1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2008 Isilon Systems, Inc. 5 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 6 * Copyright (c) 1998 Berkeley Software Design, Inc. 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. Berkeley Software Design Inc's name may not be used to endorse or 18 * promote products derived from this software without specific prior 19 * written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 34 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 35 */ 36 37 /* 38 * Implementation of the `witness' lock verifier. Originally implemented for 39 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 40 * classes in FreeBSD. 41 */ 42 43 /* 44 * Main Entry: witness 45 * Pronunciation: 'wit-n&s 46 * Function: noun 47 * Etymology: Middle English witnesse, from Old English witnes knowledge, 48 * testimony, witness, from 2wit 49 * Date: before 12th century 50 * 1 : attestation of a fact or event : TESTIMONY 51 * 2 : one that gives evidence; specifically : one who testifies in 52 * a cause or before a judicial tribunal 53 * 3 : one asked to be present at a transaction so as to be able to 54 * testify to its having taken place 55 * 4 : one who has personal knowledge of something 56 * 5 a : something serving as evidence or proof : SIGN 57 * b : public affirmation by word or example of usually 58 * religious faith or conviction <the heroic witness to divine 59 * life -- Pilot> 60 * 6 capitalized : a member of the Jehovah's Witnesses 61 */ 62 63 /* 64 * Special rules concerning Giant and lock orders: 65 * 66 * 1) Giant must be acquired before any other mutexes. Stated another way, 67 * no other mutex may be held when Giant is acquired. 68 * 69 * 2) Giant must be released when blocking on a sleepable lock. 70 * 71 * This rule is less obvious, but is a result of Giant providing the same 72 * semantics as spl(). Basically, when a thread sleeps, it must release 73 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 74 * 2). 75 * 76 * 3) Giant may be acquired before or after sleepable locks. 77 * 78 * This rule is also not quite as obvious. Giant may be acquired after 79 * a sleepable lock because it is a non-sleepable lock and non-sleepable 80 * locks may always be acquired while holding a sleepable lock. The second 81 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 82 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 83 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 84 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 85 * execute. Thus, acquiring Giant both before and after a sleepable lock 86 * will not result in a lock order reversal. 87 */ 88 89 #include <sys/cdefs.h> 90 __FBSDID("$FreeBSD$"); 91 92 #include "opt_ddb.h" 93 #include "opt_hwpmc_hooks.h" 94 #include "opt_stack.h" 95 #include "opt_witness.h" 96 97 #include <sys/param.h> 98 #include <sys/bus.h> 99 #include <sys/kdb.h> 100 #include <sys/kernel.h> 101 #include <sys/ktr.h> 102 #include <sys/lock.h> 103 #include <sys/malloc.h> 104 #include <sys/mutex.h> 105 #include <sys/priv.h> 106 #include <sys/proc.h> 107 #include <sys/sbuf.h> 108 #include <sys/sched.h> 109 #include <sys/stack.h> 110 #include <sys/sysctl.h> 111 #include <sys/syslog.h> 112 #include <sys/systm.h> 113 114 #ifdef DDB 115 #include <ddb/ddb.h> 116 #endif 117 118 #include <machine/stdarg.h> 119 120 #if !defined(DDB) && !defined(STACK) 121 #error "DDB or STACK options are required for WITNESS" 122 #endif 123 124 /* Note that these traces do not work with KTR_ALQ. */ 125 #if 0 126 #define KTR_WITNESS KTR_SUBSYS 127 #else 128 #define KTR_WITNESS 0 129 #endif 130 131 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 132 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 133 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 134 135 /* Define this to check for blessed mutexes */ 136 #undef BLESSING 137 138 #ifndef WITNESS_COUNT 139 #define WITNESS_COUNT 1536 140 #endif 141 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 142 #define WITNESS_PENDLIST (512 + (MAXCPU * 4)) 143 144 /* Allocate 256 KB of stack data space */ 145 #define WITNESS_LO_DATA_COUNT 2048 146 147 /* Prime, gives load factor of ~2 at full load */ 148 #define WITNESS_LO_HASH_SIZE 1021 149 150 /* 151 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 152 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 153 * probably be safe for the most part, but it's still a SWAG. 154 */ 155 #define LOCK_NCHILDREN 5 156 #define LOCK_CHILDCOUNT 2048 157 158 #define MAX_W_NAME 64 159 160 #define FULLGRAPH_SBUF_SIZE 512 161 162 /* 163 * These flags go in the witness relationship matrix and describe the 164 * relationship between any two struct witness objects. 165 */ 166 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 167 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 168 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 169 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 170 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 171 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 172 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 173 #define WITNESS_RELATED_MASK \ 174 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 175 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 176 * observed. */ 177 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 178 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 179 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 180 181 /* Descendant to ancestor flags */ 182 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 183 184 /* Ancestor to descendant flags */ 185 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 186 187 #define WITNESS_INDEX_ASSERT(i) \ 188 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count) 189 190 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 191 192 /* 193 * Lock instances. A lock instance is the data associated with a lock while 194 * it is held by witness. For example, a lock instance will hold the 195 * recursion count of a lock. Lock instances are held in lists. Spin locks 196 * are held in a per-cpu list while sleep locks are held in per-thread list. 197 */ 198 struct lock_instance { 199 struct lock_object *li_lock; 200 const char *li_file; 201 int li_line; 202 u_int li_flags; 203 }; 204 205 /* 206 * A simple list type used to build the list of locks held by a thread 207 * or CPU. We can't simply embed the list in struct lock_object since a 208 * lock may be held by more than one thread if it is a shared lock. Locks 209 * are added to the head of the list, so we fill up each list entry from 210 * "the back" logically. To ease some of the arithmetic, we actually fill 211 * in each list entry the normal way (children[0] then children[1], etc.) but 212 * when we traverse the list we read children[count-1] as the first entry 213 * down to children[0] as the final entry. 214 */ 215 struct lock_list_entry { 216 struct lock_list_entry *ll_next; 217 struct lock_instance ll_children[LOCK_NCHILDREN]; 218 u_int ll_count; 219 }; 220 221 /* 222 * The main witness structure. One of these per named lock type in the system 223 * (for example, "vnode interlock"). 224 */ 225 struct witness { 226 char w_name[MAX_W_NAME]; 227 uint32_t w_index; /* Index in the relationship matrix */ 228 struct lock_class *w_class; 229 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 230 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 231 struct witness *w_hash_next; /* Linked list in hash buckets. */ 232 const char *w_file; /* File where last acquired */ 233 uint32_t w_line; /* Line where last acquired */ 234 uint32_t w_refcount; 235 uint16_t w_num_ancestors; /* direct/indirect 236 * ancestor count */ 237 uint16_t w_num_descendants; /* direct/indirect 238 * descendant count */ 239 int16_t w_ddb_level; 240 unsigned w_displayed:1; 241 unsigned w_reversed:1; 242 }; 243 244 STAILQ_HEAD(witness_list, witness); 245 246 /* 247 * The witness hash table. Keys are witness names (const char *), elements are 248 * witness objects (struct witness *). 249 */ 250 struct witness_hash { 251 struct witness *wh_array[WITNESS_HASH_SIZE]; 252 uint32_t wh_size; 253 uint32_t wh_count; 254 }; 255 256 /* 257 * Key type for the lock order data hash table. 258 */ 259 struct witness_lock_order_key { 260 uint16_t from; 261 uint16_t to; 262 }; 263 264 struct witness_lock_order_data { 265 struct stack wlod_stack; 266 struct witness_lock_order_key wlod_key; 267 struct witness_lock_order_data *wlod_next; 268 }; 269 270 /* 271 * The witness lock order data hash table. Keys are witness index tuples 272 * (struct witness_lock_order_key), elements are lock order data objects 273 * (struct witness_lock_order_data). 274 */ 275 struct witness_lock_order_hash { 276 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 277 u_int wloh_size; 278 u_int wloh_count; 279 }; 280 281 #ifdef BLESSING 282 struct witness_blessed { 283 const char *b_lock1; 284 const char *b_lock2; 285 }; 286 #endif 287 288 struct witness_pendhelp { 289 const char *wh_type; 290 struct lock_object *wh_lock; 291 }; 292 293 struct witness_order_list_entry { 294 const char *w_name; 295 struct lock_class *w_class; 296 }; 297 298 /* 299 * Returns 0 if one of the locks is a spin lock and the other is not. 300 * Returns 1 otherwise. 301 */ 302 static __inline int 303 witness_lock_type_equal(struct witness *w1, struct witness *w2) 304 { 305 306 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 307 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 308 } 309 310 static __inline int 311 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 312 const struct witness_lock_order_key *b) 313 { 314 315 return (a->from == b->from && a->to == b->to); 316 } 317 318 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 319 const char *fname); 320 static void adopt(struct witness *parent, struct witness *child); 321 #ifdef BLESSING 322 static int blessed(struct witness *, struct witness *); 323 #endif 324 static void depart(struct witness *w); 325 static struct witness *enroll(const char *description, 326 struct lock_class *lock_class); 327 static struct lock_instance *find_instance(struct lock_list_entry *list, 328 const struct lock_object *lock); 329 static int isitmychild(struct witness *parent, struct witness *child); 330 static int isitmydescendant(struct witness *parent, struct witness *child); 331 static void itismychild(struct witness *parent, struct witness *child); 332 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 333 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 334 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 335 static int sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS); 336 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 337 #ifdef DDB 338 static void witness_ddb_compute_levels(void); 339 static void witness_ddb_display(int(*)(const char *fmt, ...)); 340 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 341 struct witness *, int indent); 342 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 343 struct witness_list *list); 344 static void witness_ddb_level_descendants(struct witness *parent, int l); 345 static void witness_ddb_list(struct thread *td); 346 #endif 347 static void witness_debugger(int cond, const char *msg); 348 static void witness_free(struct witness *m); 349 static struct witness *witness_get(void); 350 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 351 static struct witness *witness_hash_get(const char *key); 352 static void witness_hash_put(struct witness *w); 353 static void witness_init_hash_tables(void); 354 static void witness_increment_graph_generation(void); 355 static void witness_lock_list_free(struct lock_list_entry *lle); 356 static struct lock_list_entry *witness_lock_list_get(void); 357 static int witness_lock_order_add(struct witness *parent, 358 struct witness *child); 359 static int witness_lock_order_check(struct witness *parent, 360 struct witness *child); 361 static struct witness_lock_order_data *witness_lock_order_get( 362 struct witness *parent, 363 struct witness *child); 364 static void witness_list_lock(struct lock_instance *instance, 365 int (*prnt)(const char *fmt, ...)); 366 static int witness_output(const char *fmt, ...) __printflike(1, 2); 367 static int witness_voutput(const char *fmt, va_list ap) __printflike(1, 0); 368 static void witness_setflag(struct lock_object *lock, int flag, int set); 369 370 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 371 "Witness Locking"); 372 373 /* 374 * If set to 0, lock order checking is disabled. If set to -1, 375 * witness is completely disabled. Otherwise witness performs full 376 * lock order checking for all locks. At runtime, lock order checking 377 * may be toggled. However, witness cannot be reenabled once it is 378 * completely disabled. 