1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of the `witness' lock verifier. Originally implemented for 34 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 35 * classes in FreeBSD. 36 */ 37 38 /* 39 * Main Entry: witness 40 * Pronunciation: 'wit-n&s 41 * Function: noun 42 * Etymology: Middle English witnesse, from Old English witnes knowledge, 43 * testimony, witness, from 2wit 44 * Date: before 12th century 45 * 1 : attestation of a fact or event : TESTIMONY 46 * 2 : one that gives evidence; specifically : one who testifies in 47 * a cause or before a judicial tribunal 48 * 3 : one asked to be present at a transaction so as to be able to 49 * testify to its having taken place 50 * 4 : one who has personal knowledge of something 51 * 5 a : something serving as evidence or proof : SIGN 52 * b : public affirmation by word or example of usually 53 * religious faith or conviction <the heroic witness to divine 54 * life -- Pilot> 55 * 6 capitalized : a member of the Jehovah's Witnesses 56 */ 57 58 /* 59 * Special rules concerning Giant and lock orders: 60 * 61 * 1) Giant must be acquired before any other mutexes. Stated another way, 62 * no other mutex may be held when Giant is acquired. 63 * 64 * 2) Giant must be released when blocking on a sleepable lock. 65 * 66 * This rule is less obvious, but is a result of Giant providing the same 67 * semantics as spl(). Basically, when a thread sleeps, it must release 68 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 69 * 2). 70 * 71 * 3) Giant may be acquired before or after sleepable locks. 72 * 73 * This rule is also not quite as obvious. Giant may be acquired after 74 * a sleepable lock because it is a non-sleepable lock and non-sleepable 75 * locks may always be acquired while holding a sleepable lock. The second 76 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 77 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 78 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 79 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 80 * execute. Thus, acquiring Giant both before and after a sleepable lock 81 * will not result in a lock order reversal. 82 */ 83 84 #include <sys/cdefs.h> 85 __FBSDID("$FreeBSD$"); 86 87 #include "opt_ddb.h" 88 #include "opt_hwpmc_hooks.h" 89 #include "opt_witness.h" 90 91 #include <sys/param.h> 92 #include <sys/bus.h> 93 #include <sys/kdb.h> 94 #include <sys/kernel.h> 95 #include <sys/ktr.h> 96 #include <sys/lock.h> 97 #include <sys/malloc.h> 98 #include <sys/mutex.h> 99 #include <sys/priv.h> 100 #include <sys/proc.h> 101 #include <sys/sbuf.h> 102 #include <sys/sysctl.h> 103 #include <sys/systm.h> 104 105 #include <ddb/ddb.h> 106 107 #include <machine/stdarg.h> 108 109 /* Note that these traces do not work with KTR_ALQ. */ 110 #if 0 111 #define KTR_WITNESS KTR_SUBSYS 112 #else 113 #define KTR_WITNESS 0 114 #endif 115 116 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 117 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 118 119 /* Define this to check for blessed mutexes */ 120 #undef BLESSING 121 122 #define WITNESS_COUNT 1024 123 #define WITNESS_CHILDCOUNT (WITNESS_COUNT * 4) 124 #define WITNESS_SBUFSIZE 32768 125 #define WITNESS_PENDLIST 512 126 /* 127 * XXX: This is somewhat bogus, as we assume here that at most 1024 threads 128 * will hold LOCK_NCHILDREN * 2 locks. We handle failure ok, and we should 129 * probably be safe for the most part, but it's still a SWAG. 130 */ 131 #define LOCK_CHILDCOUNT (MAXCPU + 1024) * 2 132 133 #define WITNESS_NCHILDREN 6 134 135 #define LOCK_NCHILDREN 3 136 137 struct witness_child_list_entry; 138 139 /* 140 * Lock instances. A lock instance is the data associated with a lock while 141 * it is held by witness. For example, a lock instance will hold the 142 * recursion count of a lock. Lock instances are held in lists. Spin locks 143 * are held in a per-cpu list while sleep locks are held in per-thread list. 144 */ 145 struct lock_instance { 146 struct lock_object *li_lock; 147 const char *li_file; 148 int li_line; 149 u_int li_flags; /* Recursion count and LI_* flags. */ 150 }; 151 152 /* 153 * A simple list type used to build the list of locks held by a thread 154 * or CPU. We can't simply embed the list in struct lock_object since a 155 * lock may be held by more than one thread if it is a shared lock. Locks 156 * are added to the head of the list, so we fill up each list entry from 157 * "the back" logically. To ease some of the arithmetic, we actually fill 158 * in each list entry the normal way (children[0] then children[1], etc.) but 159 * when we traverse the list we read children[count-1] as the first entry 160 * down to children[0] as the final entry. 161 */ 162 struct lock_list_entry { 163 struct lock_list_entry *ll_next; 164 struct lock_instance ll_children[LOCK_NCHILDREN]; 165 u_int ll_count; 166 }; 167 168 struct witness { 169 const char *w_name; 170 struct lock_class *w_class; 171 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 172 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 173 struct witness_child_list_entry *w_children; /* Great evilness... */ 174 const char *w_file; 175 int w_line; 176 u_int w_level; 177 u_int w_refcount; 178 u_char w_Giant_squawked:1; 179 u_char w_other_squawked:1; 180 u_char w_same_squawked:1; 181 u_char w_displayed:1; 182 }; 183 184 struct witness_child_list_entry { 185 struct witness_child_list_entry *wcl_next; 186 struct witness *wcl_children[WITNESS_NCHILDREN]; 187 u_int wcl_count; 188 }; 189 190 STAILQ_HEAD(witness_list, witness); 191 192 #ifdef BLESSING 193 struct witness_blessed { 194 const char *b_lock1; 195 const char *b_lock2; 196 }; 197 #endif 198 199 struct witness_order_list_entry { 200 const char *w_name; 201 struct lock_class *w_class; 202 }; 203 204 struct