, this check 1125 * implicitly enforces a lock order of all sleep locks before 1126 * all spin locks. 1127 */ 1128 if (td->td_critnest != 0 && !kdb_active) 1129 kassert_panic("acquiring blockable sleep lock with " 1130 "spinlock or critical section held (%s) %s @ %s:%d", 1131 class->lc_name, lock->lo_name, 1132 fixup_filename(file), line); 1133 1134 /* 1135 * If this is the first lock acquired then just return as 1136 * no order checking is needed. 1137 */ 1138 lock_list = td->td_sleeplocks; 1139 if (lock_list == NULL || lock_list->ll_count == 0) 1140 return; 1141 } else { 1142 1143 /* 1144 * If this is the first lock, just return as no order 1145 * checking is needed. Avoid problems with thread 1146 * migration pinning the thread while checking if 1147 * spinlocks are held. If at least one spinlock is held 1148 * the thread is in a safe path and it is allowed to 1149 * unpin it. 1150 */ 1151 sched_pin(); 1152 lock_list = PCPU_GET(spinlocks); 1153 if (lock_list == NULL || lock_list->ll_count == 0) { 1154 sched_unpin(); 1155 return; 1156 } 1157 sched_unpin(); 1158 } 1159 1160 /* 1161 * Check to see if we are recursing on a lock we already own. If 1162 * so, make sure that we don't mismatch exclusive and shared lock 1163 * acquires. 1164 */ 1165 lock1 = find_instance(lock_list, lock); 1166 if (lock1 != NULL) { 1167 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1168 (flags & LOP_EXCLUSIVE) == 0) { 1169 witness_output("shared lock of (%s) %s @ %s:%d\n", 1170 class->lc_name, lock->lo_name, 1171 fixup_filename(file), line); 1172 witness_output("while exclusively locked from %s:%d\n", 1173 fixup_filename(lock1->li_file), lock1->li_line); 1174 kassert_panic("excl->share"); 1175 } 1176 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1177 (flags & LOP_EXCLUSIVE) != 0) { 1178 witness_output("exclusive lock of (%s) %s @ %s:%d\n", 1179 class->lc_name, lock->lo_name, 1180 fixup_filename(file), line); 1181 witness_output("while share locked from %s:%d\n", 1182 fixup_filename(lock1->li_file), lock1->li_line); 1183 kassert_panic("share->excl"); 1184 } 1185 return; 1186 } 1187 1188 /* Warn if the interlock is not locked exactly once. */ 1189 if (interlock != NULL) { 1190 iclass = LOCK_CLASS(interlock); 1191 lock1 = find_instance(lock_list, interlock); 1192 if (lock1 == NULL) 1193 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1194 iclass->lc_name, interlock->lo_name, 1195 fixup_filename(file), line); 1196 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1197 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1198 iclass->lc_name, interlock->lo_name, 1199 fixup_filename(file), line); 1200 } 1201 1202 /* 1203 * Find the previously acquired lock, but ignore interlocks. 1204 */ 1205 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1206 if (interlock != NULL && plock->li_lock == interlock) { 1207 if (lock_list->ll_count > 1) 1208 plock = 1209 &lock_list->ll_children[lock_list->ll_count - 2]; 1210 else { 1211 lle = lock_list->ll_next; 1212 1213 /* 1214 * The interlock is the only lock we hold, so 1215 * simply return. 1216 */ 1217 if (lle == NULL) 1218 return; 1219 plock = &lle->ll_children[lle->ll_count - 1]; 1220 } 1221 } 1222 1223 /* 1224 * Try to perform most checks without a lock. If this succeeds we 1225 * can skip acquiring the lock and return success. Otherwise we redo 1226 * the check with the lock held to handle races with concurrent updates. 1227 */ 1228 w1 = plock->li_lock->lo_witness; 1229 if (witness_lock_order_check(w1, w)) 1230 return; 1231 1232 mtx_lock_spin(&w_mtx); 1233 if (witness_lock_order_check(w1, w)) { 1234 mtx_unlock_spin(&w_mtx); 1235 return; 1236 } 1237 witness_lock_order_add(w1, w); 1238 1239 /* 1240 * Check for duplicate locks of the same type. Note that we only 1241 * have to check for this on the last lock we just acquired. Any 1242 * other cases will be caught as lock order violations. 1243 */ 1244 if (w1 == w) { 1245 i = w->w_index; 1246 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1247 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1248 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1249 w->w_reversed = 1; 1250 mtx_unlock_spin(&w_mtx); 1251 witness_output( 1252 "acquiring duplicate lock of same type: \"%s\"\n", 1253 w->w_name); 1254 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1255 fixup_filename(plock->li_file), plock->li_line); 1256 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name, 1257 fixup_filename(file), line); 1258 witness_debugger(1, __func__); 1259 } else 1260 mtx_unlock_spin(&w_mtx); 1261 return; 1262 } 1263 mtx_assert(&w_mtx, MA_OWNED); 1264 1265 /* 1266 * If we know that the lock we are acquiring comes after 1267 * the lock we most recently acquired in the lock order tree, 1268 * then there is no need for any further checks. 1269 */ 1270 if (isitmychild(w1, w)) 1271 goto out; 1272 1273 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1274 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1275 1276 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN); 1277 lock1 = &lle->ll_children[i]; 1278 1279 /* 1280 * Ignore the interlock. 1281 */ 1282 if (interlock == lock1->li_lock) 1283 continue; 1284 1285 /* 1286 * If this lock doesn't undergo witness checking, 1287 * then skip it. 1288 */ 1289 w1 = lock1->li_lock->lo_witness; 1290 if (w1 == NULL) { 1291 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1292 ("lock missing witness structure")); 1293 continue; 1294 } 1295 1296 /* 1297 * If we are locking Giant and this is a sleepable 1298 * lock, then skip it. 1299 */ 1300 if ((lock1->li_flags & LI_SLEEPABLE) != 0 && 1301 lock == &Giant.lock_object) 1302 continue; 1303 1304 /* 1305 * If we are locking a sleepable lock and this lock 1306 * is Giant, then skip it. 1307 */ 1308 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1309 (flags & LOP_NOSLEEP) == 0 && 1310 lock1->li_lock == &Giant.lock_object) 1311 continue; 1312 1313 /* 1314 * If we are locking a sleepable lock and this lock 1315 * isn't sleepable, we want to treat it as a lock 1316 * order violation to enfore a general lock order of 1317 * sleepable locks before non-sleepable locks. 1318 */ 1319 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1320 (flags & LOP_NOSLEEP) == 0 && 1321 (lock1->li_flags & LI_SLEEPABLE) == 0) 1322 goto reversal; 1323 1324 /* 1325 * If we are locking Giant and this is a non-sleepable 1326 * lock, then treat it as a reversal. 1327 */ 1328 if ((lock1->li_flags & LI_SLEEPABLE) == 0 && 1329 lock == &Giant.lock_object) 1330 goto reversal; 1331 1332 /* 1333 * Check the lock order hierarchy for a reveresal. 1334 */ 1335 if (!isitmydescendant(w, w1)) 1336 continue; 1337 reversal: 1338 1339 /* 1340 * We have a lock order violation, check to see if it 1341 * is allowed or has already been yelled about. 