1 /*- 2 * Copyright (c) 2008 Isilon Systems, Inc. 3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 4 * Copyright (c) 1998 Berkeley Software Design, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Berkeley Software Design Inc's name may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 33 */ 34 35 /* 36 * Implementation of the `witness' lock verifier. Originally implemented for 37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 38 * classes in FreeBSD. 39 */ 40 41 /* 42 * Main Entry: witness 43 * Pronunciation: 'wit-n&s 44 * Function: noun 45 * Etymology: Middle English witnesse, from Old English witnes knowledge, 46 * testimony, witness, from 2wit 47 * Date: before 12th century 48 * 1 : attestation of a fact or event : TESTIMONY 49 * 2 : one that gives evidence; specifically : one who testifies in 50 * a cause or before a judicial tribunal 51 * 3 : one asked to be present at a transaction so as to be able to 52 * testify to its having taken place 53 * 4 : one who has personal knowledge of something 54 * 5 a : something serving as evidence or proof : SIGN 55 * b : public affirmation by word or example of usually 56 * religious faith or conviction <the heroic witness to divine 57 * life -- Pilot> 58 * 6 capitalized : a member of the Jehovah's Witnesses 59 */ 60 61 /* 62 * Special rules concerning Giant and lock orders: 63 * 64 * 1) Giant must be acquired before any other mutexes. Stated another way, 65 * no other mutex may be held when Giant is acquired. 66 * 67 * 2) Giant must be released when blocking on a sleepable lock. 68 * 69 * This rule is less obvious, but is a result of Giant providing the same 70 * semantics as spl(). Basically, when a thread sleeps, it must release 71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 72 * 2). 73 * 74 * 3) Giant may be acquired before or after sleepable locks. 75 * 76 * This rule is also not quite as obvious. Giant may be acquired after 77 * a sleepable lock because it is a non-sleepable lock and non-sleepable 78 * locks may always be acquired while holding a sleepable lock. The second 79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 83 * execute. Thus, acquiring Giant both before and after a sleepable lock 84 * will not result in a lock order reversal. 85 */ 86 87 #include <sys/cdefs.h> 88 __FBSDID("$FreeBSD$"); 89 90 #include "opt_ddb.h" 91 #include "opt_hwpmc_hooks.h" 92 #include "opt_stack.h" 93 #include "opt_witness.h" 94 95 #include <sys/param.h> 96 #include <sys/bus.h> 97 #include <sys/kdb.h> 98 #include <sys/kernel.h> 99 #include <sys/ktr.h> 100 #include <sys/lock.h> 101 #include <sys/malloc.h> 102 #include <sys/mutex.h> 103 #include <sys/priv.h> 104 #include <sys/proc.h> 105 #include <sys/sbuf.h> 106 #include <sys/sched.h> 107 #include <sys/stack.h> 108 #include <sys/sysctl.h> 109 #include <sys/systm.h> 110 111 #ifdef DDB 112 #include <ddb/ddb.h> 113 #endif 114 115 #include <machine/stdarg.h> 116 117 #if !defined(DDB) && !defined(STACK) 118 #error "DDB or STACK options are required for WITNESS" 119 #endif 120 121 /* Note that these traces do not work with KTR_ALQ. */ 122 #if 0 123 #define KTR_WITNESS KTR_SUBSYS 124 #else 125 #define KTR_WITNESS 0 126 #endif 127 128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 131 132 /* Define this to check for blessed mutexes */ 133 #undef BLESSING 134 135 #define WITNESS_COUNT 1024 136 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 137 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 138 #define WITNESS_PENDLIST 1024 139 140 /* Allocate 256 KB of stack data space */ 141 #define WITNESS_LO_DATA_COUNT 2048 142 143 /* Prime, gives load factor of ~2 at full load */ 144 #define WITNESS_LO_HASH_SIZE 1021 145 146 /* 147 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 148 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 149 * probably be safe for the most part, but it's still a SWAG. 150 */ 151 #define LOCK_NCHILDREN 5 152 #define LOCK_CHILDCOUNT 2048 153 154 #define MAX_W_NAME 64 155 156 #define BADSTACK_SBUF_SIZE (256 * WITNESS_COUNT) 157 #define FULLGRAPH_SBUF_SIZE 512 158 159 /* 160 * These flags go in the witness relationship matrix and describe the 161 * relationship between any two struct witness objects. 162 */ 163 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 164 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 165 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 166 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 167 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 168 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 169 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 170 #define WITNESS_RELATED_MASK \ 171 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 172 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 173 * observed. */ 174 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 175 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 176 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 177 178 /* Descendant to ancestor flags */ 179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 180 181 /* Ancestor to descendant flags */ 182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 183 184 #define WITNESS_INDEX_ASSERT(i) \ 185 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < WITNESS_COUNT) 186 187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 188 189 /* 190 * Lock instances. A lock instance is the data associated with a lock while 191 * it is held by witness. For example, a lock instance will hold the 192 * recursion count of a lock. Lock instances are held in lists. Spin locks 193 * are held in a per-cpu list while sleep locks are held in per-thread list. 194 */ 195 struct lock_instance { 196 struct lock_object *li_lock; 197 const char *li_file; 198 int li_line; 199 u_int li_flags; 200 }; 201 202 /* 203 * A simple list type used to build the list of locks held by a thread 204 * or CPU. We can't simply embed the list in struct lock_object since a 205 * lock may be held by more than one thread if it is a shared lock. Locks 206 * are added to the head of the list, so we fill up each list entry from 207 * "the back" logically. To ease some of the arithmetic, we actually fill 208 * in each list entry the normal way (children[0] then children[1], etc.) but 209 * when we traverse the list we read children[count-1] as the first entry 210 * down to children[0] as the final entry. 211 */ 212 struct lock_list_entry { 213 struct lock_list_entry *ll_next; 214 struct lock_instance ll_children[LOCK_NCHILDREN]; 215 u_int ll_count; 216 }; 217 218 /* 219 * The main witness structure. One of these per named lock type in the system 220 * (for example, "vnode interlock"). 221 */ 222 struct witness { 223 char w_name[MAX_W_NAME]; 224 uint32_t w_index; /* Index in the relationship matrix */ 225 struct lock_class *w_class; 226 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 227 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 228 struct witness *w_hash_next; /* Linked list in hash buckets. */ 229 const char *w_file; /* File where last acquired */ 230 uint32_t w_line; /* Line where last acquired */ 231 uint32_t w_refcount; 232 uint16_t w_num_ancestors; /* direct/indirect 233 * ancestor count */ 234 uint16_t w_num_descendants; /* direct/indirect 235 * descendant count */ 236 int16_t w_ddb_level; 237 unsigned w_displayed:1; 238 unsigned w_reversed:1; 239 }; 240 241 STAILQ_HEAD(witness_list, witness); 242 243 /* 244 * The witness hash table. Keys are witness names (const char *), elements are 245 * witness objects (struct witness *). 246 */ 247 struct witness_hash { 248 struct witness *wh_array[WITNESS_HASH_SIZE]; 249 uint32_t wh_size; 250 uint32_t wh_count; 251 }; 252 253 /* 254 * Key type for the lock order data hash table. 255 */ 256 struct witness_lock_order_key { 257 uint16_t from; 258 uint16_t to; 259 }; 260 261 struct witness_lock_order_data { 262 struct stack wlod_stack; 263 struct witness_lock_order_key wlod_key; 264 struct witness_lock_order_data *wlod_next; 265 }; 266 267 /* 268 * The witness lock order data hash table. Keys are witness index tuples 269 * (struct witness_lock_order_key), elements are lock order data objects 270 * (struct witness_lock_order_data). 271 */ 272 struct witness_lock_order_hash { 273 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 274 u_int wloh_size; 275 u_int wloh_count; 276 }; 277 278 #ifdef BLESSING 279 struct witness_blessed { 280 const char *b_lock1; 281 const char *b_lock2; 282 }; 283 #endif 284 285 struct witness_pendhelp { 286 const char *wh_type; 287 struct lock_object *wh_lock; 288 }; 289 290 struct witness_order_list_entry { 291 const char *w_name; 292 struct lock_class *w_class; 293 }; 294 295 /* 296 * Returns 0 if one of the locks is a spin lock and the other is not. 297 * Returns 1 otherwise. 298 */ 299 static __inline int 300 witness_lock_type_equal(struct witness *w1, struct witness *w2) 301 { 302 303 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 304 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 305 } 306 307 static __inline int 308 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 309 const struct witness_lock_order_key *b) 310 { 311 312 return (a->from == b->from && a->to == b->to); 313 } 314 315 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 316 const char *fname); 317 #ifdef KDB 318 static void _witness_debugger(int cond, const char *msg); 319 #endif 320 static void adopt(struct witness *parent, struct witness *child); 321 #ifdef BLESSING 322 static int blessed(struct witness *, struct witness *); 323 #endif 324 static void depart(struct witness *w); 325 static struct witness *enroll(const char *description, 326 struct lock_class *lock_class); 327 static struct lock_instance *find_instance(struct lock_list_entry *list, 328 const struct lock_object *lock); 329 static int isitmychild(struct witness *parent, struct witness *child); 330 static int isitmydescendant(struct witness *parent, struct witness *child); 331 static void itismychild(struct witness *parent, struct witness *child); 332 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 333 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 334 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 335 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 336 #ifdef DDB 337 static void witness_ddb_compute_levels(void); 338 static void witness_ddb_display(int(*)(const char *fmt, ...)); 339 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 340 struct witness *, int indent); 341 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 342 struct witness_list *list); 343 static void witness_ddb_level_descendants(struct witness *parent, int l); 344 static void witness_ddb_list(struct thread *td); 345 #endif 346 static void witness_free(struct witness *m); 347 static struct witness *witness_get(void); 348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 349 static struct witness *witness_hash_get(const char *key); 350 static void witness_hash_put(struct witness *w); 351 static void witness_init_hash_tables(void); 352 static void witness_increment_graph_generation(void); 353 static void witness_lock_list_free(struct lock_list_entry *lle); 354 static struct lock_list_entry *witness_lock_list_get(void); 355 static int witness_lock_order_add(struct witness *parent, 356 struct witness *child); 357 static int witness_lock_order_check(struct witness *parent, 358 struct witness *child); 359 static struct witness_lock_order_data *witness_lock_order_get( 360 struct witness *parent, 361 struct witness *child); 362 static void witness_list_lock(struct lock_instance *instance, 363 int (*prnt)(const char *fmt, ...)); 364 static void witness_setflag(struct lock_object *lock, int flag, int set); 365 366 #ifdef KDB 367 #define witness_debugger(c) _witness_debugger(c, __func__) 368 #else 369 #define witness_debugger(c) 370 #endif 371 372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 373 "Witness Locking"); 374 375 /* 376 * If set to 0, lock order checking is disabled. If set to -1, 377 * witness is completely disabled. Otherwise witness performs full 378 * lock order checking for all locks. At runtime, lock order checking 379 * may be toggled. However, witness cannot be reenabled once it is 380 * completely disabled. 