379 */ 380 static int witness_watch = 1; 381 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0, 382 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 383 384 #ifdef KDB 385 /* 386 * When KDB is enabled and witness_kdb is 1, it will cause the system 387 * to drop into kdebug() when: 388 * - a lock hierarchy violation occurs 389 * - locks are held when going to sleep. 390 */ 391 #ifdef WITNESS_KDB 392 int witness_kdb = 1; 393 #else 394 int witness_kdb = 0; 395 #endif 396 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, ""); 397 #endif /* KDB */ 398 399 #if defined(DDB) || defined(KDB) 400 /* 401 * When DDB or KDB is enabled and witness_trace is 1, it will cause the system 402 * to print a stack trace: 403 * - a lock hierarchy violation occurs 404 * - locks are held when going to sleep. 405 */ 406 int witness_trace = 1; 407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, ""); 408 #endif /* DDB || KDB */ 409 410 #ifdef WITNESS_SKIPSPIN 411 int witness_skipspin = 1; 412 #else 413 int witness_skipspin = 0; 414 #endif 415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, ""); 416 417 int badstack_sbuf_size; 418 419 int witness_count = WITNESS_COUNT; 420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 421 &witness_count, 0, ""); 422 423 /* 424 * Output channel for witness messages. By default we print to the console. 425 */ 426 enum witness_channel { 427 WITNESS_CONSOLE, 428 WITNESS_LOG, 429 WITNESS_NONE, 430 }; 431 432 static enum witness_channel witness_channel = WITNESS_CONSOLE; 433 SYSCTL_PROC(_debug_witness, OID_AUTO, output_channel, CTLTYPE_STRING | 434 CTLFLAG_RWTUN, NULL, 0, sysctl_debug_witness_channel, "A", 435 "Output channel for warnings"); 436 437 /* 438 * Call this to print out the relations between locks. 439 */ 440 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 441 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 442 443 /* 444 * Call this to print out the witness faulty stacks. 445 */ 446 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 447 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 448 449 static struct mtx w_mtx; 450 451 /* w_list */ 452 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 453 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 454 455 /* w_typelist */ 456 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 457 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 458 459 /* lock list */ 460 static struct lock_list_entry *w_lock_list_free = NULL; 461 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 462 static u_int pending_cnt; 463 464 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 465 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 466 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 467 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 468 ""); 469 470 static struct witness *w_data; 471 static uint8_t **w_rmatrix; 472 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 473 static struct witness_hash w_hash; /* The witness hash table. */ 474 475 /* The lock order data hash */ 476 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 477 static struct witness_lock_order_data *w_lofree = NULL; 478 static struct witness_lock_order_hash w_lohash; 479 static int w_max_used_index = 0; 480 static unsigned int w_generation = 0; 481 static const char w_notrunning[] = "Witness not running\n"; 482 static const char w_stillcold[] = "Witness is still cold\n"; 483 #ifdef __i386__ 484 static const char w_notallowed[] = "The sysctl is disabled on the arch\n"; 485 #endif 486 487 static struct witness_order_list_entry order_lists[] = { 488 /* 489 * sx locks 490 */ 491 { "proctree", &lock_class_sx }, 492 { "allproc", &lock_class_sx }, 493 { "allprison", &lock_class_sx }, 494 { NULL, NULL }, 495 /* 496 * Various mutexes 497 */ 498 { "Giant", &lock_class_mtx_sleep }, 499 { "pipe mutex", &lock_class_mtx_sleep }, 500 { "sigio lock", &lock_class_mtx_sleep }, 501 { "process group", &lock_class_mtx_sleep }, 502 { "process lock", &lock_class_mtx_sleep }, 503 { "session", &lock_class_mtx_sleep }, 504 { "uidinfo hash", &lock_class_rw }, 505 #ifdef HWPMC_HOOKS 506 { "pmc-sleep", &lock_class_mtx_sleep }, 507 #endif 508 { "time lock", &lock_class_mtx_sleep }, 509 { NULL, NULL }, 510 /* 511 * umtx 512 */ 513 { "umtx lock", &lock_class_mtx_sleep }, 514 { NULL, NULL }, 515 /* 516 * Sockets 517 */ 518 { "accept", &lock_class_mtx_sleep }, 519 { "so_snd", &lock_class_mtx_sleep }, 520 { "so_rcv", &lock_class_mtx_sleep }, 521 { "sellck", &lock_class_mtx_sleep }, 522 { NULL, NULL }, 523 /* 524 * Routing 525 */ 526 { "so_rcv", &lock_class_mtx_sleep }, 527 { "radix node head", &lock_class_rw }, 528 { "rtentry", &lock_class_mtx_sleep }, 529 { "ifaddr", &lock_class_mtx_sleep }, 530 { NULL, NULL }, 531 /* 532 * IPv4 multicast: 533 * protocol locks before interface locks, after UDP locks. 534 */ 535 { "udpinp", &lock_class_rw }, 536 { "in_multi_mtx", &lock_class_mtx_sleep }, 537 { "igmp_mtx", &lock_class_mtx_sleep }, 538 { "if_addr_lock", &lock_class_rw }, 539 { NULL, NULL }, 540 /* 541 * IPv6 multicast: 542 * protocol locks before interface locks, after UDP locks. 543 */ 544 { "udpinp", &lock_class_rw }, 545 { "in6_multi_mtx", &lock_class_mtx_sleep }, 546 { "mld_mtx", &lock_class_mtx_sleep }, 547 { "if_addr_lock", &lock_class_rw }, 548 { NULL, NULL }, 549 /* 550 * UNIX Domain Sockets 551 */ 552 { "unp_link_rwlock", &lock_class_rw }, 553 { "unp_list_lock", &lock_class_mtx_sleep }, 554 { "unp", &lock_class_mtx_sleep }, 555 { "so_snd", &lock_class_mtx_sleep }, 556 { NULL, NULL }, 557 /* 558 * UDP/IP 559 */ 560 { "udp", &lock_class_rw }, 561 { "udpinp", &lock_class_rw }, 562 { "so_snd", &lock_class_mtx_sleep }, 563 { NULL, NULL }, 564 /* 565 * TCP/IP 566 */ 567 { "tcp", &lock_class_rw }, 568 { "tcpinp", &lock_class_rw }, 569 { "so_snd", &lock_class_mtx_sleep }, 570 { NULL, NULL }, 571 /* 572 * BPF 573 */ 574 { "bpf global lock", &lock_class_sx }, 575 { "bpf interface lock", &lock_class_rw }, 576 { "bpf cdev lock", &lock_class_mtx_sleep }, 577 { NULL, NULL }, 578 /* 579 * NFS server 580 */ 581 { "nfsd_mtx", &lock_class_mtx_sleep }, 582 { "so_snd", &lock_class_mtx_sleep }, 583 { NULL, NULL }, 584 585 /* 586 * IEEE 802.11 587 */ 588 { "802.11 com lock", &lock_class_mtx_sleep}, 589 { NULL, NULL }, 590 /* 591 * Network drivers 592 */ 593 { "network driver", &lock_class_mtx_sleep}, 594 { NULL, NULL }, 595 596 /* 597 * Netgraph 598 */ 599 { "ng_node", &lock_class_mtx_sleep }, 600 { "ng_worklist", &lock_class_mtx_sleep }, 601 { NULL, NULL }, 602 /* 603 * CDEV 604 */ 605 { "vm map (system)", &lock_class_mtx_sleep }, 606 { "vm pagequeue", &lock_class_mtx_sleep }, 607 { "vnode interlock", &lock_class_mtx_sleep }, 608 { "cdev", &lock_class_mtx_sleep }, 609 { NULL, NULL }, 610 /* 611 * VM 612 */ 613 { "vm map (user)", &lock_class_sx }, 614 { "vm object", &lock_class_rw }, 615 { "vm page", &lock_class_mtx_sleep }, 616 { "vm pagequeue", &lock_class_mtx_sleep }, 617 { "pmap pv global", &lock_class_rw }, 618 { "pmap", &lock_class_mtx_sleep }, 619 { "pmap pv list", &lock_class_rw }, 620 { "vm page free queue", &lock_class_mtx_sleep }, 621 { NULL, NULL }, 622 /* 623 * kqueue/VFS interaction 624 */ 625 { "kqueue", &lock_class_mtx_sleep }, 626 { "struct mount mtx", &lock_class_mtx_sleep }, 627 { "vnode interlock", &lock_class_mtx_sleep }, 628 { NULL, NULL }, 629 /* 630 * VFS namecache 631 */ 632 { "ncvn", &lock_class_mtx_sleep }, 633 { "ncbuc", &lock_class_rw }, 634 { "vnode interlock", &lock_class_mtx_sleep }, 635 { "ncneg", &lock_class_mtx_sleep }, 636 { NULL, NULL }, 637 /* 638 * ZFS locking 639 */ 640 { "dn->dn_mtx", &lock_class_sx }, 641 { "dr->dt.di.dr_mtx", &lock_class_sx }, 642 { "db->db_mtx", &lock_class_sx }, 643 { NULL, NULL }, 644 /* 645 * TCP log locks 646 */ 647 { "TCP ID tree", &lock_class_rw }, 648 { "tcp log id bucket", &lock_class_mtx_sleep }, 649 { "tcpinp", &lock_class_rw }, 650 { "TCP log expireq", &lock_class_mtx_sleep }, 651 { NULL, NULL }, 652 /* 653 * spin locks 654 */ 655 #ifdef SMP 656 { "ap boot", &lock_class_mtx_spin }, 657 #endif 658 { "rm.mutex_mtx", &lock_class_mtx_spin }, 659 { "sio", &lock_class_mtx_spin }, 660 #ifdef __i386__ 661 { "cy", &lock_class_mtx_spin }, 662 #endif 663 #ifdef __sparc64__ 664 { "pcib_mtx", &lock_class_mtx_spin }, 665 { "rtc_mtx", &lock_class_mtx_spin }, 666 #endif 667 { "scc_hwmtx", &lock_class_mtx_spin }, 668 { "uart_hwmtx", &lock_class_mtx_spin }, 669 { "fast_taskqueue", &lock_class_mtx_spin }, 670 { "intr table", &lock_class_mtx_spin }, 671 #ifdef HWPMC_HOOKS 672 { "pmc-per-proc", &lock_class_mtx_spin }, 673 #endif 674 { "process slock", &lock_class_mtx_spin }, 675 { "syscons video lock", &lock_class_mtx_spin }, 676 { "sleepq chain", &lock_class_mtx_spin }, 677 { "rm_spinlock", &lock_class_mtx_spin }, 678 { "turnstile chain", &lock_class_mtx_spin }, 679 { "turnstile lock", &lock_class_mtx_spin }, 680 { "sched lock", &lock_class_mtx_spin }, 681 { "td_contested", &lock_class_mtx_spin }, 682 { "callout", &lock_class_mtx_spin }, 683 { "entropy harvest mutex", &lock_class_mtx_spin }, 684 #ifdef SMP 685 { "smp rendezvous", &lock_class_mtx_spin }, 686 #endif 687 #ifdef __powerpc__ 688 { "tlb0", &lock_class_mtx_spin }, 689 #endif 690 /* 691 * leaf locks 692 */ 693 { "intrcnt", &lock_class_mtx_spin }, 694 { "icu", &lock_class_mtx_spin }, 695 #if defined(SMP) && defined(__sparc64__) 696 { "ipi", &lock_class_mtx_spin }, 697 #endif 698 #ifdef __i386__ 699 { "allpmaps", &lock_class_mtx_spin }, 700 { "descriptor tables", &lock_class_mtx_spin }, 701 #endif 702 { "clk", &lock_class_mtx_spin }, 703 { "cpuset", &lock_class_mtx_spin }, 704 { "mprof lock", &lock_class_mtx_spin }, 705 { "zombie lock", &lock_class_mtx_spin }, 706 { "ALD Queue", &lock_class_mtx_spin }, 707 #if defined(__i386__) || defined(__amd64__) 708 { "pcicfg", &lock_class_mtx_spin }, 709 { "NDIS thread lock", &lock_class_mtx_spin }, 710 #endif 711 { "tw_osl_io_lock", &lock_class_mtx_spin }, 712 { "tw_osl_q_lock", &lock_class_mtx_spin }, 713 { "tw_cl_io_lock", &lock_class_mtx_spin }, 714 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 715 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 716 #ifdef HWPMC_HOOKS 717 { "pmc-leaf", &lock_class_mtx_spin }, 718 #endif 719 { "blocked lock", &lock_class_mtx_spin }, 720 { NULL, NULL }, 721 { NULL, NULL } 722 }; 723 724 #ifdef BLESSING 725 /* 726 * Pairs of locks which have been blessed 727 * Don't complain about order problems with blessed locks 728 */ 729 static struct witness_blessed blessed_list[] = { 730 }; 731 #endif 732 733 /* 734 * This global is set to 0 once it becomes safe to use the witness code. 735 */ 736 static int witness_cold = 1; 737 738 /* 739 * This global is set to 1 once the static lock orders have been enrolled 740 * so that a warning can be issued for any spin locks enrolled later. 