1342 */ 1343 1344 /* Bail if this violation is known */ 1345 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1346 goto out; 1347 1348 /* Record this as a violation */ 1349 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1350 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1351 w->w_reversed = w1->w_reversed = 1; 1352 witness_increment_graph_generation(); 1353 1354 /* 1355 * If the lock order is blessed, bail before logging 1356 * anything. We don't look for other lock order 1357 * violations though, which may be a bug. 1358 */ 1359 if (blessed(w, w1)) 1360 goto out; 1361 mtx_unlock_spin(&w_mtx); 1362 1363 #ifdef WITNESS_NO_VNODE 1364 /* 1365 * There are known LORs between VNODE locks. They are 1366 * not an indication of a bug. VNODE locks are flagged 1367 * as such (LO_IS_VNODE) and we don't yell if the LOR 1368 * is between 2 VNODE locks. 1369 */ 1370 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1371 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1372 return; 1373 #endif 1374 1375 /* 1376 * Ok, yell about it. 1377 */ 1378 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1379 (flags & LOP_NOSLEEP) == 0 && 1380 (lock1->li_flags & LI_SLEEPABLE) == 0) 1381 witness_output( 1382 "lock order reversal: (sleepable after non-sleepable)\n"); 1383 else if ((lock1->li_flags & LI_SLEEPABLE) == 0 1384 && lock == &Giant.lock_object) 1385 witness_output( 1386 "lock order reversal: (Giant after non-sleepable)\n"); 1387 else 1388 witness_output("lock order reversal:\n"); 1389 1390 /* 1391 * Try to locate an earlier lock with 1392 * witness w in our list. 1393 */ 1394 do { 1395 lock2 = &lle->ll_children[i]; 1396 MPASS(lock2->li_lock != NULL); 1397 if (lock2->li_lock->lo_witness == w) 1398 break; 1399 if (i == 0 && lle->ll_next != NULL) { 1400 lle = lle->ll_next; 1401 i = lle->ll_count - 1; 1402 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1403 } else 1404 i--; 1405 } while (i >= 0); 1406 if (i < 0) { 1407 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1408 lock1->li_lock, lock1->li_lock->lo_name, 1409 w1->w_name, fixup_filename(lock1->li_file), 1410 lock1->li_line); 1411 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock, 1412 lock->lo_name, w->w_name, 1413 fixup_filename(file), line); 1414 } else { 1415 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1416 lock2->li_lock, lock2->li_lock->lo_name, 1417 lock2->li_lock->lo_witness->w_name, 1418 fixup_filename(lock2->li_file), 1419 lock2->li_line); 1420 witness_output(" 2nd %p %s (%s) @ %s:%d\n", 1421 lock1->li_lock, lock1->li_lock->lo_name, 1422 w1->w_name, fixup_filename(lock1->li_file), 1423 lock1->li_line); 1424 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock, 1425 lock->lo_name, w->w_name, 1426 fixup_filename(file), line); 1427 } 1428 witness_debugger(1, __func__); 1429 return; 1430 } 1431 } 1432 1433 /* 1434 * If requested, build a new lock order. However, don't build a new 1435 * relationship between a sleepable lock and Giant if it is in the 1436 * wrong direction. The correct lock order is that sleepable locks 1437 * always come before Giant. 1438 */ 1439 if (flags & LOP_NEWORDER && 1440 !(plock->li_lock == &Giant.lock_object && 1441 (lock->lo_flags & LO_SLEEPABLE) != 0 && 1442 (flags & LOP_NOSLEEP) == 0)) { 1443 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1444 w->w_name, plock->li_lock->lo_witness->w_name); 1445 itismychild(plock->li_lock->lo_witness, w); 1446 } 1447 out: 1448 mtx_unlock_spin(&w_mtx); 1449 } 1450 1451 void 1452 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1453 { 1454 struct lock_list_entry **lock_list, *lle; 1455 struct lock_instance *instance; 1456 struct witness *w; 1457 struct thread *td; 1458 1459 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1460 KERNEL_PANICKED()) 1461 return; 1462 w = lock->lo_witness; 1463 td = curthread; 1464 1465 /* Determine lock list for this lock. */ 1466 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1467 lock_list = &td->td_sleeplocks; 1468 else 1469 lock_list = PCPU_PTR(spinlocks); 1470 1471 /* Check to see if we are recursing on a lock we already own. */ 1472 instance = find_instance(*lock_list, lock); 1473 if (instance != NULL) { 1474 instance->li_flags++; 1475 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1476 td->td_proc->p_pid, lock->lo_name, 1477 instance->li_flags & LI_RECURSEMASK); 1478 instance->li_file = file; 1479 instance->li_line = line; 1480 return; 1481 } 1482 1483 /* Update per-witness last file and line acquire. */ 1484 w->w_file = file; 1485 w->w_line = line; 1486 1487 /* Find the next open lock instance in the list and fill it. */ 1488 lle = *lock_list; 1489 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1490 lle = witness_lock_list_get(); 1491 if (lle == NULL) 1492 return; 1493 lle->ll_next = *lock_list; 1494 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1495 td->td_proc->p_pid, lle); 1496 *lock_list = lle; 1497 } 1498 instance = &lle->ll_children[lle->ll_count++]; 1499 instance->li_lock = lock; 1500 instance->li_line = line; 1501 instance->li_file = file; 1502 instance->li_flags = 0; 1503 if ((flags & LOP_EXCLUSIVE) != 0) 1504 instance->li_flags |= LI_EXCLUSIVE; 1505 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0) 1506 instance->li_flags |= LI_SLEEPABLE; 1507 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1508 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1509 } 1510 1511 void 1512 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1513 { 1514 struct lock_instance *instance; 1515 struct lock_class *class; 1516 1517 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1518 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED()) 1519 return; 1520 class = LOCK_CLASS(lock); 1521 if (witness_watch) { 1522 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1523 kassert_panic( 1524 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1525 class->lc_name, lock->lo_name, 1526 fixup_filename(file), line); 1527 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1528 kassert_panic( 1529 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1530 class->lc_name, lock->lo_name, 1531 fixup_filename(file), line); 1532 } 1533 instance = find_instance(curthread->td_sleeplocks, lock); 1534 if (instance == NULL) { 1535 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1536 class->lc_name, lock->lo_name, 1537 fixup_filename(file), line); 1538 return; 1539 } 1540 if (witness_watch) { 1541 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1542 kassert_panic( 1543 "upgrade of exclusive lock (%s) %s @ %s:%d", 1544 class->lc_name, lock->lo_name, 1545 fixup_filename(file), line); 1546 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1547 kassert_panic( 1548 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1549 class->lc_name, lock->lo_name, 1550 instance->li_flags & LI_RECURSEMASK, 1551 fixup_filename(file), line); 1552 } 1553 instance->li_flags |= LI_EXCLUSIVE; 1554 } 1555 1556 void 1557 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1558 int line) 1559 { 1560 struct lock_instance *instance; 1561 struct lock_class *class; 1562 1563 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1564 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED()) 1565 return; 1566 class = LOCK_CLASS(lock); 1567 if (witness_watch) { 1568 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1569 kassert_panic( 1570 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1571 