witness_pendhelp { 205 const char *wh_type; 206 struct lock_object *wh_lock; 207 }; 208 209 #ifdef BLESSING 210 static int blessed(struct witness *, struct witness *); 211 #endif 212 static void depart(struct witness *w); 213 static struct witness *enroll(const char *description, 214 struct lock_class *lock_class); 215 static int insertchild(struct witness *parent, struct witness *child); 216 static int isitmychild(struct witness *parent, struct witness *child); 217 static int isitmydescendant(struct witness *parent, struct witness *child); 218 static int itismychild(struct witness *parent, struct witness *child); 219 static void removechild(struct witness *parent, struct witness *child); 220 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 221 static int sysctl_debug_witness_graphs(SYSCTL_HANDLER_ARGS); 222 static const char *fixup_filename(const char *file); 223 static void witness_addgraph(struct sbuf *sb, struct witness *parent); 224 static struct witness *witness_get(void); 225 static void witness_free(struct witness *m); 226 static struct witness_child_list_entry *witness_child_get(void); 227 static void witness_child_free(struct witness_child_list_entry *wcl); 228 static struct lock_list_entry *witness_lock_list_get(void); 229 static void witness_lock_list_free(struct lock_list_entry *lle); 230 static struct lock_instance *find_instance(struct lock_list_entry *lock_list, 231 struct lock_object *lock); 232 static void witness_list_lock(struct lock_instance *instance); 233 #ifdef DDB 234 static void witness_leveldescendents(struct witness *parent, int level); 235 static void witness_levelall(void); 236 static void witness_displaydescendants(void(*)(const char *fmt, ...), 237 struct witness *, int indent); 238 static void witness_display_list(void(*prnt)(const char *fmt, ...), 239 struct witness_list *list); 240 static void witness_display(void(*)(const char *fmt, ...)); 241 static void witness_list(struct thread *td); 242 #endif 243 244 SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, 0, "Witness Locking"); 245 246 /* 247 * If set to 0, witness is disabled. If set to a non-zero value, witness 248 * performs full lock order checking for all locks. At runtime, this 249 * value may be set to 0 to turn off witness. witness is not allowed be 250 * turned on once it is turned off, however. 251 */ 252 static int witness_watch = 1; 253 TUNABLE_INT("debug.witness.watch", &witness_watch); 254 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RW | CTLTYPE_INT, NULL, 0, 255 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 256 SYSCTL_PROC(_debug_witness, OID_AUTO, graphs, CTLTYPE_STRING | CTLFLAG_RD, 257 NULL, 0, sysctl_debug_witness_graphs, "A", "Show locks relation graphs"); 258 259 #ifdef KDB 260 /* 261 * When KDB is enabled and witness_kdb is set to 1, it will cause the system 262 * to drop into kdebug() when: 263 * - a lock hierarchy violation occurs 264 * - locks are held when going to sleep. 265 */ 266 #ifdef WITNESS_KDB 267 int witness_kdb = 1; 268 #else 269 int witness_kdb = 0; 270 #endif 271 TUNABLE_INT("debug.witness.kdb", &witness_kdb); 272 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RW, &witness_kdb, 0, ""); 273 274 /* 275 * When KDB is enabled and witness_trace is set to 1, it will cause the system 276 * to print a stack trace: 277 * - a lock hierarchy violation occurs 278 * - locks are held when going to sleep. 279 */ 280 int witness_trace = 1; 281 TUNABLE_INT("debug.witness.trace", &witness_trace); 282 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RW, &witness_trace, 0, ""); 283 #endif /* KDB */ 284 285 #ifdef WITNESS_SKIPSPIN 286 int witness_skipspin = 1; 287 #else 288 int witness_skipspin = 0; 289 #endif 290 TUNABLE_INT("debug.witness.skipspin", &witness_skipspin); 291 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, 292 &witness_skipspin, 0, ""); 293 294 static struct mtx w_mtx; 295 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 296 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 297 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 298 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 299 static struct witness_child_list_entry *w_child_free = NULL; 300 static struct lock_list_entry *w_lock_list_free = NULL; 301 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 302 static u_int pending_cnt; 303 304 static int w_free_cnt, w_spin_cnt, w_sleep_cnt, w_child_free_cnt, w_child_cnt; 305 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 306 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 307 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 308 ""); 309 SYSCTL_INT(_debug_witness, OID_AUTO, child_free_cnt, CTLFLAG_RD, 310 &w_child_free_cnt, 0, ""); 311 SYSCTL_INT(_debug_witness, OID_AUTO, child_cnt, CTLFLAG_RD, &w_child_cnt, 0, 312 ""); 313 314 static struct witness w_data[WITNESS_COUNT]; 315 static struct witness_child_list_entry w_childdata[WITNESS_CHILDCOUNT]; 316 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 317 318 static struct witness_order_list_entry order_lists[] = { 319 /* 320 * sx locks 321 */ 322 { "proctree", &lock_class_sx }, 323 { "allproc", &lock_class_sx }, 324 { "allprison", &lock_class_sx }, 325 { NULL, NULL }, 326 /* 327 * Various mutexes 328 */ 329 { "Giant", &lock_class_mtx_sleep }, 330 { "pipe mutex", &lock_class_mtx_sleep }, 331 { "sigio lock", &lock_class_mtx_sleep }, 332 { "process group", &lock_class_mtx_sleep }, 333 { "process lock", &lock_class_mtx_sleep }, 334 { "session", &lock_class_mtx_sleep }, 335 { "uidinfo hash", &lock_class_rw }, 336 #ifdef HWPMC_HOOKS 337 { "pmc-sleep", &lock_class_mtx_sleep }, 338 #endif 339 { NULL, NULL }, 340 /* 341 * Sockets 342 */ 343 { "accept", &lock_class_mtx_sleep }, 344 { "so_snd", &lock_class_mtx_sleep }, 345 { "so_rcv", &lock_class_mtx_sleep }, 346 { "sellck", &lock_class_mtx_sleep }, 347 { NULL, NULL }, 348 /* 349 * Routing 350 */ 351 { "so_rcv", &lock_class_mtx_sleep }, 352 { "radix node head", &lock_class_mtx_sleep }, 353 { "rtentry", &lock_class_mtx_sleep }, 354 { "ifaddr", &lock_class_mtx_sleep }, 355 { NULL, NULL }, 356 /* 357 * Multicast - protocol locks before interface locks, after UDP locks. 