xref: /freebsd/sys/kern/subr_witness.c (revision 2dd94b045e8c069c1a748d40d30d979e30e02fc9)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 2008 Isilon Systems, Inc.
5  * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com>
6  * Copyright (c) 1998 Berkeley Software Design, Inc.
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. Berkeley Software Design Inc's name may not be used to endorse or
18  *    promote products derived from this software without specific prior
19  *    written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
34  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
35  */
36 
37 /*
38  * Implementation of the `witness' lock verifier.  Originally implemented for
39  * mutexes in BSD/OS.  Extended to handle generic lock objects and lock
40  * classes in FreeBSD.
41  */
42 
43 /*
44  *	Main Entry: witness
45  *	Pronunciation: 'wit-n&s
46  *	Function: noun
47  *	Etymology: Middle English witnesse, from Old English witnes knowledge,
48  *	    testimony, witness, from 2wit
49  *	Date: before 12th century
50  *	1 : attestation of a fact or event : TESTIMONY
51  *	2 : one that gives evidence; specifically : one who testifies in
52  *	    a cause or before a judicial tribunal
53  *	3 : one asked to be present at a transaction so as to be able to
54  *	    testify to its having taken place
55  *	4 : one who has personal knowledge of something
56  *	5 a : something serving as evidence or proof : SIGN
57  *	  b : public affirmation by word or example of usually
58  *	      religious faith or conviction <the heroic witness to divine
59  *	      life -- Pilot>
60  *	6 capitalized : a member of the Jehovah's Witnesses
61  */
62 
63 /*
64  * Special rules concerning Giant and lock orders:
65  *
66  * 1) Giant must be acquired before any other mutexes.  Stated another way,
67  *    no other mutex may be held when Giant is acquired.
68  *
69  * 2) Giant must be released when blocking on a sleepable lock.
70  *
71  * This rule is less obvious, but is a result of Giant providing the same
72  * semantics as spl().  Basically, when a thread sleeps, it must release
73  * Giant.  When a thread blocks on a sleepable lock, it sleeps.  Hence rule
74  * 2).
75  *
76  * 3) Giant may be acquired before or after sleepable locks.
77  *
78  * This rule is also not quite as obvious.  Giant may be acquired after
79  * a sleepable lock because it is a non-sleepable lock and non-sleepable
80  * locks may always be acquired while holding a sleepable lock.  The second
81  * case, Giant before a sleepable lock, follows from rule 2) above.  Suppose
82  * you have two threads T1 and T2 and a sleepable lock X.  Suppose that T1
83  * acquires X and blocks on Giant.  Then suppose that T2 acquires Giant and
84  * blocks on X.  When T2 blocks on X, T2 will release Giant allowing T1 to
85  * execute.  Thus, acquiring Giant both before and after a sleepable lock
86  * will not result in a lock order reversal.
87  */
88 
89 #include <sys/cdefs.h>
90 __FBSDID("$FreeBSD$");
91 
92 #include "opt_ddb.h"
93 #include "opt_hwpmc_hooks.h"
94 #include "opt_stack.h"
95 #include "opt_witness.h"
96 
97 #include <sys/param.h>
98 #include <sys/bus.h>
99 #include <sys/kdb.h>
100 #include <sys/kernel.h>
101 #include <sys/ktr.h>
102 #include <sys/lock.h>
103 #include <sys/malloc.h>
104 #include <sys/mutex.h>
105 #include <sys/priv.h>
106 #include <sys/proc.h>
107 #include <sys/sbuf.h>
108 #include <sys/sched.h>
109 #include <sys/stack.h>
110 #include <sys/sysctl.h>
111 #include <sys/syslog.h>
112 #include <sys/systm.h>
113 
114 #ifdef DDB
115 #include <ddb/ddb.h>
116 #endif
117 
118 #include <machine/stdarg.h>
119 
120 #if !defined(DDB) && !defined(STACK)
121 #error "DDB or STACK options are required for WITNESS"
122 #endif
123 
124 /* Note that these traces do not work with KTR_ALQ. */
125 #if 0
126 #define	KTR_WITNESS	KTR_SUBSYS
127 #else
128 #define	KTR_WITNESS	0
129 #endif
130 
131 #define	LI_RECURSEMASK	0x0000ffff	/* Recursion depth of lock instance. */
132 #define	LI_EXCLUSIVE	0x00010000	/* Exclusive lock instance. */
133 #define	LI_NORELEASE	0x00020000	/* Lock not allowed to be released. */
134 #define	LI_SLEEPABLE	0x00040000	/* Lock may be held while sleeping. */
135 
136 #ifndef WITNESS_COUNT
137 #define	WITNESS_COUNT 		1536
138 #endif
139 #define	WITNESS_HASH_SIZE	251	/* Prime, gives load factor < 2 */
140 #define	WITNESS_PENDLIST	(512 + (MAXCPU * 4))
141 
142 /* Allocate 256 KB of stack data space */
143 #define	WITNESS_LO_DATA_COUNT	2048
144 
145 /* Prime, gives load factor of ~2 at full load */
146 #define	WITNESS_LO_HASH_SIZE	1021
147 
148 /*
149  * XXX: This is somewhat bogus, as we assume here that at most 2048 threads
150  * will hold LOCK_NCHILDREN locks.  We handle failure ok, and we should
151  * probably be safe for the most part, but it's still a SWAG.
152  */
153 #define	LOCK_NCHILDREN	5
154 #define	LOCK_CHILDCOUNT	2048
155 
156 #define	MAX_W_NAME	64
157 
158 #define	FULLGRAPH_SBUF_SIZE	512
159 
160 /*
161  * These flags go in the witness relationship matrix and describe the
162  * relationship between any two struct witness objects.
163  */
164 #define	WITNESS_UNRELATED        0x00    /* No lock order relation. */
165 #define	WITNESS_PARENT           0x01    /* Parent, aka direct ancestor. */
166 #define	WITNESS_ANCESTOR         0x02    /* Direct or indirect ancestor. */
167 #define	WITNESS_CHILD            0x04    /* Child, aka direct descendant. */
168 #define	WITNESS_DESCENDANT       0x08    /* Direct or indirect descendant. */
169 #define	WITNESS_ANCESTOR_MASK    (WITNESS_PARENT | WITNESS_ANCESTOR)
170 #define	WITNESS_DESCENDANT_MASK  (WITNESS_CHILD | WITNESS_DESCENDANT)
171 #define	WITNESS_RELATED_MASK						\
172 	(WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK)
173 #define	WITNESS_REVERSAL         0x10    /* A lock order reversal has been
174 					  * observed. */
175 #define	WITNESS_RESERVED1        0x20    /* Unused flag, reserved. */
176 #define	WITNESS_RESERVED2        0x40    /* Unused flag, reserved. */
177 #define	WITNESS_LOCK_ORDER_KNOWN 0x80    /* This lock order is known. */
178 
179 /* Descendant to ancestor flags */
180 #define	WITNESS_DTOA(x)	(((x) & WITNESS_RELATED_MASK) >> 2)
181 
182 /* Ancestor to descendant flags */
183 #define	WITNESS_ATOD(x)	(((x) & WITNESS_RELATED_MASK) << 2)
184 
185 #define	WITNESS_INDEX_ASSERT(i)						\
186 	MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count)
187 
188 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness");
189 
190 /*
191  * Lock instances.  A lock instance is the data associated with a lock while
192  * it is held by witness.  For example, a lock instance will hold the
193  * recursion count of a lock.  Lock instances are held in lists.  Spin locks
194  * are held in a per-cpu list while sleep locks are held in per-thread list.
195  */
196 struct lock_instance {
197 	struct lock_object	*li_lock;
198 	const char		*li_file;
199 	int			li_line;
200 	u_int			li_flags;
201 };
202 
203 /*
204  * A simple list type used to build the list of locks held by a thread
205  * or CPU.  We can't simply embed the list in struct lock_object since a
206  * lock may be held by more than one thread if it is a shared lock.  Locks
207  * are added to the head of the list, so we fill up each list entry from
208  * "the back" logically.  To ease some of the arithmetic, we actually fill
209  * in each list entry the normal way (children[0] then children[1], etc.) but
210  * when we traverse the list we read children[count-1] as the first entry
211  * down to children[0] as the final entry.
212  */
213 struct lock_list_entry {
214 	struct lock_list_entry	*ll_next;
215 	struct lock_instance	ll_children[LOCK_NCHILDREN];
216 	u_int			ll_count;
217 };
218 
219 /*
220  * The main witness structure. One of these per named lock type in the system
221  * (for example, "vnode interlock").
222  */
223 struct witness {
224 	char  			w_name[MAX_W_NAME];
225 	uint32_t 		w_index;  /* Index in the relationship matrix */
226 	struct lock_class	*w_class;
227 	STAILQ_ENTRY(witness) 	w_list;		/* List of all witnesses. */
228 	STAILQ_ENTRY(witness) 	w_typelist;	/* Witnesses of a type. */
229 	struct witness		*w_hash_next; /* Linked list in hash buckets. */
230 	const char		*w_file; /* File where last acquired */
231 	uint32_t 		w_line; /* Line where last acquired */
232 	uint32_t 		w_refcount;
233 	uint16_t 		w_num_ancestors; /* direct/indirect
234 						  * ancestor count */
235 	uint16_t 		w_num_descendants; /* direct/indirect
236 						    * descendant count */
237 	int16_t 		w_ddb_level;
238 	unsigned		w_displayed:1;
239 	unsigned		w_reversed:1;
240 };
241 
242 STAILQ_HEAD(witness_list, witness);
243 
244 /*
245  * The witness hash table. Keys are witness names (const char *), elements are
246  * witness objects (struct witness *).
247  */
248 struct witness_hash {
249 	struct witness	*wh_array[WITNESS_HASH_SIZE];
250 	uint32_t	wh_size;
251 	uint32_t	wh_count;
252 };
253 
254 /*
255  * Key type for the lock order data hash table.
256  */
257 struct witness_lock_order_key {
258 	uint16_t	from;
259 	uint16_t	to;
260 };
261 
262 struct witness_lock_order_data {
263 	struct stack			wlod_stack;
264 	struct witness_lock_order_key	wlod_key;
265 	struct witness_lock_order_data	*wlod_next;
266 };
267 
268 /*
269  * The witness lock order data hash table. Keys are witness index tuples
270  * (struct witness_lock_order_key), elements are lock order data objects
271  * (struct witness_lock_order_data).
272  */
273 struct witness_lock_order_hash {
274 	struct witness_lock_order_data	*wloh_array[WITNESS_LO_HASH_SIZE];
275 	u_int	wloh_size;
276 	u_int	wloh_count;
277 };
278 
279 struct witness_blessed {
280 	const char	*b_lock1;
281 	const char	*b_lock2;
282 };
283 
284 struct witness_pendhelp {
285 	const char		*wh_type;
286 	struct lock_object	*wh_lock;
287 };
288 
289 struct witness_order_list_entry {
290 	const char		*w_name;
291 	struct lock_class	*w_class;
292 };
293 
294 /*
295  * Returns 0 if one of the locks is a spin lock and the other is not.
296  * Returns 1 otherwise.
297  */
298 static __inline int
299 witness_lock_type_equal(struct witness *w1, struct witness *w2)
300 {
301 
302 	return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) ==
303 		(w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)));
304 }
305 
306 static __inline int
307 witness_lock_order_key_equal(const struct witness_lock_order_key *a,
308     const struct witness_lock_order_key *b)
309 {
310 
311 	return (a->from == b->from && a->to == b->to);
312 }
313 
314 static int	_isitmyx(struct witness *w1, struct witness *w2, int rmask,
315 		    const char *fname);
316 static void	adopt(struct witness *parent, struct witness *child);
317 static int	blessed(struct witness *, struct witness *);
318 static void	depart(struct witness *w);
319 static struct witness	*enroll(const char *description,
320 			    struct lock_class *lock_class);
321 static struct lock_instance	*find_instance(struct lock_list_entry *list,
322 				    const struct lock_object *lock);
323 static int	isitmychild(struct witness *parent, struct witness *child);
324 static int	isitmydescendant(struct witness *parent, struct witness *child);
325 static void	itismychild(struct witness *parent, struct witness *child);
326 static int	sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS);
327 static int	sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS);
328 static int	sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS);
329 static int	sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS);
330 static void	witness_add_fullgraph(struct sbuf *sb, struct witness *parent);
331 #ifdef DDB
332 static void	witness_ddb_compute_levels(void);
333 static void	witness_ddb_display(int(*)(const char *fmt, ...));
334 static void	witness_ddb_display_descendants(int(*)(const char *fmt, ...),
335 		    struct witness *, int indent);
336 static void	witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
337 		    struct witness_list *list);
338 static void	witness_ddb_level_descendants(struct witness *parent, int l);
339 static void	witness_ddb_list(struct thread *td);
340 #endif
341 static void	witness_debugger(int cond, const char *msg);
342 static void	witness_free(struct witness *m);
343 static struct witness	*witness_get(void);
344 static uint32_t	witness_hash_djb2(const uint8_t *key, uint32_t size);
345 static struct witness	*witness_hash_get(const char *key);
346 static void	witness_hash_put(struct witness *w);
347 static void	witness_init_hash_tables(void);
348 static void	witness_increment_graph_generation(void);
349 static void	witness_lock_list_free(struct lock_list_entry *lle);
350 static struct lock_list_entry	*witness_lock_list_get(void);
351 static int	witness_lock_order_add(struct witness *parent,
352 		    struct witness *child);
353 static int	witness_lock_order_check(struct witness *parent,
354 		    struct witness *child);
355 static struct witness_lock_order_data	*witness_lock_order_get(
356 					    struct witness *parent,
357 					    struct witness *child);
358 static void	witness_list_lock(struct lock_instance *instance,
359 		    int (*prnt)(const char *fmt, ...));
360 static int	witness_output(const char *fmt, ...) __printflike(1, 2);
361 static int	witness_voutput(const char *fmt, va_list ap) __printflike(1, 0);
362 static void	witness_setflag(struct lock_object *lock, int flag, int set);
363 
364 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL,
365     "Witness Locking");
366 
367 /*
368  * If set to 0, lock order checking is disabled.  If set to -1,
369  * witness is completely disabled.  Otherwise witness performs full
370  * lock order checking for all locks.  At runtime, lock order checking
371  * may be toggled.  However, witness cannot be reenabled once it is
372  * completely disabled.