381 */ 382 static int witness_watch = 1; 383 TUNABLE_INT("debug.witness.watch", &witness_watch); 384 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, 385 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 386 387 #ifdef KDB 388 /* 389 * When KDB is enabled and witness_kdb is 1, it will cause the system 390 * to drop into kdebug() when: 391 * - a lock hierarchy violation occurs 392 * - locks are held when going to sleep. 393 */ 394 #ifdef WITNESS_KDB 395 int witness_kdb = 1; 396 #else 397 int witness_kdb = 0; 398 #endif 399 TUNABLE_INT("debug.witness.kdb", &witness_kdb); 400 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, ""); 401 402 /* 403 * When KDB is enabled and witness_trace is 1, it will cause the system 404 * to print a stack trace: 405 * - a lock hierarchy violation occurs 406 * - locks are held when going to sleep. 407 */ 408 int witness_trace = 1; 409 TUNABLE_INT("debug.witness.trace", &witness_trace); 410 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, ""); 411 #endif /* KDB */ 412 413 #ifdef WITNESS_SKIPSPIN 414 int witness_skipspin = 1; 415 #else 416 int witness_skipspin = 0; 417 #endif 418 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin); 419 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 420 0, ""); 421 422 /* 423 * Call this to print out the relations between locks. 424 */ 425 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 426 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 427 428 /* 429 * Call this to print out the witness faulty stacks. 430 */ 431 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 432 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 433 434 static struct mtx w_mtx; 435 436 /* w_list */ 437 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 438 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 439 440 /* w_typelist */ 441 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 442 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 443 444 /* lock list */ 445 static struct lock_list_entry *w_lock_list_free = NULL; 446 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 447 static u_int pending_cnt; 448 449 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 450 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 451 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 452 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 453 ""); 454 455 static struct witness *w_data; 456 static uint8_t w_rmatrix[WITNESS_COUNT+1][WITNESS_COUNT+1]; 457 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 458 static struct witness_hash w_hash; /* The witness hash table. */ 459 460 /* The lock order data hash */ 461 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 462 static struct witness_lock_order_data *w_lofree = NULL; 463 static struct witness_lock_order_hash w_lohash; 464 static int w_max_used_index = 0; 465 static unsigned int w_generation = 0; 466 static const char w_notrunning[] = "Witness not running\n"; 467 static const char w_stillcold[] = "Witness is still cold\n"; 468 469 470 static struct witness_order_list_entry order_lists[] = { 471 /* 472 * sx locks 473 */ 474 { "proctree", &lock_class_sx }, 475 { "allproc", &lock_class_sx }, 476 { "allprison", &lock_class_sx }, 477 { NULL, NULL }, 478 /* 479 * Various mutexes 480 */ 481 { "Giant", &lock_class_mtx_sleep }, 482 { "pipe mutex", &lock_class_mtx_sleep }, 483 { "sigio lock", &lock_class_mtx_sleep }, 484 { "process group", &lock_class_mtx_sleep }, 485 { "process lock", &lock_class_mtx_sleep }, 486 { "session", &lock_class_mtx_sleep }, 487 { "uidinfo hash", &lock_class_rw }, 488 #ifdef HWPMC_HOOKS 489 { "pmc-sleep", &lock_class_mtx_sleep }, 490 #endif 491 { "time lock", &lock_class_mtx_sleep }, 492 { NULL, NULL }, 493 /* 494 * Sockets 495 */ 496 { "accept", &lock_class_mtx_sleep }, 497 { "so_snd", &lock_class_mtx_sleep }, 498 { "so_rcv", &lock_class_mtx_sleep }, 499 { "sellck", &lock_class_mtx_sleep }, 500 { NULL, NULL }, 501 /* 502 * Routing 503 */ 504 { "so_rcv", &lock_class_mtx_sleep }, 505 { "radix node head", &lock_class_rw }, 506 { "rtentry", &lock_class_mtx_sleep }, 507 { "ifaddr", &lock_class_mtx_sleep }, 508 { NULL, NULL }, 509 /* 510 * IPv4 multicast: 511 * protocol locks before interface locks, after UDP locks. 512 */ 513 { "udpinp", &lock_class_rw }, 514 { "in_multi_mtx", &lock_class_mtx_sleep }, 515 { "igmp_mtx", &lock_class_mtx_sleep }, 516 { "if_addr_lock", &lock_class_rw }, 517 { NULL, NULL }, 518 /* 519 * IPv6 multicast: 520 * protocol locks before interface locks, after UDP locks. 521 */ 522 { "udpinp", &lock_class_rw }, 523 { "in6_multi_mtx", &lock_class_mtx_sleep }, 524 { "mld_mtx", &lock_class_mtx_sleep }, 525 { "if_addr_lock", &lock_class_rw }, 526 { NULL, NULL }, 527 /* 528 * UNIX Domain Sockets 529 */ 530 { "unp_global_rwlock", &lock_class_rw }, 531 { "unp_list_lock", &lock_class_mtx_sleep }, 532 { "unp", &lock_class_mtx_sleep }, 533 { "so_snd", &lock_class_mtx_sleep }, 534 { NULL, NULL }, 535 /* 536 * UDP/IP 537 */ 538 { "udp", &lock_class_rw }, 539 { "udpinp", &lock_class_rw }, 540 { "so_snd", &lock_class_mtx_sleep }, 541 { NULL, NULL }, 542 /* 543 * TCP/IP 544 */ 545 { "tcp", &lock_class_rw }, 546 { "tcpinp", &lock_class_rw }, 547 { "so_snd", &lock_class_mtx_sleep }, 548 { NULL, NULL }, 549 /* 550 * netatalk 551 */ 552 { "ddp_list_mtx", &lock_class_mtx_sleep }, 553 { "ddp_mtx", &lock_class_mtx_sleep }, 554 { NULL, NULL }, 555 /* 556 * BPF 557 */ 558 { "bpf global lock", &lock_class_mtx_sleep }, 559 { "bpf interface lock", &lock_class_rw }, 560 { "bpf cdev lock", &lock_class_mtx_sleep }, 561 { NULL, NULL }, 562 /* 563 * NFS server 564 */ 565 { "nfsd_mtx", &lock_class_mtx_sleep }, 566 { "so_snd", &lock_class_mtx_sleep }, 567 { NULL, NULL }, 568 569 /* 570 * IEEE 802.11 571 */ 572 { "802.11 com lock", &lock_class_mtx_sleep}, 573 { NULL, NULL }, 574 /* 575 * Network drivers 576 */ 577 { "network driver", &lock_class_mtx_sleep}, 578 { NULL, NULL }, 579 580 /* 581 * Netgraph 582 */ 583 { "ng_node", &lock_class_mtx_sleep }, 584 { "ng_worklist", &lock_class_mtx_sleep }, 585 { NULL, NULL }, 586 /* 587 * CDEV 588 */ 589 { "vm map (system)", &lock_class_mtx_sleep }, 590 { "vm page queue", &lock_class_mtx_sleep }, 591 { "vnode interlock", &lock_class_mtx_sleep }, 592 { "cdev", &lock_class_mtx_sleep }, 593 { NULL, NULL }, 594 /* 595 * VM 596 */ 597 { "vm map (user)", &lock_class_sx }, 598 { "vm object", &lock_class_rw }, 599 { "vm page", &lock_class_mtx_sleep }, 600 { "vm page queue", &lock_class_mtx_sleep }, 601 { "pmap pv global", &lock_class_rw }, 602 { "pmap", &lock_class_mtx_sleep }, 603 { "pmap pv list", &lock_class_rw }, 604 { "vm page free queue", &lock_class_mtx_sleep }, 605 { NULL, NULL }, 606 /* 607 * kqueue/VFS interaction 608 */ 609 { "kqueue", &lock_class_mtx_sleep }, 610 { "struct mount mtx", &lock_class_mtx_sleep }, 611 { "vnode interlock", &lock_class_mtx_sleep }, 612 { NULL, NULL }, 613 /* 614 * ZFS locking 615 */ 616 { "dn->dn_mtx", &lock_class_sx }, 617 { "dr->dt.di.dr_mtx", &lock_class_sx }, 618 { "db->db_mtx", &lock_class_sx }, 619 { NULL, NULL }, 620 /* 621 * spin locks 622 */ 623 #ifdef SMP 624 { "ap boot", &lock_class_mtx_spin }, 625 #endif 626 { "rm.mutex_mtx", &lock_class_mtx_spin }, 627 { "sio", &lock_class_mtx_spin }, 628 { "scrlock", &lock_class_mtx_spin }, 629 #ifdef __i386__ 630 { "cy", &lock_class_mtx_spin }, 631 #endif 632 #ifdef __sparc64__ 633 { "pcib_mtx", &lock_class_mtx_spin }, 634 { "rtc_mtx", &lock_class_mtx_spin }, 635 #endif 636 { "scc_hwmtx", &lock_class_mtx_spin }, 637 { "uart_hwmtx", &lock_class_mtx_spin }, 638 { "fast_taskqueue", &lock_class_mtx_spin }, 639 { "intr table", &lock_class_mtx_spin }, 640 #ifdef HWPMC_HOOKS 641 { "pmc-per-proc", &lock_class_mtx_spin }, 642 #endif 643 { "process slock", &lock_class_mtx_spin }, 644 { "sleepq chain", &lock_class_mtx_spin }, 645 { "umtx lock", &lock_class_mtx_spin }, 646 { "rm_spinlock", &lock_class_mtx_spin }, 647 { "turnstile chain", &lock_class_mtx_spin }, 648 { "turnstile lock", &lock_class_mtx_spin }, 649 { "sched lock", &lock_class_mtx_spin }, 650 { "td_contested", &lock_class_mtx_spin }, 651 { "callout", &lock_class_mtx_spin }, 652 { "entropy harvest mutex", &lock_class_mtx_spin }, 653 { "syscons video lock", &lock_class_mtx_spin }, 654 #ifdef SMP 655 { "smp rendezvous", &lock_class_mtx_spin }, 656 #endif 657 #ifdef __powerpc__ 658 { "tlb0", &lock_class_mtx_spin }, 659 #endif 660 /* 661 * leaf locks 662 */ 663 { "intrcnt", &lock_class_mtx_spin }, 664 { "icu", &lock_class_mtx_spin }, 665 #ifdef __i386__ 666 { "allpmaps", &lock_class_mtx_spin }, 667 { "descriptor tables", &lock_class_mtx_spin }, 668 #endif 669 { "clk", &lock_class_mtx_spin }, 670 { "cpuset", &lock_class_mtx_spin }, 671 { "mprof lock", &lock_class_mtx_spin }, 672 { "zombie lock", &lock_class_mtx_spin }, 673 { "ALD Queue", &lock_class_mtx_spin }, 674 #ifdef __ia64__ 675 { "MCA spin lock", &lock_class_mtx_spin }, 676 #endif 677 #if defined(__i386__) || defined(__amd64__) 678 { "pcicfg", &lock_class_mtx_spin }, 679 { "NDIS thread lock", &lock_class_mtx_spin }, 680 #endif 681 { "tw_osl_io_lock", &lock_class_mtx_spin }, 682 { "tw_osl_q_lock", &lock_class_mtx_spin }, 683 { "tw_cl_io_lock", &lock_class_mtx_spin }, 684 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 685 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 686 #ifdef HWPMC_HOOKS 687 { "pmc-leaf", &lock_class_mtx_spin }, 688 #endif 689 { "blocked lock", &lock_class_mtx_spin }, 690 { NULL, NULL }, 691 { NULL, NULL } 692 }; 693 694 #ifdef BLESSING 695 /* 696 * Pairs of locks which have been blessed 697 * Don't complain about order problems with blessed locks 698 */ 699 static struct witness_blessed blessed_list[] = { 700 }; 701 static int blessed_count = 702 sizeof(blessed_list) / sizeof(struct witness_blessed); 703 #endif 704 705 /* 706 * This global is set to 0 once it becomes safe to use the witness code. 707 */ 708 static int witness_cold = 1; 709 710 /* 711 * This global is set to 1 once the static lock orders have been enrolled 712 * so that a warning can be issued for any spin locks enrolled later. 