741 */ 742 static int witness_spin_warn = 0; 743 744 /* Trim useless garbage from filenames. */ 745 static const char * 746 fixup_filename(const char *file) 747 { 748 749 if (file == NULL) 750 return (NULL); 751 while (strncmp(file, "../", 3) == 0) 752 file += 3; 753 return (file); 754 } 755 756 /* 757 * Calculate the size of early witness structures. 758 */ 759 int 760 witness_startup_count(void) 761 { 762 int sz; 763 764 sz = sizeof(struct witness) * witness_count; 765 sz += sizeof(*w_rmatrix) * (witness_count + 1); 766 sz += sizeof(*w_rmatrix[0]) * (witness_count + 1) * 767 (witness_count + 1); 768 769 return (sz); 770 } 771 772 /* 773 * The WITNESS-enabled diagnostic code. Note that the witness code does 774 * assume that the early boot is single-threaded at least until after this 775 * routine is completed. 776 */ 777 void 778 witness_startup(void *mem) 779 { 780 struct lock_object *lock; 781 struct witness_order_list_entry *order; 782 struct witness *w, *w1; 783 uintptr_t p; 784 int i; 785 786 p = (uintptr_t)mem; 787 w_data = (void *)p; 788 p += sizeof(struct witness) * witness_count; 789 790 w_rmatrix = (void *)p; 791 p += sizeof(*w_rmatrix) * (witness_count + 1); 792 793 for (i = 0; i < witness_count + 1; i++) { 794 w_rmatrix[i] = (void *)p; 795 p += sizeof(*w_rmatrix[i]) * (witness_count + 1); 796 } 797 badstack_sbuf_size = witness_count * 256; 798 799 /* 800 * We have to release Giant before initializing its witness 801 * structure so that WITNESS doesn't get confused. 802 */ 803 mtx_unlock(&Giant); 804 mtx_assert(&Giant, MA_NOTOWNED); 805 806 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 807 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 808 MTX_NOWITNESS | MTX_NOPROFILE); 809 for (i = witness_count - 1; i >= 0; i--) { 810 w = &w_data[i]; 811 memset(w, 0, sizeof(*w)); 812 w_data[i].w_index = i; /* Witness index never changes. */ 813 witness_free(w); 814 } 815 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 816 ("%s: Invalid list of free witness objects", __func__)); 817 818 /* Witness with index 0 is not used to aid in debugging. */ 819 STAILQ_REMOVE_HEAD(&w_free, w_list); 820 w_free_cnt--; 821 822 for (i = 0; i < witness_count; i++) { 823 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 824 (witness_count + 1)); 825 } 826 827 for (i = 0; i < LOCK_CHILDCOUNT; i++) 828 witness_lock_list_free(&w_locklistdata[i]); 829 witness_init_hash_tables(); 830 831 /* First add in all the specified order lists. */ 832 for (order = order_lists; order->w_name != NULL; order++) { 833 w = enroll(order->w_name, order->w_class); 834 if (w == NULL) 835 continue; 836 w->w_file = "order list"; 837 for (order++; order->w_name != NULL; order++) { 838 w1 = enroll(order->w_name, order->w_class); 839 if (w1 == NULL) 840 continue; 841 w1->w_file = "order list"; 842 itismychild(w, w1); 843 w = w1; 844 } 845 } 846 witness_spin_warn = 1; 847 848 /* Iterate through all locks and add them to witness. */ 849 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 850 lock = pending_locks[i].wh_lock; 851 KASSERT(lock->lo_flags & LO_WITNESS, 852 ("%s: lock %s is on pending list but not LO_WITNESS", 853 __func__, lock->lo_name)); 854 lock->lo_witness = enroll(pending_locks[i].wh_type, 855 LOCK_CLASS(lock)); 856 } 857 858 /* Mark the witness code as being ready for use. */ 859 witness_cold = 0; 860 861 mtx_lock(&Giant); 862 } 863 864 void 865 witness_init(struct lock_object *lock, const char *type) 866 { 867 struct lock_class *class; 868 869 /* Various sanity checks. */ 870 class = LOCK_CLASS(lock); 871 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 872 (class->lc_flags & LC_RECURSABLE) == 0) 873 kassert_panic("%s: lock (%s) %s can not be recursable", 874 __func__, class->lc_name, lock->lo_name); 875 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 876 (class->lc_flags & LC_SLEEPABLE) == 0) 877 kassert_panic("%s: lock (%s) %s can not be sleepable", 878 __func__, class->lc_name, lock->lo_name); 879 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 880 (class->lc_flags & LC_UPGRADABLE) == 0) 881 kassert_panic("%s: lock (%s) %s can not be upgradable", 882 __func__, class->lc_name, lock->lo_name); 883 884 /* 885 * If we shouldn't watch this lock, then just clear lo_witness. 886 * Otherwise, if witness_cold is set, then it is too early to 887 * enroll this lock, so defer it to witness_initialize() by adding 888 * it to the pending_locks list. If it is not too early, then enroll 889 * the lock now. 890 */ 891 if (witness_watch < 1 || panicstr != NULL || 892 (lock->lo_flags & LO_WITNESS) == 0) 893 lock->lo_witness = NULL; 894 else if (witness_cold) { 895 pending_locks[pending_cnt].wh_lock = lock; 896 pending_locks[pending_cnt++].wh_type = type; 897 if (pending_cnt > WITNESS_PENDLIST) 898 panic("%s: pending locks list is too small, " 899 "increase WITNESS_PENDLIST\n", 900 __func__); 901 } else 902 lock->lo_witness = enroll(type, class); 903 } 904 905 void 906 witness_destroy(struct lock_object *lock) 907 { 908 struct lock_class *class; 909 struct witness *w; 910 911 class = LOCK_CLASS(lock); 912 913 if (witness_cold) 914 panic("lock (%s) %s destroyed while witness_cold", 915 class->lc_name, lock->lo_name); 916 917 /* XXX: need to verify that no one holds the lock */ 918 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 919 return; 920 w = lock->lo_witness; 921 922 mtx_lock_spin(&w_mtx); 923 MPASS(w->w_refcount > 0); 924 w->w_refcount--; 925 926 if (w->w_refcount == 0) 927 depart(w); 928 mtx_unlock_spin(&w_mtx); 929 } 930 931 #ifdef DDB 932 static void 933 witness_ddb_compute_levels(void) 934 { 935 struct witness *w; 936 937 /* 938 * First clear all levels. 939 */ 940 STAILQ_FOREACH(w, &w_all, w_list) 941 w->w_ddb_level = -1; 942 943 /* 944 * Look for locks with no parents and level all their descendants. 945 */ 946 STAILQ_FOREACH(w, &w_all, w_list) { 947 948 /* If the witness has ancestors (is not a root), skip it. */ 949 if (w->w_num_ancestors > 0) 950 continue; 951 witness_ddb_level_descendants(w, 0); 952 } 953 } 954 955 static void 956 witness_ddb_level_descendants(struct witness *w, int l) 957 { 958 int i; 959 960 if (w->w_ddb_level >= l) 961 return; 962 963 w->w_ddb_level = l; 964 l++; 965 966 for (i = 1; i <= w_max_used_index; i++) { 967 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 968 witness_ddb_level_descendants(&w_data[i], l); 969 } 970 } 971 972 static void 973 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 974 struct witness *w, int indent) 975 { 976 int i; 977 978 for (i = 0; i < indent; i++) 979 prnt(" "); 980 prnt("%s (type: %s, depth: %d, active refs: %d)", 981 w->w_name, w->w_class->lc_name, 982 w->w_ddb_level, w->w_refcount); 983 if (w->w_displayed) { 984 prnt(" -- (already displayed)\n"); 985 return; 986 } 987 w->w_displayed = 1; 988 if (w->w_file != NULL && w->w_line != 0) 989 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 990 w->w_line); 991 else 992 prnt(" -- never acquired\n"); 993 indent++; 994 WITNESS_INDEX_ASSERT(w->w_index); 995 for (i = 1; i <= w_max_used_index; i++) { 996 if (db_pager_quit) 997 return; 998 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 999 witness_ddb_display_descendants(prnt, &w_data[i], 1000 indent); 1001 } 1002 } 1003 1004 static void 1005 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 1006 struct witness_list *list) 1007 { 1008 struct witness *w; 1009 1010 STAILQ_FOREACH(w, list, w_typelist) { 1011 if (w->w_file == NULL || w->w_ddb_level > 0) 1012 continue; 1013 1014 /* This lock has no anscestors - display its descendants. */ 1015 witness_ddb_display_descendants(prnt, w, 0); 1016 if (db_pager_quit) 1017 return; 1018 } 1019 } 1020 1021 static void 1022 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 1023 { 1024 struct witness *w; 1025 1026 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1027 witness_ddb_compute_levels(); 1028 1029 /* Clear all the displayed flags. */ 1030 STAILQ_FOREACH(w, &w_all, w_list) 1031 w->w_displayed = 0; 1032 1033 /* 1034 * First, handle sleep locks which have been acquired at least 1035 * once. 1036 */ 1037 prnt("Sleep locks:\n"); 1038 witness_ddb_display_list(prnt, &w_sleep); 1039 if (db_pager_quit) 1040 return; 1041 1042 /* 1043 * Now do spin locks which have been acquired at least once. 1044 */ 1045 prnt("\nSpin locks:\n"); 1046 witness_ddb_display_list(prnt, &w_spin); 1047 if (db_pager_quit) 1048 return; 1049 1050 /* 1051 * Finally, any locks which have not been acquired yet. 1052 */ 1053 prnt("\nLocks which were never acquired:\n"); 1054 STAILQ_FOREACH(w, &w_all, w_list) { 1055 if (w->w_file != NULL || w->w_refcount == 0) 1056 continue; 1057 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1058 w->w_class->lc_name, w->w_ddb_level); 1059 if (db_pager_quit) 1060 return; 1061 } 1062 } 1063 #endif /* DDB */ 1064 1065 int 1066 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1067 { 1068 1069 if (witness_watch == -1 || panicstr != NULL) 1070 return (0); 1071 1072 /* Require locks that witness knows about. */ 1073 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1074 lock2->lo_witness == NULL) 1075 return (EINVAL); 1076 1077 mtx_assert(&w_mtx, MA_NOTOWNED); 1078 mtx_lock_spin(&w_mtx); 1079 1080 /* 1081 * If we already have either an explicit or implied lock order that 1082 * is the other way around, then return an error. 1083 */ 1084 if (witness_watch && 1085 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1086 mtx_unlock_spin(&w_mtx); 1087 return (EDOOFUS); 1088 } 1089 1090 /* Try to add the new order. */ 1091 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1092 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1093 itismychild(lock1->lo_witness, lock2->lo_witness); 1094 mtx_unlock_spin(&w_mtx); 1095 return (0); 1096 } 1097 1098 void 1099 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1100 int line, struct lock_object *interlock) 1101 { 1102 struct lock_list_entry *lock_list, *lle; 1103 struct lock_instance *lock1, *lock2, *plock; 1104 struct lock_class *class, *iclass; 1105 struct witness *w, *w1; 1106 struct thread *td; 1107 int i, j; 1108 1109 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1110 panicstr != NULL) 1111 return; 1112 1113 w = lock->lo_witness; 1114 class = LOCK_CLASS(lock); 1115 td = curthread; 1116 1117 if (class->lc_flags & LC_SLEEPLOCK) { 1118 1119 /* 1120 * Since spin locks include a critical section, this check 1121 * implicitly enforces a lock order of all sleep locks before 1122 * all spin locks. 