class->lc_name, lock->lo_name, 1572 fixup_filename(file), line); 1573 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1574 kassert_panic( 1575 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1576 class->lc_name, lock->lo_name, 1577 fixup_filename(file), line); 1578 } 1579 instance = find_instance(curthread->td_sleeplocks, lock); 1580 if (instance == NULL) { 1581 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1582 class->lc_name, lock->lo_name, 1583 fixup_filename(file), line); 1584 return; 1585 } 1586 if (witness_watch) { 1587 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1588 kassert_panic( 1589 "downgrade of shared lock (%s) %s @ %s:%d", 1590 class->lc_name, lock->lo_name, 1591 fixup_filename(file), line); 1592 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1593 kassert_panic( 1594 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1595 class->lc_name, lock->lo_name, 1596 instance->li_flags & LI_RECURSEMASK, 1597 fixup_filename(file), line); 1598 } 1599 instance->li_flags &= ~LI_EXCLUSIVE; 1600 } 1601 1602 void 1603 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1604 { 1605 struct lock_list_entry **lock_list, *lle; 1606 struct lock_instance *instance; 1607 struct lock_class *class; 1608 struct thread *td; 1609 register_t s; 1610 int i, j; 1611 1612 if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED()) 1613 return; 1614 td = curthread; 1615 class = LOCK_CLASS(lock); 1616 1617 /* Find lock instance associated with this lock. */ 1618 if (class->lc_flags & LC_SLEEPLOCK) 1619 lock_list = &td->td_sleeplocks; 1620 else 1621 lock_list = PCPU_PTR(spinlocks); 1622 lle = *lock_list; 1623 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1624 for (i = 0; i < (*lock_list)->ll_count; i++) { 1625 instance = &(*lock_list)->ll_children[i]; 1626 if (instance->li_lock == lock) 1627 goto found; 1628 } 1629 1630 /* 1631 * When disabling WITNESS through witness_watch we could end up in 1632 * having registered locks in the td_sleeplocks queue. 1633 * We have to make sure we flush these queues, so just search for 1634 * eventual register locks and remove them. 1635 */ 1636 if (witness_watch > 0) { 1637 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1638 lock->lo_name, fixup_filename(file), line); 1639 return; 1640 } else { 1641 return; 1642 } 1643 found: 1644 1645 /* First, check for shared/exclusive mismatches. */ 1646 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1647 (flags & LOP_EXCLUSIVE) == 0) { 1648 witness_output("shared unlock of (%s) %s @ %s:%d\n", 1649 class->lc_name, lock->lo_name, fixup_filename(file), line); 1650 witness_output("while exclusively locked from %s:%d\n", 1651 fixup_filename(instance->li_file), instance->li_line); 1652 kassert_panic("excl->ushare"); 1653 } 1654 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1655 (flags & LOP_EXCLUSIVE) != 0) { 1656 witness_output("exclusive unlock of (%s) %s @ %s:%d\n", 1657 class->lc_name, lock->lo_name, fixup_filename(file), line); 1658 witness_output("while share locked from %s:%d\n", 1659 fixup_filename(instance->li_file), 1660 instance->li_line); 1661 kassert_panic("share->uexcl"); 1662 } 1663 /* If we are recursed, unrecurse. */ 1664 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1665 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1666 td->td_proc->p_pid, instance->li_lock->lo_name, 1667 instance->li_flags); 1668 instance->li_flags--; 1669 return; 1670 } 1671 /* The lock is now being dropped, check for NORELEASE flag */ 1672 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1673 witness_output("forbidden unlock of (%s) %s @ %s:%d\n", 1674 class->lc_name, lock->lo_name, fixup_filename(file), line); 1675 kassert_panic("lock marked norelease"); 1676 } 1677 1678 /* Otherwise, remove this item from the list. */ 1679 s = intr_disable(); 1680 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1681 td->td_proc->p_pid, instance->li_lock->lo_name, 1682 (*lock_list)->ll_count - 1); 1683 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1684 (*lock_list)->ll_children[j] = 1685 (*lock_list)->ll_children[j + 1]; 1686 (*lock_list)->ll_count--; 1687 intr_restore(s); 1688 1689 /* 1690 * In order to reduce contention on w_mtx, we want to keep always an 1691 * head object into lists so that frequent allocation from the 1692 * free witness pool (and subsequent locking) is avoided. 1693 * In order to maintain the current code simple, when the head 1694 * object is totally unloaded it means also that we do not have 1695 * further objects in the list, so the list ownership needs to be 1696 * hand over to another object if the current head needs to be freed. 1697 */ 1698 if ((*lock_list)->ll_count == 0) { 1699 if (*lock_list == lle) { 1700 if (lle->ll_next == NULL) 1701 return; 1702 } else 1703 lle = *lock_list; 1704 *lock_list = lle->ll_next; 1705 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1706 td->td_proc->p_pid, lle); 1707 witness_lock_list_free(lle); 1708 } 1709 } 1710 1711 void 1712 witness_thread_exit(struct thread *td) 1713 { 1714 struct lock_list_entry *lle; 1715 int i, n; 1716 1717 lle = td->td_sleeplocks; 1718 if (lle == NULL || KERNEL_PANICKED()) 1719 return; 1720 if (lle->ll_count != 0) { 1721 for (n = 0; lle != NULL; lle = lle->ll_next) 1722 for (i = lle->ll_count - 1; i >= 0; i--) { 1723 if (n == 0) 1724 witness_output( 1725 "Thread %p exiting with the following locks held:\n", td); 1726 n++; 1727 witness_list_lock(&lle->ll_children[i], 1728 witness_output); 1729 1730 } 1731 kassert_panic( 1732 "Thread %p cannot exit while holding sleeplocks\n", td); 1733 } 1734 witness_lock_list_free(lle); 1735 } 1736 1737 /* 1738 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1739 * exempt Giant and sleepable locks from the checks as well. If any 1740 * non-exempt locks are held, then a supplied message is printed to the 1741 * output channel along with a list of the offending locks. If indicated in the 1742 * flags then a failure results in a panic as well. 1743 */ 1744 int 1745 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1746 { 1747 struct lock_list_entry *lock_list, *lle; 1748 struct lock_instance *lock1; 1749 struct thread *td; 1750 va_list ap; 1751 int i, n; 1752 1753 if (witness_cold || witness_watch < 1 || KERNEL_PANICKED()) 1754 return (0); 1755 n = 0; 1756 td = curthread; 1757 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1758 for (i = lle->ll_count - 1; i >= 0; i--) { 1759 lock1 = &lle->ll_children[i]; 1760 if (lock1->li_lock == lock) 1761 continue; 1762 if (flags & WARN_GIANTOK && 1763 lock1->li_lock == &Giant.lock_object) 1764 continue; 1765 if (flags & WARN_SLEEPOK && 1766 (lock1->li_flags & LI_SLEEPABLE) != 0) 1767 continue; 1768 if (n == 0) { 1769 va_start(ap, fmt); 1770 vprintf(fmt, ap); 1771 va_end(ap); 1772 printf(" with the following %slocks held:\n", 1773 (flags & WARN_SLEEPOK) != 0 ? 1774 "non-sleepable " : ""); 1775 } 1776 n++; 1777 witness_list_lock(lock1, printf); 1778 } 1779 1780 /* 1781 * Pin the thread in order to avoid problems with thread migration. 1782 * Once that all verifies are passed about spinlocks ownership, 1783 * the thread is in a safe path and it can be unpinned. 