373  */
374 static int witness_watch = 1;
375 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0,
376     sysctl_debug_witness_watch, "I", "witness is watching lock operations");
377 
378 #ifdef KDB
379 /*
380  * When KDB is enabled and witness_kdb is 1, it will cause the system
381  * to drop into kdebug() when:
382  *	- a lock hierarchy violation occurs
383  *	- locks are held when going to sleep.
384  */
385 #ifdef WITNESS_KDB
386 int	witness_kdb = 1;
387 #else
388 int	witness_kdb = 0;
389 #endif
390 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, "");
391 #endif /* KDB */
392 
393 #if defined(DDB) || defined(KDB)
394 /*
395  * When DDB or KDB is enabled and witness_trace is 1, it will cause the system
396  * to print a stack trace:
397  *	- a lock hierarchy violation occurs
398  *	- locks are held when going to sleep.
399  */
400 int	witness_trace = 1;
401 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, "");
402 #endif /* DDB || KDB */
403 
404 #ifdef WITNESS_SKIPSPIN
405 int	witness_skipspin = 1;
406 #else
407 int	witness_skipspin = 0;
408 #endif
409 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, "");
410 
411 int badstack_sbuf_size;
412 
413 int witness_count = WITNESS_COUNT;
414 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN,
415     &witness_count, 0, "");
416 
417 /*
418  * Output channel for witness messages.  By default we print to the console.
419  */
420 enum witness_channel {
421 	WITNESS_CONSOLE,
422 	WITNESS_LOG,
423 	WITNESS_NONE,
424 };
425 
426 static enum witness_channel witness_channel = WITNESS_CONSOLE;
427 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING |
428     CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A",
429     "Output channel for warnings");
430 
431 /*
432  * Call this to print out the relations between locks.
433  */
434 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD,
435     NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs");
436 
437 /*
438  * Call this to print out the witness faulty stacks.
439  */
440 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD,
441     NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks");
442 
443 static struct mtx w_mtx;
444 
445 /* w_list */
446 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free);
447 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all);
448 
449 /* w_typelist */
450 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin);
451 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep);
452 
453 /* lock list */
454 static struct lock_list_entry *w_lock_list_free = NULL;
455 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST];
456 static u_int pending_cnt;
457 
458 static int w_free_cnt, w_spin_cnt, w_sleep_cnt;
459 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, "");
460 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, "");
461 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0,
462     "");
463 
464 static struct witness *w_data;
465 static uint8_t **w_rmatrix;
466 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT];
467 static struct witness_hash w_hash;	/* The witness hash table. */
468 
469 /* The lock order data hash */
470 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT];
471 static struct witness_lock_order_data *w_lofree = NULL;
472 static struct witness_lock_order_hash w_lohash;
473 static int w_max_used_index = 0;
474 static unsigned int w_generation = 0;
475 static const char w_notrunning[] = "Witness not running\n";
476 static const char w_stillcold[] = "Witness is still cold\n";
477 #ifdef __i386__
478 static const char w_notallowed[] = "The sysctl is disabled on the arch\n";
479 #endif
480 
481 static struct witness_order_list_entry order_lists[] = {
482 	/*
483 	 * sx locks
484 	 */
485 	{ "proctree", &lock_class_sx },
486 	{ "allproc", &lock_class_sx },
487 	{ "allprison", &lock_class_sx },
488 	{ NULL, NULL },
489 	/*
490 	 * Various mutexes
491 	 */
492 	{ "Giant", &lock_class_mtx_sleep },
493 	{ "pipe mutex", &lock_class_mtx_sleep },
494 	{ "sigio lock", &lock_class_mtx_sleep },
495 	{ "process group", &lock_class_mtx_sleep },
496 #ifdef	HWPMC_HOOKS
497 	{ "pmc-sleep", &lock_class_mtx_sleep },
498 #endif
499 	{ "process lock", &lock_class_mtx_sleep },
500 	{ "session", &lock_class_mtx_sleep },
501 	{ "uidinfo hash", &lock_class_rw },
502 	{ "time lock", &lock_class_mtx_sleep },
503 	{ NULL, NULL },
504 	/*
505 	 * umtx
506 	 */
507 	{ "umtx lock", &lock_class_mtx_sleep },
508 	{ NULL, NULL },
509 	/*
510 	 * Sockets
511 	 */
512 	{ "accept", &lock_class_mtx_sleep },
513 	{ "so_snd", &lock_class_mtx_sleep },
514 	{ "so_rcv", &lock_class_mtx_sleep },
515 	{ "sellck", &lock_class_mtx_sleep },
516 	{ NULL, NULL },
517 	/*
518 	 * Routing
519 	 */
520 	{ "so_rcv", &lock_class_mtx_sleep },
521 	{ "radix node head", &lock_class_rm },
522 	{ "rtentry", &lock_class_mtx_sleep },
523 	{ "ifaddr", &lock_class_mtx_sleep },
524 	{ NULL, NULL },
525 	/*
526 	 * IPv4 multicast:
527 	 * protocol locks before interface locks, after UDP locks.
528 	 */
529 	{ "in_multi_sx", &lock_class_sx },
530 	{ "udpinp", &lock_class_rw },
531 	{ "in_multi_list_mtx", &lock_class_mtx_sleep },
532 	{ "igmp_mtx", &lock_class_mtx_sleep },
533 	{ "ifnet_rw", &lock_class_rw },
534 	{ "if_addr_lock", &lock_class_mtx_sleep },
535 	{ NULL, NULL },
536 	/*
537 	 * IPv6 multicast:
538 	 * protocol locks before interface locks, after UDP locks.
539 	 */
540 	{ "in6_multi_sx", &lock_class_sx },
541 	{ "udpinp", &lock_class_rw },
542 	{ "in6_multi_list_mtx", &lock_class_mtx_sleep },
543 	{ "mld_mtx", &lock_class_mtx_sleep },
544 	{ "ifnet_rw", &lock_class_rw },
545 	{ "if_addr_lock", &lock_class_mtx_sleep },
546 	{ NULL, NULL },
547 	/*
548 	 * UNIX Domain Sockets
549 	 */
550 	{ "unp_link_rwlock", &lock_class_rw },
551 	{ "unp_list_lock", &lock_class_mtx_sleep },
552 	{ "unp", &lock_class_mtx_sleep },
553 	{ "so_snd", &lock_class_mtx_sleep },
554 	{ NULL, NULL },
555 	/*
556 	 * UDP/IP
557 	 */
558 	{ "udp", &lock_class_mtx_sleep },
559 	{ "udpinp", &lock_class_rw },
560 	{ "so_snd", &lock_class_mtx_sleep },
561 	{ NULL, NULL },
562 	/*
563 	 * TCP/IP
564 	 */
565 	{ "tcp", &lock_class_mtx_sleep },
566 	{ "tcpinp", &lock_class_rw },
567 	{ "so_snd", &lock_class_mtx_sleep },
568 	{ NULL, NULL },
569 	/*
570 	 * BPF
571 	 */
572 	{ "bpf global lock", &lock_class_sx },
573 	{ "bpf cdev lock", &lock_class_mtx_sleep },
574 	{ NULL, NULL },
575 	/*
576 	 * NFS server
577 	 */
578 	{ "nfsd_mtx", &lock_class_mtx_sleep },
579 	{ "so_snd", &lock_class_mtx_sleep },
580 	{ NULL, NULL },
581 
582 	/*
583 	 * IEEE 802.11
584 	 */
585 	{ "802.11 com lock", &lock_class_mtx_sleep},
586 	{ NULL, NULL },
587 	/*
588 	 * Network drivers
589 	 */
590 	{ "network driver", &lock_class_mtx_sleep},
591 	{ NULL, NULL },
592 
593 	/*
594 	 * Netgraph
595 	 */
596 	{ "ng_node", &lock_class_mtx_sleep },
597 	{ "ng_worklist", &lock_class_mtx_sleep },
598 	{ NULL, NULL },
599 	/*
600 	 * CDEV
601 	 */
602 	{ "vm map (system)", &lock_class_mtx_sleep },
603 	{ "vnode interlock", &lock_class_mtx_sleep },
604 	{ "cdev", &lock_class_mtx_sleep },
605 	{ "devthrd", &lock_class_mtx_sleep },
606 	{ NULL, NULL },
607 	/*
608 	 * VM
609 	 */
610 	{ "vm map (user)", &lock_class_sx },
611 	{ "vm object", &lock_class_rw },
612 	{ "vm page", &lock_class_mtx_sleep },
613 	{ "pmap pv global", &lock_class_rw },
614 	{ "pmap", &lock_class_mtx_sleep },
615 	{ "pmap pv list", &lock_class_rw },
616 	{ "vm page free queue", &lock_class_mtx_sleep },
617 	{ "vm pagequeue", &lock_class_mtx_sleep },
618 	{ NULL, NULL },
619 	/*
620 	 * kqueue/VFS interaction
621 	 */
622 	{ "kqueue", &lock_class_mtx_sleep },
623 	{ "struct mount mtx", &lock_class_mtx_sleep },
624 	{ "vnode interlock", &lock_class_mtx_sleep },
625 	{ NULL, NULL },
626 	/*
627 	 * VFS namecache
628 	 */
629 	{ "ncvn", &lock_class_mtx_sleep },
630 	{ "ncbuc", &lock_class_rw },
631 	{ "vnode interlock", &lock_class_mtx_sleep },
632 	{ "ncneg", &lock_class_mtx_sleep },
633 	{ NULL, NULL },
634 	/*
635 	 * ZFS locking
636 	 */
637 	{ "dn->dn_mtx", &lock_class_sx },
638 	{ "dr->dt.di.dr_mtx", &lock_class_sx },
639 	{ "db->db_mtx", &lock_class_sx },
640 	{ NULL, NULL },
641 	/*
642 	 * TCP log locks
643 	 */
644 	{ "TCP ID tree", &lock_class_rw },
645 	{ "tcp log id bucket", &lock_class_mtx_sleep },
646 	{ "tcpinp", &lock_class_rw },
647 	{ "TCP log expireq", &lock_class_mtx_sleep },
648 	{ NULL, NULL },
649 	/*
650 	 * spin locks
651 	 */
652 #ifdef SMP
653 	{ "ap boot", &lock_class_mtx_spin },
654 #endif
655 	{ "rm.mutex_mtx", &lock_class_mtx_spin },
656 	{ "sio", &lock_class_mtx_spin },
657 #ifdef __i386__
658 	{ "cy", &lock_class_mtx_spin },
659 #endif
660 #ifdef __sparc64__
661 	{ "pcib_mtx", &lock_class_mtx_spin },
662 	{ "rtc_mtx", &lock_class_mtx_spin },
663 #endif
664 	{ "scc_hwmtx", &lock_class_mtx_spin },
665 	{ "uart_hwmtx", &lock_class_mtx_spin },
666 	{ "fast_taskqueue", &lock_class_mtx_spin },
667 	{ "intr table", &lock_class_mtx_spin },
668 	{ "process slock", &lock_class_mtx_spin },
669 	{ "syscons video lock", &lock_class_mtx_spin },
670 	{ "sleepq chain", &lock_class_mtx_spin },
671 	{ "rm_spinlock", &lock_class_mtx_spin },
672 	{ "turnstile chain", &lock_class_mtx_spin },
673 	{ "turnstile lock", &lock_class_mtx_spin },
674 	{ "sched lock", &lock_class_mtx_spin },
675 	{ "td_contested", &lock_class_mtx_spin },
676 	{ "callout", &lock_class_mtx_spin },
677 	{ "entropy harvest mutex", &lock_class_mtx_spin },
678 #ifdef SMP
679 	{ "smp rendezvous", &lock_class_mtx_spin },
680 #endif
681 #ifdef __powerpc__
682 	{ "tlb0", &lock_class_mtx_spin },
683 #endif
684 	{ NULL, NULL },
685 	{ "sched lock", &lock_class_mtx_spin },
686 #ifdef	HWPMC_HOOKS
687 	{ "pmc-per-proc", &lock_class_mtx_spin },
688 #endif
689 	{ NULL, NULL },
690 	/*
691 	 * leaf locks
692 	 */
693 	{ "intrcnt", &lock_class_mtx_spin },
694 	{ "icu", &lock_class_mtx_spin },
695 #if defined(SMP) && defined(__sparc64__)
696 	{ "ipi", &lock_class_mtx_spin },
697 #endif
698 #ifdef __i386__
699 	{ "allpmaps", &lock_class_mtx_spin },
700 	{ "descriptor tables", &lock_class_mtx_spin },
701 #endif
702 	{ "clk", &lock_class_mtx_spin },
703 	{ "cpuset", &lock_class_mtx_spin },
704 	{ "mprof lock", &lock_class_mtx_spin },
705 	{ "zombie lock", &lock_class_mtx_spin },
706 	{ "ALD Queue", &lock_class_mtx_spin },
707 #if defined(__i386__) || defined(__amd64__)
708 	{ "pcicfg", &lock_class_mtx_spin },
709 	{ "NDIS thread lock", &lock_class_mtx_spin },
710 #endif
711 	{ "tw_osl_io_lock", &lock_class_mtx_spin },
712 	{ "tw_osl_q_lock", &lock_class_mtx_spin },
713 	{ "tw_cl_io_lock", &lock_class_mtx_spin },
714 	{ "tw_cl_intr_lock", &lock_class_mtx_spin },
715 	{ "tw_cl_gen_lock", &lock_class_mtx_spin },
716 #ifdef	HWPMC_HOOKS
717 	{ "pmc-leaf", &lock_class_mtx_spin },
718 #endif
719 	{ "blocked lock", &lock_class_mtx_spin },
720 	{ NULL, NULL },
721 	{ NULL, NULL }
722 };
723 
724 /*
725  * Pairs of locks which have been blessed.  Witness does not complain about
726  * order problems with blessed lock pairs.  Please do not add an entry to the
727  * table without an explanatory comment.