713 */ 714 static int witness_spin_warn = 0; 715 716 /* Trim useless garbage from filenames. */ 717 static const char * 718 fixup_filename(const char *file) 719 { 720 721 if (file == NULL) 722 return (NULL); 723 while (strncmp(file, "../", 3) == 0) 724 file += 3; 725 return (file); 726 } 727 728 /* 729 * The WITNESS-enabled diagnostic code. Note that the witness code does 730 * assume that the early boot is single-threaded at least until after this 731 * routine is completed. 732 */ 733 static void 734 witness_initialize(void *dummy __unused) 735 { 736 struct lock_object *lock; 737 struct witness_order_list_entry *order; 738 struct witness *w, *w1; 739 int i; 740 741 w_data = malloc(sizeof (struct witness) * WITNESS_COUNT, M_WITNESS, 742 M_NOWAIT | M_ZERO); 743 744 /* 745 * We have to release Giant before initializing its witness 746 * structure so that WITNESS doesn't get confused. 747 */ 748 mtx_unlock(&Giant); 749 mtx_assert(&Giant, MA_NOTOWNED); 750 751 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 752 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 753 MTX_NOWITNESS | MTX_NOPROFILE); 754 for (i = WITNESS_COUNT - 1; i >= 0; i--) { 755 w = &w_data[i]; 756 memset(w, 0, sizeof(*w)); 757 w_data[i].w_index = i; /* Witness index never changes. */ 758 witness_free(w); 759 } 760 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 761 ("%s: Invalid list of free witness objects", __func__)); 762 763 /* Witness with index 0 is not used to aid in debugging. */ 764 STAILQ_REMOVE_HEAD(&w_free, w_list); 765 w_free_cnt--; 766 767 memset(w_rmatrix, 0, 768 (sizeof(**w_rmatrix) * (WITNESS_COUNT+1) * (WITNESS_COUNT+1))); 769 770 for (i = 0; i < LOCK_CHILDCOUNT; i++) 771 witness_lock_list_free(&w_locklistdata[i]); 772 witness_init_hash_tables(); 773 774 /* First add in all the specified order lists. */ 775 for (order = order_lists; order->w_name != NULL; order++) { 776 w = enroll(order->w_name, order->w_class); 777 if (w == NULL) 778 continue; 779 w->w_file = "order list"; 780 for (order++; order->w_name != NULL; order++) { 781 w1 = enroll(order->w_name, order->w_class); 782 if (w1 == NULL) 783 continue; 784 w1->w_file = "order list"; 785 itismychild(w, w1); 786 w = w1; 787 } 788 } 789 witness_spin_warn = 1; 790 791 /* Iterate through all locks and add them to witness. */ 792 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 793 lock = pending_locks[i].wh_lock; 794 KASSERT(lock->lo_flags & LO_WITNESS, 795 ("%s: lock %s is on pending list but not LO_WITNESS", 796 __func__, lock->lo_name)); 797 lock->lo_witness = enroll(pending_locks[i].wh_type, 798 LOCK_CLASS(lock)); 799 } 800 801 /* Mark the witness code as being ready for use. */ 802 witness_cold = 0; 803 804 mtx_lock(&Giant); 805 } 806 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 807 NULL); 808 809 void 810 witness_init(struct lock_object *lock, const char *type) 811 { 812 struct lock_class *class; 813 814 /* Various sanity checks. */ 815 class = LOCK_CLASS(lock); 816 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 817 (class->lc_flags & LC_RECURSABLE) == 0) 818 kassert_panic("%s: lock (%s) %s can not be recursable", 819 __func__, class->lc_name, lock->lo_name); 820 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 821 (class->lc_flags & LC_SLEEPABLE) == 0) 822 kassert_panic("%s: lock (%s) %s can not be sleepable", 823 __func__, class->lc_name, lock->lo_name); 824 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 825 (class->lc_flags & LC_UPGRADABLE) == 0) 826 kassert_panic("%s: lock (%s) %s can not be upgradable", 827 __func__, class->lc_name, lock->lo_name); 828 829 /* 830 * If we shouldn't watch this lock, then just clear lo_witness. 831 * Otherwise, if witness_cold is set, then it is too early to 832 * enroll this lock, so defer it to witness_initialize() by adding 833 * it to the pending_locks list. If it is not too early, then enroll 834 * the lock now. 835 */ 836 if (witness_watch < 1 || panicstr != NULL || 837 (lock->lo_flags & LO_WITNESS) == 0) 838 lock->lo_witness = NULL; 839 else if (witness_cold) { 840 pending_locks[pending_cnt].wh_lock = lock; 841 pending_locks[pending_cnt++].wh_type = type; 842 if (pending_cnt > WITNESS_PENDLIST) 843 panic("%s: pending locks list is too small, " 844 "increase WITNESS_PENDLIST\n", 845 __func__); 846 } else 847 lock->lo_witness = enroll(type, class); 848 } 849 850 void 851 witness_destroy(struct lock_object *lock) 852 { 853 struct lock_class *class; 854 struct witness *w; 855 856 class = LOCK_CLASS(lock); 857 858 if (witness_cold) 859 panic("lock (%s) %s destroyed while witness_cold", 860 class->lc_name, lock->lo_name); 861 862 /* XXX: need to verify that no one holds the lock */ 863 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 864 return; 865 w = lock->lo_witness; 866 867 mtx_lock_spin(&w_mtx); 868 MPASS(w->w_refcount > 0); 869 w->w_refcount--; 870 871 if (w->w_refcount == 0) 872 depart(w); 873 mtx_unlock_spin(&w_mtx); 874 } 875 876 #ifdef DDB 877 static void 878 witness_ddb_compute_levels(void) 879 { 880 struct witness *w; 881 882 /* 883 * First clear all levels. 884 */ 885 STAILQ_FOREACH(w, &w_all, w_list) 886 w->w_ddb_level = -1; 887 888 /* 889 * Look for locks with no parents and level all their descendants. 890 */ 891 STAILQ_FOREACH(w, &w_all, w_list) { 892 893 /* If the witness has ancestors (is not a root), skip it. */ 894 if (w->w_num_ancestors > 0) 895 continue; 896 witness_ddb_level_descendants(w, 0); 897 } 898 } 899 900 static void 901 witness_ddb_level_descendants(struct witness *w, int l) 902 { 903 int i; 904 905 if (w->w_ddb_level >= l) 906 return; 907 908 w->w_ddb_level = l; 909 l++; 910 911 for (i = 1; i <= w_max_used_index; i++) { 912 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 913 witness_ddb_level_descendants(&w_data[i], l); 914 } 915 } 916 917 static void 918 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 919 struct witness *w, int indent) 920 { 921 int i; 922 923 for (i = 0; i < indent; i++) 924 prnt(" "); 925 prnt("%s (type: %s, depth: %d, active refs: %d)", 926 w->w_name, w->w_class->lc_name, 927 w->w_ddb_level, w->w_refcount); 928 if (w->w_displayed) { 929 prnt(" -- (already displayed)\n"); 930 return; 931 } 932 w->w_displayed = 1; 933 if (w->w_file != NULL && w->w_line != 0) 934 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 935 w->w_line); 936 else 937 prnt(" -- never acquired\n"); 938 indent++; 939 WITNESS_INDEX_ASSERT(w->w_index); 940 for (i = 1; i <= w_max_used_index; i++) { 941 if (db_pager_quit) 942 return; 943 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 944 witness_ddb_display_descendants(prnt, &w_data[i], 945 indent); 946 } 947 } 948 949 static void 950 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 951 struct witness_list *list) 952 { 953 struct witness *w; 954 955 STAILQ_FOREACH(w, list, w_typelist) { 956 if (w->w_file == NULL || w->w_ddb_level > 0) 957 continue; 958 959 /* This lock has no anscestors - display its descendants. */ 960 witness_ddb_display_descendants(prnt, w, 0); 961 if (db_pager_quit) 962 return; 963 } 964 } 965 966 static void 967 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 968 { 969 struct witness *w; 970 971 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 972 witness_ddb_compute_levels(); 973 974 /* Clear all the displayed flags. */ 975 STAILQ_FOREACH(w, &w_all, w_list) 976 w->w_displayed = 0; 977 978 /* 979 * First, handle sleep locks which have been acquired at least 980 * once. 981 */ 982 prnt("Sleep locks:\n"); 983 witness_ddb_display_list(prnt, &w_sleep); 984 if (db_pager_quit) 985 return; 986 987 /* 988 * Now do spin locks which have been acquired at least once. 989 */ 990 prnt("\nSpin locks:\n"); 991 witness_ddb_display_list(prnt, &w_spin); 992 if (db_pager_quit) 993 return; 994 995 /* 996 * Finally, any locks which have not been acquired yet. 997 */ 998 prnt("\nLocks which were never acquired:\n"); 999 STAILQ_FOREACH(w, &w_all, w_list) { 1000 if (w->w_file != NULL || w->w_refcount == 0) 1001 continue; 1002 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1003 w->w_class->lc_name, w->w_ddb_level); 1004 if (db_pager_quit) 1005 return; 1006 } 1007 } 1008 #endif /* DDB */ 1009 1010 int 1011 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1012 { 1013 1014 if (witness_watch == -1 || panicstr != NULL) 1015 return (0); 1016 1017 /* Require locks that witness knows about. */ 1018 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1019 lock2->lo_witness == NULL) 1020 return (EINVAL); 1021 1022 mtx_assert(&w_mtx, MA_NOTOWNED); 1023 mtx_lock_spin(&w_mtx); 1024 1025 /* 1026 * If we already have either an explicit or implied lock order that 1027 * is the other way around, then return an error. 1028 */ 1029 if (witness_watch && 1030 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1031 mtx_unlock_spin(&w_mtx); 1032 return (EDOOFUS); 1033 } 1034 1035 /* Try to add the new order. */ 1036 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1037 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1038 itismychild(lock1->lo_witness, lock2->lo_witness); 1039 mtx_unlock_spin(&w_mtx); 1040 return (0); 1041 } 1042 1043 void 1044 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1045 int line, struct lock_object *interlock) 1046 { 1047 struct lock_list_entry *lock_list, *lle; 1048 struct lock_instance *lock1, *lock2, *plock; 1049 struct lock_class *class, *iclass; 1050 struct witness *w, *w1; 1051 struct thread *td; 1052 int i, j; 1053 1054 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1055 panicstr != NULL) 1056 return; 1057 1058 w = lock->lo_witness; 1059 class = LOCK_CLASS(lock); 1060 td = curthread; 1061 1062 if (class->lc_flags & LC_SLEEPLOCK) { 1063 1064 /* 1065 * Since spin locks include a critical section, this check 1066 * implicitly enforces a lock order of all sleep locks before 1067 * all spin locks. 