1784 */ 1785 sched_pin(); 1786 lock_list = PCPU_GET(spinlocks); 1787 if (lock_list != NULL && lock_list->ll_count != 0) { 1788 sched_unpin(); 1789 1790 /* 1791 * We should only have one spinlock and as long as 1792 * the flags cannot match for this locks class, 1793 * check if the first spinlock is the one curthread 1794 * should hold. 1795 */ 1796 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1797 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1798 lock1->li_lock == lock && n == 0) 1799 return (0); 1800 1801 va_start(ap, fmt); 1802 vprintf(fmt, ap); 1803 va_end(ap); 1804 printf(" with the following %slocks held:\n", 1805 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : ""); 1806 n += witness_list_locks(&lock_list, printf); 1807 } else 1808 sched_unpin(); 1809 if (flags & WARN_PANIC && n) 1810 kassert_panic("%s", __func__); 1811 else 1812 witness_debugger(n, __func__); 1813 return (n); 1814 } 1815 1816 const char * 1817 witness_file(struct lock_object *lock) 1818 { 1819 struct witness *w; 1820 1821 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1822 return ("?"); 1823 w = lock->lo_witness; 1824 return (w->w_file); 1825 } 1826 1827 int 1828 witness_line(struct lock_object *lock) 1829 { 1830 struct witness *w; 1831 1832 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1833 return (0); 1834 w = lock->lo_witness; 1835 return (w->w_line); 1836 } 1837 1838 static struct witness * 1839 enroll(const char *description, struct lock_class *lock_class) 1840 { 1841 struct witness *w; 1842 1843 MPASS(description != NULL); 1844 1845 if (witness_watch == -1 || KERNEL_PANICKED()) 1846 return (NULL); 1847 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1848 if (witness_skipspin) 1849 return (NULL); 1850 } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) { 1851 kassert_panic("lock class %s is not sleep or spin", 1852 lock_class->lc_name); 1853 return (NULL); 1854 } 1855 1856 mtx_lock_spin(&w_mtx); 1857 w = witness_hash_get(description); 1858 if (w) 1859 goto found; 1860 if ((w = witness_get()) == NULL) 1861 return (NULL); 1862 MPASS(strlen(description) < MAX_W_NAME); 1863 strcpy(w->w_name, description); 1864 w->w_class = lock_class; 1865 w->w_refcount = 1; 1866 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1867 if (lock_class->lc_flags & LC_SPINLOCK) { 1868 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1869 w_spin_cnt++; 1870 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1871 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1872 w_sleep_cnt++; 1873 } 1874 1875 /* Insert new witness into the hash */ 1876 witness_hash_put(w); 1877 witness_increment_graph_generation(); 1878 mtx_unlock_spin(&w_mtx); 1879 return (w); 1880 found: 1881 w->w_refcount++; 1882 if (w->w_refcount == 1) 1883 w->w_class = lock_class; 1884 mtx_unlock_spin(&w_mtx); 1885 if (lock_class != w->w_class) 1886 kassert_panic( 1887 "lock (%s) %s does not match earlier (%s) lock", 1888 description, lock_class->lc_name, 1889 w->w_class->lc_name); 1890 return (w); 1891 } 1892 1893 static void 1894 depart(struct witness *w) 1895 { 1896 1897 MPASS(w->w_refcount == 0); 1898 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1899 w_sleep_cnt--; 1900 } else { 1901 w_spin_cnt--; 1902 } 1903 /* 1904 * Set file to NULL as it may point into a loadable module. 1905 */ 1906 w->w_file = NULL; 1907 w->w_line = 0; 1908 witness_increment_graph_generation(); 1909 } 1910 1911 static void 1912 adopt(struct witness *parent, struct witness *child) 1913 { 1914 int pi, ci, i, j; 1915 1916 if (witness_cold == 0) 1917 mtx_assert(&w_mtx, MA_OWNED); 1918 1919 /* If the relationship is already known, there's no work to be done. */ 1920 if (isitmychild(parent, child)) 1921 return; 1922 1923 /* When the structure of the graph changes, bump up the generation. */ 1924 witness_increment_graph_generation(); 1925 1926 /* 1927 * The hard part ... create the direct relationship, then propagate all 1928 * indirect relationships. 1929 */ 1930 pi = parent->w_index; 1931 ci = child->w_index; 1932 WITNESS_INDEX_ASSERT(pi); 1933 WITNESS_INDEX_ASSERT(ci); 1934 MPASS(pi != ci); 1935 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1936 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1937 1938 /* 1939 * If parent was not already an ancestor of child, 1940 * then we increment the descendant and ancestor counters. 1941 */ 1942 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1943 parent->w_num_descendants++; 1944 child->w_num_ancestors++; 1945 } 1946 1947 /* 1948 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1949 * an ancestor of 'pi' during this loop. 1950 */ 1951 for (i = 1; i <= w_max_used_index; i++) { 1952 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1953 (i != pi)) 1954 continue; 1955 1956 /* Find each descendant of 'i' and mark it as a descendant. */ 1957 for (j = 1; j <= w_max_used_index; j++) { 1958 1959 /* 1960 * Skip children that are already marked as 1961 * descendants of 'i'. 1962 */ 1963 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1964 continue; 1965 1966 /* 1967 * We are only interested in descendants of 'ci'. Note 1968 * that 'ci' itself is counted as a descendant of 'ci'. 1969 */ 1970 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1971 (j != ci)) 1972 continue; 1973 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1974 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1975 w_data[i].w_num_descendants++; 1976 w_data[j].w_num_ancestors++; 1977 1978 /* 1979 * Make sure we aren't marking a node as both an 1980 * ancestor and descendant. We should have caught 1981 * this as a lock order reversal earlier. 1982 */ 1983 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1984 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1985 printf("witness rmatrix paradox! [%d][%d]=%d " 1986 "both ancestor and descendant\n", 1987 i, j, w_rmatrix[i][j]); 1988 kdb_backtrace(); 1989 printf("Witness disabled.\n"); 1990 witness_watch = -1; 1991 } 1992 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1993 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1994 printf("witness rmatrix paradox! [%d][%d]=%d " 1995 "both ancestor and descendant\n", 1996 j, i, w_rmatrix[j][i]); 1997 kdb_backtrace(); 1998 printf("Witness disabled.\n"); 1999 witness_watch = -1; 2000 } 2001 } 2002 } 2003 } 2004 2005 static void 2006 itismychild(struct witness *parent, struct witness *child) 2007 { 2008 int unlocked; 2009 2010 MPASS(child != NULL && parent != NULL); 2011 if (witness_cold == 0) 2012 mtx_assert(&w_mtx, MA_OWNED); 2013 2014 if (!witness_lock_type_equal(parent, child)) { 2015 if (witness_cold == 0) { 2016 unlocked = 1; 2017 mtx_unlock_spin(&w_mtx); 2018 } else { 2019 unlocked = 0; 2020 } 2021 kassert_panic( 2022 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 2023 "the same lock type", __func__, parent->w_name, 2024 parent->w_class->lc_name, child->w_name, 2025 child->w_class->lc_name); 2026 if (unlocked) 2027 mtx_lock_spin(&w_mtx); 2028 } 2029 adopt(parent, child); 2030 } 2031 2032 /* 2033 * Generic code for the isitmy*() functions. The rmask parameter is the 2034 * expected relationship of w1 to w2. 