728  */
729 static struct witness_blessed blessed_list[] = {
730 	/*
731 	 * See the comment in ufs_dirhash.c.  Basically, a vnode lock serializes
732 	 * both lock orders, so a deadlock cannot happen as a result of this
733 	 * LOR.
734 	 */
735 	{ "dirhash",	"bufwait" },
736 
737 	/*
738 	 * A UFS vnode may be locked in vget() while a buffer belonging to the
739 	 * parent directory vnode is locked.
740 	 */
741 	{ "ufs",	"bufwait" },
742 };
743 
744 /*
745  * This global is set to 0 once it becomes safe to use the witness code.
746  */
747 static int witness_cold = 1;
748 
749 /*
750  * This global is set to 1 once the static lock orders have been enrolled
751  * so that a warning can be issued for any spin locks enrolled later.
752  */
753 static int witness_spin_warn = 0;
754 
755 /* Trim useless garbage from filenames. */
756 static const char *
757 fixup_filename(const char *file)
758 {
759 
760 	if (file == NULL)
761 		return (NULL);
762 	while (strncmp(file, "../", 3) == 0)
763 		file += 3;
764 	return (file);
765 }
766 
767 /*
768  * Calculate the size of early witness structures.
769  */
770 int
771 witness_startup_count(void)
772 {
773 	int sz;
774 
775 	sz = sizeof(struct witness) * witness_count;
776 	sz += sizeof(*w_rmatrix) * (witness_count + 1);
777 	sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) *
778 	    (witness_count + 1);
779 
780 	return (sz);
781 }
782 
783 /*
784  * The WITNESS-enabled diagnostic code.  Note that the witness code does
785  * assume that the early boot is single-threaded at least until after this
786  * routine is completed.
787  */
788 void
789 witness_startup(void *mem)
790 {
791 	struct lock_object *lock;
792 	struct witness_order_list_entry *order;
793 	struct witness *w, *w1;
794 	uintptr_t p;
795 	int i;
796 
797 	p = (uintptr_t)mem;
798 	w_data = (void *)p;
799 	p += sizeof(struct witness) * witness_count;
800 
801 	w_rmatrix = (void *)p;
802 	p += sizeof(*w_rmatrix) * (witness_count + 1);
803 
804 	for (i = 0; i < witness_count + 1; i++) {
805 		w_rmatrix[i] = (void *)p;
806 		p += sizeof(*w_rmatrix[i]) * (witness_count + 1);
807 	}
808 	badstack_sbuf_size = witness_count * 256;
809 
810 	/*
811 	 * We have to release Giant before initializing its witness
812 	 * structure so that WITNESS doesn't get confused.
813 	 */
814 	mtx_unlock(&Giant);
815 	mtx_assert(&Giant, MA_NOTOWNED);
816 
817 	CTR1(KTR_WITNESS, "%s: initializing witness", __func__);
818 	mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET |
819 	    MTX_NOWITNESS | MTX_NOPROFILE);
820 	for (i = witness_count - 1; i >= 0; i--) {
821 		w = &w_data[i];
822 		memset(w, 0, sizeof(*w));
823 		w_data[i].w_index = i;	/* Witness index never changes. */
824 		witness_free(w);
825 	}
826 	KASSERT(STAILQ_FIRST(&w_free)->w_index == 0,
827 	    ("%s: Invalid list of free witness objects", __func__));
828 
829 	/* Witness with index 0 is not used to aid in debugging. */
830 	STAILQ_REMOVE_HEAD(&w_free, w_list);
831 	w_free_cnt--;
832 
833 	for (i = 0; i < witness_count; i++) {
834 		memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) *
835 		    (witness_count + 1));
836 	}
837 
838 	for (i = 0; i < LOCK_CHILDCOUNT; i++)
839 		witness_lock_list_free(&w_locklistdata[i]);
840 	witness_init_hash_tables();
841 
842 	/* First add in all the specified order lists. */
843 	for (order = order_lists; order->w_name != NULL; order++) {
844 		w = enroll(order->w_name, order->w_class);
845 		if (w == NULL)
846 			continue;
847 		w->w_file = "order list";
848 		for (order++; order->w_name != NULL; order++) {
849 			w1 = enroll(order->w_name, order->w_class);
850 			if (w1 == NULL)
851 				continue;
852 			w1->w_file = "order list";
853 			itismychild(w, w1);
854 			w = w1;
855 		}
856 	}
857 	witness_spin_warn = 1;
858 
859 	/* Iterate through all locks and add them to witness. */
860 	for (i = 0; pending_locks[i].wh_lock != NULL; i++) {
861 		lock = pending_locks[i].wh_lock;
862 		KASSERT(lock->lo_flags & LO_WITNESS,
863 		    ("%s: lock %s is on pending list but not LO_WITNESS",
864 		    __func__, lock->lo_name));
865 		lock->lo_witness = enroll(pending_locks[i].wh_type,
866 		    LOCK_CLASS(lock));
867 	}
868 
869 	/* Mark the witness code as being ready for use. */
870 	witness_cold = 0;
871 
872 	mtx_lock(&Giant);
873 }
874 
875 void
876 witness_init(struct lock_object *lock, const char *type)
877 {
878 	struct lock_class *class;
879 
880 	/* Various sanity checks. */
881 	class = LOCK_CLASS(lock);
882 	if ((lock->lo_flags & LO_RECURSABLE) != 0 &&
883 	    (class->lc_flags & LC_RECURSABLE) == 0)
884 		kassert_panic("%s: lock (%s) %s can not be recursable",
885 		    __func__, class->lc_name, lock->lo_name);
886 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
887 	    (class->lc_flags & LC_SLEEPABLE) == 0)
888 		kassert_panic("%s: lock (%s) %s can not be sleepable",
889 		    __func__, class->lc_name, lock->lo_name);
890 	if ((lock->lo_flags & LO_UPGRADABLE) != 0 &&
891 	    (class->lc_flags & LC_UPGRADABLE) == 0)
892 		kassert_panic("%s: lock (%s) %s can not be upgradable",
893 		    __func__, class->lc_name, lock->lo_name);
894 
895 	/*
896 	 * If we shouldn't watch this lock, then just clear lo_witness.
897 	 * Otherwise, if witness_cold is set, then it is too early to
898 	 * enroll this lock, so defer it to witness_initialize() by adding
899 	 * it to the pending_locks list.  If it is not too early, then enroll
900 	 * the lock now.
901 	 */
902 	if (witness_watch < 1 || KERNEL_PANICKED() ||
903 	    (lock->lo_flags & LO_WITNESS) == 0)
904 		lock->lo_witness = NULL;
905 	else if (witness_cold) {
906 		pending_locks[pending_cnt].wh_lock = lock;
907 		pending_locks[pending_cnt++].wh_type = type;
908 		if (pending_cnt > WITNESS_PENDLIST)
909 			panic("%s: pending locks list is too small, "
910 			    "increase WITNESS_PENDLIST\n",
911 			    __func__);
912 	} else
913 		lock->lo_witness = enroll(type, class);
914 }
915 
916 void
917 witness_destroy(struct lock_object *lock)
918 {
919 	struct lock_class *class;
920 	struct witness *w;
921 
922 	class = LOCK_CLASS(lock);
923 
924 	if (witness_cold)
925 		panic("lock (%s) %s destroyed while witness_cold",
926 		    class->lc_name, lock->lo_name);
927 
928 	/* XXX: need to verify that no one holds the lock */
929 	if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL)
930 		return;
931 	w = lock->lo_witness;
932 
933 	mtx_lock_spin(&w_mtx);
934 	MPASS(w->w_refcount > 0);
935 	w->w_refcount--;
936 
937 	if (w->w_refcount == 0)
938 		depart(w);
939 	mtx_unlock_spin(&w_mtx);
940 }
941 
942 #ifdef DDB
943 static void
944 witness_ddb_compute_levels(void)
945 {
946 	struct witness *w;
947 
948 	/*
949 	 * First clear all levels.
950 	 */
951 	STAILQ_FOREACH(w, &w_all, w_list)
952 		w->w_ddb_level = -1;
953 
954 	/*
955 	 * Look for locks with no parents and level all their descendants.
956 	 */
957 	STAILQ_FOREACH(w, &w_all, w_list) {
958 
959 		/* If the witness has ancestors (is not a root), skip it. */
960 		if (w->w_num_ancestors > 0)
961 			continue;
962 		witness_ddb_level_descendants(w, 0);
963 	}
964 }
965 
966 static void
967 witness_ddb_level_descendants(struct witness *w, int l)
968 {
969 	int i;
970 
971 	if (w->w_ddb_level >= l)
972 		return;
973 
974 	w->w_ddb_level = l;
975 	l++;
976 
977 	for (i = 1; i <= w_max_used_index; i++) {
978 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
979 			witness_ddb_level_descendants(&w_data[i], l);
980 	}
981 }
982 
983 static void
984 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...),
985     struct witness *w, int indent)
986 {
987 	int i;
988 
989  	for (i = 0; i < indent; i++)
990  		prnt(" ");
991 	prnt("%s (type: %s, depth: %d, active refs: %d)",
992 	     w->w_name, w->w_class->lc_name,
993 	     w->w_ddb_level, w->w_refcount);
994  	if (w->w_displayed) {
995  		prnt(" -- (already displayed)\n");
996  		return;
997  	}
998  	w->w_displayed = 1;
999 	if (w->w_file != NULL && w->w_line != 0)
1000 		prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file),
1001 		    w->w_line);
1002 	else
1003 		prnt(" -- never acquired\n");
1004 	indent++;
1005 	WITNESS_INDEX_ASSERT(w->w_index);
1006 	for (i = 1; i <= w_max_used_index; i++) {
1007 		if (db_pager_quit)
1008 			return;
1009 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT)
1010 			witness_ddb_display_descendants(prnt, &w_data[i],
1011 			    indent);
1012 	}
1013 }
1014 
1015 static void
1016 witness_ddb_display_list(int(*prnt)(const char *fmt, ...),
1017     struct witness_list *list)
1018 {
1019 	struct witness *w;
1020 
1021 	STAILQ_FOREACH(w, list, w_typelist) {
1022 		if (w->w_file == NULL || w->w_ddb_level > 0)
1023 			continue;
1024 
1025 		/* This lock has no anscestors - display its descendants. */
1026 		witness_ddb_display_descendants(prnt, w, 0);
1027 		if (db_pager_quit)
1028 			return;
1029 	}
1030 }
1031 
1032 static void
1033 witness_ddb_display(int(*prnt)(const char *fmt, ...))
1034 {
1035 	struct witness *w;
1036 
1037 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1038 	witness_ddb_compute_levels();
1039 
1040 	/* Clear all the displayed flags. */
1041 	STAILQ_FOREACH(w, &w_all, w_list)
1042 		w->w_displayed = 0;
1043 
1044 	/*
1045 	 * First, handle sleep locks which have been acquired at least
1046 	 * once.
1047 	 */
1048 	prnt("Sleep locks:\n");
1049 	witness_ddb_display_list(prnt, &w_sleep);
1050 	if (db_pager_quit)
1051 		return;
1052 
1053 	/*
1054 	 * Now do spin locks which have been acquired at least once.
1055 	 */
1056 	prnt("\nSpin locks:\n");
1057 	witness_ddb_display_list(prnt, &w_spin);
1058 	if (db_pager_quit)
1059 		return;
1060 
1061 	/*
1062 	 * Finally, any locks which have not been acquired yet.
1063 	 */
1064 	prnt("\nLocks which were never acquired:\n");
1065 	STAILQ_FOREACH(w, &w_all, w_list) {
1066 		if (w->w_file != NULL || w->w_refcount == 0)
1067 			continue;
1068 		prnt("%s (type: %s, depth: %d)\n", w->w_name,
1069 		    w->w_class->lc_name, w->w_ddb_level);
1070 		if (db_pager_quit)
1071 			return;
1072 	}
1073 }
1074 #endif /* DDB */
1075 
1076 int
1077 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2)
1078 {
1079 
1080 	if (witness_watch == -1 || KERNEL_PANICKED())
1081 		return (0);
1082 
1083 	/* Require locks that witness knows about. */
1084 	if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL ||
1085 	    lock2->lo_witness == NULL)
1086 		return (EINVAL);
1087 
1088 	mtx_assert(&w_mtx, MA_NOTOWNED);
1089 	mtx_lock_spin(&w_mtx);
1090 
1091 	/*
1092 	 * If we already have either an explicit or implied lock order that
1093 	 * is the other way around, then return an error.
1094 	 */
1095 	if (witness_watch &&
1096 	    isitmydescendant(lock2->lo_witness, lock1->lo_witness)) {
1097 		mtx_unlock_spin(&w_mtx);
1098 		return (EDOOFUS);
1099 	}
1100 
1101 	/* Try to add the new order. */
1102 	CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1103 	    lock2->lo_witness->w_name, lock1->lo_witness->w_name);
1104 	itismychild(lock1->lo_witness, lock2->lo_witness);
1105 	mtx_unlock_spin(&w_mtx);
1106 	return (0);
1107 }
1108 
1109 void
1110 witness_checkorder(struct lock_object *lock, int flags, const char *file,
1111     int line, struct lock_object *interlock)
1112 {
1113 	struct lock_list_entry *lock_list, *lle;
1114 	struct lock_instance *lock1, *lock2, *plock;
1115 	struct lock_class *class, *iclass;
1116 	struct witness *w, *w1;
1117 	struct thread *td;
1118 	int i, j;
1119 
1120 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL ||
1121 	    KERNEL_PANICKED())
1122 		return;
1123 
1124 	w = lock->lo_witness;
1125 	class = LOCK_CLASS(lock);
1126 	td = curthread;
1127 
1128 	if (class->lc_flags & LC_SLEEPLOCK) {
1129 
1130 		/*
1131 		 * Since spin locks include a critical section, this check
1132 		 * implicitly enforces a lock order of all sleep locks before
1133 		 * all spin locks.