358 */ 359 { "udpinp", &lock_class_rw }, 360 { "in_multi_mtx", &lock_class_mtx_sleep }, 361 { "igmp_mtx", &lock_class_mtx_sleep }, 362 { "if_addr_mtx", &lock_class_mtx_sleep }, 363 { NULL, NULL }, 364 /* 365 * UNIX Domain Sockets 366 */ 367 { "unp", &lock_class_mtx_sleep }, 368 { "so_snd", &lock_class_mtx_sleep }, 369 { NULL, NULL }, 370 /* 371 * UDP/IP 372 */ 373 { "udp", &lock_class_rw }, 374 { "udpinp", &lock_class_rw }, 375 { "so_snd", &lock_class_mtx_sleep }, 376 { NULL, NULL }, 377 /* 378 * TCP/IP 379 */ 380 { "tcp", &lock_class_rw }, 381 { "tcpinp", &lock_class_rw }, 382 { "so_snd", &lock_class_mtx_sleep }, 383 { NULL, NULL }, 384 /* 385 * SLIP 386 */ 387 { "slip_mtx", &lock_class_mtx_sleep }, 388 { "slip sc_mtx", &lock_class_mtx_sleep }, 389 { NULL, NULL }, 390 /* 391 * netatalk 392 */ 393 { "ddp_list_mtx", &lock_class_mtx_sleep }, 394 { "ddp_mtx", &lock_class_mtx_sleep }, 395 { NULL, NULL }, 396 /* 397 * BPF 398 */ 399 { "bpf global lock", &lock_class_mtx_sleep }, 400 { "bpf interface lock", &lock_class_mtx_sleep }, 401 { "bpf cdev lock", &lock_class_mtx_sleep }, 402 { NULL, NULL }, 403 /* 404 * NFS server 405 */ 406 { "nfsd_mtx", &lock_class_mtx_sleep }, 407 { "so_snd", &lock_class_mtx_sleep }, 408 { NULL, NULL }, 409 410 /* 411 * IEEE 802.11 412 */ 413 { "802.11 com lock", &lock_class_mtx_sleep}, 414 { NULL, NULL }, 415 /* 416 * Network drivers 417 */ 418 { "network driver", &lock_class_mtx_sleep}, 419 { NULL, NULL }, 420 421 /* 422 * Netgraph 423 */ 424 { "ng_node", &lock_class_mtx_sleep }, 425 { "ng_worklist", &lock_class_mtx_sleep }, 426 { NULL, NULL }, 427 /* 428 * CDEV 429 */ 430 { "system map", &lock_class_mtx_sleep }, 431 { "vm page queue mutex", &lock_class_mtx_sleep }, 432 { "vnode interlock", &lock_class_mtx_sleep }, 433 { "cdev", &lock_class_mtx_sleep }, 434 { NULL, NULL }, 435 /* 436 * kqueue/VFS interaction 437 */ 438 { "kqueue", &lock_class_mtx_sleep }, 439 { "struct mount mtx", &lock_class_mtx_sleep }, 440 { "vnode interlock", &lock_class_mtx_sleep }, 441 { NULL, NULL }, 442 /* 443 * spin locks 444 */ 445 #ifdef SMP 446 { "ap boot", &lock_class_mtx_spin }, 447 #endif 448 { "rm.mutex_mtx", &lock_class_mtx_spin }, 449 { "sio", &lock_class_mtx_spin }, 450 { "scrlock", &lock_class_mtx_spin }, 451 #ifdef __i386__ 452 { "cy", &lock_class_mtx_spin }, 453 #endif 454 #ifdef __sparc64__ 455 { "pcib_mtx", &lock_class_mtx_spin }, 456 { "rtc_mtx", &lock_class_mtx_spin }, 457 #endif 458 { "scc_hwmtx", &lock_class_mtx_spin }, 459 { "uart_hwmtx", &lock_class_mtx_spin }, 460 { "fast_taskqueue", &lock_class_mtx_spin }, 461 { "intr table", &lock_class_mtx_spin }, 462 #ifdef HWPMC_HOOKS 463 { "pmc-per-proc", &lock_class_mtx_spin }, 464 #endif 465 { "process slock", &lock_class_mtx_spin }, 466 { "sleepq chain", &lock_class_mtx_spin }, 467 { "umtx lock", &lock_class_mtx_spin }, 468 { "rm_spinlock", &lock_class_mtx_spin }, 469 { "turnstile chain", &lock_class_mtx_spin }, 470 { "turnstile lock", &lock_class_mtx_spin }, 471 { "sched lock", &lock_class_mtx_spin }, 472 { "td_contested", &lock_class_mtx_spin }, 473 { "callout", &lock_class_mtx_spin }, 474 { "entropy harvest mutex", &lock_class_mtx_spin }, 475 { "syscons video lock", &lock_class_mtx_spin }, 476 { "time lock", &lock_class_mtx_spin }, 477 #ifdef SMP 478 { "smp rendezvous", &lock_class_mtx_spin }, 479 #endif 480 #ifdef __powerpc__ 481 { "tlb0", &lock_class_mtx_spin }, 482 #endif 483 /* 484 * leaf locks 485 */ 486 { "intrcnt", &lock_class_mtx_spin }, 487 { "icu", &lock_class_mtx_spin }, 488 #if defined(SMP) && defined(__sparc64__) 489 { "ipi", &lock_class_mtx_spin }, 490 #endif 491 #ifdef __i386__ 492 { "allpmaps", &lock_class_mtx_spin }, 493 { "descriptor tables", &lock_class_mtx_spin }, 494 #endif 495 { "clk", &lock_class_mtx_spin }, 496 { "cpuset", &lock_class_mtx_spin }, 497 { "mprof lock", &lock_class_mtx_spin }, 498 { "zombie lock", &lock_class_mtx_spin }, 499 { "ALD Queue", &lock_class_mtx_spin }, 500 #ifdef __ia64__ 501 { "MCA spin lock", &lock_class_mtx_spin }, 502 #endif 503 #if defined(__i386__) || defined(__amd64__) 504 { "pcicfg", &lock_class_mtx_spin }, 505 { "NDIS thread lock", &lock_class_mtx_spin }, 506 #endif 507 { "tw_osl_io_lock", &lock_class_mtx_spin }, 508 { "tw_osl_q_lock", &lock_class_mtx_spin }, 509 { "tw_cl_io_lock", &lock_class_mtx_spin }, 510 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 511 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 512 #ifdef HWPMC_HOOKS 513 { "pmc-leaf", &lock_class_mtx_spin }, 514 #endif 515 { "blocked lock", &lock_class_mtx_spin }, 516 { NULL, NULL }, 517 { NULL, NULL } 518 }; 519 520 #ifdef BLESSING 521 /* 522 * Pairs of locks which have been blessed 523 * Don't complain about order problems with blessed locks 524 */ 525 static struct witness_blessed blessed_list[] = { 526 }; 527 static int blessed_count = 528 sizeof(blessed_list) / sizeof(struct witness_blessed); 529 #endif 530 531 /* 532 * This global is set to 0 once it becomes safe to use the witness code. 533 */ 534 static int witness_cold = 1; 535 536 /* 537 * This global is set to 1 once the static lock orders have been enrolled 538 * so that a warning can be issued for any spin locks enrolled later. 539 */ 540 static int witness_spin_warn = 0; 541 542 /* 543 * The WITNESS-enabled diagnostic code. Note that the witness code does 544 * assume that the early boot is single-threaded at least until after this 545 * routine is completed. 