2035 */ 2036 static int 2037 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 2038 { 2039 unsigned char r1, r2; 2040 int i1, i2; 2041 2042 i1 = w1->w_index; 2043 i2 = w2->w_index; 2044 WITNESS_INDEX_ASSERT(i1); 2045 WITNESS_INDEX_ASSERT(i2); 2046 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 2047 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 2048 2049 /* The flags on one better be the inverse of the flags on the other */ 2050 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 2051 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 2052 /* Don't squawk if we're potentially racing with an update. */ 2053 if (!mtx_owned(&w_mtx)) 2054 return (0); 2055 printf("%s: rmatrix mismatch between %s (index %d) and %s " 2056 "(index %d): w_rmatrix[%d][%d] == %hhx but " 2057 "w_rmatrix[%d][%d] == %hhx\n", 2058 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 2059 i2, i1, r2); 2060 kdb_backtrace(); 2061 printf("Witness disabled.\n"); 2062 witness_watch = -1; 2063 } 2064 return (r1 & rmask); 2065 } 2066 2067 /* 2068 * Checks if @child is a direct child of @parent. 2069 */ 2070 static int 2071 isitmychild(struct witness *parent, struct witness *child) 2072 { 2073 2074 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2075 } 2076 2077 /* 2078 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2079 */ 2080 static int 2081 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2082 { 2083 2084 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2085 __func__)); 2086 } 2087 2088 static int 2089 blessed(struct witness *w1, struct witness *w2) 2090 { 2091 int i; 2092 struct witness_blessed *b; 2093 2094 for (i = 0; i < nitems(blessed_list); i++) { 2095 b = &blessed_list[i]; 2096 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2097 if (strcmp(w2->w_name, b->b_lock2) == 0) 2098 return (1); 2099 continue; 2100 } 2101 if (strcmp(w1->w_name, b->b_lock2) == 0) 2102 if (strcmp(w2->w_name, b->b_lock1) == 0) 2103 return (1); 2104 } 2105 return (0); 2106 } 2107 2108 static struct witness * 2109 witness_get(void) 2110 { 2111 struct witness *w; 2112 int index; 2113 2114 if (witness_cold == 0) 2115 mtx_assert(&w_mtx, MA_OWNED); 2116 2117 if (witness_watch == -1) { 2118 mtx_unlock_spin(&w_mtx); 2119 return (NULL); 2120 } 2121 if (STAILQ_EMPTY(&w_free)) { 2122 witness_watch = -1; 2123 mtx_unlock_spin(&w_mtx); 2124 printf("WITNESS: unable to allocate a new witness object\n"); 2125 return (NULL); 2126 } 2127 w = STAILQ_FIRST(&w_free); 2128 STAILQ_REMOVE_HEAD(&w_free, w_list); 2129 w_free_cnt--; 2130 index = w->w_index; 2131 MPASS(index > 0 && index == w_max_used_index+1 && 2132 index < witness_count); 2133 bzero(w, sizeof(*w)); 2134 w->w_index = index; 2135 if (index > w_max_used_index) 2136 w_max_used_index = index; 2137 return (w); 2138 } 2139 2140 static void 2141 witness_free(struct witness *w) 2142 { 2143 2144 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2145 w_free_cnt++; 2146 } 2147 2148 static struct lock_list_entry * 2149 witness_lock_list_get(void) 2150 { 2151 struct lock_list_entry *lle; 2152 2153 if (witness_watch == -1) 2154 return (NULL); 2155 mtx_lock_spin(&w_mtx); 2156 lle = w_lock_list_free; 2157 if (lle == NULL) { 2158 witness_watch = -1; 2159 mtx_unlock_spin(&w_mtx); 2160 printf("%s: witness exhausted\n", __func__); 2161 return (NULL); 2162 } 2163 w_lock_list_free = lle->ll_next; 2164 mtx_unlock_spin(&w_mtx); 2165 bzero(lle, sizeof(*lle)); 2166 return (lle); 2167 } 2168 2169 static void 2170 witness_lock_list_free(struct lock_list_entry *lle) 2171 { 2172 2173 mtx_lock_spin(&w_mtx); 2174 lle->ll_next = w_lock_list_free; 2175 w_lock_list_free = lle; 2176 mtx_unlock_spin(&w_mtx); 2177 } 2178 2179 static struct lock_instance * 2180 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2181 { 2182 struct lock_list_entry *lle; 2183 struct lock_instance *instance; 2184 int i; 2185 2186 for (lle = list; lle != NULL; lle = lle->ll_next) 2187 for (i = lle->ll_count - 1; i >= 0; i--) { 2188 instance = &lle->ll_children[i]; 2189 if (instance->li_lock == lock) 2190 return (instance); 2191 } 2192 return (NULL); 2193 } 2194 2195 static void 2196 witness_list_lock(struct lock_instance *instance, 2197 int (*prnt)(const char *fmt, ...)) 2198 { 2199 struct lock_object *lock; 2200 2201 lock = instance->li_lock; 2202 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2203 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2204 if (lock->lo_witness->w_name != lock->lo_name) 2205 prnt(" (%s)", lock->lo_witness->w_name); 2206 prnt(" r = %d (%p) locked @ %s:%d\n", 2207 instance->li_flags & LI_RECURSEMASK, lock, 2208 fixup_filename(instance->li_file), instance->li_line); 2209 } 2210 2211 static int 2212 witness_output(const char *fmt, ...) 2213 { 2214 va_list ap; 2215 int ret; 2216 2217 va_start(ap, fmt); 2218 ret = witness_voutput(fmt, ap); 2219 va_end(ap); 2220 return (ret); 2221 } 2222 2223 static int 2224 witness_voutput(const char *fmt, va_list ap) 2225 { 2226 int ret; 2227 2228 ret = 0; 2229 switch (witness_channel) { 2230 case WITNESS_CONSOLE: 2231 ret = vprintf(fmt, ap); 2232 break; 2233 case WITNESS_LOG: 2234 vlog(LOG_NOTICE, fmt, ap); 2235 break; 2236 case WITNESS_NONE: 2237 break; 2238 } 2239 return (ret); 2240 } 2241 2242 #ifdef DDB 2243 static int 2244 witness_thread_has_locks(struct thread *td) 2245 { 2246 2247 if (td->td_sleeplocks == NULL) 2248 return (0); 2249 return (td->td_sleeplocks->ll_count != 0); 2250 } 2251 2252 static int 2253 witness_proc_has_locks(struct proc *p) 2254 { 2255 struct thread *td; 2256 2257 FOREACH_THREAD_IN_PROC(p, td) { 2258 if (witness_thread_has_locks(td)) 2259 return (1); 2260 } 2261 return (0); 2262 } 2263 #endif 2264 2265 int 2266 witness_list_locks(struct lock_list_entry **lock_list, 2267 int (*prnt)(const char *fmt, ...)) 2268 { 2269 struct lock_list_entry *lle; 2270 int i, nheld; 2271 2272 nheld = 0; 2273 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2274 for (i = lle->ll_count - 1; i >= 0; i--) { 2275 witness_list_lock(&lle->ll_children[i], prnt); 2276 nheld++; 2277 } 2278 return (nheld); 2279 } 2280 2281 /* 2282 * This is a bit risky at best. We call this function when we have timed 2283 * out acquiring a spin lock, and we assume that the other CPU is stuck 2284 * with this lock held. So, we go groveling around in the other CPU's 2285 * per-cpu data to try to find the lock instance for this spin lock to 2286 * see when it was last acquired. 2287 */ 2288 void 2289 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2290 int (*prnt)(const char *fmt, ...)) 