1134 		 */
1135 		if (td->td_critnest != 0 && !kdb_active)
1136 			kassert_panic("acquiring blockable sleep lock with "
1137 			    "spinlock or critical section held (%s) %s @ %s:%d",
1138 			    class->lc_name, lock->lo_name,
1139 			    fixup_filename(file), line);
1140 
1141 		/*
1142 		 * If this is the first lock acquired then just return as
1143 		 * no order checking is needed.
1144 		 */
1145 		lock_list = td->td_sleeplocks;
1146 		if (lock_list == NULL || lock_list->ll_count == 0)
1147 			return;
1148 	} else {
1149 
1150 		/*
1151 		 * If this is the first lock, just return as no order
1152 		 * checking is needed.  Avoid problems with thread
1153 		 * migration pinning the thread while checking if
1154 		 * spinlocks are held.  If at least one spinlock is held
1155 		 * the thread is in a safe path and it is allowed to
1156 		 * unpin it.
1157 		 */
1158 		sched_pin();
1159 		lock_list = PCPU_GET(spinlocks);
1160 		if (lock_list == NULL || lock_list->ll_count == 0) {
1161 			sched_unpin();
1162 			return;
1163 		}
1164 		sched_unpin();
1165 	}
1166 
1167 	/*
1168 	 * Check to see if we are recursing on a lock we already own.  If
1169 	 * so, make sure that we don't mismatch exclusive and shared lock
1170 	 * acquires.
1171 	 */
1172 	lock1 = find_instance(lock_list, lock);
1173 	if (lock1 != NULL) {
1174 		if ((lock1->li_flags & LI_EXCLUSIVE) != 0 &&
1175 		    (flags & LOP_EXCLUSIVE) == 0) {
1176 			witness_output("shared lock of (%s) %s @ %s:%d\n",
1177 			    class->lc_name, lock->lo_name,
1178 			    fixup_filename(file), line);
1179 			witness_output("while exclusively locked from %s:%d\n",
1180 			    fixup_filename(lock1->li_file), lock1->li_line);
1181 			kassert_panic("excl->share");
1182 		}
1183 		if ((lock1->li_flags & LI_EXCLUSIVE) == 0 &&
1184 		    (flags & LOP_EXCLUSIVE) != 0) {
1185 			witness_output("exclusive lock of (%s) %s @ %s:%d\n",
1186 			    class->lc_name, lock->lo_name,
1187 			    fixup_filename(file), line);
1188 			witness_output("while share locked from %s:%d\n",
1189 			    fixup_filename(lock1->li_file), lock1->li_line);
1190 			kassert_panic("share->excl");
1191 		}
1192 		return;
1193 	}
1194 
1195 	/* Warn if the interlock is not locked exactly once. */
1196 	if (interlock != NULL) {
1197 		iclass = LOCK_CLASS(interlock);
1198 		lock1 = find_instance(lock_list, interlock);
1199 		if (lock1 == NULL)
1200 			kassert_panic("interlock (%s) %s not locked @ %s:%d",
1201 			    iclass->lc_name, interlock->lo_name,
1202 			    fixup_filename(file), line);
1203 		else if ((lock1->li_flags & LI_RECURSEMASK) != 0)
1204 			kassert_panic("interlock (%s) %s recursed @ %s:%d",
1205 			    iclass->lc_name, interlock->lo_name,
1206 			    fixup_filename(file), line);
1207 	}
1208 
1209 	/*
1210 	 * Find the previously acquired lock, but ignore interlocks.
1211 	 */
1212 	plock = &lock_list->ll_children[lock_list->ll_count - 1];
1213 	if (interlock != NULL && plock->li_lock == interlock) {
1214 		if (lock_list->ll_count > 1)
1215 			plock =
1216 			    &lock_list->ll_children[lock_list->ll_count - 2];
1217 		else {
1218 			lle = lock_list->ll_next;
1219 
1220 			/*
1221 			 * The interlock is the only lock we hold, so
1222 			 * simply return.
1223 			 */
1224 			if (lle == NULL)
1225 				return;
1226 			plock = &lle->ll_children[lle->ll_count - 1];
1227 		}
1228 	}
1229 
1230 	/*
1231 	 * Try to perform most checks without a lock.  If this succeeds we
1232 	 * can skip acquiring the lock and return success.  Otherwise we redo
1233 	 * the check with the lock held to handle races with concurrent updates.
1234 	 */
1235 	w1 = plock->li_lock->lo_witness;
1236 	if (witness_lock_order_check(w1, w))
1237 		return;
1238 
1239 	mtx_lock_spin(&w_mtx);
1240 	if (witness_lock_order_check(w1, w)) {
1241 		mtx_unlock_spin(&w_mtx);
1242 		return;
1243 	}
1244 	witness_lock_order_add(w1, w);
1245 
1246 	/*
1247 	 * Check for duplicate locks of the same type.  Note that we only
1248 	 * have to check for this on the last lock we just acquired.  Any
1249 	 * other cases will be caught as lock order violations.
1250 	 */
1251 	if (w1 == w) {
1252 		i = w->w_index;
1253 		if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) &&
1254 		    !(w_rmatrix[i][i] & WITNESS_REVERSAL)) {
1255 		    w_rmatrix[i][i] |= WITNESS_REVERSAL;
1256 			w->w_reversed = 1;
1257 			mtx_unlock_spin(&w_mtx);
1258 			witness_output(
1259 			    "acquiring duplicate lock of same type: \"%s\"\n",
1260 			    w->w_name);
1261 			witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name,
1262 			    fixup_filename(plock->li_file), plock->li_line);
1263 			witness_output(" 2nd %s @ %s:%d\n", lock->lo_name,
1264 			    fixup_filename(file), line);
1265 			witness_debugger(1, __func__);
1266 		} else
1267 			mtx_unlock_spin(&w_mtx);
1268 		return;
1269 	}
1270 	mtx_assert(&w_mtx, MA_OWNED);
1271 
1272 	/*
1273 	 * If we know that the lock we are acquiring comes after
1274 	 * the lock we most recently acquired in the lock order tree,
1275 	 * then there is no need for any further checks.
1276 	 */
1277 	if (isitmychild(w1, w))
1278 		goto out;
1279 
1280 	for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) {
1281 		for (i = lle->ll_count - 1; i >= 0; i--, j++) {
1282 
1283 			MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN);
1284 			lock1 = &lle->ll_children[i];
1285 
1286 			/*
1287 			 * Ignore the interlock.
1288 			 */
1289 			if (interlock == lock1->li_lock)
1290 				continue;
1291 
1292 			/*
1293 			 * If this lock doesn't undergo witness checking,
1294 			 * then skip it.
1295 			 */
1296 			w1 = lock1->li_lock->lo_witness;
1297 			if (w1 == NULL) {
1298 				KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0,
1299 				    ("lock missing witness structure"));
1300 				continue;
1301 			}
1302 
1303 			/*
1304 			 * If we are locking Giant and this is a sleepable
1305 			 * lock, then skip it.
1306 			 */
1307 			if ((lock1->li_flags & LI_SLEEPABLE) != 0 &&
1308 			    lock == &Giant.lock_object)
1309 				continue;
1310 
1311 			/*
1312 			 * If we are locking a sleepable lock and this lock
1313 			 * is Giant, then skip it.
1314 			 */
1315 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1316 			    (flags & LOP_NOSLEEP) == 0 &&
1317 			    lock1->li_lock == &Giant.lock_object)
1318 				continue;
1319 
1320 			/*
1321 			 * If we are locking a sleepable lock and this lock
1322 			 * isn't sleepable, we want to treat it as a lock
1323 			 * order violation to enfore a general lock order of
1324 			 * sleepable locks before non-sleepable locks.
1325 			 */
1326 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1327 			    (flags & LOP_NOSLEEP) == 0 &&
1328 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1329 				goto reversal;
1330 
1331 			/*
1332 			 * If we are locking Giant and this is a non-sleepable
1333 			 * lock, then treat it as a reversal.
1334 			 */
1335 			if ((lock1->li_flags & LI_SLEEPABLE) == 0 &&
1336 			    lock == &Giant.lock_object)
1337 				goto reversal;
1338 
1339 			/*
1340 			 * Check the lock order hierarchy for a reveresal.
1341 			 */
1342 			if (!isitmydescendant(w, w1))
1343 				continue;
1344 		reversal:
1345 
1346 			/*
1347 			 * We have a lock order violation, check to see if it
1348 			 * is allowed or has already been yelled about.
1349 			 */
1350 
1351 			/* Bail if this violation is known */
1352 			if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL)
1353 				goto out;
1354 
1355 			/* Record this as a violation */
1356 			w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL;
1357 			w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL;
1358 			w->w_reversed = w1->w_reversed = 1;
1359 			witness_increment_graph_generation();
1360 
1361 			/*
1362 			 * If the lock order is blessed, bail before logging
1363 			 * anything.  We don't look for other lock order
1364 			 * violations though, which may be a bug.
1365 			 */
1366 			if (blessed(w, w1))
1367 				goto out;
1368 			mtx_unlock_spin(&w_mtx);
1369 
1370 #ifdef WITNESS_NO_VNODE
1371 			/*
1372 			 * There are known LORs between VNODE locks. They are
1373 			 * not an indication of a bug. VNODE locks are flagged
1374 			 * as such (LO_IS_VNODE) and we don't yell if the LOR
1375 			 * is between 2 VNODE locks.
1376 			 */
1377 			if ((lock->lo_flags & LO_IS_VNODE) != 0 &&
1378 			    (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0)
1379 				return;
1380 #endif
1381 
1382 			/*
1383 			 * Ok, yell about it.
1384 			 */
1385 			if ((lock->lo_flags & LO_SLEEPABLE) != 0 &&
1386 			    (flags & LOP_NOSLEEP) == 0 &&
1387 			    (lock1->li_flags & LI_SLEEPABLE) == 0)
1388 				witness_output(
1389 		"lock order reversal: (sleepable after non-sleepable)\n");
1390 			else if ((lock1->li_flags & LI_SLEEPABLE) == 0
1391 			    && lock == &Giant.lock_object)
1392 				witness_output(
1393 		"lock order reversal: (Giant after non-sleepable)\n");
1394 			else
1395 				witness_output("lock order reversal:\n");
1396 
1397 			/*
1398 			 * Try to locate an earlier lock with
1399 			 * witness w in our list.
1400 			 */
1401 			do {
1402 				lock2 = &lle->ll_children[i];
1403 				MPASS(lock2->li_lock != NULL);
1404 				if (lock2->li_lock->lo_witness == w)
1405 					break;
1406 				if (i == 0 && lle->ll_next != NULL) {
1407 					lle = lle->ll_next;
1408 					i = lle->ll_count - 1;
1409 					MPASS(i >= 0 && i < LOCK_NCHILDREN);
1410 				} else
1411 					i--;
1412 			} while (i >= 0);
1413 			if (i < 0) {
1414 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1415 				    lock1->li_lock, lock1->li_lock->lo_name,
1416 				    w1->w_name, fixup_filename(lock1->li_file),
1417 				    lock1->li_line);
1418 				witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock,
1419 				    lock->lo_name, w->w_name,
1420 				    fixup_filename(file), line);
1421 			} else {
1422 				witness_output(" 1st %p %s (%s) @ %s:%d\n",
1423 				    lock2->li_lock, lock2->li_lock->lo_name,
1424 				    lock2->li_lock->lo_witness->w_name,
1425 				    fixup_filename(lock2->li_file),
1426 				    lock2->li_line);
1427 				witness_output(" 2nd %p %s (%s) @ %s:%d\n",
1428 				    lock1->li_lock, lock1->li_lock->lo_name,
1429 				    w1->w_name, fixup_filename(lock1->li_file),
1430 				    lock1->li_line);
1431 				witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock,
1432 				    lock->lo_name, w->w_name,
1433 				    fixup_filename(file), line);
1434 			}
1435 			witness_debugger(1, __func__);
1436 			return;
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * If requested, build a new lock order.  However, don't build a new
1442 	 * relationship between a sleepable lock and Giant if it is in the
1443 	 * wrong direction.  The correct lock order is that sleepable locks
1444 	 * always come before Giant.