1123 */ 1124 if (td->td_critnest != 0 && !kdb_active) 1125 kassert_panic("acquiring blockable sleep lock with " 1126 "spinlock or critical section held (%s) %s @ %s:%d", 1127 class->lc_name, lock->lo_name, 1128 fixup_filename(file), line); 1129 1130 /* 1131 * If this is the first lock acquired then just return as 1132 * no order checking is needed. 1133 */ 1134 lock_list = td->td_sleeplocks; 1135 if (lock_list == NULL || lock_list->ll_count == 0) 1136 return; 1137 } else { 1138 1139 /* 1140 * If this is the first lock, just return as no order 1141 * checking is needed. Avoid problems with thread 1142 * migration pinning the thread while checking if 1143 * spinlocks are held. If at least one spinlock is held 1144 * the thread is in a safe path and it is allowed to 1145 * unpin it. 1146 */ 1147 sched_pin(); 1148 lock_list = PCPU_GET(spinlocks); 1149 if (lock_list == NULL || lock_list->ll_count == 0) { 1150 sched_unpin(); 1151 return; 1152 } 1153 sched_unpin(); 1154 } 1155 1156 /* 1157 * Check to see if we are recursing on a lock we already own. If 1158 * so, make sure that we don't mismatch exclusive and shared lock 1159 * acquires. 1160 */ 1161 lock1 = find_instance(lock_list, lock); 1162 if (lock1 != NULL) { 1163 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1164 (flags & LOP_EXCLUSIVE) == 0) { 1165 witness_output("shared lock of (%s) %s @ %s:%d\n", 1166 class->lc_name, lock->lo_name, 1167 fixup_filename(file), line); 1168 witness_output("while exclusively locked from %s:%d\n", 1169 fixup_filename(lock1->li_file), lock1->li_line); 1170 kassert_panic("excl->share"); 1171 } 1172 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1173 (flags & LOP_EXCLUSIVE) != 0) { 1174 witness_output("exclusive lock of (%s) %s @ %s:%d\n", 1175 class->lc_name, lock->lo_name, 1176 fixup_filename(file), line); 1177 witness_output("while share locked from %s:%d\n", 1178 fixup_filename(lock1->li_file), lock1->li_line); 1179 kassert_panic("share->excl"); 1180 } 1181 return; 1182 } 1183 1184 /* Warn if the interlock is not locked exactly once. */ 1185 if (interlock != NULL) { 1186 iclass = LOCK_CLASS(interlock); 1187 lock1 = find_instance(lock_list, interlock); 1188 if (lock1 == NULL) 1189 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1190 iclass->lc_name, interlock->lo_name, 1191 fixup_filename(file), line); 1192 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1193 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1194 iclass->lc_name, interlock->lo_name, 1195 fixup_filename(file), line); 1196 } 1197 1198 /* 1199 * Find the previously acquired lock, but ignore interlocks. 1200 */ 1201 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1202 if (interlock != NULL && plock->li_lock == interlock) { 1203 if (lock_list->ll_count > 1) 1204 plock = 1205 &lock_list->ll_children[lock_list->ll_count - 2]; 1206 else { 1207 lle = lock_list->ll_next; 1208 1209 /* 1210 * The interlock is the only lock we hold, so 1211 * simply return. 1212 */ 1213 if (lle == NULL) 1214 return; 1215 plock = &lle->ll_children[lle->ll_count - 1]; 1216 } 1217 } 1218 1219 /* 1220 * Try to perform most checks without a lock. If this succeeds we 1221 * can skip acquiring the lock and return success. Otherwise we redo 1222 * the check with the lock held to handle races with concurrent updates. 1223 */ 1224 w1 = plock->li_lock->lo_witness; 1225 if (witness_lock_order_check(w1, w)) 1226 return; 1227 1228 mtx_lock_spin(&w_mtx); 1229 if (witness_lock_order_check(w1, w)) { 1230 mtx_unlock_spin(&w_mtx); 1231 return; 1232 } 1233 witness_lock_order_add(w1, w); 1234 1235 /* 1236 * Check for duplicate locks of the same type. Note that we only 1237 * have to check for this on the last lock we just acquired. Any 1238 * other cases will be caught as lock order violations. 1239 */ 1240 if (w1 == w) { 1241 i = w->w_index; 1242 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1243 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1244 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1245 w->w_reversed = 1; 1246 mtx_unlock_spin(&w_mtx); 1247 witness_output( 1248 "acquiring duplicate lock of same type: \"%s\"\n", 1249 w->w_name); 1250 witness_output(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1251 fixup_filename(plock->li_file), plock->li_line); 1252 witness_output(" 2nd %s @ %s:%d\n", lock->lo_name, 1253 fixup_filename(file), line); 1254 witness_debugger(1, __func__); 1255 } else 1256 mtx_unlock_spin(&w_mtx); 1257 return; 1258 } 1259 mtx_assert(&w_mtx, MA_OWNED); 1260 1261 /* 1262 * If we know that the lock we are acquiring comes after 1263 * the lock we most recently acquired in the lock order tree, 1264 * then there is no need for any further checks. 1265 */ 1266 if (isitmychild(w1, w)) 1267 goto out; 1268 1269 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1270 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1271 1272 MPASS(j < LOCK_CHILDCOUNT * LOCK_NCHILDREN); 1273 lock1 = &lle->ll_children[i]; 1274 1275 /* 1276 * Ignore the interlock. 1277 */ 1278 if (interlock == lock1->li_lock) 1279 continue; 1280 1281 /* 1282 * If this lock doesn't undergo witness checking, 1283 * then skip it. 1284 */ 1285 w1 = lock1->li_lock->lo_witness; 1286 if (w1 == NULL) { 1287 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1288 ("lock missing witness structure")); 1289 continue; 1290 } 1291 1292 /* 1293 * If we are locking Giant and this is a sleepable 1294 * lock, then skip it. 1295 */ 1296 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1297 lock == &Giant.lock_object) 1298 continue; 1299 1300 /* 1301 * If we are locking a sleepable lock and this lock 1302 * is Giant, then skip it. 1303 */ 1304 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1305 lock1->li_lock == &Giant.lock_object) 1306 continue; 1307 1308 /* 1309 * If we are locking a sleepable lock and this lock 1310 * isn't sleepable, we want to treat it as a lock 1311 * order violation to enfore a general lock order of 1312 * sleepable locks before non-sleepable locks. 1313 */ 1314 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1315 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1316 goto reversal; 1317 1318 /* 1319 * If we are locking Giant and this is a non-sleepable 1320 * lock, then treat it as a reversal. 1321 */ 1322 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1323 lock == &Giant.lock_object) 1324 goto reversal; 1325 1326 /* 1327 * Check the lock order hierarchy for a reveresal. 1328 */ 1329 if (!isitmydescendant(w, w1)) 1330 continue; 1331 reversal: 1332 1333 /* 1334 * We have a lock order violation, check to see if it 1335 * is allowed or has already been yelled about. 1336 */ 1337 #ifdef BLESSING 1338 1339 /* 1340 * If the lock order is blessed, just bail. We don't 1341 * look for other lock order violations though, which 1342 * may be a bug. 1343 */ 1344 if (blessed(w, w1)) 1345 goto out; 1346 #endif 1347 1348 /* Bail if this violation is known */ 1349 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1350 goto out; 1351 1352 /* Record this as a violation */ 1353 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1354 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1355 w->w_reversed = w1->w_reversed = 1; 1356 witness_increment_graph_generation(); 1357 mtx_unlock_spin(&w_mtx); 1358 1359 #ifdef WITNESS_NO_VNODE 1360 /* 1361 * There are known LORs between VNODE locks. They are 1362 * not an indication of a bug. VNODE locks are flagged 1363 * as such (LO_IS_VNODE) and we don't yell if the LOR 1364 * is between 2 VNODE locks. 1365 */ 1366 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1367 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1368 return; 1369 #endif 1370 1371 /* 1372 * Ok, yell about it. 1373 */ 1374 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1375 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1376 witness_output( 1377 "lock order reversal: (sleepable after non-sleepable)\n"); 1378 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1379 && lock == &Giant.lock_object) 1380 witness_output( 1381 "lock order reversal: (Giant after non-sleepable)\n"); 1382 else 1383 witness_output("lock order reversal:\n"); 1384 1385 /* 1386 * Try to locate an earlier lock with 1387 * witness w in our list. 1388 */ 1389 do { 1390 lock2 = &lle->ll_children[i]; 1391 MPASS(lock2->li_lock != NULL); 1392 if (lock2->li_lock->lo_witness == w) 1393 break; 1394 if (i == 0 && lle->ll_next != NULL) { 1395 lle = lle->ll_next; 1396 i = lle->ll_count - 1; 1397 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1398 } else 1399 i--; 1400 } while (i >= 0); 1401 if (i < 0) { 1402 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1403 lock1->li_lock, lock1->li_lock->lo_name, 1404 w1->w_name, fixup_filename(lock1->li_file), 1405 lock1->li_line); 1406 witness_output(" 2nd %p %s (%s) @ %s:%d\n", lock, 1407 lock->lo_name, w->w_name, 1408 fixup_filename(file), line); 1409 } else { 1410 witness_output(" 1st %p %s (%s) @ %s:%d\n", 1411 lock2->li_lock, lock2->li_lock->lo_name, 1412 lock2->li_lock->lo_witness->w_name, 1413 fixup_filename(lock2->li_file), 1414 lock2->li_line); 1415 witness_output(" 2nd %p %s (%s) @ %s:%d\n", 1416 lock1->li_lock, lock1->li_lock->lo_name, 1417 w1->w_name, fixup_filename(lock1->li_file), 1418 lock1->li_line); 1419 witness_output(" 3rd %p %s (%s) @ %s:%d\n", lock, 1420 lock->lo_name, w->w_name, 1421 fixup_filename(file), line); 1422 } 1423 witness_debugger(1, __func__); 1424 return; 1425 } 1426 } 1427 1428 /* 1429 * If requested, build a new lock order. However, don't build a new 1430 * relationship between a sleepable lock and Giant if it is in the 1431 * wrong direction. The correct lock order is that sleepable locks 1432 * always come before Giant. 1433 */ 1434 if (flags & LOP_NEWORDER && 1435 !