1068 */ 1069 if (td->td_critnest != 0 && !kdb_active) 1070 kassert_panic("acquiring blockable sleep lock with " 1071 "spinlock or critical section held (%s) %s @ %s:%d", 1072 class->lc_name, lock->lo_name, 1073 fixup_filename(file), line); 1074 1075 /* 1076 * If this is the first lock acquired then just return as 1077 * no order checking is needed. 1078 */ 1079 lock_list = td->td_sleeplocks; 1080 if (lock_list == NULL || lock_list->ll_count == 0) 1081 return; 1082 } else { 1083 1084 /* 1085 * If this is the first lock, just return as no order 1086 * checking is needed. Avoid problems with thread 1087 * migration pinning the thread while checking if 1088 * spinlocks are held. If at least one spinlock is held 1089 * the thread is in a safe path and it is allowed to 1090 * unpin it. 1091 */ 1092 sched_pin(); 1093 lock_list = PCPU_GET(spinlocks); 1094 if (lock_list == NULL || lock_list->ll_count == 0) { 1095 sched_unpin(); 1096 return; 1097 } 1098 sched_unpin(); 1099 } 1100 1101 /* 1102 * Check to see if we are recursing on a lock we already own. If 1103 * so, make sure that we don't mismatch exclusive and shared lock 1104 * acquires. 1105 */ 1106 lock1 = find_instance(lock_list, lock); 1107 if (lock1 != NULL) { 1108 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1109 (flags & LOP_EXCLUSIVE) == 0) { 1110 printf("shared lock of (%s) %s @ %s:%d\n", 1111 class->lc_name, lock->lo_name, 1112 fixup_filename(file), line); 1113 printf("while exclusively locked from %s:%d\n", 1114 fixup_filename(lock1->li_file), lock1->li_line); 1115 kassert_panic("excl->share"); 1116 } 1117 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1118 (flags & LOP_EXCLUSIVE) != 0) { 1119 printf("exclusive lock of (%s) %s @ %s:%d\n", 1120 class->lc_name, lock->lo_name, 1121 fixup_filename(file), line); 1122 printf("while share locked from %s:%d\n", 1123 fixup_filename(lock1->li_file), lock1->li_line); 1124 kassert_panic("share->excl"); 1125 } 1126 return; 1127 } 1128 1129 /* Warn if the interlock is not locked exactly once. */ 1130 if (interlock != NULL) { 1131 iclass = LOCK_CLASS(interlock); 1132 lock1 = find_instance(lock_list, interlock); 1133 if (lock1 == NULL) 1134 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1135 iclass->lc_name, interlock->lo_name, 1136 fixup_filename(file), line); 1137 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1138 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1139 iclass->lc_name, interlock->lo_name, 1140 fixup_filename(file), line); 1141 } 1142 1143 /* 1144 * Find the previously acquired lock, but ignore interlocks. 1145 */ 1146 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1147 if (interlock != NULL && plock->li_lock == interlock) { 1148 if (lock_list->ll_count > 1) 1149 plock = 1150 &lock_list->ll_children[lock_list->ll_count - 2]; 1151 else { 1152 lle = lock_list->ll_next; 1153 1154 /* 1155 * The interlock is the only lock we hold, so 1156 * simply return. 1157 */ 1158 if (lle == NULL) 1159 return; 1160 plock = &lle->ll_children[lle->ll_count - 1]; 1161 } 1162 } 1163 1164 /* 1165 * Try to perform most checks without a lock. If this succeeds we 1166 * can skip acquiring the lock and return success. 1167 */ 1168 w1 = plock->li_lock->lo_witness; 1169 if (witness_lock_order_check(w1, w)) 1170 return; 1171 1172 /* 1173 * Check for duplicate locks of the same type. Note that we only 1174 * have to check for this on the last lock we just acquired. Any 1175 * other cases will be caught as lock order violations. 1176 */ 1177 mtx_lock_spin(&w_mtx); 1178 witness_lock_order_add(w1, w); 1179 if (w1 == w) { 1180 i = w->w_index; 1181 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1182 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1183 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1184 w->w_reversed = 1; 1185 mtx_unlock_spin(&w_mtx); 1186 printf( 1187 "acquiring duplicate lock of same type: \"%s\"\n", 1188 w->w_name); 1189 printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1190 fixup_filename(plock->li_file), plock->li_line); 1191 printf(" 2nd %s @ %s:%d\n", lock->lo_name, 1192 fixup_filename(file), line); 1193 witness_debugger(1); 1194 } else 1195 mtx_unlock_spin(&w_mtx); 1196 return; 1197 } 1198 mtx_assert(&w_mtx, MA_OWNED); 1199 1200 /* 1201 * If we know that the lock we are acquiring comes after 1202 * the lock we most recently acquired in the lock order tree, 1203 * then there is no need for any further checks. 1204 */ 1205 if (isitmychild(w1, w)) 1206 goto out; 1207 1208 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1209 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1210 1211 MPASS(j < WITNESS_COUNT); 1212 lock1 = &lle->ll_children[i]; 1213 1214 /* 1215 * Ignore the interlock. 1216 */ 1217 if (interlock == lock1->li_lock) 1218 continue; 1219 1220 /* 1221 * If this lock doesn't undergo witness checking, 1222 * then skip it. 1223 */ 1224 w1 = lock1->li_lock->lo_witness; 1225 if (w1 == NULL) { 1226 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1227 ("lock missing witness structure")); 1228 continue; 1229 } 1230 1231 /* 1232 * If we are locking Giant and this is a sleepable 1233 * lock, then skip it. 1234 */ 1235 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1236 lock == &Giant.lock_object) 1237 continue; 1238 1239 /* 1240 * If we are locking a sleepable lock and this lock 1241 * is Giant, then skip it. 1242 */ 1243 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1244 lock1->li_lock == &Giant.lock_object) 1245 continue; 1246 1247 /* 1248 * If we are locking a sleepable lock and this lock 1249 * isn't sleepable, we want to treat it as a lock 1250 * order violation to enfore a general lock order of 1251 * sleepable locks before non-sleepable locks. 1252 */ 1253 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1254 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1255 goto reversal; 1256 1257 /* 1258 * If we are locking Giant and this is a non-sleepable 1259 * lock, then treat it as a reversal. 1260 */ 1261 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1262 lock == &Giant.lock_object) 1263 goto reversal; 1264 1265 /* 1266 * Check the lock order hierarchy for a reveresal. 1267 */ 1268 if (!isitmydescendant(w, w1)) 1269 continue; 1270 reversal: 1271 1272 /* 1273 * We have a lock order violation, check to see if it 1274 * is allowed or has already been yelled about. 1275 */ 1276 #ifdef BLESSING 1277 1278 /* 1279 * If the lock order is blessed, just bail. We don't 1280 * look for other lock order violations though, which 1281 * may be a bug. 1282 */ 1283 if (blessed(w, w1)) 1284 goto out; 1285 #endif 1286 1287 /* Bail if this violation is known */ 1288 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1289 goto out; 1290 1291 /* Record this as a violation */ 1292 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1293 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1294 w->w_reversed = w1->w_reversed = 1; 1295 witness_increment_graph_generation(); 1296 mtx_unlock_spin(&w_mtx); 1297 1298 #ifdef WITNESS_NO_VNODE 1299 /* 1300 * There are known LORs between VNODE locks. They are 1301 * not an indication of a bug. VNODE locks are flagged 1302 * as such (LO_IS_VNODE) and we don't yell if the LOR 1303 * is between 2 VNODE locks. 1304 */ 1305 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1306 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1307 return; 1308 #endif 1309 1310 /* 1311 * Ok, yell about it. 1312 */ 1313 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1314 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1315 printf( 1316 "lock order reversal: (sleepable after non-sleepable)\n"); 1317 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1318 && lock == &Giant.lock_object) 1319 printf( 1320 "lock order reversal: (Giant after non-sleepable)\n"); 1321 else 1322 printf("lock order reversal:\n"); 1323 1324 /* 1325 * Try to locate an earlier lock with 1326 * witness w in our list. 1327 */ 1328 do { 1329 lock2 = &lle->ll_children[i]; 1330 MPASS(lock2->li_lock != NULL); 1331 if (lock2->li_lock->lo_witness == w) 1332 break; 1333 if (i == 0 && lle->ll_next != NULL) { 1334 lle = lle->ll_next; 1335 i = lle->ll_count - 1; 1336 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1337 } else 1338 i--; 1339 } while (i >= 0); 1340 if (i < 0) { 1341 printf(" 1st %p %s (%s) @ %s:%d\n", 1342 lock1->li_lock, lock1->li_lock->lo_name, 1343 w1->w_name, fixup_filename(lock1->li_file), 1344 lock1->li_line); 1345 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1346 lock->lo_name, w->w_name, 1347 fixup_filename(file), line); 1348 } else { 1349 printf(" 1st %p %s (%s) @ %s:%d\n", 1350 lock2->li_lock, lock2->li_lock->lo_name, 1351 lock2->li_lock->lo_witness->w_name, 1352 fixup_filename(lock2->li_file), 1353 lock2->li_line); 1354 printf(" 2nd %p %s (%s) @ %s:%d\n", 1355 lock1->li_lock, lock1->li_lock->lo_name, 1356 w1->w_name, fixup_filename(lock1->li_file), 1357 lock1->li_line); 1358 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1359 lock->lo_name, w->w_name, 1360 fixup_filename(file), line); 1361 } 1362 witness_debugger(1); 1363 return; 1364 } 1365 } 1366 1367 /* 1368 * If requested, build a new lock order. However, don't build a new 1369 * relationship between a sleepable lock and Giant if it is in the 1370 * wrong direction. The correct lock order is that sleepable locks 1371 * always come before Giant. 1372 */ 1373 if (flags & LOP_NEWORDER && 1374 !