1445 	 */
1446 	if (flags & LOP_NEWORDER &&
1447 	    !(plock->li_lock == &Giant.lock_object &&
1448 	    (lock->lo_flags & LO_SLEEPABLE) != 0 &&
1449 	    (flags & LOP_NOSLEEP) == 0)) {
1450 		CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__,
1451 		    w->w_name, plock->li_lock->lo_witness->w_name);
1452 		itismychild(plock->li_lock->lo_witness, w);
1453 	}
1454 out:
1455 	mtx_unlock_spin(&w_mtx);
1456 }
1457 
1458 void
1459 witness_lock(struct lock_object *lock, int flags, const char *file, int line)
1460 {
1461 	struct lock_list_entry **lock_list, *lle;
1462 	struct lock_instance *instance;
1463 	struct witness *w;
1464 	struct thread *td;
1465 
1466 	if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL ||
1467 	    KERNEL_PANICKED())
1468 		return;
1469 	w = lock->lo_witness;
1470 	td = curthread;
1471 
1472 	/* Determine lock list for this lock. */
1473 	if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK)
1474 		lock_list = &td->td_sleeplocks;
1475 	else
1476 		lock_list = PCPU_PTR(spinlocks);
1477 
1478 	/* Check to see if we are recursing on a lock we already own. */
1479 	instance = find_instance(*lock_list, lock);
1480 	if (instance != NULL) {
1481 		instance->li_flags++;
1482 		CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__,
1483 		    td->td_proc->p_pid, lock->lo_name,
1484 		    instance->li_flags & LI_RECURSEMASK);
1485 		instance->li_file = file;
1486 		instance->li_line = line;
1487 		return;
1488 	}
1489 
1490 	/* Update per-witness last file and line acquire. */
1491 	w->w_file = file;
1492 	w->w_line = line;
1493 
1494 	/* Find the next open lock instance in the list and fill it. */
1495 	lle = *lock_list;
1496 	if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) {
1497 		lle = witness_lock_list_get();
1498 		if (lle == NULL)
1499 			return;
1500 		lle->ll_next = *lock_list;
1501 		CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__,
1502 		    td->td_proc->p_pid, lle);
1503 		*lock_list = lle;
1504 	}
1505 	instance = &lle->ll_children[lle->ll_count++];
1506 	instance->li_lock = lock;
1507 	instance->li_line = line;
1508 	instance->li_file = file;
1509 	instance->li_flags = 0;
1510 	if ((flags & LOP_EXCLUSIVE) != 0)
1511 		instance->li_flags |= LI_EXCLUSIVE;
1512 	if ((lock->lo_flags & LO_SLEEPABLE) != 0 && (flags & LOP_NOSLEEP) == 0)
1513 		instance->li_flags |= LI_SLEEPABLE;
1514 	CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__,
1515 	    td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1);
1516 }
1517 
1518 void
1519 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line)
1520 {
1521 	struct lock_instance *instance;
1522 	struct lock_class *class;
1523 
1524 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1525 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1526 		return;
1527 	class = LOCK_CLASS(lock);
1528 	if (witness_watch) {
1529 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1530 			kassert_panic(
1531 			    "upgrade of non-upgradable lock (%s) %s @ %s:%d",
1532 			    class->lc_name, lock->lo_name,
1533 			    fixup_filename(file), line);
1534 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1535 			kassert_panic(
1536 			    "upgrade of non-sleep lock (%s) %s @ %s:%d",
1537 			    class->lc_name, lock->lo_name,
1538 			    fixup_filename(file), line);
1539 	}
1540 	instance = find_instance(curthread->td_sleeplocks, lock);
1541 	if (instance == NULL) {
1542 		kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d",
1543 		    class->lc_name, lock->lo_name,
1544 		    fixup_filename(file), line);
1545 		return;
1546 	}
1547 	if (witness_watch) {
1548 		if ((instance->li_flags & LI_EXCLUSIVE) != 0)
1549 			kassert_panic(
1550 			    "upgrade of exclusive lock (%s) %s @ %s:%d",
1551 			    class->lc_name, lock->lo_name,
1552 			    fixup_filename(file), line);
1553 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1554 			kassert_panic(
1555 			    "upgrade of recursed lock (%s) %s r=%d @ %s:%d",
1556 			    class->lc_name, lock->lo_name,
1557 			    instance->li_flags & LI_RECURSEMASK,
1558 			    fixup_filename(file), line);
1559 	}
1560 	instance->li_flags |= LI_EXCLUSIVE;
1561 }
1562 
1563 void
1564 witness_downgrade(struct lock_object *lock, int flags, const char *file,
1565     int line)
1566 {
1567 	struct lock_instance *instance;
1568 	struct lock_class *class;
1569 
1570 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
1571 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
1572 		return;
1573 	class = LOCK_CLASS(lock);
1574 	if (witness_watch) {
1575 		if ((lock->lo_flags & LO_UPGRADABLE) == 0)
1576 			kassert_panic(
1577 			    "downgrade of non-upgradable lock (%s) %s @ %s:%d",
1578 			    class->lc_name, lock->lo_name,
1579 			    fixup_filename(file), line);
1580 		if ((class->lc_flags & LC_SLEEPLOCK) == 0)
1581 			kassert_panic(
1582 			    "downgrade of non-sleep lock (%s) %s @ %s:%d",
1583 			    class->lc_name, lock->lo_name,
1584 			    fixup_filename(file), line);
1585 	}
1586 	instance = find_instance(curthread->td_sleeplocks, lock);
1587 	if (instance == NULL) {
1588 		kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d",
1589 		    class->lc_name, lock->lo_name,
1590 		    fixup_filename(file), line);
1591 		return;
1592 	}
1593 	if (witness_watch) {
1594 		if ((instance->li_flags & LI_EXCLUSIVE) == 0)
1595 			kassert_panic(
1596 			    "downgrade of shared lock (%s) %s @ %s:%d",
1597 			    class->lc_name, lock->lo_name,
1598 			    fixup_filename(file), line);
1599 		if ((instance->li_flags & LI_RECURSEMASK) != 0)
1600 			kassert_panic(
1601 			    "downgrade of recursed lock (%s) %s r=%d @ %s:%d",
1602 			    class->lc_name, lock->lo_name,
1603 			    instance->li_flags & LI_RECURSEMASK,
1604 			    fixup_filename(file), line);
1605 	}
1606 	instance->li_flags &= ~LI_EXCLUSIVE;
1607 }
1608 
1609 void
1610 witness_unlock(struct lock_object *lock, int flags, const char *file, int line)
1611 {
1612 	struct lock_list_entry **lock_list, *lle;
1613 	struct lock_instance *instance;
1614 	struct lock_class *class;
1615 	struct thread *td;
1616 	register_t s;
1617 	int i, j;
1618 
1619 	if (witness_cold || lock->lo_witness == NULL || KERNEL_PANICKED())
1620 		return;
1621 	td = curthread;
1622 	class = LOCK_CLASS(lock);
1623 
1624 	/* Find lock instance associated with this lock. */
1625 	if (class->lc_flags & LC_SLEEPLOCK)
1626 		lock_list = &td->td_sleeplocks;
1627 	else
1628 		lock_list = PCPU_PTR(spinlocks);
1629 	lle = *lock_list;
1630 	for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next)
1631 		for (i = 0; i < (*lock_list)->ll_count; i++) {
1632 			instance = &(*lock_list)->ll_children[i];
1633 			if (instance->li_lock == lock)
1634 				goto found;
1635 		}
1636 
1637 	/*
1638 	 * When disabling WITNESS through witness_watch we could end up in
1639 	 * having registered locks in the td_sleeplocks queue.
1640 	 * We have to make sure we flush these queues, so just search for
1641 	 * eventual register locks and remove them.
1642 	 */
1643 	if (witness_watch > 0) {
1644 		kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name,
1645 		    lock->lo_name, fixup_filename(file), line);
1646 		return;
1647 	} else {
1648 		return;
1649 	}
1650 found:
1651 
1652 	/* First, check for shared/exclusive mismatches. */
1653 	if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 &&
1654 	    (flags & LOP_EXCLUSIVE) == 0) {
1655 		witness_output("shared unlock of (%s) %s @ %s:%d\n",
1656 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1657 		witness_output("while exclusively locked from %s:%d\n",
1658 		    fixup_filename(instance->li_file), instance->li_line);
1659 		kassert_panic("excl->ushare");
1660 	}
1661 	if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 &&
1662 	    (flags & LOP_EXCLUSIVE) != 0) {
1663 		witness_output("exclusive unlock of (%s) %s @ %s:%d\n",
1664 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1665 		witness_output("while share locked from %s:%d\n",
1666 		    fixup_filename(instance->li_file),
1667 		    instance->li_line);
1668 		kassert_panic("share->uexcl");
1669 	}
1670 	/* If we are recursed, unrecurse. */
1671 	if ((instance->li_flags & LI_RECURSEMASK) > 0) {
1672 		CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__,
1673 		    td->td_proc->p_pid, instance->li_lock->lo_name,
1674 		    instance->li_flags);
1675 		instance->li_flags--;
1676 		return;
1677 	}
1678 	/* The lock is now being dropped, check for NORELEASE flag */
1679 	if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) {
1680 		witness_output("forbidden unlock of (%s) %s @ %s:%d\n",
1681 		    class->lc_name, lock->lo_name, fixup_filename(file), line);
1682 		kassert_panic("lock marked norelease");
1683 	}
1684 
1685 	/* Otherwise, remove this item from the list. */
1686 	s = intr_disable();
1687 	CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__,
1688 	    td->td_proc->p_pid, instance->li_lock->lo_name,
1689 	    (*lock_list)->ll_count - 1);
1690 	for (j = i; j < (*lock_list)->ll_count - 1; j++)
1691 		(*lock_list)->ll_children[j] =
1692 		    (*lock_list)->ll_children[j + 1];
1693 	(*lock_list)->ll_count--;
1694 	intr_restore(s);
1695 
1696 	/*
1697 	 * In order to reduce contention on w_mtx, we want to keep always an
1698 	 * head object into lists so that frequent allocation from the
1699 	 * free witness pool (and subsequent locking) is avoided.
1700 	 * In order to maintain the current code simple, when the head
1701 	 * object is totally unloaded it means also that we do not have
1702 	 * further objects in the list, so the list ownership needs to be
1703 	 * hand over to another object if the current head needs to be freed.
1704 	 */
1705 	if ((*lock_list)->ll_count == 0) {
1706 		if (*lock_list == lle) {
1707 			if (lle->ll_next == NULL)
1708 				return;
1709 		} else
1710 			lle = *lock_list;
1711 		*lock_list = lle->ll_next;
1712 		CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__,
1713 		    td->td_proc->p_pid, lle);
1714 		witness_lock_list_free(lle);
1715 	}
1716 }
1717 
1718 void
1719 witness_thread_exit(struct thread *td)
1720 {
1721 	struct lock_list_entry *lle;
1722 	int i, n;
1723 
1724 	lle = td->td_sleeplocks;
1725 	if (lle == NULL || KERNEL_PANICKED())
1726 		return;
1727 	if (lle->ll_count != 0) {
1728 		for (n = 0; lle != NULL; lle = lle->ll_next)
1729 			for (i = lle->ll_count - 1; i >= 0; i--) {
1730 				if (n == 0)
1731 					witness_output(
1732 		    "Thread %p exiting with the following locks held:\n", td);
1733 				n++;
1734 				witness_list_lock(&lle->ll_children[i],
1735 				    witness_output);
1736 
1737 			}
1738 		kassert_panic(
1739 		    "Thread %p cannot exit while holding sleeplocks\n", td);
1740 	}
1741 	witness_lock_list_free(lle);
1742 }
1743 
1744 /*
1745  * Warn if any locks other than 'lock' are held.  Flags can be passed in to
1746  * exempt Giant and sleepable locks from the checks as well.  If any
1747  * non-exempt locks are held, then a supplied message is printed to the
1748  * output channel along with a list of the offending locks.  If indicated in the
1749  * flags then a failure results in a panic as well.
1750  */
1751 int
1752 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...)
1753 {
1754 	struct lock_list_entry *lock_list, *lle;
1755 	struct lock_instance *lock1;
1756 	struct thread *td;
1757 	va_list ap;
1758 	int i, n;
1759 
1760 	if (witness_cold || witness_watch < 1 || KERNEL_PANICKED())
1761 		return (0);
1762 	n = 0;
1763 	td = curthread;
1764 	for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next)
1765 		for (i = lle->ll_count - 1; i >= 0; i--) {
1766 			lock1 = &lle->ll_children[i];
1767 			if (lock1->li_lock == lock)
1768 				continue;
1769 			if (flags & WARN_GIANTOK &&
1770 			    lock1->li_lock == &Giant.lock_object)
1771 				continue;
1772 			if (flags & WARN_SLEEPOK &&
1773 			    (lock1->li_flags & LI_SLEEPABLE) != 0)
1774 				continue;
1775 			if (n == 0) {
1776 				va_start(ap, fmt);
1777 				vprintf(fmt, ap);
1778 				va_end(ap);
1779 				printf(" with the following %slocks held:\n",
1780 				    (flags & WARN_SLEEPOK) != 0 ?
1781 				    "non-sleepable " : "");
1782 			}
1783 			n++;
1784 			witness_list_lock(lock1, printf);
1785 		}
1786 
1787 	/*
1788 	 * Pin the thread in order to avoid problems with thread migration.
1789 	 * Once that all verifies are passed about spinlocks ownership,
1790 	 * the thread is in a safe path and it can be unpinned.
1791 	 */
1792 	sched_pin();
1793 	lock_list = PCPU_GET(spinlocks);
1794 	if (lock_list != NULL && lock_list->ll_count != 0) {
1795 		sched_unpin();
1796 
1797 		/*
1798 		 * We should only have one spinlock and as long as
1799 		 * the flags cannot match for this locks class,
1800 		 * check if the first spinlock is the one curthread
1801 		 * should hold.
1802 		 */
1803 		lock1 = &lock_list->ll_children[lock_list->ll_count - 1];
1804 		if (lock_list->ll_count == 1 && lock_list->ll_next == NULL &&
1805 		    lock1->li_lock == lock && n == 0)
1806 			return (0);
1807 
1808 		va_start(ap, fmt);
1809 		vprintf(fmt, ap);
1810 		va_end(ap);
1811 		printf(" with the following %slocks held:\n",
1812 		    (flags & WARN_SLEEPOK) != 0 ?  "non-sleepable " : "");
1813 		n += witness_list_locks(&lock_list, printf);
1814 	} else
1815 		sched_unpin();
1816 	if (flags & WARN_PANIC && n)
1817 		kassert_panic("%s", __func__);
1818 	else
1819 		witness_debugger(n, __func__);
1820 	return (n);
1821 }
1822 
1823 const char *
1824 witness_file(struct lock_object *lock)
1825 {
1826 	struct witness *w;
1827 
1828 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1829 		return ("?");
1830 	w = lock->lo_witness;
1831 	return (w->w_file);
1832 }
1833 
1834 int
1835 witness_line(struct lock_object *lock)
1836 {
1837 	struct witness *w;
1838 
1839 	if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL)
1840 		return (0);
1841 	w = lock->lo_witness;
1842 	return (w->w_line);
1843 }
1844 
1845 static struct witness *
1846 enroll(const char *description, struct lock_class *lock_class)
1847 {
1848 	struct witness *w;
1849 
1850 	MPASS(description != NULL);
1851 
1852 	if (witness_watch == -1 || KERNEL_PANICKED())
1853 		return (NULL);
1854 	if ((lock_class->lc_flags & LC_SPINLOCK)) {
1855 		if (witness_skipspin)
1856 			return (NULL);
1857 	} else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) {
1858 		kassert_panic("lock class %s is not sleep or spin",
1859 		    lock_class->lc_name);
1860 		return (NULL);
1861 	}
1862 
1863 	mtx_lock_spin(&w_mtx);
1864 	w = witness_hash_get(description);
1865 	if (w)
1866 		goto found;
1867 	if ((w = witness_get()) == NULL)
1868 		return (NULL);
1869 	MPASS(strlen(description) < MAX_W_NAME);
1870 	strcpy(w->w_name, description);
1871 	w->w_class = lock_class;
1872 	w->w_refcount = 1;
1873 	STAILQ_INSERT_HEAD(&w_all, w, w_list);
1874 	if (lock_class->lc_flags & LC_SPINLOCK) {
1875 		STAILQ_INSERT_HEAD(&w_spin, w, w_typelist);
1876 		w_spin_cnt++;
1877 	} else if (lock_class->lc_flags & LC_SLEEPLOCK) {
1878 		STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist);
1879 		w_sleep_cnt++;
1880 	}
1881 
1882 	/* Insert new witness into the hash */
1883 	witness_hash_put(w);
1884 	witness_increment_graph_generation();
1885 	mtx_unlock_spin(&w_mtx);
1886 	return (w);
1887 found:
1888 	w->w_refcount++;
1889 	if (w->w_refcount == 1)
1890 		w->w_class = lock_class;
1891 	mtx_unlock_spin(&w_mtx);
1892 	if (lock_class != w->w_class)
1893 		kassert_panic(
1894 		    "lock (%s) %s does not match earlier (%s) lock",
1895 		    description, lock_class->lc_name,
1896 		    w->w_class->lc_name);
1897 	return (w);
1898 }
1899 
1900 static void
1901 depart(struct witness *w)
1902 {
1903 
1904 	MPASS(w->w_refcount == 0);
1905 	if (w->w_class->lc_flags & LC_SLEEPLOCK) {
1906 		w_sleep_cnt--;
1907 	} else {
1908 		w_spin_cnt--;
1909 	}
1910 	/*
1911 	 * Set file to NULL as it may point into a loadable module.