(plock->li_lock == &Giant.lock_object && 1436 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1437 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1438 w->w_name, plock->li_lock->lo_witness->w_name); 1439 itismychild(plock->li_lock->lo_witness, w); 1440 } 1441 out: 1442 mtx_unlock_spin(&w_mtx); 1443 } 1444 1445 void 1446 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1447 { 1448 struct lock_list_entry **lock_list, *lle; 1449 struct lock_instance *instance; 1450 struct witness *w; 1451 struct thread *td; 1452 1453 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1454 panicstr != NULL) 1455 return; 1456 w = lock->lo_witness; 1457 td = curthread; 1458 1459 /* Determine lock list for this lock. */ 1460 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1461 lock_list = &td->td_sleeplocks; 1462 else 1463 lock_list = PCPU_PTR(spinlocks); 1464 1465 /* Check to see if we are recursing on a lock we already own. */ 1466 instance = find_instance(*lock_list, lock); 1467 if (instance != NULL) { 1468 instance->li_flags++; 1469 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1470 td->td_proc->p_pid, lock->lo_name, 1471 instance->li_flags & LI_RECURSEMASK); 1472 instance->li_file = file; 1473 instance->li_line = line; 1474 return; 1475 } 1476 1477 /* Update per-witness last file and line acquire. */ 1478 w->w_file = file; 1479 w->w_line = line; 1480 1481 /* Find the next open lock instance in the list and fill it. */ 1482 lle = *lock_list; 1483 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1484 lle = witness_lock_list_get(); 1485 if (lle == NULL) 1486 return; 1487 lle->ll_next = *lock_list; 1488 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1489 td->td_proc->p_pid, lle); 1490 *lock_list = lle; 1491 } 1492 instance = &lle->ll_children[lle->ll_count++]; 1493 instance->li_lock = lock; 1494 instance->li_line = line; 1495 instance->li_file = file; 1496 if ((flags & LOP_EXCLUSIVE) != 0) 1497 instance->li_flags = LI_EXCLUSIVE; 1498 else 1499 instance->li_flags = 0; 1500 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1501 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1502 } 1503 1504 void 1505 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1506 { 1507 struct lock_instance *instance; 1508 struct lock_class *class; 1509 1510 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1511 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1512 return; 1513 class = LOCK_CLASS(lock); 1514 if (witness_watch) { 1515 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1516 kassert_panic( 1517 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1518 class->lc_name, lock->lo_name, 1519 fixup_filename(file), line); 1520 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1521 kassert_panic( 1522 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1523 class->lc_name, lock->lo_name, 1524 fixup_filename(file), line); 1525 } 1526 instance = find_instance(curthread->td_sleeplocks, lock); 1527 if (instance == NULL) { 1528 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1529 class->lc_name, lock->lo_name, 1530 fixup_filename(file), line); 1531 return; 1532 } 1533 if (witness_watch) { 1534 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1535 kassert_panic( 1536 "upgrade of exclusive lock (%s) %s @ %s:%d", 1537 class->lc_name, lock->lo_name, 1538 fixup_filename(file), line); 1539 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1540 kassert_panic( 1541 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1542 class->lc_name, lock->lo_name, 1543 instance->li_flags & LI_RECURSEMASK, 1544 fixup_filename(file), line); 1545 } 1546 instance->li_flags |= LI_EXCLUSIVE; 1547 } 1548 1549 void 1550 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1551 int line) 1552 { 1553 struct lock_instance *instance; 1554 struct lock_class *class; 1555 1556 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1557 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1558 return; 1559 class = LOCK_CLASS(lock); 1560 if (witness_watch) { 1561 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1562 kassert_panic( 1563 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1564 class->lc_name, lock->lo_name, 1565 fixup_filename(file), line); 1566 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1567 kassert_panic( 1568 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1569 class->lc_name, lock->lo_name, 1570 fixup_filename(file), line); 1571 } 1572 instance = find_instance(curthread->td_sleeplocks, lock); 1573 if (instance == NULL) { 1574 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1575 class->lc_name, lock->lo_name, 1576 fixup_filename(file), line); 1577 return; 1578 } 1579 if (witness_watch) { 1580 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1581 kassert_panic( 1582 "downgrade of shared lock (%s) %s @ %s:%d", 1583 class->lc_name, lock->lo_name, 1584 fixup_filename(file), line); 1585 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1586 kassert_panic( 1587 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1588 class->lc_name, lock->lo_name, 1589 instance->li_flags & LI_RECURSEMASK, 1590 fixup_filename(file), line); 1591 } 1592 instance->li_flags &= ~LI_EXCLUSIVE; 1593 } 1594 1595 void 1596 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1597 { 1598 struct lock_list_entry **lock_list, *lle; 1599 struct lock_instance *instance; 1600 struct lock_class *class; 1601 struct thread *td; 1602 register_t s; 1603 int i, j; 1604 1605 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1606 return; 1607 td = curthread; 1608 class = LOCK_CLASS(lock); 1609 1610 /* Find lock instance associated with this lock. */ 1611 if (class->lc_flags & LC_SLEEPLOCK) 1612 lock_list = &td->td_sleeplocks; 1613 else 1614 lock_list = PCPU_PTR(spinlocks); 1615 lle = *lock_list; 1616 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1617 for (i = 0; i < (*lock_list)->ll_count; i++) { 1618 instance = &(*lock_list)->ll_children[i]; 1619 if (instance->li_lock == lock) 1620 goto found; 1621 } 1622 1623 /* 1624 * When disabling WITNESS through witness_watch we could end up in 1625 * having registered locks in the td_sleeplocks queue. 1626 * We have to make sure we flush these queues, so just search for 1627 * eventual register locks and remove them. 1628 */ 1629 if (witness_watch > 0) { 1630 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1631 lock->lo_name, fixup_filename(file), line); 1632 return; 1633 } else { 1634 return; 1635 } 1636 found: 1637 1638 /* First, check for shared/exclusive mismatches. */ 1639 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1640 (flags & LOP_EXCLUSIVE) == 0) { 1641 witness_output("shared unlock of (%s) %s @ %s:%d\n", 1642 class->lc_name, lock->lo_name, fixup_filename(file), line); 1643 witness_output("while exclusively locked from %s:%d\n", 1644 fixup_filename(instance->li_file), instance->li_line); 1645 kassert_panic("excl->ushare"); 1646 } 1647 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1648 (flags & LOP_EXCLUSIVE) != 0) { 1649 witness_output("exclusive unlock of (%s) %s @ %s:%d\n", 1650 class->lc_name, lock->lo_name, fixup_filename(file), line); 1651 witness_output("while share locked from %s:%d\n", 1652 fixup_filename(instance->li_file), 1653 instance->li_line); 1654 kassert_panic("share->uexcl"); 1655 } 1656 /* If we are recursed, unrecurse. */ 1657 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1658 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1659 td->td_proc->p_pid, instance->li_lock->lo_name, 1660 instance->li_flags); 1661 instance->li_flags--; 1662 return; 1663 } 1664 /* The lock is now being dropped, check for NORELEASE flag */ 1665 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1666 witness_output("forbidden unlock of (%s) %s @ %s:%d\n", 1667 class->lc_name, lock->lo_name, fixup_filename(file), line); 1668 kassert_panic("lock marked norelease"); 1669 } 1670 1671 /* Otherwise, remove this item from the list. */ 1672 s = intr_disable(); 1673 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1674 td->td_proc->p_pid, instance->li_lock->lo_name, 1675 (*lock_list)->ll_count - 1); 1676 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1677 (*lock_list)->ll_children[j] = 1678 (*lock_list)->ll_children[j + 1]; 1679 (*lock_list)->ll_count--; 1680 intr_restore(s); 1681 1682 /* 1683 * In order to reduce contention on w_mtx, we want to keep always an 1684 * head object into lists so that frequent allocation from the 1685 * free witness pool (and subsequent locking) is avoided. 1686 * In order to maintain the current code simple, when the head 1687 * object is totally unloaded it means also that we do not have 1688 * further objects in the list, so the list ownership needs to be 1689 * hand over to another object if the current head needs to be freed. 1690 */ 1691 if ((*lock_list)->ll_count == 0) { 1692 if (*lock_list == lle) { 1693 if (lle->ll_next == NULL) 1694 return; 1695 } else 1696 lle = *lock_list; 1697 *lock_list = lle->ll_next; 1698 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1699 td->td_proc->p_pid, lle); 1700 witness_lock_list_free(lle); 1701 } 1702 } 1703 1704 void 1705 witness_thread_exit(struct thread *td) 1706 { 1707 struct lock_list_entry *lle; 1708 int i, n; 1709 1710 lle = td->td_sleeplocks; 1711 if (lle == NULL || panicstr != NULL) 1712 return; 1713 if (lle->ll_count != 0) { 1714 for (n = 0; lle != NULL; lle = lle->ll_next) 1715 for (i = lle->ll_count - 1; i >= 0; i--) { 1716 if (n == 0) 1717 witness_output( 1718 "Thread %p exiting with the following locks held:\n", td); 1719 n++; 1720 witness_list_lock(&lle->ll_children[i], 1721 witness_output); 1722 1723 } 1724 kassert_panic( 1725 "Thread %p cannot exit while holding sleeplocks\n", td); 1726 } 1727 witness_lock_list_free(lle); 1728 } 1729 1730 /* 1731 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1732 * exempt Giant and sleepable locks from the checks as well. If any 1733 * non-exempt locks are held, then a supplied message is printed to the 1734 * output channel along with a list of the offending locks. If indicated in the 1735 * flags then a failure results in a panic as well. 1736 */ 1737 int 1738 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1739 { 1740 struct lock_list_entry *lock_list, *lle; 1741 struct lock_instance *lock1; 1742 struct thread *td; 1743 va_list ap; 1744 int i, n; 1745 1746 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1747 return (0); 1748 n = 0; 1749 td = curthread; 1750 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1751 for (i = lle->ll_count - 1; i >= 0; i--) { 1752 lock1 = &lle->ll_children[i]; 1753 if (lock1->li_lock == lock) 1754 continue; 1755 if (flags & WARN_GIANTOK && 1756 lock1->li_lock == &Giant.lock_object) 1757 continue; 1758 if (flags & WARN_SLEEPOK && 1759 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1760 continue; 1761 if (n == 0) { 1762 va_start(ap, fmt); 1763 vprintf(fmt, ap); 1764 va_end(ap); 1765 printf(" with the following %slocks held:\n", 1766 (flags & WARN_SLEEPOK) != 0 ? 1767 "non-sleepable " : ""); 1768 } 1769 n++; 1770 witness_list_lock(lock1, printf); 1771 } 1772 1773 /* 1774 * Pin the thread in order to avoid problems with thread migration. 1775 * Once that all verifies are passed about spinlocks ownership, 1776 * the thread is in a safe path and it can be unpinned. 