546 */ 547 static void 548 witness_initialize(void *dummy __unused) 549 { 550 struct lock_object *lock; 551 struct witness_order_list_entry *order; 552 struct witness *w, *w1; 553 int i; 554 555 /* 556 * We have to release Giant before initializing its witness 557 * structure so that WITNESS doesn't get confused. 558 */ 559 mtx_unlock(&Giant); 560 mtx_assert(&Giant, MA_NOTOWNED); 561 562 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 563 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 564 MTX_NOWITNESS | MTX_NOPROFILE); 565 for (i = 0; i < WITNESS_COUNT; i++) 566 witness_free(&w_data[i]); 567 for (i = 0; i < WITNESS_CHILDCOUNT; i++) 568 witness_child_free(&w_childdata[i]); 569 for (i = 0; i < LOCK_CHILDCOUNT; i++) 570 witness_lock_list_free(&w_locklistdata[i]); 571 572 /* First add in all the specified order lists. */ 573 for (order = order_lists; order->w_name != NULL; order++) { 574 w = enroll(order->w_name, order->w_class); 575 if (w == NULL) 576 continue; 577 w->w_file = "order list"; 578 for (order++; order->w_name != NULL; order++) { 579 w1 = enroll(order->w_name, order->w_class); 580 if (w1 == NULL) 581 continue; 582 w1->w_file = "order list"; 583 if (!itismychild(w, w1)) 584 panic("Not enough memory for static orders!"); 585 w = w1; 586 } 587 } 588 witness_spin_warn = 1; 589 590 /* Iterate through all locks and add them to witness. */ 591 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 592 lock = pending_locks[i].wh_lock; 593 KASSERT(lock->lo_flags & LO_WITNESS, 594 ("%s: lock %s is on pending list but not LO_WITNESS", 595 __func__, lock->lo_name)); 596 lock->lo_witness = enroll(pending_locks[i].wh_type, 597 LOCK_CLASS(lock)); 598 } 599 600 /* Mark the witness code as being ready for use. */ 601 witness_cold = 0; 602 603 mtx_lock(&Giant); 604 } 605 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 606 NULL); 607 608 static int 609 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 610 { 611 int error, value; 612 613 value = witness_watch; 614 error = sysctl_handle_int(oidp, &value, 0, req); 615 if (error != 0 || req->newptr == NULL) 616 return (error); 617 if (value == witness_watch) 618 return (0); 619 if (value != 0) 620 return (EINVAL); 621 witness_watch = 0; 622 return (0); 623 } 624 625 static int 626 sysctl_debug_witness_graphs(SYSCTL_HANDLER_ARGS) 627 { 628 struct witness *w; 629 struct sbuf *sb; 630 int error; 631 632 KASSERT(witness_cold == 0, ("%s: witness is still cold", __func__)); 633 634 sb = sbuf_new(NULL, NULL, WITNESS_SBUFSIZE, SBUF_FIXEDLEN); 635 if (sb == NULL) 636 return (ENOMEM); 637 638 mtx_lock_spin(&w_mtx); 639 STAILQ_FOREACH(w, &w_all, w_list) 640 w->w_displayed = 0; 641 STAILQ_FOREACH(w, &w_all, w_list) 642 witness_addgraph(sb, w); 643 mtx_unlock_spin(&w_mtx); 644 645 if (sbuf_overflowed(sb)) { 646 sbuf_delete(sb); 647 panic("%s: sbuf overflowed, bump the static buffer size\n", 648 __func__); 649 } 650 651 sbuf_finish(sb); 652 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 653 sbuf_delete(sb); 654 655 return (error); 656 } 657 658 void 659 witness_init(struct lock_object *lock, const char *type) 660 { 661 struct lock_class *class; 662 663 /* Various sanity checks. */ 664 class = LOCK_CLASS(lock); 665 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 666 (class->lc_flags & LC_RECURSABLE) == 0) 667 panic("%s: lock (%s) %s can not be recursable", __func__, 668 class->lc_name, lock->lo_name); 669 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 670 (class->lc_flags & LC_SLEEPABLE) == 0) 671 panic("%s: lock (%s) %s can not be sleepable", __func__, 672 class->lc_name, lock->lo_name); 673 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 674 (class->lc_flags & LC_UPGRADABLE) == 0) 675 panic("%s: lock (%s) %s can not be upgradable", __func__, 676 class->lc_name, lock->lo_name); 677 678 /* 679 * If we shouldn't watch this lock, then just clear lo_witness. 680 * Otherwise, if witness_cold is set, then it is too early to 681 * enroll this lock, so defer it to witness_initialize() by adding 682 * it to the pending_locks list. If it is not too early, then enroll 683 * the lock now. 684 */ 685 if (witness_watch == 0 || panicstr != NULL || 686 (lock->lo_flags & LO_WITNESS) == 0) 687 lock->lo_witness = NULL; 688 else if (witness_cold) { 689 pending_locks[pending_cnt].wh_lock = lock; 690 pending_locks[pending_cnt++].wh_type = type; 691 if (pending_cnt > WITNESS_PENDLIST) 692 panic("%s: pending locks list is too small, bump it\n", 693 __func__); 694 } else 695 lock->lo_witness = enroll(type, class); 696 } 697 698 void 699 witness_destroy(struct lock_object *lock) 700 { 701 struct lock_class *class; 702 struct witness *w; 703 704 class = LOCK_CLASS(lock); 705 if (witness_cold) 706 panic("lock (%s) %s destroyed while witness_cold", 707 class->lc_name, lock->lo_name); 708 709 /* XXX: need to verify that no one holds the lock */ 710 if ((lock->lo_flags & LO_WITNESS) && lock->lo_witness != NULL) { 711 w = lock->lo_witness; 712 mtx_lock_spin(&w_mtx); 713 MPASS(w->w_refcount > 0); 714 w->w_refcount--; 715 716 if (w->w_refcount == 0) 717 depart(w); 718 mtx_unlock_spin(&w_mtx); 719 } 720 } 721 722 #ifdef DDB 723 static void 724 witness_levelall (void) 725 { 726 struct witness_list *list; 727 struct witness *w, *w1; 728 729 /* 730 * First clear all levels. 731 */ 732 STAILQ_FOREACH(w, &w_all, w_list) { 733 w->w_level = 0; 734 } 735 736 /* 737 * Look for locks with no parent and level all their descendants. 