1912 	 */
1913 	w->w_file = NULL;
1914 	w->w_line = 0;
1915 	witness_increment_graph_generation();
1916 }
1917 
1918 
1919 static void
1920 adopt(struct witness *parent, struct witness *child)
1921 {
1922 	int pi, ci, i, j;
1923 
1924 	if (witness_cold == 0)
1925 		mtx_assert(&w_mtx, MA_OWNED);
1926 
1927 	/* If the relationship is already known, there's no work to be done. */
1928 	if (isitmychild(parent, child))
1929 		return;
1930 
1931 	/* When the structure of the graph changes, bump up the generation. */
1932 	witness_increment_graph_generation();
1933 
1934 	/*
1935 	 * The hard part ... create the direct relationship, then propagate all
1936 	 * indirect relationships.
1937 	 */
1938 	pi = parent->w_index;
1939 	ci = child->w_index;
1940 	WITNESS_INDEX_ASSERT(pi);
1941 	WITNESS_INDEX_ASSERT(ci);
1942 	MPASS(pi != ci);
1943 	w_rmatrix[pi][ci] |= WITNESS_PARENT;
1944 	w_rmatrix[ci][pi] |= WITNESS_CHILD;
1945 
1946 	/*
1947 	 * If parent was not already an ancestor of child,
1948 	 * then we increment the descendant and ancestor counters.
1949 	 */
1950 	if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) {
1951 		parent->w_num_descendants++;
1952 		child->w_num_ancestors++;
1953 	}
1954 
1955 	/*
1956 	 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as
1957 	 * an ancestor of 'pi' during this loop.
1958 	 */
1959 	for (i = 1; i <= w_max_used_index; i++) {
1960 		if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 &&
1961 		    (i != pi))
1962 			continue;
1963 
1964 		/* Find each descendant of 'i' and mark it as a descendant. */
1965 		for (j = 1; j <= w_max_used_index; j++) {
1966 
1967 			/*
1968 			 * Skip children that are already marked as
1969 			 * descendants of 'i'.
1970 			 */
1971 			if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK)
1972 				continue;
1973 
1974 			/*
1975 			 * We are only interested in descendants of 'ci'. Note
1976 			 * that 'ci' itself is counted as a descendant of 'ci'.
1977 			 */
1978 			if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 &&
1979 			    (j != ci))
1980 				continue;
1981 			w_rmatrix[i][j] |= WITNESS_ANCESTOR;
1982 			w_rmatrix[j][i] |= WITNESS_DESCENDANT;
1983 			w_data[i].w_num_descendants++;
1984 			w_data[j].w_num_ancestors++;
1985 
1986 			/*
1987 			 * Make sure we aren't marking a node as both an
1988 			 * ancestor and descendant. We should have caught
1989 			 * this as a lock order reversal earlier.
1990 			 */
1991 			if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) &&
1992 			    (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) {
1993 				printf("witness rmatrix paradox! [%d][%d]=%d "
1994 				    "both ancestor and descendant\n",
1995 				    i, j, w_rmatrix[i][j]);
1996 				kdb_backtrace();
1997 				printf("Witness disabled.\n");
1998 				witness_watch = -1;
1999 			}
2000 			if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) &&
2001 			    (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) {
2002 				printf("witness rmatrix paradox! [%d][%d]=%d "
2003 				    "both ancestor and descendant\n",
2004 				    j, i, w_rmatrix[j][i]);
2005 				kdb_backtrace();
2006 				printf("Witness disabled.\n");
2007 				witness_watch = -1;
2008 			}
2009 		}
2010 	}
2011 }
2012 
2013 static void
2014 itismychild(struct witness *parent, struct witness *child)
2015 {
2016 	int unlocked;
2017 
2018 	MPASS(child != NULL && parent != NULL);
2019 	if (witness_cold == 0)
2020 		mtx_assert(&w_mtx, MA_OWNED);
2021 
2022 	if (!witness_lock_type_equal(parent, child)) {
2023 		if (witness_cold == 0) {
2024 			unlocked = 1;
2025 			mtx_unlock_spin(&w_mtx);
2026 		} else {
2027 			unlocked = 0;
2028 		}
2029 		kassert_panic(
2030 		    "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not "
2031 		    "the same lock type", __func__, parent->w_name,
2032 		    parent->w_class->lc_name, child->w_name,
2033 		    child->w_class->lc_name);
2034 		if (unlocked)
2035 			mtx_lock_spin(&w_mtx);
2036 	}
2037 	adopt(parent, child);
2038 }
2039 
2040 /*
2041  * Generic code for the isitmy*() functions. The rmask parameter is the
2042  * expected relationship of w1 to w2.
2043  */
2044 static int
2045 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname)
2046 {
2047 	unsigned char r1, r2;
2048 	int i1, i2;
2049 
2050 	i1 = w1->w_index;
2051 	i2 = w2->w_index;
2052 	WITNESS_INDEX_ASSERT(i1);
2053 	WITNESS_INDEX_ASSERT(i2);
2054 	r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK;
2055 	r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK;
2056 
2057 	/* The flags on one better be the inverse of the flags on the other */
2058 	if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) ||
2059 	    (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) {
2060 		/* Don't squawk if we're potentially racing with an update. */
2061 		if (!mtx_owned(&w_mtx))
2062 			return (0);
2063 		printf("%s: rmatrix mismatch between %s (index %d) and %s "
2064 		    "(index %d): w_rmatrix[%d][%d] == %hhx but "
2065 		    "w_rmatrix[%d][%d] == %hhx\n",
2066 		    fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1,
2067 		    i2, i1, r2);
2068 		kdb_backtrace();
2069 		printf("Witness disabled.\n");
2070 		witness_watch = -1;
2071 	}
2072 	return (r1 & rmask);
2073 }
2074 
2075 /*
2076  * Checks if @child is a direct child of @parent.
2077  */
2078 static int
2079 isitmychild(struct witness *parent, struct witness *child)
2080 {
2081 
2082 	return (_isitmyx(parent, child, WITNESS_PARENT, __func__));
2083 }
2084 
2085 /*
2086  * Checks if @descendant is a direct or inderect descendant of @ancestor.
2087  */
2088 static int
2089 isitmydescendant(struct witness *ancestor, struct witness *descendant)
2090 {
2091 
2092 	return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK,
2093 	    __func__));
2094 }
2095 
2096 static int
2097 blessed(struct witness *w1, struct witness *w2)
2098 {
2099 	int i;
2100 	struct witness_blessed *b;
2101 
2102 	for (i = 0; i < nitems(blessed_list); i++) {
2103 		b = &blessed_list[i];
2104 		if (strcmp(w1->w_name, b->b_lock1) == 0) {
2105 			if (strcmp(w2->w_name, b->b_lock2) == 0)
2106 				return (1);
2107 			continue;
2108 		}
2109 		if (strcmp(w1->w_name, b->b_lock2) == 0)
2110 			if (strcmp(w2->w_name, b->b_lock1) == 0)
2111 				return (1);
2112 	}
2113 	return (0);
2114 }
2115 
2116 static struct witness *
2117 witness_get(void)
2118 {
2119 	struct witness *w;
2120 	int index;
2121 
2122 	if (witness_cold == 0)
2123 		mtx_assert(&w_mtx, MA_OWNED);
2124 
2125 	if (witness_watch == -1) {
2126 		mtx_unlock_spin(&w_mtx);
2127 		return (NULL);
2128 	}
2129 	if (STAILQ_EMPTY(&w_free)) {
2130 		witness_watch = -1;
2131 		mtx_unlock_spin(&w_mtx);
2132 		printf("WITNESS: unable to allocate a new witness object\n");
2133 		return (NULL);
2134 	}
2135 	w = STAILQ_FIRST(&w_free);
2136 	STAILQ_REMOVE_HEAD(&w_free, w_list);
2137 	w_free_cnt--;
2138 	index = w->w_index;
2139 	MPASS(index > 0 && index == w_max_used_index+1 &&
2140 	    index < witness_count);
2141 	bzero(w, sizeof(*w));
2142 	w->w_index = index;
2143 	if (index > w_max_used_index)
2144 		w_max_used_index = index;
2145 	return (w);
2146 }
2147 
2148 static void
2149 witness_free(struct witness *w)
2150 {
2151 
2152 	STAILQ_INSERT_HEAD(&w_free, w, w_list);
2153 	w_free_cnt++;
2154 }
2155 
2156 static struct lock_list_entry *
2157 witness_lock_list_get(void)
2158 {
2159 	struct lock_list_entry *lle;
2160 
2161 	if (witness_watch == -1)
2162 		return (NULL);
2163 	mtx_lock_spin(&w_mtx);
2164 	lle = w_lock_list_free;
2165 	if (lle == NULL) {
2166 		witness_watch = -1;
2167 		mtx_unlock_spin(&w_mtx);
2168 		printf("%s: witness exhausted\n", __func__);
2169 		return (NULL);
2170 	}
2171 	w_lock_list_free = lle->ll_next;
2172 	mtx_unlock_spin(&w_mtx);
2173 	bzero(lle, sizeof(*lle));
2174 	return (lle);
2175 }
2176 
2177 static void
2178 witness_lock_list_free(struct lock_list_entry *lle)
2179 {
2180 
2181 	mtx_lock_spin(&w_mtx);
2182 	lle->ll_next = w_lock_list_free;
2183 	w_lock_list_free = lle;
2184 	mtx_unlock_spin(&w_mtx);
2185 }
2186 
2187 static struct lock_instance *
2188 find_instance(struct lock_list_entry *list, const struct lock_object *lock)
2189 {
2190 	struct lock_list_entry *lle;
2191 	struct lock_instance *instance;
2192 	int i;
2193 
2194 	for (lle = list; lle != NULL; lle = lle->ll_next)
2195 		for (i = lle->ll_count - 1; i >= 0; i--) {
2196 			instance = &lle->ll_children[i];
2197 			if (instance->li_lock == lock)
2198 				return (instance);
2199 		}
2200 	return (NULL);
2201 }
2202 
2203 static void
2204 witness_list_lock(struct lock_instance *instance,
2205     int (*prnt)(const char *fmt, ...))
2206 {
2207 	struct lock_object *lock;
2208 
2209 	lock = instance->li_lock;
2210 	prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ?
2211 	    "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name);
2212 	if (lock->lo_witness->w_name != lock->lo_name)
2213 		prnt(" (%s)", lock->lo_witness->w_name);
2214 	prnt(" r = %d (%p) locked @ %s:%d\n",
2215 	    instance->li_flags & LI_RECURSEMASK, lock,
2216 	    fixup_filename(instance->li_file), instance->li_line);
2217 }
2218 
2219 static int
2220 witness_output(const char *fmt, ...)
2221 {
2222 	va_list ap;
2223 	int ret;
2224 
2225 	va_start(ap, fmt);
2226 	ret = witness_voutput(fmt, ap);
2227 	va_end(ap);
2228 	return (ret);
2229 }
2230 
2231 static int
2232 witness_voutput(const char *fmt, va_list ap)
2233 {
2234 	int ret;
2235 
2236 	ret = 0;
2237 	switch (witness_channel) {
2238 	case WITNESS_CONSOLE:
2239 		ret = vprintf(fmt, ap);
2240 		break;
2241 	case WITNESS_LOG:
2242 		vlog(LOG_NOTICE, fmt, ap);
2243 		break;
2244 	case WITNESS_NONE:
2245 		break;
2246 	}
2247 	return (ret);
2248 }
2249 
2250 #ifdef DDB
2251 static int
2252 witness_thread_has_locks(struct thread *td)
2253 {
2254 
2255 	if (td->td_sleeplocks == NULL)
2256 		return (0);
2257 	return (td->td_sleeplocks->ll_count != 0);
2258 }
2259 
2260 static int
2261 witness_proc_has_locks(struct proc *p)
2262 {
2263 	struct thread *td;
2264 
2265 	FOREACH_THREAD_IN_PROC(p, td) {
2266 		if (witness_thread_has_locks(td))
2267 			return (1);
2268 	}
2269 	return (0);
2270 }
2271 #endif
2272 
2273 int
2274 witness_list_locks(struct lock_list_entry **lock_list,
2275     int (*prnt)(const char *fmt, ...))