1777 */ 1778 sched_pin(); 1779 lock_list = PCPU_GET(spinlocks); 1780 if (lock_list != NULL && lock_list->ll_count != 0) { 1781 sched_unpin(); 1782 1783 /* 1784 * We should only have one spinlock and as long as 1785 * the flags cannot match for this locks class, 1786 * check if the first spinlock is the one curthread 1787 * should hold. 1788 */ 1789 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1790 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1791 lock1->li_lock == lock && n == 0) 1792 return (0); 1793 1794 va_start(ap, fmt); 1795 vprintf(fmt, ap); 1796 va_end(ap); 1797 printf(" with the following %slocks held:\n", 1798 (flags & WARN_SLEEPOK) != 0 ? "non-sleepable " : ""); 1799 n += witness_list_locks(&lock_list, printf); 1800 } else 1801 sched_unpin(); 1802 if (flags & WARN_PANIC && n) 1803 kassert_panic("%s", __func__); 1804 else 1805 witness_debugger(n, __func__); 1806 return (n); 1807 } 1808 1809 const char * 1810 witness_file(struct lock_object *lock) 1811 { 1812 struct witness *w; 1813 1814 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1815 return ("?"); 1816 w = lock->lo_witness; 1817 return (w->w_file); 1818 } 1819 1820 int 1821 witness_line(struct lock_object *lock) 1822 { 1823 struct witness *w; 1824 1825 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1826 return (0); 1827 w = lock->lo_witness; 1828 return (w->w_line); 1829 } 1830 1831 static struct witness * 1832 enroll(const char *description, struct lock_class *lock_class) 1833 { 1834 struct witness *w; 1835 1836 MPASS(description != NULL); 1837 1838 if (witness_watch == -1 || panicstr != NULL) 1839 return (NULL); 1840 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1841 if (witness_skipspin) 1842 return (NULL); 1843 } else if ((lock_class->lc_flags & LC_SLEEPLOCK) == 0) { 1844 kassert_panic("lock class %s is not sleep or spin", 1845 lock_class->lc_name); 1846 return (NULL); 1847 } 1848 1849 mtx_lock_spin(&w_mtx); 1850 w = witness_hash_get(description); 1851 if (w) 1852 goto found; 1853 if ((w = witness_get()) == NULL) 1854 return (NULL); 1855 MPASS(strlen(description) < MAX_W_NAME); 1856 strcpy(w->w_name, description); 1857 w->w_class = lock_class; 1858 w->w_refcount = 1; 1859 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1860 if (lock_class->lc_flags & LC_SPINLOCK) { 1861 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1862 w_spin_cnt++; 1863 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1864 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1865 w_sleep_cnt++; 1866 } 1867 1868 /* Insert new witness into the hash */ 1869 witness_hash_put(w); 1870 witness_increment_graph_generation(); 1871 mtx_unlock_spin(&w_mtx); 1872 return (w); 1873 found: 1874 w->w_refcount++; 1875 if (w->w_refcount == 1) 1876 w->w_class = lock_class; 1877 mtx_unlock_spin(&w_mtx); 1878 if (lock_class != w->w_class) 1879 kassert_panic( 1880 "lock (%s) %s does not match earlier (%s) lock", 1881 description, lock_class->lc_name, 1882 w->w_class->lc_name); 1883 return (w); 1884 } 1885 1886 static void 1887 depart(struct witness *w) 1888 { 1889 1890 MPASS(w->w_refcount == 0); 1891 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1892 w_sleep_cnt--; 1893 } else { 1894 w_spin_cnt--; 1895 } 1896 /* 1897 * Set file to NULL as it may point into a loadable module. 1898 */ 1899 w->w_file = NULL; 1900 w->w_line = 0; 1901 witness_increment_graph_generation(); 1902 } 1903 1904 1905 static void 1906 adopt(struct witness *parent, struct witness *child) 1907 { 1908 int pi, ci, i, j; 1909 1910 if (witness_cold == 0) 1911 mtx_assert(&w_mtx, MA_OWNED); 1912 1913 /* If the relationship is already known, there's no work to be done. */ 1914 if (isitmychild(parent, child)) 1915 return; 1916 1917 /* When the structure of the graph changes, bump up the generation. */ 1918 witness_increment_graph_generation(); 1919 1920 /* 1921 * The hard part ... create the direct relationship, then propagate all 1922 * indirect relationships. 1923 */ 1924 pi = parent->w_index; 1925 ci = child->w_index; 1926 WITNESS_INDEX_ASSERT(pi); 1927 WITNESS_INDEX_ASSERT(ci); 1928 MPASS(pi != ci); 1929 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1930 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1931 1932 /* 1933 * If parent was not already an ancestor of child, 1934 * then we increment the descendant and ancestor counters. 1935 */ 1936 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1937 parent->w_num_descendants++; 1938 child->w_num_ancestors++; 1939 } 1940 1941 /* 1942 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1943 * an ancestor of 'pi' during this loop. 1944 */ 1945 for (i = 1; i <= w_max_used_index; i++) { 1946 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1947 (i != pi)) 1948 continue; 1949 1950 /* Find each descendant of 'i' and mark it as a descendant. */ 1951 for (j = 1; j <= w_max_used_index; j++) { 1952 1953 /* 1954 * Skip children that are already marked as 1955 * descendants of 'i'. 1956 */ 1957 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1958 continue; 1959 1960 /* 1961 * We are only interested in descendants of 'ci'. Note 1962 * that 'ci' itself is counted as a descendant of 'ci'. 1963 */ 1964 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1965 (j != ci)) 1966 continue; 1967 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1968 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1969 w_data[i].w_num_descendants++; 1970 w_data[j].w_num_ancestors++; 1971 1972 /* 1973 * Make sure we aren't marking a node as both an 1974 * ancestor and descendant. We should have caught 1975 * this as a lock order reversal earlier. 1976 */ 1977 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1978 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1979 printf("witness rmatrix paradox! [%d][%d]=%d " 1980 "both ancestor and descendant\n", 1981 i, j, w_rmatrix[i][j]); 1982 kdb_backtrace(); 1983 printf("Witness disabled.\n"); 1984 witness_watch = -1; 1985 } 1986 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1987 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1988 printf("witness rmatrix paradox! [%d][%d]=%d " 1989 "both ancestor and descendant\n", 1990 j, i, w_rmatrix[j][i]); 1991 kdb_backtrace(); 1992 printf("Witness disabled.\n"); 1993 witness_watch = -1; 1994 } 1995 } 1996 } 1997 } 1998 1999 static void 2000 itismychild(struct witness *parent, struct witness *child) 2001 { 2002 int unlocked; 2003 2004 MPASS(child != NULL && parent != NULL); 2005 if (witness_cold == 0) 2006 mtx_assert(&w_mtx, MA_OWNED); 2007 2008 if (!witness_lock_type_equal(parent, child)) { 2009 if (witness_cold == 0) { 2010 unlocked = 1; 2011 mtx_unlock_spin(&w_mtx); 2012 } else { 2013 unlocked = 0; 2014 } 2015 kassert_panic( 2016 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 2017 "the same lock type", __func__, parent->w_name, 2018 parent->w_class->lc_name, child->w_name, 2019 child->w_class->lc_name); 2020 if (unlocked) 2021 mtx_lock_spin(&w_mtx); 2022 } 2023 adopt(parent, child); 2024 } 2025 2026 /* 2027 * Generic code for the isitmy*() functions. The rmask parameter is the 2028 * expected relationship of w1 to w2. 2029 */ 2030 static int 2031 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 2032 { 2033 unsigned char r1, r2; 2034 int i1, i2; 2035 2036 i1 = w1->w_index; 2037 i2 = w2->w_index; 2038 WITNESS_INDEX_ASSERT(i1); 2039 WITNESS_INDEX_ASSERT(i2); 2040 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 2041 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 2042 2043 /* The flags on one better be the inverse of the flags on the other */ 2044 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 2045 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 2046 /* Don't squawk if we're potentially racing with an update. */ 2047 if (!mtx_owned(&w_mtx)) 2048 return (0); 2049 printf("%s: rmatrix mismatch between %s (index %d) and %s " 2050 "(index %d): w_rmatrix[%d][%d] == %hhx but " 2051 "w_rmatrix[%d][%d] == %hhx\n", 2052 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 2053 i2, i1, r2); 2054 kdb_backtrace(); 2055 printf("Witness disabled.\n"); 2056 witness_watch = -1; 2057 } 2058 return (r1 & rmask); 2059 } 2060 2061 /* 2062 * Checks if @child is a direct child of @parent. 2063 */ 2064 static int 2065 isitmychild(struct witness *parent, struct witness *child) 2066 { 2067 2068 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2069 } 2070 2071 /* 2072 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2073 */ 2074 static int 2075 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2076 { 2077 2078 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2079 __func__)); 2080 } 2081 2082 #ifdef BLESSING 2083 static int 2084 blessed(struct witness *w1, struct witness *w2) 2085 { 2086 int i; 2087 struct witness_blessed *b; 2088 2089 for (i = 0; i < nitems(blessed_list); i++) { 2090 b = &blessed_list[i]; 2091 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2092 if (strcmp(w2->w_name, b->b_lock2) == 0) 2093 return (1); 2094 continue; 2095 } 2096 if (strcmp(w1->w_name, b->b_lock2) == 0) 2097 if (strcmp(w2->w_name, b->b_lock1) == 0) 2098 return (1); 2099 } 2100 return (0); 2101 } 2102 #endif 2103 2104 static struct witness * 2105 witness_get(void) 2106 { 2107 struct witness *w; 2108 int index; 2109 2110 if (witness_cold == 0) 2111 mtx_assert(&w_mtx, MA_OWNED); 2112 2113 if (witness_watch == -1) { 2114 mtx_unlock_spin(&w_mtx); 2115 return (NULL); 2116 } 2117 if (STAILQ_EMPTY(&w_free)) { 2118 witness_watch = -1; 2119 mtx_unlock_spin(&w_mtx); 2120 printf("WITNESS: unable to allocate a new witness object\n"); 2121 return (NULL); 2122 } 2123 w = STAILQ_FIRST(&w_free); 2124 STAILQ_REMOVE_HEAD(&w_free, w_list); 2125 w_free_cnt--; 2126 index = w->w_index; 2127 MPASS(index > 0 && index == w_max_used_index+1 && 2128 index < witness_count); 2129 bzero(w, sizeof(*w)); 2130 w->w_index = index; 2131 if (index > w_max_used_index) 2132 w_max_used_index = index; 2133 return (w); 2134 } 2135 2136 static void 2137 witness_free(struct witness *w) 2138 { 2139 2140 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2141 w_free_cnt++; 2142 } 2143 2144 static struct lock_list_entry * 2145 witness_lock_list_get(void) 2146 { 2147 struct lock_list_entry *lle; 2148 2149 if (witness_watch == -1) 2150 return (NULL); 2151 mtx_lock_spin(&w_mtx); 2152 lle = w_lock_list_free; 2153 if (lle == NULL) { 2154 witness_watch = -1; 2155 mtx_unlock_spin(&w_mtx); 2156 printf("%s: witness exhausted\n", __func__); 2157 return (NULL); 2158 } 2159 w_lock_list_free = lle->ll_next; 2160 mtx_unlock_spin(&w_mtx); 2161 bzero(lle, sizeof(*lle)); 2162 return (lle); 2163 } 2164 2165 static void 2166 witness_lock_list_free(struct lock_list_entry *lle) 2167 { 2168 2169 mtx_lock_spin(&w_mtx); 2170 lle->ll_next = w_lock_list_free; 2171 w_lock_list_free = lle; 2172 mtx_unlock_spin(&w_mtx); 2173 } 2174 2175 static struct lock_instance * 2176 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2177 { 2178 struct lock_list_entry *lle; 2179 struct lock_instance *instance; 2180 int i; 2181 2182 for (lle = list; lle != NULL; lle = lle->ll_next) 2183 for (i = lle->ll_count - 1; i >= 0; i--) { 2184 instance = &lle->ll_children[i]; 2185 if (instance->li_lock == lock) 2186 return (instance); 2187 } 2188 return (NULL); 2189 } 2190 2191 static void 2192 witness_list_lock(struct lock_instance *instance, 2193 int (*prnt)(const char *fmt, ...)) 2194 { 2195 struct lock_object *lock; 2196 2197 lock = instance->li_lock; 2198 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2199 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2200 if (lock->lo_witness->w_name != lock->lo_name) 2201 prnt(" (%s)", lock->lo_witness->w_name); 2202 prnt(" r = %d (%p) locked @ %s:%d\n", 2203 instance->li_flags & LI_RECURSEMASK, lock, 2204 fixup_filename(instance->li_file), instance->li_line); 2205 } 2206 2207 static int 2208 witness_output(const char *fmt, ...) 2209 { 2210 va_list ap; 2211 int ret; 2212 2213 va_start(ap, fmt); 2214 ret = witness_voutput(fmt, ap); 2215 va_end(ap); 2216 return (ret); 2217 } 2218 2219 static int 2220 witness_voutput(const char *fmt, va_list ap) 2221 { 2222 int ret; 2223 2224 ret = 0; 2225 switch (witness_channel) { 2226 case WITNESS_CONSOLE: 2227 ret = vprintf(fmt, ap); 2228 break; 2229 case WITNESS_LOG: 2230 vlog(LOG_NOTICE, fmt, ap); 2231 break; 2232 case WITNESS_NONE: 2233 break; 2234 } 2235 return (ret); 2236 } 2237 2238 #ifdef DDB 2239 static int 2240 witness_thread_has_locks(struct thread *td) 2241 { 2242 2243 if (td->td_sleeplocks == NULL) 2244 return (0); 2245 return (td->td_sleeplocks->ll_count != 0); 2246 } 2247 2248 static int 2249 witness_proc_has_locks(struct proc *p) 2250 { 2251 struct thread *td; 2252 2253 FOREACH_THREAD_IN_PROC(p, td) { 2254 if (witness_thread_has_locks(td)) 2255 return (1); 2256 } 2257 return (0); 2258 } 2259 #endif 2260 2261 int 2262 witness_list_locks(struct lock_list_entry **lock_list, 2263 int (*prnt)(const char *fmt, ...)) 