(plock->li_lock == &Giant.lock_object && 1375 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1376 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1377 w->w_name, plock->li_lock->lo_witness->w_name); 1378 itismychild(plock->li_lock->lo_witness, w); 1379 } 1380 out: 1381 mtx_unlock_spin(&w_mtx); 1382 } 1383 1384 void 1385 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1386 { 1387 struct lock_list_entry **lock_list, *lle; 1388 struct lock_instance *instance; 1389 struct witness *w; 1390 struct thread *td; 1391 1392 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1393 panicstr != NULL) 1394 return; 1395 w = lock->lo_witness; 1396 td = curthread; 1397 1398 /* Determine lock list for this lock. */ 1399 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1400 lock_list = &td->td_sleeplocks; 1401 else 1402 lock_list = PCPU_PTR(spinlocks); 1403 1404 /* Check to see if we are recursing on a lock we already own. */ 1405 instance = find_instance(*lock_list, lock); 1406 if (instance != NULL) { 1407 instance->li_flags++; 1408 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1409 td->td_proc->p_pid, lock->lo_name, 1410 instance->li_flags & LI_RECURSEMASK); 1411 instance->li_file = file; 1412 instance->li_line = line; 1413 return; 1414 } 1415 1416 /* Update per-witness last file and line acquire. */ 1417 w->w_file = file; 1418 w->w_line = line; 1419 1420 /* Find the next open lock instance in the list and fill it. */ 1421 lle = *lock_list; 1422 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1423 lle = witness_lock_list_get(); 1424 if (lle == NULL) 1425 return; 1426 lle->ll_next = *lock_list; 1427 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1428 td->td_proc->p_pid, lle); 1429 *lock_list = lle; 1430 } 1431 instance = &lle->ll_children[lle->ll_count++]; 1432 instance->li_lock = lock; 1433 instance->li_line = line; 1434 instance->li_file = file; 1435 if ((flags & LOP_EXCLUSIVE) != 0) 1436 instance->li_flags = LI_EXCLUSIVE; 1437 else 1438 instance->li_flags = 0; 1439 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1440 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1441 } 1442 1443 void 1444 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1445 { 1446 struct lock_instance *instance; 1447 struct lock_class *class; 1448 1449 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1450 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1451 return; 1452 class = LOCK_CLASS(lock); 1453 if (witness_watch) { 1454 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1455 kassert_panic( 1456 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1457 class->lc_name, lock->lo_name, 1458 fixup_filename(file), line); 1459 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1460 kassert_panic( 1461 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1462 class->lc_name, lock->lo_name, 1463 fixup_filename(file), line); 1464 } 1465 instance = find_instance(curthread->td_sleeplocks, lock); 1466 if (instance == NULL) { 1467 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1468 class->lc_name, lock->lo_name, 1469 fixup_filename(file), line); 1470 return; 1471 } 1472 if (witness_watch) { 1473 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1474 kassert_panic( 1475 "upgrade of exclusive lock (%s) %s @ %s:%d", 1476 class->lc_name, lock->lo_name, 1477 fixup_filename(file), line); 1478 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1479 kassert_panic( 1480 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1481 class->lc_name, lock->lo_name, 1482 instance->li_flags & LI_RECURSEMASK, 1483 fixup_filename(file), line); 1484 } 1485 instance->li_flags |= LI_EXCLUSIVE; 1486 } 1487 1488 void 1489 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1490 int line) 1491 { 1492 struct lock_instance *instance; 1493 struct lock_class *class; 1494 1495 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1496 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1497 return; 1498 class = LOCK_CLASS(lock); 1499 if (witness_watch) { 1500 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1501 kassert_panic( 1502 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1503 class->lc_name, lock->lo_name, 1504 fixup_filename(file), line); 1505 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1506 kassert_panic( 1507 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1508 class->lc_name, lock->lo_name, 1509 fixup_filename(file), line); 1510 } 1511 instance = find_instance(curthread->td_sleeplocks, lock); 1512 if (instance == NULL) { 1513 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1514 class->lc_name, lock->lo_name, 1515 fixup_filename(file), line); 1516 return; 1517 } 1518 if (witness_watch) { 1519 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1520 kassert_panic( 1521 "downgrade of shared lock (%s) %s @ %s:%d", 1522 class->lc_name, lock->lo_name, 1523 fixup_filename(file), line); 1524 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1525 kassert_panic( 1526 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1527 class->lc_name, lock->lo_name, 1528 instance->li_flags & LI_RECURSEMASK, 1529 fixup_filename(file), line); 1530 } 1531 instance->li_flags &= ~LI_EXCLUSIVE; 1532 } 1533 1534 void 1535 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1536 { 1537 struct lock_list_entry **lock_list, *lle; 1538 struct lock_instance *instance; 1539 struct lock_class *class; 1540 struct thread *td; 1541 register_t s; 1542 int i, j; 1543 1544 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1545 return; 1546 td = curthread; 1547 class = LOCK_CLASS(lock); 1548 1549 /* Find lock instance associated with this lock. */ 1550 if (class->lc_flags & LC_SLEEPLOCK) 1551 lock_list = &td->td_sleeplocks; 1552 else 1553 lock_list = PCPU_PTR(spinlocks); 1554 lle = *lock_list; 1555 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1556 for (i = 0; i < (*lock_list)->ll_count; i++) { 1557 instance = &(*lock_list)->ll_children[i]; 1558 if (instance->li_lock == lock) 1559 goto found; 1560 } 1561 1562 /* 1563 * When disabling WITNESS through witness_watch we could end up in 1564 * having registered locks in the td_sleeplocks queue. 1565 * We have to make sure we flush these queues, so just search for 1566 * eventual register locks and remove them. 1567 */ 1568 if (witness_watch > 0) { 1569 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1570 lock->lo_name, fixup_filename(file), line); 1571 return; 1572 } else { 1573 return; 1574 } 1575 found: 1576 1577 /* First, check for shared/exclusive mismatches. */ 1578 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1579 (flags & LOP_EXCLUSIVE) == 0) { 1580 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1581 lock->lo_name, fixup_filename(file), line); 1582 printf("while exclusively locked from %s:%d\n", 1583 fixup_filename(instance->li_file), instance->li_line); 1584 kassert_panic("excl->ushare"); 1585 } 1586 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1587 (flags & LOP_EXCLUSIVE) != 0) { 1588 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1589 lock->lo_name, fixup_filename(file), line); 1590 printf("while share locked from %s:%d\n", 1591 fixup_filename(instance->li_file), 1592 instance->li_line); 1593 kassert_panic("share->uexcl"); 1594 } 1595 /* If we are recursed, unrecurse. */ 1596 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1597 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1598 td->td_proc->p_pid, instance->li_lock->lo_name, 1599 instance->li_flags); 1600 instance->li_flags--; 1601 return; 1602 } 1603 /* The lock is now being dropped, check for NORELEASE flag */ 1604 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1605 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name, 1606 lock->lo_name, fixup_filename(file), line); 1607 kassert_panic("lock marked norelease"); 1608 } 1609 1610 /* Otherwise, remove this item from the list. */ 1611 s = intr_disable(); 1612 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1613 td->td_proc->p_pid, instance->li_lock->lo_name, 1614 (*lock_list)->ll_count - 1); 1615 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1616 (*lock_list)->ll_children[j] = 1617 (*lock_list)->ll_children[j + 1]; 1618 (*lock_list)->ll_count--; 1619 intr_restore(s); 1620 1621 /* 1622 * In order to reduce contention on w_mtx, we want to keep always an 1623 * head object into lists so that frequent allocation from the 1624 * free witness pool (and subsequent locking) is avoided. 1625 * In order to maintain the current code simple, when the head 1626 * object is totally unloaded it means also that we do not have 1627 * further objects in the list, so the list ownership needs to be 1628 * hand over to another object if the current head needs to be freed. 1629 */ 1630 if ((*lock_list)->ll_count == 0) { 1631 if (*lock_list == lle) { 1632 if (lle->ll_next == NULL) 1633 return; 1634 } else 1635 lle = *lock_list; 1636 *lock_list = lle->ll_next; 1637 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1638 td->td_proc->p_pid, lle); 1639 witness_lock_list_free(lle); 1640 } 1641 } 1642 1643 void 1644 witness_thread_exit(struct thread *td) 1645 { 1646 struct lock_list_entry *lle; 1647 int i, n; 1648 1649 lle = td->td_sleeplocks; 1650 if (lle == NULL || panicstr != NULL) 1651 return; 1652 if (lle->ll_count != 0) { 1653 for (n = 0; lle != NULL; lle = lle->ll_next) 1654 for (i = lle->ll_count - 1; i >= 0; i--) { 1655 if (n == 0) 1656 printf("Thread %p exiting with the following locks held:\n", 1657 td); 1658 n++; 1659 witness_list_lock(&lle->ll_children[i], printf); 1660 1661 } 1662 kassert_panic( 1663 "Thread %p cannot exit while holding sleeplocks\n", td); 1664 } 1665 witness_lock_list_free(lle); 1666 } 1667 1668 /* 1669 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1670 * exempt Giant and sleepable locks from the checks as well. If any 1671 * non-exempt locks are held, then a supplied message is printed to the 1672 * console along with a list of the offending locks. If indicated in the 1673 * flags then a failure results in a panic as well. 1674 */ 1675 int 1676 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1677 { 1678 struct lock_list_entry *lock_list, *lle; 1679 struct lock_instance *lock1; 1680 struct thread *td; 1681 va_list ap; 1682 int i, n; 1683 1684 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1685 return (0); 1686 n = 0; 1687 td = curthread; 1688 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1689 for (i = lle->ll_count - 1; i >= 0; i--) { 1690 lock1 = &lle->ll_children[i]; 1691 if (lock1->li_lock == lock) 1692 continue; 1693 if (flags & WARN_GIANTOK && 1694 lock1->li_lock == &Giant.lock_object) 1695 continue; 1696 if (flags & WARN_SLEEPOK && 1697 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1698 continue; 1699 if (n == 0) { 1700 va_start(ap, fmt); 1701 vprintf(fmt, ap); 1702 va_end(ap); 1703 printf(" with the following"); 1704 if (flags & WARN_SLEEPOK) 1705 printf(" non-sleepable"); 1706 printf(" locks held:\n"); 1707 } 1708 n++; 1709 witness_list_lock(lock1, printf); 1710 } 1711 1712 /* 1713 * Pin the thread in order to avoid problems with thread migration. 1714 * Once that all verifies are passed about spinlocks ownership, 1715 * the thread is in a safe path and it can be unpinned. 