2276 {
2277 	struct lock_list_entry *lle;
2278 	int i, nheld;
2279 
2280 	nheld = 0;
2281 	for (lle = *lock_list; lle != NULL; lle = lle->ll_next)
2282 		for (i = lle->ll_count - 1; i >= 0; i--) {
2283 			witness_list_lock(&lle->ll_children[i], prnt);
2284 			nheld++;
2285 		}
2286 	return (nheld);
2287 }
2288 
2289 /*
2290  * This is a bit risky at best.  We call this function when we have timed
2291  * out acquiring a spin lock, and we assume that the other CPU is stuck
2292  * with this lock held.  So, we go groveling around in the other CPU's
2293  * per-cpu data to try to find the lock instance for this spin lock to
2294  * see when it was last acquired.
2295  */
2296 void
2297 witness_display_spinlock(struct lock_object *lock, struct thread *owner,
2298     int (*prnt)(const char *fmt, ...))
2299 {
2300 	struct lock_instance *instance;
2301 	struct pcpu *pc;
2302 
2303 	if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU)
2304 		return;
2305 	pc = pcpu_find(owner->td_oncpu);
2306 	instance = find_instance(pc->pc_spinlocks, lock);
2307 	if (instance != NULL)
2308 		witness_list_lock(instance, prnt);
2309 }
2310 
2311 void
2312 witness_save(struct lock_object *lock, const char **filep, int *linep)
2313 {
2314 	struct lock_list_entry *lock_list;
2315 	struct lock_instance *instance;
2316 	struct lock_class *class;
2317 
2318 	/*
2319 	 * This function is used independently in locking code to deal with
2320 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2321 	 * is gone.
2322 	 */
2323 	if (SCHEDULER_STOPPED())
2324 		return;
2325 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2326 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2327 		return;
2328 	class = LOCK_CLASS(lock);
2329 	if (class->lc_flags & LC_SLEEPLOCK)
2330 		lock_list = curthread->td_sleeplocks;
2331 	else {
2332 		if (witness_skipspin)
2333 			return;
2334 		lock_list = PCPU_GET(spinlocks);
2335 	}
2336 	instance = find_instance(lock_list, lock);
2337 	if (instance == NULL) {
2338 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2339 		    class->lc_name, lock->lo_name);
2340 		return;
2341 	}
2342 	*filep = instance->li_file;
2343 	*linep = instance->li_line;
2344 }
2345 
2346 void
2347 witness_restore(struct lock_object *lock, const char *file, int line)
2348 {
2349 	struct lock_list_entry *lock_list;
2350 	struct lock_instance *instance;
2351 	struct lock_class *class;
2352 
2353 	/*
2354 	 * This function is used independently in locking code to deal with
2355 	 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant
2356 	 * is gone.
2357 	 */
2358 	if (SCHEDULER_STOPPED())
2359 		return;
2360 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2361 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2362 		return;
2363 	class = LOCK_CLASS(lock);
2364 	if (class->lc_flags & LC_SLEEPLOCK)
2365 		lock_list = curthread->td_sleeplocks;
2366 	else {
2367 		if (witness_skipspin)
2368 			return;
2369 		lock_list = PCPU_GET(spinlocks);
2370 	}
2371 	instance = find_instance(lock_list, lock);
2372 	if (instance == NULL)
2373 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2374 		    class->lc_name, lock->lo_name);
2375 	lock->lo_witness->w_file = file;
2376 	lock->lo_witness->w_line = line;
2377 	if (instance == NULL)
2378 		return;
2379 	instance->li_file = file;
2380 	instance->li_line = line;
2381 }
2382 
2383 void
2384 witness_assert(const struct lock_object *lock, int flags, const char *file,
2385     int line)
2386 {
2387 #ifdef INVARIANT_SUPPORT
2388 	struct lock_instance *instance;
2389 	struct lock_class *class;
2390 
2391 	if (lock->lo_witness == NULL || witness_watch < 1 || KERNEL_PANICKED())
2392 		return;
2393 	class = LOCK_CLASS(lock);
2394 	if ((class->lc_flags & LC_SLEEPLOCK) != 0)
2395 		instance = find_instance(curthread->td_sleeplocks, lock);
2396 	else if ((class->lc_flags & LC_SPINLOCK) != 0)
2397 		instance = find_instance(PCPU_GET(spinlocks), lock);
2398 	else {
2399 		kassert_panic("Lock (%s) %s is not sleep or spin!",
2400 		    class->lc_name, lock->lo_name);
2401 		return;
2402 	}
2403 	switch (flags) {
2404 	case LA_UNLOCKED:
2405 		if (instance != NULL)
2406 			kassert_panic("Lock (%s) %s locked @ %s:%d.",
2407 			    class->lc_name, lock->lo_name,
2408 			    fixup_filename(file), line);
2409 		break;
2410 	case LA_LOCKED:
2411 	case LA_LOCKED | LA_RECURSED:
2412 	case LA_LOCKED | LA_NOTRECURSED:
2413 	case LA_SLOCKED:
2414 	case LA_SLOCKED | LA_RECURSED:
2415 	case LA_SLOCKED | LA_NOTRECURSED:
2416 	case LA_XLOCKED:
2417 	case LA_XLOCKED | LA_RECURSED:
2418 	case LA_XLOCKED | LA_NOTRECURSED:
2419 		if (instance == NULL) {
2420 			kassert_panic("Lock (%s) %s not locked @ %s:%d.",
2421 			    class->lc_name, lock->lo_name,
2422 			    fixup_filename(file), line);
2423 			break;
2424 		}
2425 		if ((flags & LA_XLOCKED) != 0 &&
2426 		    (instance->li_flags & LI_EXCLUSIVE) == 0)
2427 			kassert_panic(
2428 			    "Lock (%s) %s not exclusively locked @ %s:%d.",
2429 			    class->lc_name, lock->lo_name,
2430 			    fixup_filename(file), line);
2431 		if ((flags & LA_SLOCKED) != 0 &&
2432 		    (instance->li_flags & LI_EXCLUSIVE) != 0)
2433 			kassert_panic(
2434 			    "Lock (%s) %s exclusively locked @ %s:%d.",
2435 			    class->lc_name, lock->lo_name,
2436 			    fixup_filename(file), line);
2437 		if ((flags & LA_RECURSED) != 0 &&
2438 		    (instance->li_flags & LI_RECURSEMASK) == 0)
2439 			kassert_panic("Lock (%s) %s not recursed @ %s:%d.",
2440 			    class->lc_name, lock->lo_name,
2441 			    fixup_filename(file), line);
2442 		if ((flags & LA_NOTRECURSED) != 0 &&
2443 		    (instance->li_flags & LI_RECURSEMASK) != 0)
2444 			kassert_panic("Lock (%s) %s recursed @ %s:%d.",
2445 			    class->lc_name, lock->lo_name,
2446 			    fixup_filename(file), line);
2447 		break;
2448 	default:
2449 		kassert_panic("Invalid lock assertion at %s:%d.",
2450 		    fixup_filename(file), line);
2451 
2452 	}
2453 #endif	/* INVARIANT_SUPPORT */
2454 }
2455 
2456 static void
2457 witness_setflag(struct lock_object *lock, int flag, int set)
2458 {
2459 	struct lock_list_entry *lock_list;
2460 	struct lock_instance *instance;
2461 	struct lock_class *class;
2462 
2463 	if (lock->lo_witness == NULL || witness_watch == -1 || KERNEL_PANICKED())
2464 		return;
2465 	class = LOCK_CLASS(lock);
2466 	if (class->lc_flags & LC_SLEEPLOCK)
2467 		lock_list = curthread->td_sleeplocks;
2468 	else {
2469 		if (witness_skipspin)
2470 			return;
2471 		lock_list = PCPU_GET(spinlocks);
2472 	}
2473 	instance = find_instance(lock_list, lock);
2474 	if (instance == NULL) {
2475 		kassert_panic("%s: lock (%s) %s not locked", __func__,
2476 		    class->lc_name, lock->lo_name);
2477 		return;
2478 	}
2479 
2480 	if (set)
2481 		instance->li_flags |= flag;
2482 	else
2483 		instance->li_flags &= ~flag;
2484 }
2485 
2486 void
2487 witness_norelease(struct lock_object *lock)
2488 {
2489 
2490 	witness_setflag(lock, LI_NORELEASE, 1);
2491 }
2492 
2493 void
2494 witness_releaseok(struct lock_object *lock)
2495 {
2496 
2497 	witness_setflag(lock, LI_NORELEASE, 0);
2498 }
2499 
2500 #ifdef DDB
2501 static void
2502 witness_ddb_list(struct thread *td)
2503 {
2504 
2505 	KASSERT(witness_cold == 0, ("%s: witness_cold", __func__));
2506 	KASSERT(kdb_active, ("%s: not in the debugger", __func__));
2507 
2508 	if (witness_watch < 1)
2509 		return;
2510 
2511 	witness_list_locks(&td->td_sleeplocks, db_printf);
2512 
2513 	/*
2514 	 * We only handle spinlocks if td == curthread.  This is somewhat broken
2515 	 * if td is currently executing on some other CPU and holds spin locks
2516 	 * as we won't display those locks.  If we had a MI way of getting
2517 	 * the per-cpu data for a given cpu then we could use
2518 	 * td->td_oncpu to get the list of spinlocks for this thread
2519 	 * and "fix" this.
2520 	 *
2521 	 * That still wouldn't really fix this unless we locked the scheduler
2522 	 * lock or stopped the other CPU to make sure it wasn't changing the
2523 	 * list out from under us.  It is probably best to just not try to
2524 	 * handle threads on other CPU's for now.
2525 	 */
2526 	if (td == curthread && PCPU_GET(spinlocks) != NULL)
2527 		witness_list_locks(PCPU_PTR(spinlocks), db_printf);
2528 }
2529 
2530 DB_SHOW_COMMAND(locks, db_witness_list)
2531 {
2532 	struct thread *td;
2533 
2534 	if (have_addr)
2535 		td = db_lookup_thread(addr, true);
2536 	else
2537 		td = kdb_thread;
2538 	witness_ddb_list(td);
2539 }
2540 
2541 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all)
2542 {
2543 	struct thread *td;
2544 	struct proc *p;
2545 
2546 	/*
2547 	 * It would be nice to list only threads and processes that actually
2548 	 * held sleep locks, but that information is currently not exported
2549 	 * by WITNESS.
2550 	 */
2551 	FOREACH_PROC_IN_SYSTEM(p) {
2552 		if (!witness_proc_has_locks(p))
2553 			continue;
2554 		FOREACH_THREAD_IN_PROC(p, td) {
2555 			if (!witness_thread_has_locks(td))
2556 				continue;
2557 			db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid,
2558 			    p->p_comm, td, td->td_tid);
2559 			witness_ddb_list(td);
2560 			if (db_pager_quit)
2561 				return;
2562 		}
2563 	}
2564 }
2565 DB_SHOW_ALIAS(alllocks, db_witness_list_all)
2566 
2567 DB_SHOW_COMMAND(witness, db_witness_display)
2568 {
2569 
2570 	witness_ddb_display(db_printf);
2571 }
2572 #endif
2573 
2574 static void
2575 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx)
2576 {
2577 	struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2;
2578 	struct witness *tmp_w1, *tmp_w2, *w1, *w2;
2579 	int generation, i, j;
2580 
2581 	tmp_data1 = NULL;
2582 	tmp_data2 = NULL;
2583 	tmp_w1 = NULL;
2584 	tmp_w2 = NULL;
2585 
2586 	/* Allocate and init temporary storage space. */
2587 	tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2588 	tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO);
2589 	tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2590 	    M_WAITOK | M_ZERO);
2591 	tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP,
2592 	    M_WAITOK | M_ZERO);
2593 	stack_zero(&tmp_data1->wlod_stack);
2594 	stack_zero(&tmp_data2->wlod_stack);
2595 
2596 restart:
2597 	mtx_lock_spin(&w_mtx);
2598 	generation = w_generation;
2599 	mtx_unlock_spin(&w_mtx);
2600 	sbuf_printf(sb, "Number of known direct relationships is %d\n",
2601 	    w_lohash.wloh_count);
2602 	for (i = 1; i < w_max_used_index; i++) {
2603 		mtx_lock_spin(&w_mtx);
2604 		if (generation != w_generation) {
2605 			mtx_unlock_spin(&w_mtx);
2606 
2607 			/* The graph has changed, try again. */
2608 			*oldidx = 0;
2609 			sbuf_clear(sb);
2610 			goto restart;
2611 		}
2612 
2613 		w1 = &w_data[i];
2614 		if (w1->w_reversed == 0) {
2615 			mtx_unlock_spin(&w_mtx);
2616 			continue;
2617 		}
2618 
2619 		/* Copy w1 locally so we can release the spin lock. */
2620 		*tmp_w1 = *w1;
2621 		mtx_unlock_spin(&w_mtx);
2622 
2623 		if (tmp_w1->w_reversed == 0)
2624 			continue;
2625 		for (j = 1; j < w_max_used_index; j++) {
2626 			if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j)
2627 				continue;
2628 
2629 			mtx_lock_spin(&w_mtx);
2630 			if (generation != w_generation) {
2631 				mtx_unlock_spin(&w_mtx);
2632 
2633 				/* The graph has changed, try again. */
2634 				*oldidx = 0;
2635 				sbuf_clear(sb);
2636 				goto restart;
2637 			}
2638 
2639 			w2 = &w_data[j];
2640 			data1 = witness_lock_order_get(w1, w2);
2641 			data2 = witness_lock_order_get(w2, w1);
2642 
2643 			/*
2644 			 * Copy information locally so we can release the
2645 			 * spin lock.