2264 { 2265 struct lock_list_entry *lle; 2266 int i, nheld; 2267 2268 nheld = 0; 2269 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2270 for (i = lle->ll_count - 1; i >= 0; i--) { 2271 witness_list_lock(&lle->ll_children[i], prnt); 2272 nheld++; 2273 } 2274 return (nheld); 2275 } 2276 2277 /* 2278 * This is a bit risky at best. We call this function when we have timed 2279 * out acquiring a spin lock, and we assume that the other CPU is stuck 2280 * with this lock held. So, we go groveling around in the other CPU's 2281 * per-cpu data to try to find the lock instance for this spin lock to 2282 * see when it was last acquired. 2283 */ 2284 void 2285 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2286 int (*prnt)(const char *fmt, ...)) 2287 { 2288 struct lock_instance *instance; 2289 struct pcpu *pc; 2290 2291 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2292 return; 2293 pc = pcpu_find(owner->td_oncpu); 2294 instance = find_instance(pc->pc_spinlocks, lock); 2295 if (instance != NULL) 2296 witness_list_lock(instance, prnt); 2297 } 2298 2299 void 2300 witness_save(struct lock_object *lock, const char **filep, int *linep) 2301 { 2302 struct lock_list_entry *lock_list; 2303 struct lock_instance *instance; 2304 struct lock_class *class; 2305 2306 /* 2307 * This function is used independently in locking code to deal with 2308 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2309 * is gone. 2310 */ 2311 if (SCHEDULER_STOPPED()) 2312 return; 2313 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2314 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2315 return; 2316 class = LOCK_CLASS(lock); 2317 if (class->lc_flags & LC_SLEEPLOCK) 2318 lock_list = curthread->td_sleeplocks; 2319 else { 2320 if (witness_skipspin) 2321 return; 2322 lock_list = PCPU_GET(spinlocks); 2323 } 2324 instance = find_instance(lock_list, lock); 2325 if (instance == NULL) { 2326 kassert_panic("%s: lock (%s) %s not locked", __func__, 2327 class->lc_name, lock->lo_name); 2328 return; 2329 } 2330 *filep = instance->li_file; 2331 *linep = instance->li_line; 2332 } 2333 2334 void 2335 witness_restore(struct lock_object *lock, const char *file, int line) 2336 { 2337 struct lock_list_entry *lock_list; 2338 struct lock_instance *instance; 2339 struct lock_class *class; 2340 2341 /* 2342 * This function is used independently in locking code to deal with 2343 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2344 * is gone. 2345 */ 2346 if (SCHEDULER_STOPPED()) 2347 return; 2348 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2349 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2350 return; 2351 class = LOCK_CLASS(lock); 2352 if (class->lc_flags & LC_SLEEPLOCK) 2353 lock_list = curthread->td_sleeplocks; 2354 else { 2355 if (witness_skipspin) 2356 return; 2357 lock_list = PCPU_GET(spinlocks); 2358 } 2359 instance = find_instance(lock_list, lock); 2360 if (instance == NULL) 2361 kassert_panic("%s: lock (%s) %s not locked", __func__, 2362 class->lc_name, lock->lo_name); 2363 lock->lo_witness->w_file = file; 2364 lock->lo_witness->w_line = line; 2365 if (instance == NULL) 2366 return; 2367 instance->li_file = file; 2368 instance->li_line = line; 2369 } 2370 2371 void 2372 witness_assert(const struct lock_object *lock, int flags, const char *file, 2373 int line) 2374 { 2375 #ifdef INVARIANT_SUPPORT 2376 struct lock_instance *instance; 2377 struct lock_class *class; 2378 2379 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2380 return; 2381 class = LOCK_CLASS(lock); 2382 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2383 instance = find_instance(curthread->td_sleeplocks, lock); 2384 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2385 instance = find_instance(PCPU_GET(spinlocks), lock); 2386 else { 2387 kassert_panic("Lock (%s) %s is not sleep or spin!", 2388 class->lc_name, lock->lo_name); 2389 return; 2390 } 2391 switch (flags) { 2392 case LA_UNLOCKED: 2393 if (instance != NULL) 2394 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2395 class->lc_name, lock->lo_name, 2396 fixup_filename(file), line); 2397 break; 2398 case LA_LOCKED: 2399 case LA_LOCKED | LA_RECURSED: 2400 case LA_LOCKED | LA_NOTRECURSED: 2401 case LA_SLOCKED: 2402 case LA_SLOCKED | LA_RECURSED: 2403 case LA_SLOCKED | LA_NOTRECURSED: 2404 case LA_XLOCKED: 2405 case LA_XLOCKED | LA_RECURSED: 2406 case LA_XLOCKED | LA_NOTRECURSED: 2407 if (instance == NULL) { 2408 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2409 class->lc_name, lock->lo_name, 2410 fixup_filename(file), line); 2411 break; 2412 } 2413 if ((flags & LA_XLOCKED) != 0 && 2414 (instance->li_flags & LI_EXCLUSIVE) == 0) 2415 kassert_panic( 2416 "Lock (%s) %s not exclusively locked @ %s:%d.", 2417 class->lc_name, lock->lo_name, 2418 fixup_filename(file), line); 2419 if ((flags & LA_SLOCKED) != 0 && 2420 (instance->li_flags & LI_EXCLUSIVE) != 0) 2421 kassert_panic( 2422 "Lock (%s) %s exclusively locked @ %s:%d.", 2423 class->lc_name, lock->lo_name, 2424 fixup_filename(file), line); 2425 if ((flags & LA_RECURSED) != 0 && 2426 (instance->li_flags & LI_RECURSEMASK) == 0) 2427 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2428 class->lc_name, lock->lo_name, 2429 fixup_filename(file), line); 2430 if ((flags & LA_NOTRECURSED) != 0 && 2431 (instance->li_flags & LI_RECURSEMASK) != 0) 2432 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2433 class->lc_name, lock->lo_name, 2434 fixup_filename(file), line); 2435 break; 2436 default: 2437 kassert_panic("Invalid lock assertion at %s:%d.", 2438 fixup_filename(file), line); 2439 2440 } 2441 #endif /* INVARIANT_SUPPORT */ 2442 } 2443 2444 static void 2445 witness_setflag(struct lock_object *lock, int flag, int set) 2446 { 2447 struct lock_list_entry *lock_list; 2448 struct lock_instance *instance; 2449 struct lock_class *class; 2450 2451 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2452 return; 2453 class = LOCK_CLASS(lock); 2454 if (class->lc_flags & LC_SLEEPLOCK) 2455 lock_list = curthread->td_sleeplocks; 2456 else { 2457 if (witness_skipspin) 2458 return; 2459 lock_list = PCPU_GET(spinlocks); 2460 } 2461 instance = find_instance(lock_list, lock); 2462 if (instance == NULL) { 2463 kassert_panic("%s: lock (%s) %s not locked", __func__, 2464 class->lc_name, lock->lo_name); 2465 return; 2466 } 2467 2468 if (set) 2469 instance->li_flags |= flag; 2470 else 2471 instance->li_flags &= ~flag; 2472 } 2473 2474 void 2475 witness_norelease(struct lock_object *lock) 2476 { 2477 2478 witness_setflag(lock, LI_NORELEASE, 1); 2479 } 2480 2481 void 2482 witness_releaseok(struct lock_object *lock) 2483 { 2484 2485 witness_setflag(lock, LI_NORELEASE, 0); 2486 } 2487 2488 #ifdef DDB 2489 static void 2490 witness_ddb_list(struct thread *td) 2491 { 2492 2493 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2494 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2495 2496 if (witness_watch < 1) 2497 return; 2498 2499 witness_list_locks(&td->td_sleeplocks, db_printf); 2500 2501 /* 2502 * We only handle spinlocks if td == curthread. This is somewhat broken 2503 * if td is currently executing on some other CPU and holds spin locks 2504 * as we won't display those locks. If we had a MI way of getting 2505 * the per-cpu data for a given cpu then we could use 2506 * td->td_oncpu to get the list of spinlocks for this thread 2507 * and "fix" this. 2508 * 2509 * That still wouldn't really fix this unless we locked the scheduler 2510 * lock or stopped the other CPU to make sure it wasn't changing the 2511 * list out from under us. It is probably best to just not try to 2512 * handle threads on other CPU's for now. 2513 */ 2514 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2515 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2516 } 2517 2518 DB_SHOW_COMMAND(locks, db_witness_list) 2519 { 2520 struct thread *td; 2521 2522 if (have_addr) 2523 td = db_lookup_thread(addr, true); 2524 else 2525 td = kdb_thread; 2526 witness_ddb_list(td); 2527 } 2528 2529 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2530 { 2531 struct thread *td; 2532 struct proc *p; 2533 2534 /* 2535 * It would be nice to list only threads and processes that actually 2536 * held sleep locks, but that information is currently not exported 2537 * by WITNESS. 2538 */ 2539 FOREACH_PROC_IN_SYSTEM(p) { 2540 if (!witness_proc_has_locks(p)) 2541 continue; 2542 FOREACH_THREAD_IN_PROC(p, td) { 2543 if (!witness_thread_has_locks(td)) 2544 continue; 2545 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2546 p->p_comm, td, td->td_tid); 2547 witness_ddb_list(td); 2548 if (db_pager_quit) 2549 return; 2550 } 2551 } 2552 } 2553 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2554 2555 DB_SHOW_COMMAND(witness, db_witness_display) 2556 { 2557 2558 witness_ddb_display(db_printf); 2559 } 2560 #endif 2561 2562 static void 2563 sbuf_print_witness_badstacks(struct sbuf *sb, size_t *oldidx) 2564 { 2565 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2566 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2567 int generation, i, j; 2568 2569 tmp_data1 = NULL; 2570 tmp_data2 = NULL; 2571 tmp_w1 = NULL; 2572 tmp_w2 = NULL; 2573 2574 /* Allocate and init temporary storage space. */ 2575 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2576 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2577 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2578 M_WAITOK | M_ZERO); 2579 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2580 M_WAITOK | M_ZERO); 2581 stack_zero(&tmp_data1->wlod_stack); 2582 stack_zero(&tmp_data2->wlod_stack); 2583 2584 restart: 2585 mtx_lock_spin(&w_mtx); 2586 generation = w_generation; 2587 mtx_unlock_spin(&w_mtx); 2588 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2589 w_lohash.wloh_count); 2590 for (i = 1; i < w_max_used_index; i++) { 2591 mtx_lock_spin(&w_mtx); 2592 if (generation != w_generation) { 2593 mtx_unlock_spin(&w_mtx); 2594 2595 /* The graph has changed, try again. */ 2596 *oldidx = 0; 2597 sbuf_clear(sb); 2598 goto restart; 2599 } 2600 2601 w1 = &w_data[i]; 2602 if (w1->w_reversed == 0) { 2603 mtx_unlock_spin(&w_mtx); 2604 continue; 2605 } 2606 2607 /* Copy w1 locally so we can release the spin lock. */ 2608 *tmp_w1 = *w1; 2609 mtx_unlock_spin(&w_mtx); 2610 2611 if (tmp_w1->w_reversed == 0) 2612 continue; 2613 for (j = 1; j < w_max_used_index; j++) { 2614 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2615 continue; 2616 2617 mtx_lock_spin(&w_mtx); 2618 if (generation != w_generation) { 2619 mtx_unlock_spin(&w_mtx); 2620 2621 /* The graph has changed, try again. */ 2622 *oldidx = 0; 2623 sbuf_clear(sb); 2624 goto restart; 2625 } 2626 2627 w2 = &w_data[j]; 2628 data1 = witness_lock_order_get(w1, w2); 2629 data2 = witness_lock_order_get(w2, w1); 2630 2631 /* 2632 * Copy information locally so we can release the 2633 * spin lock. 2634 */ 2635 *tmp_w2 = *w2; 2636 2637 if (data1) { 2638 stack_zero(&tmp_data1->wlod_stack); 2639 stack_copy(&data1->wlod_stack, 2640 &tmp_data1->wlod_stack); 2641 } 2642 if (data2 && data2 != data1) { 2643 stack_zero(&tmp_data2->wlod_stack); 2644 stack_copy(&data2->wlod_stack, 2645 &tmp_data2->wlod_stack); 2646 } 2647 mtx_unlock_spin(&w_mtx); 2648 2649 sbuf_printf(sb, 2650 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2651 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2652 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2653 if (data1) { 2654 sbuf_printf(sb, 2655 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2656 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2657 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2658 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2659 sbuf_printf(sb, "\n"); 2660 } 2661 if (data2 && data2 != data1) { 2662 sbuf_printf(sb, 2663 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2664 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2665 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2666 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2667 sbuf_printf(sb, "\n"); 2668 } 2669 } 2670 } 2671 mtx_lock_spin(&w_mtx); 2672 if (generation != w_generation) { 2673 mtx_unlock_spin(&w_mtx); 2674 2675 /* 2676 * The graph changed while we were printing stack data, 2677 * try again. 