738 */ 739 STAILQ_FOREACH(w, &w_all, w_list) { 740 /* 741 * This is just an optimization, technically we could get 742 * away just walking the all list each time. 743 */ 744 if (w->w_class->lc_flags & LC_SLEEPLOCK) 745 list = &w_sleep; 746 else 747 list = &w_spin; 748 STAILQ_FOREACH(w1, list, w_typelist) { 749 if (isitmychild(w1, w)) 750 goto skip; 751 } 752 witness_leveldescendents(w, 0); 753 skip: 754 ; /* silence GCC 3.x */ 755 } 756 } 757 758 static void 759 witness_leveldescendents(struct witness *parent, int level) 760 { 761 struct witness_child_list_entry *wcl; 762 int i; 763 764 if (parent->w_level < level) 765 parent->w_level = level; 766 level++; 767 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 768 for (i = 0; i < wcl->wcl_count; i++) 769 witness_leveldescendents(wcl->wcl_children[i], level); 770 } 771 772 static void 773 witness_displaydescendants(void(*prnt)(const char *fmt, ...), 774 struct witness *parent, int indent) 775 { 776 struct witness_child_list_entry *wcl; 777 int i, level; 778 779 level = parent->w_level; 780 prnt("%-2d", level); 781 for (i = 0; i < indent; i++) 782 prnt(" "); 783 if (parent->w_refcount > 0) 784 prnt("%s", parent->w_name); 785 else 786 prnt("(dead)"); 787 if (parent->w_displayed) { 788 prnt(" -- (already displayed)\n"); 789 return; 790 } 791 parent->w_displayed = 1; 792 if (parent->w_refcount > 0) { 793 if (parent->w_file != NULL) 794 prnt(" -- last acquired @ %s:%d", parent->w_file, 795 parent->w_line); 796 } 797 prnt("\n"); 798 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 799 for (i = 0; i < wcl->wcl_count; i++) 800 witness_displaydescendants(prnt, 801 wcl->wcl_children[i], indent + 1); 802 } 803 804 static void 805 witness_display_list(void(*prnt)(const char *fmt, ...), 806 struct witness_list *list) 807 { 808 struct witness *w; 809 810 STAILQ_FOREACH(w, list, w_typelist) { 811 if (w->w_file == NULL || w->w_level > 0) 812 continue; 813 /* 814 * This lock has no anscestors, display its descendants. 815 */ 816 witness_displaydescendants(prnt, w, 0); 817 } 818 } 819 820 static void 821 witness_addgraph(struct sbuf *sb, struct witness *parent) 822 { 823 struct witness_child_list_entry *wcl; 824 int i; 825 826 if (parent->w_displayed != 0 || parent->w_refcount == 0 || 827 parent->w_file == NULL) 828 return; 829 830 parent->w_displayed = 1; 831 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) 832 for (i = 0; i < wcl->wcl_count; i++) { 833 sbuf_printf(sb, "\"%s\",\"%s\"\n", parent->w_name, 834 wcl->wcl_children[i]->w_name); 835 witness_addgraph(sb, wcl->wcl_children[i]); 836 } 837 } 838 839 static void 840 witness_display(void(*prnt)(const char *fmt, ...)) 841 { 842 struct witness *w; 843 844 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 845 witness_levelall(); 846 847 /* Clear all the displayed flags. */ 848 STAILQ_FOREACH(w, &w_all, w_list) { 849 w->w_displayed = 0; 850 } 851 852 /* 853 * First, handle sleep locks which have been acquired at least 854 * once. 855 */ 856 prnt("Sleep locks:\n"); 857 witness_display_list(prnt, &w_sleep); 858 859 /* 860 * Now do spin locks which have been acquired at least once. 861 */ 862 prnt("\nSpin locks:\n"); 863 witness_display_list(prnt, &w_spin); 864 865 /* 866 * Finally, any locks which have not been acquired yet. 867 */ 868 prnt("\nLocks which were never acquired:\n"); 869 STAILQ_FOREACH(w, &w_all, w_list) { 870 if (w->w_file != NULL || w->w_refcount == 0) 871 continue; 872 prnt("%s\n", w->w_name); 873 } 874 } 875 #endif /* DDB */ 876 877 /* Trim useless garbage from filenames. */ 878 static const char * 879 fixup_filename(const char *file) 880 { 881 882 if (file == NULL) 883 return (NULL); 884 while (strncmp(file, "../", 3) == 0) 885 file += 3; 886 return (file); 887 } 888 889 int 890 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 891 { 892 893 if (witness_watch == 0 || panicstr != NULL) 894 return (0); 895 896 /* Require locks that witness knows about. */ 897 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 898 lock2->lo_witness == NULL) 899 return (EINVAL); 900 901 MPASS(!mtx_owned(&w_mtx)); 902 mtx_lock_spin(&w_mtx); 903 904 /* 905 * If we already have either an explicit or implied lock order that 906 * is the other way around, then return an error. 907 */ 908 if (isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 909 mtx_unlock_spin(&w_mtx); 910 return (EDOOFUS); 911 } 912 913 /* Try to add the new order. */ 914 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 915 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 916 if (!itismychild(lock1->lo_witness, lock2->lo_witness)) 917 return (ENOMEM); 918 mtx_unlock_spin(&w_mtx); 919 return (0); 920 } 921 922 void 923 witness_checkorder(struct lock_object *lock, int flags, const char *file, 924 int line) 925 { 926 struct lock_list_entry **lock_list, *lle; 927 struct lock_instance *lock1, *lock2; 928 struct lock_class *class; 929 struct witness *w, *w1; 930 struct thread *td; 931 int i, j; 932 933 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 934 panicstr != NULL) 935 return; 936 937 /* 938 * Try locks do not block if they fail to acquire the lock, thus 939 * there is no danger of deadlocks or of switching while holding a 940 * spin lock if we acquire a lock via a try operation. This 941 * function shouldn't even be called for try locks, so panic if 942 * that happens. 943 */ 944 if (flags & LOP_TRYLOCK) 945 panic("%s should not be called for try lock operations", 946 __func__); 947 948 w = lock->lo_witness; 949 class = LOCK_CLASS(lock); 950 td = curthread; 951 file = fixup_filename(file); 952 953 if (class->lc_flags & LC_SLEEPLOCK) { 954 /* 955 * Since spin locks include a critical section, this check 956 * implicitly enforces a lock order of all sleep locks before 957 * all spin locks. 958 */ 959 if (td->td_critnest != 0 && !kdb_active) 960 panic("blockable sleep lock (%s) %s @ %s:%d", 961 class->lc_name, lock->lo_name, file, line); 962 963 /* 964 * If this is the first lock acquired then just return as 965 * no order checking is needed. 