2291 { 2292 struct lock_instance *instance; 2293 struct pcpu *pc; 2294 2295 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2296 return; 2297 pc = pcpu_find(owner->td_oncpu); 2298 instance = find_instance(pc->pc_spinlocks, lock); 2299 if (instance != NULL) 2300 witness_list_lock(instance, prnt); 2301 } 2302 2303 void 2304 witness_save(struct lock_object *lock, const char **filep, int *linep) 2305 { 2306 struct lock_list_entry *lock_list; 2307 struct lock_instance *instance; 2308 struct lock_class *class; 2309 2310 /* 2311 * This function is used independently in locking code to deal with 2312 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2313 * is gone. 2314 */ 2315 if (SCHEDULER_STOPPED()) 2316 return; 2317 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2318 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED()) 2319 return; 2320 class = LOCK_CLASS(lock); 2321 if (class->lc_flags & LC_SLEEPLOCK) 2322 lock_list = curthread->td_sleeplocks; 2323 else { 2324 if (witness_skipspin) 2325 return; 2326 lock_list = PCPU_GET(spinlocks); 2327 } 2328 instance = find_instance(lock_list, lock); 2329 if (instance == NULL) { 2330 kassert_panic("%s: lock (%s) %s not locked", __func__, 2331 class->lc_name, lock->lo_name); 2332 return; 2333 } 2334 *filep = instance->li_file; 2335 *linep = instance->li_line; 2336 } 2337 2338 void 2339 witness_restore(struct lock_object *lock, const char *file, int line) 2340 { 2341 struct lock_list_entry *lock_list; 2342 struct lock_instance *instance; 2343 struct lock_class *class; 2344 2345 /* 2346 * This function is used independently in locking code to deal with 2347 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2348 * is gone. 2349 */ 2350 if (SCHEDULER_STOPPED()) 2351 return; 2352 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2353 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED()) 2354 return; 2355 class = LOCK_CLASS(lock); 2356 if (class->lc_flags & LC_SLEEPLOCK) 2357 lock_list = curthread->td_sleeplocks; 2358 else { 2359 if (witness_skipspin) 2360 return; 2361 lock_list = PCPU_GET(spinlocks); 2362 } 2363 instance = find_instance(lock_list, lock); 2364 if (instance == NULL) 2365 kassert_panic("%s: lock (%s) %s not locked", __func__, 2366 class->lc_name, lock->lo_name); 2367 lock->lo_witness->w_file = file; 2368 lock->lo_witness->w_line = line; 2369 if (instance == NULL) 2370 return; 2371 instance->li_file = file; 2372 instance->li_line = line; 2373 } 2374 2375 void 2376 witness_assert(const struct lock_object *lock, int flags, const char *file, 2377 int line) 2378 { 2379 #ifdef INVARIANT_SUPPORT 2380 struct lock_instance *instance; 2381 struct lock_class *class; 2382 2383 if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED()) 2384 return; 2385 class = LOCK_CLASS(lock); 2386 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2387 instance = find_instance(curthread->td_sleeplocks, lock); 2388 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2389 instance = find_instance(PCPU_GET(spinlocks), lock); 2390 else { 2391 kassert_panic("Lock (%s) %s is not sleep or spin!", 2392 class->lc_name, lock->lo_name); 2393 return; 2394 } 2395 switch (flags) { 2396 case LA_UNLOCKED: 2397 if (instance != NULL) 2398 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2399 class->lc_name, lock->lo_name, 2400 fixup_filename(file), line); 2401 break; 2402 case LA_LOCKED: 2403 case LA_LOCKED | LA_RECURSED: 2404 case LA_LOCKED | LA_NOTRECURSED: 2405 case LA_SLOCKED: 2406 case LA_SLOCKED | LA_RECURSED: 2407 case LA_SLOCKED | LA_NOTRECURSED: 2408 case LA_XLOCKED: 2409 case LA_XLOCKED | LA_RECURSED: 2410 case LA_XLOCKED | LA_NOTRECURSED: 2411 if (instance == NULL) { 2412 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2413 class->lc_name, lock->lo_name, 2414 fixup_filename(file), line); 2415 break; 2416 } 2417 if ((flags & LA_XLOCKED) != 0 && 2418 (instance->li_flags & LI_EXCLUSIVE) == 0) 2419 kassert_panic( 2420 "Lock (%s) %s not exclusively locked @ %s:%d.", 2421 class->lc_name, lock->lo_name, 2422 fixup_filename(file), line); 2423 if ((flags & LA_SLOCKED) != 0 && 2424 (instance->li_flags & LI_EXCLUSIVE) != 0) 2425 kassert_panic( 2426 "Lock (%s) %s exclusively locked @ %s:%d.", 2427 class->lc_name, lock->lo_name, 2428 fixup_filename(file), line); 2429 if ((flags & LA_RECURSED) != 0 && 2430 (instance->li_flags & LI_RECURSEMASK) == 0) 2431 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2432 class->lc_name, lock->lo_name, 2433 fixup_filename(file), line); 2434 if ((flags & LA_NOTRECURSED) != 0 && 2435 (instance->li_flags & LI_RECURSEMASK) != 0) 2436 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2437 class->lc_name, lock->lo_name, 2438 fixup_filename(file), line); 2439 break; 2440 default: 2441 kassert_panic("Invalid lock assertion at %s:%d.", 2442 fixup_filename(file), line); 2443 2444 } 2445 #endif /* INVARIANT_SUPPORT */ 2446 } 2447 2448 static void 2449 witness_setflag(struct lock_object *lock, int flag, int set) 2450 { 2451 struct lock_list_entry *lock_list; 2452 struct lock_instance *instance; 2453 struct lock_class *class; 2454 2455 if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED()) 2456 return; 2457 class = LOCK_CLASS(lock); 2458 if (class->lc_flags & LC_SLEEPLOCK) 2459 lock_list = curthread->td_sleeplocks; 2460 else { 2461 if (witness_skipspin) 2462 return; 2463 lock_list = PCPU_GET(spinlocks); 2464 } 2465 instance = find_instance(lock_list, lock); 2466 if (instance == NULL) { 2467 kassert_panic("%s: lock (%s) %s not locked", __func__, 2468 class->lc_name, lock->lo_name); 2469 return; 2470 } 2471 2472 if (set) 2473 instance->li_flags |= flag; 2474 else 2475 instance->li_flags &= ~flag; 2476 } 2477 2478 void 2479 witness_norelease(struct lock_object *lock) 2480 { 2481 2482 witness_setflag(lock, LI_NORELEASE, 1); 2483 } 2484 2485 void 2486 witness_releaseok(struct lock_object *lock) 2487 { 2488 2489 witness_setflag(lock, LI_NORELEASE, 0); 2490 } 2491 2492 #ifdef DDB 2493 static void 2494 witness_ddb_list(struct thread *td) 2495 { 2496 2497 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2498 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2499 2500 if (witness_watch < 1) 2501 return; 2502 2503 witness_list_locks(&td->td_sleeplocks, db_printf); 2504 2505 /* 2506 * We only handle spinlocks if td == curthread. This is somewhat broken 2507 * if td is currently executing on some other CPU and holds spin locks 2508 * as we won't display those locks. If we had a MI way of getting 2509 * the per-cpu data for a given cpu then we could use 2510 * td->td_oncpu to get the list of spinlocks for this thread 2511 * and "fix" this. 2512 * 2513 * That still wouldn't really fix this unless we locked the scheduler 2514 * lock or stopped the other CPU to make sure it wasn't changing the 2515 * list out from under us. It is probably best to just not try to 2516 * handle threads on other CPU's for now. 2517 */ 2518 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2519 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2520 } 2521 2522 DB_SHOW_COMMAND(locks, db_witness_list) 2523 { 2524 struct thread *td; 2525 2526 if (have_addr) 2527 td = db_lookup_thread(addr, true); 2528 else 2529 td = kdb_thread; 2530 witness_ddb_list(td); 2531 } 2532 2533 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2534 { 2535 struct thread *td; 2536 struct proc *p; 2537 2538 /* 2539 * It would be nice to list only threads and processes that actually 2540 * held sleep locks, but that information is currently not exported 2541 * by WITNESS. 