2678 */ 2679 *oldidx = 0; 2680 sbuf_clear(sb); 2681 goto restart; 2682 } 2683 mtx_unlock_spin(&w_mtx); 2684 2685 /* Free temporary storage space. */ 2686 free(tmp_data1, M_TEMP); 2687 free(tmp_data2, M_TEMP); 2688 free(tmp_w1, M_TEMP); 2689 free(tmp_w2, M_TEMP); 2690 } 2691 2692 static int 2693 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2694 { 2695 struct sbuf *sb; 2696 int error; 2697 2698 if (witness_watch < 1) { 2699 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2700 return (error); 2701 } 2702 if (witness_cold) { 2703 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2704 return (error); 2705 } 2706 error = 0; 2707 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND); 2708 if (sb == NULL) 2709 return (ENOMEM); 2710 2711 sbuf_print_witness_badstacks(sb, &req->oldidx); 2712 2713 sbuf_finish(sb); 2714 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2715 sbuf_delete(sb); 2716 2717 return (error); 2718 } 2719 2720 #ifdef DDB 2721 static int 2722 sbuf_db_printf_drain(void *arg __unused, const char *data, int len) 2723 { 2724 2725 return (db_printf("%.*s", len, data)); 2726 } 2727 2728 DB_SHOW_COMMAND(badstacks, db_witness_badstacks) 2729 { 2730 struct sbuf sb; 2731 char buffer[128]; 2732 size_t dummy; 2733 2734 sbuf_new(&sb, buffer, sizeof(buffer), SBUF_FIXEDLEN); 2735 sbuf_set_drain(&sb, sbuf_db_printf_drain, NULL); 2736 sbuf_print_witness_badstacks(&sb, &dummy); 2737 sbuf_finish(&sb); 2738 } 2739 #endif 2740 2741 static int 2742 sysctl_debug_witness_channel(SYSCTL_HANDLER_ARGS) 2743 { 2744 static const struct { 2745 enum witness_channel channel; 2746 const char *name; 2747 } channels[] = { 2748 { WITNESS_CONSOLE, "console" }, 2749 { WITNESS_LOG, "log" }, 2750 { WITNESS_NONE, "none" }, 2751 }; 2752 char buf[16]; 2753 u_int i; 2754 int error; 2755 2756 buf[0] = '\0'; 2757 for (i = 0; i < nitems(channels); i++) 2758 if (witness_channel == channels[i].channel) { 2759 snprintf(buf, sizeof(buf), "%s", channels[i].name); 2760 break; 2761 } 2762 2763 error = sysctl_handle_string(oidp, buf, sizeof(buf), req); 2764 if (error != 0 || req->newptr == NULL) 2765 return (error); 2766 2767 error = EINVAL; 2768 for (i = 0; i < nitems(channels); i++) 2769 if (strcmp(channels[i].name, buf) == 0) { 2770 witness_channel = channels[i].channel; 2771 error = 0; 2772 break; 2773 } 2774 return (error); 2775 } 2776 2777 static int 2778 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2779 { 2780 struct witness *w; 2781 struct sbuf *sb; 2782 int error; 2783 2784 #ifdef __i386__ 2785 error = SYSCTL_OUT(req, w_notallowed, sizeof(w_notallowed)); 2786 return (error); 2787 #endif 2788 2789 if (witness_watch < 1) { 2790 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2791 return (error); 2792 } 2793 if (witness_cold) { 2794 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2795 return (error); 2796 } 2797 error = 0; 2798 2799 error = sysctl_wire_old_buffer(req, 0); 2800 if (error != 0) 2801 return (error); 2802 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2803 if (sb == NULL) 2804 return (ENOMEM); 2805 sbuf_printf(sb, "\n"); 2806 2807 mtx_lock_spin(&w_mtx); 2808 STAILQ_FOREACH(w, &w_all, w_list) 2809 w->w_displayed = 0; 2810 STAILQ_FOREACH(w, &w_all, w_list) 2811 witness_add_fullgraph(sb, w); 2812 mtx_unlock_spin(&w_mtx); 2813 2814 /* 2815 * Close the sbuf and return to userland. 2816 */ 2817 error = sbuf_finish(sb); 2818 sbuf_delete(sb); 2819 2820 return (error); 2821 } 2822 2823 static int 2824 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2825 { 2826 int error, value; 2827 2828 value = witness_watch; 2829 error = sysctl_handle_int(oidp, &value, 0, req); 2830 if (error != 0 || req->newptr == NULL) 2831 return (error); 2832 if (value > 1 || value < -1 || 2833 (witness_watch == -1 && value != witness_watch)) 2834 return (EINVAL); 2835 witness_watch = value; 2836 return (0); 2837 } 2838 2839 static void 2840 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2841 { 2842 int i; 2843 2844 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2845 return; 2846 w->w_displayed = 1; 2847 2848 WITNESS_INDEX_ASSERT(w->w_index); 2849 for (i = 1; i <= w_max_used_index; i++) { 2850 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2851 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2852 w_data[i].w_name); 2853 witness_add_fullgraph(sb, &w_data[i]); 2854 } 2855 } 2856 } 2857 2858 /* 2859 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2860 * interprets the key as a string and reads until the null 2861 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2862 * hash value computed from the key. 2863 */ 2864 static uint32_t 2865 witness_hash_djb2(const uint8_t *key, uint32_t size) 2866 { 2867 unsigned int hash = 5381; 2868 int i; 2869 2870 /* hash = hash * 33 + key[i] */ 2871 if (size) 2872 for (i = 0; i < size; i++) 2873 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2874 else 2875 for (i = 0; key[i] != 0; i++) 2876 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2877 2878 return (hash); 2879 } 2880 2881 2882 /* 2883 * Initializes the two witness hash tables. Called exactly once from 2884 * witness_initialize(). 2885 */ 2886 static void 2887 witness_init_hash_tables(void) 2888 { 2889 int i; 2890 2891 MPASS(witness_cold); 2892 2893 /* Initialize the hash tables. */ 2894 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2895 w_hash.wh_array[i] = NULL; 2896 2897 w_hash.wh_size = WITNESS_HASH_SIZE; 2898 w_hash.wh_count = 0; 2899 2900 /* Initialize the lock order data hash. */ 2901 w_lofree = NULL; 2902 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2903 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2904 w_lodata[i].wlod_next = w_lofree; 2905 w_lofree = &w_lodata[i]; 2906 } 2907 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2908 w_lohash.wloh_count = 0; 2909 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2910 w_lohash.wloh_array[i] = NULL; 2911 } 2912 2913 static struct witness * 2914 witness_hash_get(const char *key) 2915 { 2916 struct witness *w; 2917 uint32_t hash; 2918 2919 MPASS(key != NULL); 2920 if (witness_cold == 0) 2921 mtx_assert(&w_mtx, MA_OWNED); 2922 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2923 w = w_hash.wh_array[hash]; 2924 while (w != NULL) { 2925 if (strcmp(w->w_name, key) == 0) 2926 goto out; 2927 w = w->w_hash_next; 2928 } 2929 2930 out: 2931 return (w); 2932 } 2933 2934 static void 2935 witness_hash_put(struct witness *w) 2936 { 2937 uint32_t hash; 2938 2939 MPASS(w != NULL); 2940 MPASS(w->w_name != NULL); 2941 if (witness_cold == 0) 2942 mtx_assert(&w_mtx, MA_OWNED); 2943 KASSERT(witness_hash_get(w->w_name) == NULL, 2944 ("%s: trying to add a hash entry that already exists!", __func__)); 2945 KASSERT(w->w_hash_next == NULL, 2946 ("%s: w->w_hash_next != NULL", __func__)); 2947 2948 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2949 w->w_hash_next = w_hash.wh_array[hash]; 2950 w_hash.wh_array[hash] = w; 2951 w_hash.wh_count++; 2952 } 2953 2954 2955 static struct witness_lock_order_data * 2956 witness_lock_order_get(struct witness *parent, struct witness *child) 2957 { 2958 struct witness_lock_order_data *data = NULL; 2959 struct witness_lock_order_key key; 2960 unsigned int hash; 2961 2962 MPASS(parent != NULL && child != NULL); 2963 key.from = parent->w_index; 2964 key.to = child->w_index; 2965 WITNESS_INDEX_ASSERT(key.from); 2966 WITNESS_INDEX_ASSERT(key.to); 2967 if ((w_rmatrix[parent->w_index][child->w_index] 2968 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2969 goto out; 2970 2971 hash = witness_hash_djb2((const char*)&key, 2972 sizeof(key)) % w_lohash.wloh_size; 2973 data = w_lohash.wloh_array[hash]; 2974 while (data != NULL) { 2975 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2976 break; 2977 data = data->wlod_next; 2978 } 2979 2980 out: 2981 return (data); 2982 } 2983 2984 /* 2985 * Verify that parent and child have a known relationship, are not the same, 2986 * and child is actually a child of parent. This is done without w_mtx 2987 * to avoid contention in the common case. 2988 */ 2989 static int 2990 witness_lock_order_check(struct witness *parent, struct witness *child) 2991 { 2992 2993 if (parent != child && 2994 w_rmatrix[parent->w_index][child->w_index] 2995 & WITNESS_LOCK_ORDER_KNOWN && 2996 isitmychild(parent, child)) 2997 return (1); 2998 2999 return (0); 3000 } 3001 3002 static int 3003 witness_lock_order_add(struct witness *parent, struct witness *child) 3004 { 3005 struct witness_lock_order_data *data = NULL; 3006 struct witness_lock_order_key key; 3007 unsigned int hash; 3008 3009 MPASS(parent != NULL && child != NULL); 3010 key.from = parent->w_index; 3011 key.to = child->w_index; 3012 WITNESS_INDEX_ASSERT(key.from); 3013 WITNESS_INDEX_ASSERT(key.to); 3014 if (w_rmatrix[parent->w_index][child->w_index] 3015 & WITNESS_LOCK_ORDER_KNOWN) 3016 return (1); 3017 3018 hash = witness_hash_djb2((const char*)&key, 3019 sizeof(key)) % w_lohash.wloh_size; 3020 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 3021 data = w_lofree; 3022 if (data == NULL) 3023 return (0); 3024 w_lofree = data->wlod_next; 3025 data->wlod_next = w_lohash.wloh_array[hash]; 3026 data->wlod_key = key; 3027 w_lohash.wloh_array[hash] = data; 3028 w_lohash.wloh_count++; 3029 stack_zero(&data->wlod_stack); 3030 stack_save(&data->wlod_stack); 3031 return (1); 3032 } 3033 3034 /* Call this whenever the structure of the witness graph changes. */ 3035 static void 3036 witness_increment_graph_generation(void) 3037 { 3038 3039 if (witness_cold == 0) 3040 mtx_assert(&w_mtx, MA_OWNED); 3041 w_generation++; 3042 } 3043 3044 static int 3045 witness_output_drain(void *arg __unused, const char *data, int len) 3046 { 3047 3048 witness_output("%.*s", len, data); 3049 return (len); 3050 } 3051 3052 static void 3053 witness_debugger(int cond, const char *msg) 3054 { 3055 char buf[32]; 3056 struct sbuf sb; 3057 struct stack st; 3058 3059 if (!cond) 3060 return; 3061 3062 if (witness_trace) { 3063 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN); 3064 sbuf_set_drain(&sb, witness_output_drain, NULL); 3065 3066 stack_zero(&st); 3067 stack_save(&st); 3068 witness_output("stack backtrace:\n"); 3069 stack_sbuf_print_ddb(&sb, &st); 3070 3071 sbuf_finish(&sb); 3072 } 3073 3074 #ifdef KDB 3075 if (witness_kdb) 3076 kdb_enter(KDB_WHY_WITNESS, msg); 3077 #endif 3078 } 3079