1716 */ 1717 sched_pin(); 1718 lock_list = PCPU_GET(spinlocks); 1719 if (lock_list != NULL && lock_list->ll_count != 0) { 1720 sched_unpin(); 1721 1722 /* 1723 * We should only have one spinlock and as long as 1724 * the flags cannot match for this locks class, 1725 * check if the first spinlock is the one curthread 1726 * should hold. 1727 */ 1728 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1729 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1730 lock1->li_lock == lock && n == 0) 1731 return (0); 1732 1733 va_start(ap, fmt); 1734 vprintf(fmt, ap); 1735 va_end(ap); 1736 printf(" with the following"); 1737 if (flags & WARN_SLEEPOK) 1738 printf(" non-sleepable"); 1739 printf(" locks held:\n"); 1740 n += witness_list_locks(&lock_list, printf); 1741 } else 1742 sched_unpin(); 1743 if (flags & WARN_PANIC && n) 1744 kassert_panic("%s", __func__); 1745 else 1746 witness_debugger(n); 1747 return (n); 1748 } 1749 1750 const char * 1751 witness_file(struct lock_object *lock) 1752 { 1753 struct witness *w; 1754 1755 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1756 return ("?"); 1757 w = lock->lo_witness; 1758 return (w->w_file); 1759 } 1760 1761 int 1762 witness_line(struct lock_object *lock) 1763 { 1764 struct witness *w; 1765 1766 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1767 return (0); 1768 w = lock->lo_witness; 1769 return (w->w_line); 1770 } 1771 1772 static struct witness * 1773 enroll(const char *description, struct lock_class *lock_class) 1774 { 1775 struct witness *w; 1776 struct witness_list *typelist; 1777 1778 MPASS(description != NULL); 1779 1780 if (witness_watch == -1 || panicstr != NULL) 1781 return (NULL); 1782 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1783 if (witness_skipspin) 1784 return (NULL); 1785 else 1786 typelist = &w_spin; 1787 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) { 1788 typelist = &w_sleep; 1789 } else { 1790 kassert_panic("lock class %s is not sleep or spin", 1791 lock_class->lc_name); 1792 return (NULL); 1793 } 1794 1795 mtx_lock_spin(&w_mtx); 1796 w = witness_hash_get(description); 1797 if (w) 1798 goto found; 1799 if ((w = witness_get()) == NULL) 1800 return (NULL); 1801 MPASS(strlen(description) < MAX_W_NAME); 1802 strcpy(w->w_name, description); 1803 w->w_class = lock_class; 1804 w->w_refcount = 1; 1805 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1806 if (lock_class->lc_flags & LC_SPINLOCK) { 1807 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1808 w_spin_cnt++; 1809 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1810 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1811 w_sleep_cnt++; 1812 } 1813 1814 /* Insert new witness into the hash */ 1815 witness_hash_put(w); 1816 witness_increment_graph_generation(); 1817 mtx_unlock_spin(&w_mtx); 1818 return (w); 1819 found: 1820 w->w_refcount++; 1821 mtx_unlock_spin(&w_mtx); 1822 if (lock_class != w->w_class) 1823 kassert_panic( 1824 "lock (%s) %s does not match earlier (%s) lock", 1825 description, lock_class->lc_name, 1826 w->w_class->lc_name); 1827 return (w); 1828 } 1829 1830 static void 1831 depart(struct witness *w) 1832 { 1833 struct witness_list *list; 1834 1835 MPASS(w->w_refcount == 0); 1836 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1837 list = &w_sleep; 1838 w_sleep_cnt--; 1839 } else { 1840 list = &w_spin; 1841 w_spin_cnt--; 1842 } 1843 /* 1844 * Set file to NULL as it may point into a loadable module. 1845 */ 1846 w->w_file = NULL; 1847 w->w_line = 0; 1848 witness_increment_graph_generation(); 1849 } 1850 1851 1852 static void 1853 adopt(struct witness *parent, struct witness *child) 1854 { 1855 int pi, ci, i, j; 1856 1857 if (witness_cold == 0) 1858 mtx_assert(&w_mtx, MA_OWNED); 1859 1860 /* If the relationship is already known, there's no work to be done. */ 1861 if (isitmychild(parent, child)) 1862 return; 1863 1864 /* When the structure of the graph changes, bump up the generation. */ 1865 witness_increment_graph_generation(); 1866 1867 /* 1868 * The hard part ... create the direct relationship, then propagate all 1869 * indirect relationships. 1870 */ 1871 pi = parent->w_index; 1872 ci = child->w_index; 1873 WITNESS_INDEX_ASSERT(pi); 1874 WITNESS_INDEX_ASSERT(ci); 1875 MPASS(pi != ci); 1876 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1877 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1878 1879 /* 1880 * If parent was not already an ancestor of child, 1881 * then we increment the descendant and ancestor counters. 1882 */ 1883 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1884 parent->w_num_descendants++; 1885 child->w_num_ancestors++; 1886 } 1887 1888 /* 1889 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1890 * an ancestor of 'pi' during this loop. 1891 */ 1892 for (i = 1; i <= w_max_used_index; i++) { 1893 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1894 (i != pi)) 1895 continue; 1896 1897 /* Find each descendant of 'i' and mark it as a descendant. */ 1898 for (j = 1; j <= w_max_used_index; j++) { 1899 1900 /* 1901 * Skip children that are already marked as 1902 * descendants of 'i'. 1903 */ 1904 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1905 continue; 1906 1907 /* 1908 * We are only interested in descendants of 'ci'. Note 1909 * that 'ci' itself is counted as a descendant of 'ci'. 1910 */ 1911 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1912 (j != ci)) 1913 continue; 1914 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1915 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1916 w_data[i].w_num_descendants++; 1917 w_data[j].w_num_ancestors++; 1918 1919 /* 1920 * Make sure we aren't marking a node as both an 1921 * ancestor and descendant. We should have caught 1922 * this as a lock order reversal earlier. 1923 */ 1924 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1925 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1926 printf("witness rmatrix paradox! [%d][%d]=%d " 1927 "both ancestor and descendant\n", 1928 i, j, w_rmatrix[i][j]); 1929 kdb_backtrace(); 1930 printf("Witness disabled.\n"); 1931 witness_watch = -1; 1932 } 1933 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1934 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1935 printf("witness rmatrix paradox! [%d][%d]=%d " 1936 "both ancestor and descendant\n", 1937 j, i, w_rmatrix[j][i]); 1938 kdb_backtrace(); 1939 printf("Witness disabled.\n"); 1940 witness_watch = -1; 1941 } 1942 } 1943 } 1944 } 1945 1946 static void 1947 itismychild(struct witness *parent, struct witness *child) 1948 { 1949 int unlocked; 1950 1951 MPASS(child != NULL && parent != NULL); 1952 if (witness_cold == 0) 1953 mtx_assert(&w_mtx, MA_OWNED); 1954 1955 if (!witness_lock_type_equal(parent, child)) { 1956 if (witness_cold == 0) { 1957 unlocked = 1; 1958 mtx_unlock_spin(&w_mtx); 1959 } else { 1960 unlocked = 0; 1961 } 1962 kassert_panic( 1963 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 1964 "the same lock type", __func__, parent->w_name, 1965 parent->w_class->lc_name, child->w_name, 1966 child->w_class->lc_name); 1967 if (unlocked) 1968 mtx_lock_spin(&w_mtx); 1969 } 1970 adopt(parent, child); 1971 } 1972 1973 /* 1974 * Generic code for the isitmy*() functions. The rmask parameter is the 1975 * expected relationship of w1 to w2. 1976 */ 1977 static int 1978 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 1979 { 1980 unsigned char r1, r2; 1981 int i1, i2; 1982 1983 i1 = w1->w_index; 1984 i2 = w2->w_index; 1985 WITNESS_INDEX_ASSERT(i1); 1986 WITNESS_INDEX_ASSERT(i2); 1987 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 1988 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 1989 1990 /* The flags on one better be the inverse of the flags on the other */ 1991 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 1992 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 1993 printf("%s: rmatrix mismatch between %s (index %d) and %s " 1994 "(index %d): w_rmatrix[%d][%d] == %hhx but " 1995 "w_rmatrix[%d][%d] == %hhx\n", 1996 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 1997 i2, i1, r2); 1998 kdb_backtrace(); 1999 printf("Witness disabled.\n"); 2000 witness_watch = -1; 2001 } 2002 return (r1 & rmask); 2003 } 2004 2005 /* 2006 * Checks if @child is a direct child of @parent. 2007 */ 2008 static int 2009 isitmychild(struct witness *parent, struct witness *child) 2010 { 2011 2012 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2013 } 2014 2015 /* 2016 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2017 */ 2018 static int 2019 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2020 { 2021 2022 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2023 __func__)); 2024 } 2025 2026 #ifdef BLESSING 2027 static int 2028 blessed(struct witness *w1, struct witness *w2) 2029 { 2030 int i; 2031 struct witness_blessed *b; 2032 2033 for (i = 0; i < blessed_count; i++) { 2034 b = &blessed_list[i]; 2035 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2036 if (strcmp(w2->w_name, b->b_lock2) == 0) 2037 return (1); 2038 continue; 2039 } 2040 if (strcmp(w1->w_name, b->b_lock2) == 0) 2041 if (strcmp(w2->w_name, b->b_lock1) == 0) 2042 return (1); 2043 } 2044 return (0); 2045 } 2046 #endif 2047 2048 static struct witness * 2049 witness_get(void) 2050 { 2051 struct witness *w; 2052 int index; 2053 2054 if (witness_cold == 0) 2055 mtx_assert(&w_mtx, MA_OWNED); 2056 2057 if (witness_watch == -1) { 2058 mtx_unlock_spin(&w_mtx); 2059 return (NULL); 2060 } 2061 if (STAILQ_EMPTY(&w_free)) { 2062 witness_watch = -1; 2063 mtx_unlock_spin(&w_mtx); 2064 printf("WITNESS: unable to allocate a new witness object\n"); 2065 return (NULL); 2066 } 2067 w = STAILQ_FIRST(&w_free); 2068 STAILQ_REMOVE_HEAD(&w_free, w_list); 2069 w_free_cnt--; 2070 index = w->w_index; 2071 MPASS(index > 0 && index == w_max_used_index+1 && 2072 index < WITNESS_COUNT); 2073 bzero(w, sizeof(*w)); 2074 w->w_index = index; 2075 if (index > w_max_used_index) 2076 w_max_used_index = index; 2077 return (w); 2078 } 2079 2080 static void 2081 witness_free(struct witness *w) 2082 { 2083 2084 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2085 w_free_cnt++; 2086 } 2087 2088 static struct lock_list_entry * 2089 witness_lock_list_get(void) 2090 { 2091 struct lock_list_entry *lle; 2092 2093 if (witness_watch == -1) 2094 return (NULL); 2095 mtx_lock_spin(&w_mtx); 2096 lle = w_lock_list_free; 2097 if (lle == NULL) { 2098 witness_watch = -1; 2099 mtx_unlock_spin(&w_mtx); 2100 printf("%s: witness exhausted\n", __func__); 2101 return (NULL); 2102 } 2103 w_lock_list_free = lle->ll_next; 2104 mtx_unlock_spin(&w_mtx); 2105 bzero(lle, sizeof(*lle)); 2106 return (lle); 2107 } 2108 2109 static void 2110 witness_lock_list_free(struct lock_list_entry *lle) 2111 { 2112 2113 mtx_lock_spin(&w_mtx); 2114 lle->ll_next = w_lock_list_free; 2115 w_lock_list_free = lle; 2116 mtx_unlock_spin(&w_mtx); 2117 } 2118 2119 static struct lock_instance * 2120 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2121 { 2122 struct lock_list_entry *lle; 2123 struct lock_instance *instance; 2124 int i; 2125 2126 for (lle = list; lle != NULL; lle = lle->ll_next) 2127 for (i = lle->ll_count - 1; i >= 0; i--) { 2128 instance = &lle->ll_children[i]; 2129 if (instance->li_lock == lock) 2130 return (instance); 2131 } 2132 return (NULL); 2133 } 2134 2135 static void 2136 witness_list_lock(struct lock_instance *instance, 2137 int (*prnt)(const char *fmt, ...)) 