2542 */ 2543 FOREACH_PROC_IN_SYSTEM(p) { 2544 if (!witness_proc_has_locks(p)) 2545 continue; 2546 FOREACH_THREAD_IN_PROC(p, td) { 2547 if (!witness_thread_has_locks(td)) 2548 continue; 2549 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2550 p->p_comm, td, td->td_tid); 2551 witness_ddb_list(td); 2552 if (db_pager_quit) 2553 return; 2554 } 2555 } 2556 } 2557 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2558 2559 DB_SHOW_COMMAND(witness, db_witness_display) 2560 { 2561 2562 witness_ddb_display(db_printf); 2563 } 2564 #endif 2565 2566 static void 2567 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx) 2568 { 2569 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2570 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2571 int generation, i, j; 2572 2573 tmp_data1 = NULL; 2574 tmp_data2 = NULL; 2575 tmp_w1 = NULL; 2576 tmp_w2 = NULL; 2577 2578 /* Allocate and init temporary storage space. */ 2579 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2580 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2581 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2582 M_WAITOK | M_ZERO); 2583 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2584 M_WAITOK | M_ZERO); 2585 stack_zero(&tmp_data1->wlod_stack); 2586 stack_zero(&tmp_data2->wlod_stack); 2587 2588 restart: 2589 mtx_lock_spin(&w_mtx); 2590 generation = w_generation; 2591 mtx_unlock_spin(&w_mtx); 2592 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2593 w_lohash.wloh_count); 2594 for (i = 1; i < w_max_used_index; i++) { 2595 mtx_lock_spin(&w_mtx); 2596 if (generation != w_generation) { 2597 mtx_unlock_spin(&w_mtx); 2598 2599 /* The graph has changed, try again. */ 2600 *oldidx = 0; 2601 sbuf_clear(sb); 2602 goto restart; 2603 } 2604 2605 w1 = &w_data[i]; 2606 if (w1->w_reversed == 0) { 2607 mtx_unlock_spin(&w_mtx); 2608 continue; 2609 } 2610 2611 /* Copy w1 locally so we can release the spin lock. */ 2612 *tmp_w1 = *w1; 2613 mtx_unlock_spin(&w_mtx); 2614 2615 if (tmp_w1->w_reversed == 0) 2616 continue; 2617 for (j = 1; j < w_max_used_index; j++) { 2618 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2619 continue; 2620 2621 mtx_lock_spin(&w_mtx); 2622 if (generation != w_generation) { 2623 mtx_unlock_spin(&w_mtx); 2624 2625 /* The graph has changed, try again. */ 2626 *oldidx = 0; 2627 sbuf_clear(sb); 2628 goto restart; 2629 } 2630 2631 w2 = &w_data[j]; 2632 data1 = witness_lock_order_get(w1, w2); 2633 data2 = witness_lock_order_get(w2, w1); 2634 2635 /* 2636 * Copy information locally so we can release the 2637 * spin lock. 2638 */ 2639 *tmp_w2 = *w2; 2640 2641 if (data1) { 2642 stack_zero(&tmp_data1->wlod_stack); 2643 stack_copy(&data1->wlod_stack, 2644 &tmp_data1->wlod_stack); 2645 } 2646 if (data2 && data2 != data1) { 2647 stack_zero(&tmp_data2->wlod_stack); 2648 stack_copy(&data2->wlod_stack, 2649 &tmp_data2->wlod_stack); 2650 } 2651 mtx_unlock_spin(&w_mtx); 2652 2653 if (blessed(tmp_w1, tmp_w2)) 2654 continue; 2655 2656 sbuf_printf(sb, 2657 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2658 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2659 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2660 if (data1) { 2661 sbuf_printf(sb, 2662 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2663 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2664 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2665 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2666 sbuf_printf(sb, "\n"); 2667 } 2668 if (data2 && data2 != data1) { 2669 sbuf_printf(sb, 2670 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2671 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2672 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2673 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2674 sbuf_printf(sb, "\n"); 2675 } 2676 } 2677 } 2678 mtx_lock_spin(&w_mtx); 2679 if (generation != w_generation) { 2680 mtx_unlock_spin(&w_mtx); 2681 2682 /* 2683 * The graph changed while we were printing stack data, 2684 * try again. 2685 */ 2686 *oldidx = 0; 2687 sbuf_clear(sb); 2688 goto restart; 2689 } 2690 mtx_unlock_spin(&w_mtx); 2691 2692 /* Free temporary storage space. */ 2693 free(tmp_data1, M_TEMP); 2694 free(tmp_data2, M_TEMP); 2695 free(tmp_w1, M_TEMP); 2696 free(tmp_w2, M_TEMP); 2697 } 2698 2699 static int 2700 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2701 { 2702 struct sbuf *sb; 2703 int error; 2704 2705 if (witness_watch < 1) { 2706 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2707 return (error); 2708 } 2709 if (witness_cold) { 2710 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2711 return (error); 2712 } 2713 error = 0; 2714 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND); 2715 if (sb == NULL) 2716 return (ENOMEM); 2717 2718 sbuf_print_witness_badstacks(sb, &req->oldidx); 2719 2720 sbuf_finish(sb); 2721 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2722 sbuf_delete(sb); 2723 2724 return (error); 2725 } 2726 2727 #ifdef DDB 2728 static int 2729 sbuf_db_printf_drain(void *arg __unused, const char *data, int len) 2730 { 2731 2732 return (db_printf("%.*s", len, data)); 2733 } 2734 2735 DB_SHOW_COMMAND(badstacks, db_witness_badstacks) 2736 { 2737 struct sbuf sb; 2738 char buffer[128]; 2739 size_t dummy; 2740 2741 sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN); 2742 sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL); 2743 sbuf_print_witness_badstacks(&sb, &dummy); 2744 sbuf_finish(&sb); 2745 } 2746 #endif 2747 2748 static int 2749 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS) 2750 { 2751 static const struct { 2752 enum witness_channel channel; 2753 const char *name; 2754 } channels[] = { 2755 { WITNESS_CONSOLE, "console" }, 2756 { WITNESS_LOG, "log" }, 2757 { WITNESS_NONE, "none" }, 2758 }; 2759 char buf[16]; 2760 u_int i; 2761 int error; 2762 2763 buf[0] = '\0'; 2764 for (i = 0; i < nitems(channels); i++) 2765 if (witness_channel == channels[i].channel) { 2766 snprintf(buf, sizeof(buf), "%s", channels[i].name); 2767 break; 2768 } 2769 2770 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 2771 if (error != 0 || req->newptr == NULL) 2772 return (error); 2773 2774 error = EINVAL; 2775 for (i = 0; i < nitems(channels); i++) 2776 if (strcmp(channels[i].name, buf) == 0) { 2777 witness_channel = channels[i].channel; 2778 error = 0; 2779 break; 2780 } 2781 return (error); 2782 } 2783 2784 static int 2785 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2786 { 2787 struct witness *w; 2788 struct sbuf *sb; 2789 int error; 2790 2791 #ifdef __i386__ 2792 error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed)); 2793 return (error); 2794 #endif 2795 2796 if (witness_watch < 1) { 2797 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2798 return (error); 2799 } 2800 if (witness_cold) { 2801 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2802 return (error); 2803 } 2804 error = 0; 2805 2806 error = sysctl_wire_old_buffer(req, 0); 2807 if (error != 0) 2808 return (error); 2809 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2810 if (sb == NULL) 2811 return (ENOMEM); 2812 sbuf_printf(sb, "\n"); 2813 2814 mtx_lock_spin(&w_mtx); 2815 STAILQ_FOREACH(w, &w_all, w_list) 2816 w->w_displayed = 0; 2817 STAILQ_FOREACH(w, &w_all, w_list) 2818 witness_add_fullgraph(sb, w); 2819 mtx_unlock_spin(&w_mtx); 2820 2821 /* 2822 * Close the sbuf and return to userland. 