966 */ 967 if (td->td_sleeplocks == NULL) 968 return; 969 lock_list = &td->td_sleeplocks; 970 } else { 971 /* 972 * If this is the first lock, just return as no order 973 * checking is needed. We check this in both if clauses 974 * here as unifying the check would require us to use a 975 * critical section to ensure we don't migrate while doing 976 * the check. Note that if this is not the first lock, we 977 * are already in a critical section and are safe for the 978 * rest of the check. 979 */ 980 if (PCPU_GET(spinlocks) == NULL) 981 return; 982 lock_list = PCPU_PTR(spinlocks); 983 } 984 985 /* 986 * Check to see if we are recursing on a lock we already own. If 987 * so, make sure that we don't mismatch exclusive and shared lock 988 * acquires. 989 */ 990 lock1 = find_instance(*lock_list, lock); 991 if (lock1 != NULL) { 992 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 993 (flags & LOP_EXCLUSIVE) == 0) { 994 printf("shared lock of (%s) %s @ %s:%d\n", 995 class->lc_name, lock->lo_name, file, line); 996 printf("while exclusively locked from %s:%d\n", 997 lock1->li_file, lock1->li_line); 998 panic("share->excl"); 999 } 1000 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1001 (flags & LOP_EXCLUSIVE) != 0) { 1002 printf("exclusive lock of (%s) %s @ %s:%d\n", 1003 class->lc_name, lock->lo_name, file, line); 1004 printf("while share locked from %s:%d\n", 1005 lock1->li_file, lock1->li_line); 1006 panic("excl->share"); 1007 } 1008 return; 1009 } 1010 1011 /* 1012 * Check for duplicate locks of the same type. Note that we only 1013 * have to check for this on the last lock we just acquired. Any 1014 * other cases will be caught as lock order violations. 1015 */ 1016 lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1]; 1017 w1 = lock1->li_lock->lo_witness; 1018 if (w1 == w) { 1019 if (w->w_same_squawked || (lock->lo_flags & LO_DUPOK) || 1020 (flags & LOP_DUPOK)) 1021 return; 1022 w->w_same_squawked = 1; 1023 printf("acquiring duplicate lock of same type: \"%s\"\n", 1024 w->w_name); 1025 printf(" 1st %s @ %s:%d\n", lock1->li_lock->lo_name, 1026 lock1->li_file, lock1->li_line); 1027 printf(" 2nd %s @ %s:%d\n", lock->lo_name, file, line); 1028 #ifdef KDB 1029 goto debugger; 1030 #else 1031 return; 1032 #endif 1033 } 1034 MPASS(!mtx_owned(&w_mtx)); 1035 mtx_lock_spin(&w_mtx); 1036 /* 1037 * If we know that the the lock we are acquiring comes after 1038 * the lock we most recently acquired in the lock order tree, 1039 * then there is no need for any further checks. 1040 */ 1041 if (isitmychild(w1, w)) { 1042 mtx_unlock_spin(&w_mtx); 1043 return; 1044 } 1045 for (j = 0, lle = *lock_list; lle != NULL; lle = lle->ll_next) { 1046 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1047 1048 MPASS(j < WITNESS_COUNT); 1049 lock1 = &lle->ll_children[i]; 1050 w1 = lock1->li_lock->lo_witness; 1051 1052 /* 1053 * If this lock doesn't undergo witness checking, 1054 * then skip it. 1055 */ 1056 if (w1 == NULL) { 1057 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1058 ("lock missing witness structure")); 1059 continue; 1060 } 1061 /* 1062 * If we are locking Giant and this is a sleepable 1063 * lock, then skip it. 1064 */ 1065 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1066 lock == &Giant.lock_object) 1067 continue; 1068 /* 1069 * If we are locking a sleepable lock and this lock 1070 * is Giant, then skip it. 1071 */ 1072 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1073 lock1->li_lock == &Giant.lock_object) 1074 continue; 1075 /* 1076 * If we are locking a sleepable lock and this lock 1077 * isn't sleepable, we want to treat it as a lock 1078 * order violation to enfore a general lock order of 1079 * sleepable locks before non-sleepable locks. 1080 */ 1081 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1082 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1083 goto reversal; 1084 /* 1085 * If we are locking Giant and this is a non-sleepable 1086 * lock, then treat it as a reversal. 1087 */ 1088 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1089 lock == &Giant.lock_object) 1090 goto reversal; 1091 /* 1092 * Check the lock order hierarchy for a reveresal. 1093 */ 1094 if (!isitmydescendant(w, w1)) 1095 continue; 1096 reversal: 1097 /* 1098 * We have a lock order violation, check to see if it 1099 * is allowed or has already been yelled about. 1100 */ 1101 mtx_unlock_spin(&w_mtx); 1102 #ifdef BLESSING 1103 /* 1104 * If the lock order is blessed, just bail. We don't 1105 * look for other lock order violations though, which 1106 * may be a bug. 1107 */ 1108 if (blessed(w, w1)) 1109 return; 1110 #endif 1111 if (lock1->li_lock == &Giant.lock_object) { 1112 if (w1->w_Giant_squawked) 1113 return; 1114 else 1115 w1->w_Giant_squawked = 1; 1116 } else { 1117 if (w1->w_other_squawked) 1118 return; 1119 else 1120 w1->w_other_squawked = 1; 1121 } 1122 /* 1123 * Ok, yell about it. 1124 */ 1125 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1126 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1127 printf( 1128 "lock order reversal: (sleepable after non-sleepable)\n"); 1129 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1130 && lock == &Giant.lock_object) 1131 printf( 1132 "lock order reversal: (Giant after non-sleepable)\n"); 1133 else 1134 printf("lock order reversal:\n"); 1135 /* 1136 * Try to locate an earlier lock with 1137 * witness w in our list. 1138 */ 1139 do { 1140 lock2 = &lle->ll_children[i]; 1141 MPASS(lock2->li_lock != NULL); 1142 if (lock2->li_lock->lo_witness == w) 1143 break; 1144 if (i == 0 && lle->ll_next != NULL) { 1145 lle = lle->ll_next; 1146 i = lle->ll_count - 1; 1147 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1148 } else 1149 i--; 1150 } while (i >= 0); 1151 if (i < 0) { 1152 printf(" 1st %p %s (%s) @ %s:%d\n", 1153 