2138 { 2139 struct lock_object *lock; 2140 2141 lock = instance->li_lock; 2142 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2143 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2144 if (lock->lo_witness->w_name != lock->lo_name) 2145 prnt(" (%s)", lock->lo_witness->w_name); 2146 prnt(" r = %d (%p) locked @ %s:%d\n", 2147 instance->li_flags & LI_RECURSEMASK, lock, 2148 fixup_filename(instance->li_file), instance->li_line); 2149 } 2150 2151 #ifdef DDB 2152 static int 2153 witness_thread_has_locks(struct thread *td) 2154 { 2155 2156 if (td->td_sleeplocks == NULL) 2157 return (0); 2158 return (td->td_sleeplocks->ll_count != 0); 2159 } 2160 2161 static int 2162 witness_proc_has_locks(struct proc *p) 2163 { 2164 struct thread *td; 2165 2166 FOREACH_THREAD_IN_PROC(p, td) { 2167 if (witness_thread_has_locks(td)) 2168 return (1); 2169 } 2170 return (0); 2171 } 2172 #endif 2173 2174 int 2175 witness_list_locks(struct lock_list_entry **lock_list, 2176 int (*prnt)(const char *fmt, ...)) 2177 { 2178 struct lock_list_entry *lle; 2179 int i, nheld; 2180 2181 nheld = 0; 2182 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2183 for (i = lle->ll_count - 1; i >= 0; i--) { 2184 witness_list_lock(&lle->ll_children[i], prnt); 2185 nheld++; 2186 } 2187 return (nheld); 2188 } 2189 2190 /* 2191 * This is a bit risky at best. We call this function when we have timed 2192 * out acquiring a spin lock, and we assume that the other CPU is stuck 2193 * with this lock held. So, we go groveling around in the other CPU's 2194 * per-cpu data to try to find the lock instance for this spin lock to 2195 * see when it was last acquired. 2196 */ 2197 void 2198 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2199 int (*prnt)(const char *fmt, ...)) 2200 { 2201 struct lock_instance *instance; 2202 struct pcpu *pc; 2203 2204 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2205 return; 2206 pc = pcpu_find(owner->td_oncpu); 2207 instance = find_instance(pc->pc_spinlocks, lock); 2208 if (instance != NULL) 2209 witness_list_lock(instance, prnt); 2210 } 2211 2212 void 2213 witness_save(struct lock_object *lock, const char **filep, int *linep) 2214 { 2215 struct lock_list_entry *lock_list; 2216 struct lock_instance *instance; 2217 struct lock_class *class; 2218 2219 /* 2220 * This function is used independently in locking code to deal with 2221 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2222 * is gone. 2223 */ 2224 if (SCHEDULER_STOPPED()) 2225 return; 2226 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2227 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2228 return; 2229 class = LOCK_CLASS(lock); 2230 if (class->lc_flags & LC_SLEEPLOCK) 2231 lock_list = curthread->td_sleeplocks; 2232 else { 2233 if (witness_skipspin) 2234 return; 2235 lock_list = PCPU_GET(spinlocks); 2236 } 2237 instance = find_instance(lock_list, lock); 2238 if (instance == NULL) { 2239 kassert_panic("%s: lock (%s) %s not locked", __func__, 2240 class->lc_name, lock->lo_name); 2241 return; 2242 } 2243 *filep = instance->li_file; 2244 *linep = instance->li_line; 2245 } 2246 2247 void 2248 witness_restore(struct lock_object *lock, const char *file, int line) 2249 { 2250 struct lock_list_entry *lock_list; 2251 struct lock_instance *instance; 2252 struct lock_class *class; 2253 2254 /* 2255 * This function is used independently in locking code to deal with 2256 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2257 * is gone. 2258 */ 2259 if (SCHEDULER_STOPPED()) 2260 return; 2261 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2262 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2263 return; 2264 class = LOCK_CLASS(lock); 2265 if (class->lc_flags & LC_SLEEPLOCK) 2266 lock_list = curthread->td_sleeplocks; 2267 else { 2268 if (witness_skipspin) 2269 return; 2270 lock_list = PCPU_GET(spinlocks); 2271 } 2272 instance = find_instance(lock_list, lock); 2273 if (instance == NULL) 2274 kassert_panic("%s: lock (%s) %s not locked", __func__, 2275 class->lc_name, lock->lo_name); 2276 lock->lo_witness->w_file = file; 2277 lock->lo_witness->w_line = line; 2278 if (instance == NULL) 2279 return; 2280 instance->li_file = file; 2281 instance->li_line = line; 2282 } 2283 2284 void 2285 witness_assert(const struct lock_object *lock, int flags, const char *file, 2286 int line) 2287 { 2288 #ifdef INVARIANT_SUPPORT 2289 struct lock_instance *instance; 2290 struct lock_class *class; 2291 2292 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2293 return; 2294 class = LOCK_CLASS(lock); 2295 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2296 instance = find_instance(curthread->td_sleeplocks, lock); 2297 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2298 instance = find_instance(PCPU_GET(spinlocks), lock); 2299 else { 2300 kassert_panic("Lock (%s) %s is not sleep or spin!", 2301 class->lc_name, lock->lo_name); 2302 return; 2303 } 2304 switch (flags) { 2305 case LA_UNLOCKED: 2306 if (instance != NULL) 2307 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2308 class->lc_name, lock->lo_name, 2309 fixup_filename(file), line); 2310 break; 2311 case LA_LOCKED: 2312 case LA_LOCKED | LA_RECURSED: 2313 case LA_LOCKED | LA_NOTRECURSED: 2314 case LA_SLOCKED: 2315 case LA_SLOCKED | LA_RECURSED: 2316 case LA_SLOCKED | LA_NOTRECURSED: 2317 case LA_XLOCKED: 2318 case LA_XLOCKED | LA_RECURSED: 2319 case LA_XLOCKED | LA_NOTRECURSED: 2320 if (instance == NULL) { 2321 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2322 class->lc_name, lock->lo_name, 2323 fixup_filename(file), line); 2324 break; 2325 } 2326 if ((flags & LA_XLOCKED) != 0 && 2327 (instance->li_flags & LI_EXCLUSIVE) == 0) 2328 kassert_panic( 2329 "Lock (%s) %s not exclusively locked @ %s:%d.", 2330 class->lc_name, lock->lo_name, 2331 fixup_filename(file), line); 2332 if ((flags & LA_SLOCKED) != 0 && 2333 (instance->li_flags & LI_EXCLUSIVE) != 0) 2334 kassert_panic( 2335 "Lock (%s) %s exclusively locked @ %s:%d.", 2336 class->lc_name, lock->lo_name, 2337 fixup_filename(file), line); 2338 if ((flags & LA_RECURSED) != 0 && 2339 (instance->li_flags & LI_RECURSEMASK) == 0) 2340 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2341 class->lc_name, lock->lo_name, 2342 fixup_filename(file), line); 2343 if ((flags & LA_NOTRECURSED) != 0 && 2344 (instance->li_flags & LI_RECURSEMASK) != 0) 2345 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2346 class->lc_name, lock->lo_name, 2347 fixup_filename(file), line); 2348 break; 2349 default: 2350 kassert_panic("Invalid lock assertion at %s:%d.", 2351 fixup_filename(file), line); 2352 2353 } 2354 #endif /* INVARIANT_SUPPORT */ 2355 } 2356 2357 static void 2358 witness_setflag(struct lock_object *lock, int flag, int set) 2359 { 2360 struct lock_list_entry *lock_list; 2361 struct lock_instance *instance; 2362 struct lock_class *class; 2363 2364 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2365 return; 2366 class = LOCK_CLASS(lock); 2367 if (class->lc_flags & LC_SLEEPLOCK) 2368 lock_list = curthread->td_sleeplocks; 2369 else { 2370 if (witness_skipspin) 2371 return; 2372 lock_list = PCPU_GET(spinlocks); 2373 } 2374 instance = find_instance(lock_list, lock); 2375 if (instance == NULL) { 2376 kassert_panic("%s: lock (%s) %s not locked", __func__, 2377 class->lc_name, lock->lo_name); 2378 return; 2379 } 2380 2381 if (set) 2382 instance->li_flags |= flag; 2383 else 2384 instance->li_flags &= ~flag; 2385 } 2386 2387 void 2388 witness_norelease(struct lock_object *lock) 2389 { 2390 2391 witness_setflag(lock, LI_NORELEASE, 1); 2392 } 2393 2394 void 2395 witness_releaseok(struct lock_object *lock) 2396 { 2397 2398 witness_setflag(lock, LI_NORELEASE, 0); 2399 } 2400 2401 #ifdef DDB 2402 static void 2403 witness_ddb_list(struct thread *td) 2404 { 2405 2406 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2407 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2408 2409 if (witness_watch < 1) 2410 return; 2411 2412 witness_list_locks(&td->td_sleeplocks, db_printf); 2413 2414 /* 2415 * We only handle spinlocks if td == curthread. This is somewhat broken 2416 * if td is currently executing on some other CPU and holds spin locks 2417 * as we won't display those locks. If we had a MI way of getting 2418 * the per-cpu data for a given cpu then we could use 2419 * td->td_oncpu to get the list of spinlocks for this thread 2420 * and "fix" this. 2421 * 2422 * That still wouldn't really fix this unless we locked the scheduler 2423 * lock or stopped the other CPU to make sure it wasn't changing the 2424 * list out from under us. It is probably best to just not try to 2425 * handle threads on other CPU's for now. 2426 */ 2427 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2428 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2429 } 2430 2431 DB_SHOW_COMMAND(locks, db_witness_list) 2432 { 2433 struct thread *td; 2434 2435 if (have_addr) 2436 td = db_lookup_thread(addr, TRUE); 2437 else 2438 td = kdb_thread; 2439 witness_ddb_list(td); 2440 } 2441 2442 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2443 { 2444 struct thread *td; 2445 struct proc *p; 2446 2447 /* 2448 * It would be nice to list only threads and processes that actually 2449 * held sleep locks, but that information is currently not exported 2450 * by WITNESS. 2451 */ 2452 FOREACH_PROC_IN_SYSTEM(p) { 2453 if (!witness_proc_has_locks(p)) 2454 continue; 2455 FOREACH_THREAD_IN_PROC(p, td) { 2456 if (!witness_thread_has_locks(td)) 2457 continue; 2458 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2459 p->p_comm, td, td->td_tid); 2460 witness_ddb_list(td); 2461 if (db_pager_quit) 2462 return; 2463 } 2464 } 2465 } 2466 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2467 2468 DB_SHOW_COMMAND(witness, db_witness_display) 2469 { 2470 2471 witness_ddb_display(db_printf); 2472 } 2473 #endif 2474 2475 static int 2476 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2477 { 2478 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2479 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2480 struct sbuf *sb; 2481 u_int w_rmatrix1, w_rmatrix2; 2482 int error, generation, i, j; 2483 2484 tmp_data1 = NULL; 2485 tmp_data2 = NULL; 2486 tmp_w1 = NULL; 2487 tmp_w2 = NULL; 2488 if (witness_watch < 1) { 2489 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2490 return (error); 2491 } 2492 if (witness_cold) { 2493 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2494 return (error); 2495 } 2496 error = 0; 2497 sb = sbuf_new(NULL, NULL, BADSTACK_SBUF_SIZE, SBUF_AUTOEXTEND); 2498 if (sb == NULL) 2499 return (ENOMEM); 2500 2501 /* Allocate and init temporary storage space. */ 2502 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2503 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2504 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2505 M_WAITOK | M_ZERO); 2506 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2507 M_WAITOK | M_ZERO); 2508 stack_zero(&tmp_data1->wlod_stack); 2509 