2823 */ 2824 error = sbuf_finish(sb); 2825 sbuf_delete(sb); 2826 2827 return (error); 2828 } 2829 2830 static int 2831 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2832 { 2833 int error, value; 2834 2835 value = witness_watch; 2836 error = sysctl_handle_int(oidp, &value, 0, req); 2837 if (error != 0 || req->newptr == NULL) 2838 return (error); 2839 if (value > 1 || value < -1 || 2840 (witness_watch == -1 && value != witness_watch)) 2841 return (EINVAL); 2842 witness_watch = value; 2843 return (0); 2844 } 2845 2846 static void 2847 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2848 { 2849 int i; 2850 2851 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2852 return; 2853 w->w_displayed = 1; 2854 2855 WITNESS_INDEX_ASSERT(w->w_index); 2856 for (i = 1; i <= w_max_used_index; i++) { 2857 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2858 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2859 w_data[i].w_name); 2860 witness_add_fullgraph(sb, &w_data[i]); 2861 } 2862 } 2863 } 2864 2865 /* 2866 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2867 * interprets the key as a string and reads until the null 2868 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2869 * hash value computed from the key. 2870 */ 2871 static uint32_t 2872 witness_hash_djb2(const uint8_t *key, uint32_t size) 2873 { 2874 unsigned int hash = 5381; 2875 int i; 2876 2877 /* hash = hash * 33 + key[i] */ 2878 if (size) 2879 for (i = 0; i < size; i++) 2880 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2881 else 2882 for (i = 0; key[i] != 0; i++) 2883 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2884 2885 return (hash); 2886 } 2887 2888 /* 2889 * Initializes the two witness hash tables. Called exactly once from 2890 * witness_initialize(). 2891 */ 2892 static void 2893 witness_init_hash_tables(void) 2894 { 2895 int i; 2896 2897 MPASS(witness_cold); 2898 2899 /* Initialize the hash tables. */ 2900 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2901 w_hash.wh_array[i] = NULL; 2902 2903 w_hash.wh_size = WITNESS_HASH_SIZE; 2904 w_hash.wh_count = 0; 2905 2906 /* Initialize the lock order data hash. */ 2907 w_lofree = NULL; 2908 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2909 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2910 w_lodata[i].wlod_next = w_lofree; 2911 w_lofree = &w_lodata[i]; 2912 } 2913 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2914 w_lohash.wloh_count = 0; 2915 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2916 w_lohash.wloh_array[i] = NULL; 2917 } 2918 2919 static struct witness * 2920 witness_hash_get(const char *key) 2921 { 2922 struct witness *w; 2923 uint32_t hash; 2924 2925 MPASS(key != NULL); 2926 if (witness_cold == 0) 2927 mtx_assert(&w_mtx, MA_OWNED); 2928 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2929 w = w_hash.wh_array[hash]; 2930 while (w != NULL) { 2931 if (strcmp(w->w_name, key) == 0) 2932 goto out; 2933 w = w->w_hash_next; 2934 } 2935 2936 out: 2937 return (w); 2938 } 2939 2940 static void 2941 witness_hash_put(struct witness *w) 2942 { 2943 uint32_t hash; 2944 2945 MPASS(w != NULL); 2946 MPASS(w->w_name != NULL); 2947 if (witness_cold == 0) 2948 mtx_assert(&w_mtx, MA_OWNED); 2949 KASSERT(witness_hash_get(w->w_name) == NULL, 2950 ("%s: trying to add a hash entry that already exists!", __func__)); 2951 KASSERT(w->w_hash_next == NULL, 2952 ("%s: w->w_hash_next != NULL", __func__)); 2953 2954 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2955 w->w_hash_next = w_hash.wh_array[hash]; 2956 w_hash.wh_array[hash] = w; 2957 w_hash.wh_count++; 2958 } 2959 2960 static struct witness_lock_order_data * 2961 witness_lock_order_get(struct witness *parent, struct witness *child) 2962 { 2963 struct witness_lock_order_data *data = NULL; 2964 struct witness_lock_order_key key; 2965 unsigned int hash; 2966 2967 MPASS(parent != NULL && child != NULL); 2968 key.from = parent->w_index; 2969 key.to = child->w_index; 2970 WITNESS_INDEX_ASSERT(key.from); 2971 WITNESS_INDEX_ASSERT(key.to); 2972 if ((w_rmatrix[parent->w_index][child->w_index] 2973 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2974 goto out; 2975 2976 hash = witness_hash_djb2((const char*)&key, 2977 sizeof(key)) % w_lohash.wloh_size; 2978 data = w_lohash.wloh_array[hash]; 2979 while (data != NULL) { 2980 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2981 break; 2982 data = data->wlod_next; 2983 } 2984 2985 out: 2986 return (data); 2987 } 2988 2989 /* 2990 * Verify that parent and child have a known relationship, are not the same, 2991 * and child is actually a child of parent. This is done without w_mtx 2992 * to avoid contention in the common case. 2993 */ 2994 static int 2995 witness_lock_order_check(struct witness *parent, struct witness *child) 2996 { 2997 2998 if (parent != child && 2999 w_rmatrix[parent->w_index][child->w_index] 3000 & WITNESS_LOCK_ORDER_KNOWN && 3001 isitmychild(parent, child)) 3002 return (1); 3003 3004 return (0); 3005 } 3006 3007 static int 3008 witness_lock_order_add(struct witness *parent, struct witness *child) 3009 { 3010 struct witness_lock_order_data *data = NULL; 3011 struct witness_lock_order_key key; 3012 unsigned int hash; 3013 3014 MPASS(parent != NULL && child != NULL); 3015 key.from = parent->w_index; 3016 key.to = child->w_index; 3017 WITNESS_INDEX_ASSERT(key.from); 3018 WITNESS_INDEX_ASSERT(key.to); 3019 if (w_rmatrix[parent->w_index][child->w_index] 3020 & WITNESS_LOCK_ORDER_KNOWN) 3021 return (1); 3022 3023 hash = witness_hash_djb2((const char*)&key, 3024 sizeof(key)) % w_lohash.wloh_size; 3025 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 3026 data = w_lofree; 3027 if (data == NULL) 3028 return (0); 3029 w_lofree = data->wlod_next; 3030 data->wlod_next = w_lohash.wloh_array[hash]; 3031 data->wlod_key = key; 3032 w_lohash.wloh_array[hash] = data; 3033 w_lohash.wloh_count++; 3034 stack_zero(&data->wlod_stack); 3035 stack_save(&data->wlod_stack); 3036 return (1); 3037 } 3038 3039 /* Call this whenever the structure of the witness graph changes. */ 3040 static void 3041 witness_increment_graph_generation(void) 3042 { 3043 3044 if (witness_cold == 0) 3045 mtx_assert(&w_mtx, MA_OWNED); 3046 w_generation++; 3047 } 3048 3049 static int 3050 witness_output_drain(void *arg __unused, const char *data, int len) 3051 { 3052 3053 witness_output("%.*s", len, data); 3054 return (len); 3055 } 3056 3057 static void 3058 witness_debugger(int cond, const char *msg) 3059 { 3060 char buf[32]; 3061 struct sbuf sb; 3062 struct stack st; 3063 3064 if (!cond) 3065 return; 3066 3067 if (witness_trace) { 3068 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 3069 sbuf_set_drain(&sb, witness_output_drain, NULL); 3070 3071 stack_zero(&st); 3072 stack_save(&st); 3073 witness_output("stack backtrace:\n"); 3074 stack_sbuf_print_ddb(&sb, &st); 3075 3076 sbuf_finish(&sb); 3077 } 3078 3079 #ifdef KDB 3080 if (witness_kdb) 3081 kdb_enter(KDB_WHY_WITNESS, msg); 3082 #endif 3083 } 3084