lock1->li_lock, lock1->li_lock->lo_name, 1154 w1->w_name, lock1->li_file, lock1->li_line); 1155 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1156 lock->lo_name, w->w_name, file, line); 1157 } else { 1158 printf(" 1st %p %s (%s) @ %s:%d\n", 1159 lock2->li_lock, lock2->li_lock->lo_name, 1160 lock2->li_lock->lo_witness->w_name, 1161 lock2->li_file, lock2->li_line); 1162 printf(" 2nd %p %s (%s) @ %s:%d\n", 1163 lock1->li_lock, lock1->li_lock->lo_name, 1164 w1->w_name, lock1->li_file, lock1->li_line); 1165 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1166 lock->lo_name, w->w_name, file, line); 1167 } 1168 #ifdef KDB 1169 goto debugger; 1170 #else 1171 return; 1172 #endif 1173 } 1174 } 1175 lock1 = &(*lock_list)->ll_children[(*lock_list)->ll_count - 1]; 1176 /* 1177 * If requested, build a new lock order. However, don't build a new 1178 * relationship between a sleepable lock and Giant if it is in the 1179 * wrong direction. The correct lock order is that sleepable locks 1180 * always come before Giant. 1181 */ 1182 if (flags & LOP_NEWORDER && 1183 !(lock1->li_lock == &Giant.lock_object && 1184 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1185 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1186 w->w_name, lock1->li_lock->lo_witness->w_name); 1187 if (!itismychild(lock1->li_lock->lo_witness, w)) 1188 /* Witness is dead. */ 1189 return; 1190 } 1191 mtx_unlock_spin(&w_mtx); 1192 return; 1193 1194 #ifdef KDB 1195 debugger: 1196 if (witness_trace) 1197 kdb_backtrace(); 1198 if (witness_kdb) 1199 kdb_enter(KDB_WHY_WITNESS, __func__); 1200 #endif 1201 } 1202 1203 void 1204 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1205 { 1206 struct lock_list_entry **lock_list, *lle; 1207 struct lock_instance *instance; 1208 struct witness *w; 1209 struct thread *td; 1210 1211 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 1212 panicstr != NULL) 1213 return; 1214 w = lock->lo_witness; 1215 td = curthread; 1216 file = fixup_filename(file); 1217 1218 /* Determine lock list for this lock. */ 1219 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1220 lock_list = &td->td_sleeplocks; 1221 else 1222 lock_list = PCPU_PTR(spinlocks); 1223 1224 /* Check to see if we are recursing on a lock we already own. */ 1225 instance = find_instance(*lock_list, lock); 1226 if (instance != NULL) { 1227 instance->li_flags++; 1228 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1229 td->td_proc->p_pid, lock->lo_name, 1230 instance->li_flags & LI_RECURSEMASK); 1231 instance->li_file = file; 1232 instance->li_line = line; 1233 return; 1234 } 1235 1236 /* Update per-witness last file and line acquire. */ 1237 w->w_file = file; 1238 w->w_line = line; 1239 1240 /* Find the next open lock instance in the list and fill it. */ 1241 lle = *lock_list; 1242 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1243 lle = witness_lock_list_get(); 1244 if (lle == NULL) 1245 return; 1246 lle->ll_next = *lock_list; 1247 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1248 td->td_proc->p_pid, lle); 1249 *lock_list = lle; 1250 } 1251 instance = &lle->ll_children[lle->ll_count++]; 1252 instance->li_lock = lock; 1253 instance->li_line = line; 1254 instance->li_file = file; 1255 if ((flags & LOP_EXCLUSIVE) != 0) 1256 instance->li_flags = LI_EXCLUSIVE; 1257 else 1258 instance->li_flags = 0; 1259 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1260 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1261 } 1262 1263 void 1264 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1265 { 1266 struct lock_instance *instance; 1267 struct lock_class *class; 1268 1269 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1270 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1271 return; 1272 class = LOCK_CLASS(lock); 1273 file = fixup_filename(file); 1274 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1275 panic("upgrade of non-upgradable lock (%s) %s @ %s:%d", 1276 class->lc_name, lock->lo_name, file, line); 1277 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1278 panic("upgrade of non-sleep lock (%s) %s @ %s:%d", 1279 class->lc_name, lock->lo_name, file, line); 1280 instance = find_instance(curthread->td_sleeplocks, lock); 1281 if (instance == NULL) 1282 panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1283 class->lc_name, lock->lo_name, file, line); 1284 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1285 panic("upgrade of exclusive lock (%s) %s @ %s:%d", 1286 class->lc_name, lock->lo_name, file, line); 1287 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1288 panic("upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1289 class->lc_name, lock->lo_name, 1290 instance->li_flags & LI_RECURSEMASK, file, line); 1291 instance->li_flags |= LI_EXCLUSIVE; 1292 } 1293 1294 void 1295 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1296 int line) 1297 { 1298 struct lock_instance *instance; 1299 struct lock_class *class; 1300 1301 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1302 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1303 return; 1304 class = LOCK_CLASS(lock); 1305 file = fixup_filename(file); 1306 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1307 panic("downgrade of non-upgradable lock (%s) %s @ %s:%d", 1308 class->lc_name, lock->lo_name, file, line); 1309 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1310 panic("downgrade of non-sleep lock (%s) %s @ %s:%d", 1311 class->lc_name, lock->lo_name, file, line); 1312 instance = find_instance(curthread->td_sleeplocks, lock); 1313 if (instance == NULL) 1314 panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1315 class->lc_name, lock->lo_name, file, line); 1316 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1317 panic("downgrade of shared lock (%s) %s @ %s:%d", 