stack_zero(&tmp_data2->wlod_stack); 2510 2511 restart: 2512 mtx_lock_spin(&w_mtx); 2513 generation = w_generation; 2514 mtx_unlock_spin(&w_mtx); 2515 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2516 w_lohash.wloh_count); 2517 for (i = 1; i < w_max_used_index; i++) { 2518 mtx_lock_spin(&w_mtx); 2519 if (generation != w_generation) { 2520 mtx_unlock_spin(&w_mtx); 2521 2522 /* The graph has changed, try again. */ 2523 req->oldidx = 0; 2524 sbuf_clear(sb); 2525 goto restart; 2526 } 2527 2528 w1 = &w_data[i]; 2529 if (w1->w_reversed == 0) { 2530 mtx_unlock_spin(&w_mtx); 2531 continue; 2532 } 2533 2534 /* Copy w1 locally so we can release the spin lock. */ 2535 *tmp_w1 = *w1; 2536 mtx_unlock_spin(&w_mtx); 2537 2538 if (tmp_w1->w_reversed == 0) 2539 continue; 2540 for (j = 1; j < w_max_used_index; j++) { 2541 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2542 continue; 2543 2544 mtx_lock_spin(&w_mtx); 2545 if (generation != w_generation) { 2546 mtx_unlock_spin(&w_mtx); 2547 2548 /* The graph has changed, try again. */ 2549 req->oldidx = 0; 2550 sbuf_clear(sb); 2551 goto restart; 2552 } 2553 2554 w2 = &w_data[j]; 2555 data1 = witness_lock_order_get(w1, w2); 2556 data2 = witness_lock_order_get(w2, w1); 2557 2558 /* 2559 * Copy information locally so we can release the 2560 * spin lock. 2561 */ 2562 *tmp_w2 = *w2; 2563 w_rmatrix1 = (unsigned int)w_rmatrix[i][j]; 2564 w_rmatrix2 = (unsigned int)w_rmatrix[j][i]; 2565 2566 if (data1) { 2567 stack_zero(&tmp_data1->wlod_stack); 2568 stack_copy(&data1->wlod_stack, 2569 &tmp_data1->wlod_stack); 2570 } 2571 if (data2 && data2 != data1) { 2572 stack_zero(&tmp_data2->wlod_stack); 2573 stack_copy(&data2->wlod_stack, 2574 &tmp_data2->wlod_stack); 2575 } 2576 mtx_unlock_spin(&w_mtx); 2577 2578 sbuf_printf(sb, 2579 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2580 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2581 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2582 #if 0 2583 sbuf_printf(sb, 2584 "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n", 2585 tmp_w1->name, tmp_w2->w_name, w_rmatrix1, 2586 tmp_w2->name, tmp_w1->w_name, w_rmatrix2); 2587 #endif 2588 if (data1) { 2589 sbuf_printf(sb, 2590 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2591 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2592 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2593 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2594 sbuf_printf(sb, "\n"); 2595 } 2596 if (data2 && data2 != data1) { 2597 sbuf_printf(sb, 2598 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2599 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2600 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2601 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2602 sbuf_printf(sb, "\n"); 2603 } 2604 } 2605 } 2606 mtx_lock_spin(&w_mtx); 2607 if (generation != w_generation) { 2608 mtx_unlock_spin(&w_mtx); 2609 2610 /* 2611 * The graph changed while we were printing stack data, 2612 * try again. 2613 */ 2614 req->oldidx = 0; 2615 sbuf_clear(sb); 2616 goto restart; 2617 } 2618 mtx_unlock_spin(&w_mtx); 2619 2620 /* Free temporary storage space. */ 2621 free(tmp_data1, M_TEMP); 2622 free(tmp_data2, M_TEMP); 2623 free(tmp_w1, M_TEMP); 2624 free(tmp_w2, M_TEMP); 2625 2626 sbuf_finish(sb); 2627 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2628 sbuf_delete(sb); 2629 2630 return (error); 2631 } 2632 2633 static int 2634 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2635 { 2636 struct witness *w; 2637 struct sbuf *sb; 2638 int error; 2639 2640 if (witness_watch < 1) { 2641 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2642 return (error); 2643 } 2644 if (witness_cold) { 2645 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2646 return (error); 2647 } 2648 error = 0; 2649 2650 error = sysctl_wire_old_buffer(req, 0); 2651 if (error != 0) 2652 return (error); 2653 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2654 if (sb == NULL) 2655 return (ENOMEM); 2656 sbuf_printf(sb, "\n"); 2657 2658 mtx_lock_spin(&w_mtx); 2659 STAILQ_FOREACH(w, &w_all, w_list) 2660 w->w_displayed = 0; 2661 STAILQ_FOREACH(w, &w_all, w_list) 2662 witness_add_fullgraph(sb, w); 2663 mtx_unlock_spin(&w_mtx); 2664 2665 /* 2666 * Close the sbuf and return to userland. 2667 */ 2668 error = sbuf_finish(sb); 2669 sbuf_delete(sb); 2670 2671 return (error); 2672 } 2673 2674 static int 2675 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2676 { 2677 int error, value; 2678 2679 value = witness_watch; 2680 error = sysctl_handle_int(oidp, &value, 0, req); 2681 if (error != 0 || req->newptr == NULL) 2682 return (error); 2683 if (value > 1 || value < -1 || 2684 (witness_watch == -1 && value != witness_watch)) 2685 return (EINVAL); 2686 witness_watch = value; 2687 return (0); 2688 } 2689 2690 static void 2691 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2692 { 2693 int i; 2694 2695 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2696 return; 2697 w->w_displayed = 1; 2698 2699 WITNESS_INDEX_ASSERT(w->w_index); 2700 for (i = 1; i <= w_max_used_index; i++) { 2701 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2702 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2703 w_data[i].w_name); 2704 witness_add_fullgraph(sb, &w_data[i]); 2705 } 2706 } 2707 } 2708 2709 /* 2710 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2711 * interprets the key as a string and reads until the null 2712 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2713 * hash value computed from the key. 2714 */ 2715 static uint32_t 2716 witness_hash_djb2(const uint8_t *key, uint32_t size) 2717 { 2718 unsigned int hash = 5381; 2719 int i; 2720 2721 /* hash = hash * 33 + key[i] */ 2722 if (size) 2723 for (i = 0; i < size; i++) 2724 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2725 else 2726 for (i = 0; key[i] != 0; i++) 2727 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2728 2729 return (hash); 2730 } 2731 2732 2733 /* 2734 * Initializes the two witness hash tables. Called exactly once from 2735 * witness_initialize(). 2736 */ 2737 static void 2738 witness_init_hash_tables(void) 2739 { 2740 int i; 2741 2742 MPASS(witness_cold); 2743 2744 /* Initialize the hash tables. */ 2745 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2746 w_hash.wh_array[i] = NULL; 2747 2748 w_hash.wh_size = WITNESS_HASH_SIZE; 2749 w_hash.wh_count = 0; 2750 2751 /* Initialize the lock order data hash. */ 2752 w_lofree = NULL; 2753 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2754 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2755 w_lodata[i].wlod_next = w_lofree; 2756 w_lofree = &w_lodata[i]; 2757 } 2758 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2759 w_lohash.wloh_count = 0; 2760 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2761 w_lohash.wloh_array[i] = NULL; 2762 } 2763 2764 static struct witness * 2765 witness_hash_get(const char *key) 2766 { 2767 struct witness *w; 2768 uint32_t hash; 2769 2770 MPASS(key != NULL); 2771 if (witness_cold == 0) 2772 mtx_assert(&w_mtx, MA_OWNED); 2773 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2774 w = w_hash.wh_array[hash]; 2775 while (w != NULL) { 2776 if (strcmp(w->w_name, key) == 0) 2777 goto out; 2778 w = w->w_hash_next; 2779 } 2780 2781 out: 2782 return (w); 2783 } 2784 2785 static void 2786 witness_hash_put(struct witness *w) 2787 { 2788 uint32_t hash; 2789 2790 MPASS(w != NULL); 2791 MPASS(w->w_name != NULL); 2792 if (witness_cold == 0) 2793 mtx_assert(&w_mtx, MA_OWNED); 2794 KASSERT(witness_hash_get(w->w_name) == NULL, 2795 ("%s: trying to add a hash entry that already exists!", __func__)); 2796 KASSERT(w->w_hash_next == NULL, 2797 ("%s: w->w_hash_next != NULL", __func__)); 2798 2799 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2800 w->w_hash_next = w_hash.wh_array[hash]; 2801 w_hash.wh_array[hash] = w; 2802 w_hash.wh_count++; 2803 } 2804 2805 2806 static struct witness_lock_order_data * 2807 witness_lock_order_get(struct witness *parent, struct witness *child) 2808 { 2809 struct witness_lock_order_data *data = NULL; 2810 struct witness_lock_order_key key; 2811 unsigned int hash; 2812 2813 MPASS(parent != NULL && child != NULL); 2814 key.from = parent->w_index; 2815 key.to = child->w_index; 2816 WITNESS_INDEX_ASSERT(key.from); 2817 WITNESS_INDEX_ASSERT(key.to); 2818 if ((w_rmatrix[parent->w_index][child->w_index] 2819 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2820 goto out; 2821 2822 hash = witness_hash_djb2((const char*)&key, 2823 sizeof(key)) % w_lohash.wloh_size; 2824 data = w_lohash.wloh_array[hash]; 2825 while (data != NULL) { 2826 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2827 break; 2828 data = data->wlod_next; 2829 } 2830 2831 out: 2832 return (data); 2833 } 2834 2835 /* 2836 * Verify that parent and child have a known relationship, are not the same, 2837 * and child is actually a child of parent. This is done without w_mtx 2838 * to avoid contention in the common case. 2839 */ 2840 static int 2841 witness_lock_order_check(struct witness *parent, struct witness *child) 2842 { 2843 2844 if (parent != child && 2845 w_rmatrix[parent->w_index][child->w_index] 2846 & WITNESS_LOCK_ORDER_KNOWN && 2847 isitmychild(parent, child)) 2848 return (1); 2849 2850 return (0); 2851 } 2852 2853 static int 2854 witness_lock_order_add(struct witness *parent, struct witness *child) 2855 { 2856 struct witness_lock_order_data *data = NULL; 2857 struct witness_lock_order_key key; 2858 unsigned int hash; 2859 2860 MPASS(parent != NULL && child != NULL); 2861 key.from = parent->w_index; 2862 key.to = child->w_index; 2863 WITNESS_INDEX_ASSERT(key.from); 2864 WITNESS_INDEX_ASSERT(key.to); 2865 if (w_rmatrix[parent->w_index][child->w_index] 2866 & WITNESS_LOCK_ORDER_KNOWN) 2867 return (1); 2868 2869 hash = witness_hash_djb2((const char*)&key, 2870 sizeof(key)) % w_lohash.wloh_size; 2871 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 2872 data = w_lofree; 2873 if (data == NULL) 2874 return (0); 2875 w_lofree = data->wlod_next; 2876 data->wlod_next = w_lohash.wloh_array[hash]; 2877 data->wlod_key = key; 2878 w_lohash.wloh_array[hash] = data; 2879 w_lohash.wloh_count++; 2880 stack_zero(&data->wlod_stack); 2881 stack_save(&data->wlod_stack); 2882 return (1); 2883 } 2884 2885 /* Call this whenver the structure of the witness graph changes. */ 2886 static void 2887 witness_increment_graph_generation(void) 2888 { 2889 2890 if (witness_cold == 0) 2891 mtx_assert(&w_mtx, MA_OWNED); 2892 w_generation++; 2893 } 2894 2895 #ifdef KDB 2896 static void 2897 _witness_debugger(int cond, const char *msg) 2898 { 2899 2900 if (witness_trace && cond) 2901 kdb_backtrace(); 2902 if (witness_kdb && cond) 2903 kdb_enter(KDB_WHY_WITNESS, msg); 2904 } 2905 #endif 2906