2646 			 */
2647 			*tmp_w2 = *w2;
2648 
2649 			if (data1) {
2650 				stack_zero(&tmp_data1->wlod_stack);
2651 				stack_copy(&data1->wlod_stack,
2652 				    &tmp_data1->wlod_stack);
2653 			}
2654 			if (data2 && data2 != data1) {
2655 				stack_zero(&tmp_data2->wlod_stack);
2656 				stack_copy(&data2->wlod_stack,
2657 				    &tmp_data2->wlod_stack);
2658 			}
2659 			mtx_unlock_spin(&w_mtx);
2660 
2661 			if (blessed(tmp_w1, tmp_w2))
2662 				continue;
2663 
2664 			sbuf_printf(sb,
2665 	    "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n",
2666 			    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2667 			    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2668 			if (data1) {
2669 				sbuf_printf(sb,
2670 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2671 				    tmp_w1->w_name, tmp_w1->w_class->lc_name,
2672 				    tmp_w2->w_name, tmp_w2->w_class->lc_name);
2673 				stack_sbuf_print(sb, &tmp_data1->wlod_stack);
2674 				sbuf_printf(sb, "\n");
2675 			}
2676 			if (data2 && data2 != data1) {
2677 				sbuf_printf(sb,
2678 			"Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n",
2679 				    tmp_w2->w_name, tmp_w2->w_class->lc_name,
2680 				    tmp_w1->w_name, tmp_w1->w_class->lc_name);
2681 				stack_sbuf_print(sb, &tmp_data2->wlod_stack);
2682 				sbuf_printf(sb, "\n");
2683 			}
2684 		}
2685 	}
2686 	mtx_lock_spin(&w_mtx);
2687 	if (generation != w_generation) {
2688 		mtx_unlock_spin(&w_mtx);
2689 
2690 		/*
2691 		 * The graph changed while we were printing stack data,
2692 		 * try again.
2693 		 */
2694 		*oldidx = 0;
2695 		sbuf_clear(sb);
2696 		goto restart;
2697 	}
2698 	mtx_unlock_spin(&w_mtx);
2699 
2700 	/* Free temporary storage space. */
2701 	free(tmp_data1, M_TEMP);
2702 	free(tmp_data2, M_TEMP);
2703 	free(tmp_w1, M_TEMP);
2704 	free(tmp_w2, M_TEMP);
2705 }
2706 
2707 static int
2708 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS)
2709 {
2710 	struct sbuf *sb;
2711 	int error;
2712 
2713 	if (witness_watch < 1) {
2714 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2715 		return (error);
2716 	}
2717 	if (witness_cold) {
2718 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2719 		return (error);
2720 	}
2721 	error = 0;
2722 	sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND);
2723 	if (sb == NULL)
2724 		return (ENOMEM);
2725 
2726 	sbuf_print_witness_badstacks(sb, &req->oldidx);
2727 
2728 	sbuf_finish(sb);
2729 	error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
2730 	sbuf_delete(sb);
2731 
2732 	return (error);
2733 }
2734 
2735 #ifdef DDB
2736 static int
2737 sbuf_db_printf_drain(void *arg __unused, const char *data, int len)
2738 {
2739 
2740 	return (db_printf("%.*s", len, data));
2741 }
2742 
2743 DB_SHOW_COMMAND(badstacks, db_witness_badstacks)
2744 {
2745 	struct sbuf sb;
2746 	char buffer[128];
2747 	size_t dummy;
2748 
2749 	sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN);
2750 	sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL);
2751 	sbuf_print_witness_badstacks(&sb, &dummy);
2752 	sbuf_finish(&sb);
2753 }
2754 #endif
2755 
2756 static int
2757 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS)
2758 {
2759 	static const struct {
2760 		enum witness_channel channel;
2761 		const char *name;
2762 	} channels[] = {
2763 		{ WITNESS_CONSOLE, "console" },
2764 		{ WITNESS_LOG, "log" },
2765 		{ WITNESS_NONE, "none" },
2766 	};
2767 	char buf[16];
2768 	u_int i;
2769 	int error;
2770 
2771 	buf[0] = '\0';
2772 	for (i = 0; i < nitems(channels); i++)
2773 		if (witness_channel == channels[i].channel) {
2774 			snprintf(buf, sizeof(buf), "%s", channels[i].name);
2775 			break;
2776 		}
2777 
2778 	error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
2779 	if (error != 0 || req->newptr == NULL)
2780 		return (error);
2781 
2782 	error = EINVAL;
2783 	for (i = 0; i < nitems(channels); i++)
2784 		if (strcmp(channels[i].name, buf) == 0) {
2785 			witness_channel = channels[i].channel;
2786 			error = 0;
2787 			break;
2788 		}
2789 	return (error);
2790 }
2791 
2792 static int
2793 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS)
2794 {
2795 	struct witness *w;
2796 	struct sbuf *sb;
2797 	int error;
2798 
2799 #ifdef __i386__
2800 	error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed));
2801 	return (error);
2802 #endif
2803 
2804 	if (witness_watch < 1) {
2805 		error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning));
2806 		return (error);
2807 	}
2808 	if (witness_cold) {
2809 		error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold));
2810 		return (error);
2811 	}
2812 	error = 0;
2813 
2814 	error = sysctl_wire_old_buffer(req, 0);
2815 	if (error != 0)
2816 		return (error);
2817 	sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req);
2818 	if (sb == NULL)
2819 		return (ENOMEM);
2820 	sbuf_printf(sb, "\n");
2821 
2822 	mtx_lock_spin(&w_mtx);
2823 	STAILQ_FOREACH(w, &w_all, w_list)
2824 		w->w_displayed = 0;
2825 	STAILQ_FOREACH(w, &w_all, w_list)
2826 		witness_add_fullgraph(sb, w);
2827 	mtx_unlock_spin(&w_mtx);
2828 
2829 	/*
2830 	 * Close the sbuf and return to userland.
2831 	 */
2832 	error = sbuf_finish(sb);
2833 	sbuf_delete(sb);
2834 
2835 	return (error);
2836 }
2837 
2838 static int
2839 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS)
2840 {
2841 	int error, value;
2842 
2843 	value = witness_watch;
2844 	error = sysctl_handle_int(oidp, &value, 0, req);
2845 	if (error != 0 || req->newptr == NULL)
2846 		return (error);
2847 	if (value > 1 || value < -1 ||
2848 	    (witness_watch == -1 && value != witness_watch))
2849 		return (EINVAL);
2850 	witness_watch = value;
2851 	return (0);
2852 }
2853 
2854 static void
2855 witness_add_fullgraph(struct sbuf *sb, struct witness *w)
2856 {
2857 	int i;
2858 
2859 	if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0))
2860 		return;
2861 	w->w_displayed = 1;
2862 
2863 	WITNESS_INDEX_ASSERT(w->w_index);
2864 	for (i = 1; i <= w_max_used_index; i++) {
2865 		if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) {
2866 			sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name,
2867 			    w_data[i].w_name);
2868 			witness_add_fullgraph(sb, &w_data[i]);
2869 		}
2870 	}
2871 }
2872 
2873 /*
2874  * A simple hash function. Takes a key pointer and a key size. If size == 0,
2875  * interprets the key as a string and reads until the null
2876  * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit
2877  * hash value computed from the key.
2878  */
2879 static uint32_t
2880 witness_hash_djb2(const uint8_t *key, uint32_t size)
2881 {
2882 	unsigned int hash = 5381;
2883 	int i;
2884 
2885 	/* hash = hash * 33 + key[i] */
2886 	if (size)
2887 		for (i = 0; i < size; i++)
2888 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2889 	else
2890 		for (i = 0; key[i] != 0; i++)
2891 			hash = ((hash << 5) + hash) + (unsigned int)key[i];
2892 
2893 	return (hash);
2894 }
2895 
2896 
2897 /*
2898  * Initializes the two witness hash tables. Called exactly once from
2899  * witness_initialize().
2900  */
2901 static void
2902 witness_init_hash_tables(void)
2903 {
2904 	int i;
2905 
2906 	MPASS(witness_cold);
2907 
2908 	/* Initialize the hash tables. */
2909 	for (i = 0; i < WITNESS_HASH_SIZE; i++)
2910 		w_hash.wh_array[i] = NULL;
2911 
2912 	w_hash.wh_size = WITNESS_HASH_SIZE;
2913 	w_hash.wh_count = 0;
2914 
2915 	/* Initialize the lock order data hash. */
2916 	w_lofree = NULL;
2917 	for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) {
2918 		memset(&w_lodata[i], 0, sizeof(w_lodata[i]));
2919 		w_lodata[i].wlod_next = w_lofree;
2920 		w_lofree = &w_lodata[i];
2921 	}
2922 	w_lohash.wloh_size = WITNESS_LO_HASH_SIZE;
2923 	w_lohash.wloh_count = 0;
2924 	for (i = 0; i < WITNESS_LO_HASH_SIZE; i++)
2925 		w_lohash.wloh_array[i] = NULL;
2926 }
2927 
2928 static struct witness *
2929 witness_hash_get(const char *key)
2930 {
2931 	struct witness *w;
2932 	uint32_t hash;
2933 
2934 	MPASS(key != NULL);
2935 	if (witness_cold == 0)
2936 		mtx_assert(&w_mtx, MA_OWNED);
2937 	hash = witness_hash_djb2(key, 0) % w_hash.wh_size;
2938 	w = w_hash.wh_array[hash];
2939 	while (w != NULL) {
2940 		if (strcmp(w->w_name, key) == 0)
2941 			goto out;
2942 		w = w->w_hash_next;
2943 	}
2944 
2945 out:
2946 	return (w);
2947 }
2948 
2949 static void
2950 witness_hash_put(struct witness *w)
2951 {
2952 	uint32_t hash;
2953 
2954 	MPASS(w != NULL);
2955 	MPASS(w->w_name != NULL);
2956 	if (witness_cold == 0)
2957 		mtx_assert(&w_mtx, MA_OWNED);
2958 	KASSERT(witness_hash_get(w->w_name) == NULL,
2959 	    ("%s: trying to add a hash entry that already exists!", __func__));
2960 	KASSERT(w->w_hash_next == NULL,
2961 	    ("%s: w->w_hash_next != NULL", __func__));
2962 
2963 	hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size;
2964 	w->w_hash_next = w_hash.wh_array[hash];
2965 	w_hash.wh_array[hash] = w;
2966 	w_hash.wh_count++;
2967 }
2968 
2969 
2970 static struct witness_lock_order_data *
2971 witness_lock_order_get(struct witness *parent, struct witness *child)
2972 {
2973 	struct witness_lock_order_data *data = NULL;
2974 	struct witness_lock_order_key key;
2975 	unsigned int hash;
2976 
2977 	MPASS(parent != NULL && child != NULL);
2978 	key.from = parent->w_index;
2979 	key.to = child->w_index;
2980 	WITNESS_INDEX_ASSERT(key.from);
2981 	WITNESS_INDEX_ASSERT(key.to);
2982 	if ((w_rmatrix[parent->w_index][child->w_index]
2983 	    & WITNESS_LOCK_ORDER_KNOWN) == 0)
2984 		goto out;
2985 
2986 	hash = witness_hash_djb2((const char*)&key,
2987 	    sizeof(key)) % w_lohash.wloh_size;
2988 	data = w_lohash.wloh_array[hash];
2989 	while (data != NULL) {
2990 		if (witness_lock_order_key_equal(&data->wlod_key, &key))
2991 			break;
2992 		data = data->wlod_next;
2993 	}
2994 
2995 out:
2996 	return (data);
2997 }
2998 
2999 /*
3000  * Verify that parent and child have a known relationship, are not the same,
3001  * and child is actually a child of parent.  This is done without w_mtx
3002  * to avoid contention in the common case.
3003  */
3004 static int
3005 witness_lock_order_check(struct witness *parent, struct witness *child)
3006 {
3007 
3008 	if (parent != child &&
3009 	    w_rmatrix[parent->w_index][child->w_index]
3010 	    & WITNESS_LOCK_ORDER_KNOWN &&
3011 	    isitmychild(parent, child))
3012 		return (1);
3013 
3014 	return (0);
3015 }
3016 
3017 static int
3018 witness_lock_order_add(struct witness *parent, struct witness *child)
3019 {
3020 	struct witness_lock_order_data *data = NULL;
3021 	struct witness_lock_order_key key;
3022 	unsigned int hash;
3023 
3024 	MPASS(parent != NULL && child != NULL);
3025 	key.from = parent->w_index;
3026 	key.to = child->w_index;
3027 	WITNESS_INDEX_ASSERT(key.from);
3028 	WITNESS_INDEX_ASSERT(key.to);
3029 	if (w_rmatrix[parent->w_index][child->w_index]
3030 	    & WITNESS_LOCK_ORDER_KNOWN)
3031 		return (1);
3032 
3033 	hash = witness_hash_djb2((const char*)&key,
3034 	    sizeof(key)) % w_lohash.wloh_size;
3035 	w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN;
3036 	data = w_lofree;
3037 	if (data == NULL)
3038 		return (0);
3039 	w_lofree = data->wlod_next;
3040 	data->wlod_next = w_lohash.wloh_array[hash];
3041 	data->wlod_key = key;
3042 	w_lohash.wloh_array[hash] = data;
3043 	w_lohash.wloh_count++;
3044 	stack_zero(&data->wlod_stack);
3045 	stack_save(&data->wlod_stack);
3046 	return (1);
3047 }
3048 
3049 /* Call this whenever the structure of the witness graph changes. */
3050 static void
3051 witness_increment_graph_generation(void)
3052 {
3053 
3054 	if (witness_cold == 0)
3055 		mtx_assert(&w_mtx, MA_OWNED);
3056 	w_generation++;
3057 }
3058 
3059 static int
3060 witness_output_drain(void *arg __unused, const char *data, int len)
3061 {
3062 
3063 	witness_output("%.*s", len, data);
3064 	return (len);
3065 }
3066 
3067 static void
3068 witness_debugger(int cond, const char *msg)
3069 {
3070 	char buf[32];
3071 	struct sbuf sb;
3072 	struct stack st;
3073 
3074 	if (!cond)
3075 		return;
3076 
3077 	if (witness_trace) {
3078 		sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
3079 		sbuf_set_drain(&sb, witness_output_drain, NULL);
3080 
3081 		stack_zero(&st);
3082 		stack_save(&st);
3083 		witness_output("stack backtrace:\n");
3084 		stack_sbuf_print_ddb(&sb, &st);
3085 
3086 		sbuf_finish(&sb);
3087 	}
3088 
3089 #ifdef KDB
3090 	if (witness_kdb)
3091 		kdb_enter(KDB_WHY_WITNESS, msg);
3092 #endif
3093 }
3094