1318 class->lc_name, lock->lo_name, file, line); 1319 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1320 panic("downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1321 class->lc_name, lock->lo_name, 1322 instance->li_flags & LI_RECURSEMASK, file, line); 1323 instance->li_flags &= ~LI_EXCLUSIVE; 1324 } 1325 1326 void 1327 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1328 { 1329 struct lock_list_entry **lock_list, *lle; 1330 struct lock_instance *instance; 1331 struct lock_class *class; 1332 struct thread *td; 1333 register_t s; 1334 int i, j; 1335 1336 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL || 1337 panicstr != NULL) 1338 return; 1339 td = curthread; 1340 class = LOCK_CLASS(lock); 1341 file = fixup_filename(file); 1342 1343 /* Find lock instance associated with this lock. */ 1344 if (class->lc_flags & LC_SLEEPLOCK) 1345 lock_list = &td->td_sleeplocks; 1346 else 1347 lock_list = PCPU_PTR(spinlocks); 1348 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1349 for (i = 0; i < (*lock_list)->ll_count; i++) { 1350 instance = &(*lock_list)->ll_children[i]; 1351 if (instance->li_lock == lock) 1352 goto found; 1353 } 1354 panic("lock (%s) %s not locked @ %s:%d", class->lc_name, lock->lo_name, 1355 file, line); 1356 found: 1357 1358 /* First, check for shared/exclusive mismatches. */ 1359 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && 1360 (flags & LOP_EXCLUSIVE) == 0) { 1361 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1362 lock->lo_name, file, line); 1363 printf("while exclusively locked from %s:%d\n", 1364 instance->li_file, instance->li_line); 1365 panic("excl->ushare"); 1366 } 1367 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && 1368 (flags & LOP_EXCLUSIVE) != 0) { 1369 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1370 lock->lo_name, file, line); 1371 printf("while share locked from %s:%d\n", instance->li_file, 1372 instance->li_line); 1373 panic("share->uexcl"); 1374 } 1375 1376 /* If we are recursed, unrecurse. */ 1377 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1378 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1379 td->td_proc->p_pid, instance->li_lock->lo_name, 1380 instance->li_flags); 1381 instance->li_flags--; 1382 return; 1383 } 1384 1385 /* Otherwise, remove this item from the list. */ 1386 s = intr_disable(); 1387 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1388 td->td_proc->p_pid, instance->li_lock->lo_name, 1389 (*lock_list)->ll_count - 1); 1390 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1391 (*lock_list)->ll_children[j] = 1392 (*lock_list)->ll_children[j + 1]; 1393 (*lock_list)->ll_count--; 1394 intr_restore(s); 1395 1396 /* If this lock list entry is now empty, free it. */ 1397 if ((*lock_list)->ll_count == 0) { 1398 lle = *lock_list; 1399 *lock_list = lle->ll_next; 1400 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1401 td->td_proc->p_pid, lle); 1402 witness_lock_list_free(lle); 1403 } 1404 } 1405 1406 /* 1407 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1408 * exempt Giant and sleepable locks from the checks as well. If any 1409 * non-exempt locks are held, then a supplied message is printed to the 1410 * console along with a list of the offending locks. If indicated in the 1411 * flags then a failure results in a panic as well. 1412 */ 1413 int 1414 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1415 { 1416 struct lock_list_entry *lle; 1417 struct lock_instance *lock1; 1418 struct thread *td; 1419 va_list ap; 1420 int i, n; 1421 1422 if (witness_cold || witness_watch == 0 || panicstr != NULL) 1423 return (0); 1424 n = 0; 1425 td = curthread; 1426 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1427 for (i = lle->ll_count - 1; i >= 0; i--) { 1428 lock1 = &lle->ll_children[i]; 1429 if (lock1->li_lock == lock) 1430 continue; 1431 if (flags & WARN_GIANTOK && 1432 lock1->li_lock == &Giant.lock_object) 1433 continue; 1434 if (flags & WARN_SLEEPOK && 1435 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1436 continue; 1437 if (n == 0) { 1438 va_start(ap, fmt); 1439 vprintf(fmt, ap); 1440 va_end(ap); 1441 printf(" with the following"); 1442 if (flags & WARN_SLEEPOK) 1443 printf(" non-sleepable"); 1444 printf(" locks held:\n"); 1445 } 1446 n++; 1447 witness_list_lock(lock1); 1448 } 1449 if (PCPU_GET(spinlocks) != NULL) { 1450 /* 1451 * Since we already hold a spinlock preemption is 1452 * already blocked. 1453 */ 1454 if (n == 0) { 1455 va_start(ap, fmt); 1456 vprintf(fmt, ap); 1457 va_end(ap); 1458 printf(" with the following"); 1459 if (flags & WARN_SLEEPOK) 1460 printf(" non-sleepable"); 1461 printf(" locks held:\n"); 1462 } 1463 n += witness_list_locks(PCPU_PTR(spinlocks)); 1464 } 1465 if (flags & WARN_PANIC && n) 1466 panic("witness_warn"); 1467 #ifdef KDB 1468 else if (witness_kdb && n) 1469 kdb_enter(KDB_WHY_WITNESS, __func__); 1470 else if (witness_trace && n) 1471 kdb_backtrace(); 1472 #endif 1473 return (n); 1474 } 1475 1476 const char * 1477 witness_file(struct lock_object *lock) 1478 { 1479 struct witness *w; 1480 1481 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL) 1482 return ("?"); 1483 w = lock->lo_witness; 1484 return (w->w_file); 1485 } 1486 1487 int 1488 witness_line(struct lock_object *lock) 1489 { 1490 struct witness *w; 1491 1492 if (witness_cold || witness_watch == 0 || lock->lo_witness == NULL) 1493 return (0); 1494 w = lock->lo_witness; 1495 return (w->w_line); 1496 } 1497 1498 static struct witness * 1499 enroll(const char *description, struct lock_class *lock_class) 1500 { 1501 struct witness *w; 1502 1503 if (witness_watch == 0 || panicstr != NULL) 1504 return (NULL); 1505 if ((lock_class->lc_flags & LC_SPINLOCK) && witness_skipspin) 1506 return (NULL); 1507 mtx_lock_spin(&w_mtx); 1508 STAILQ_FOREACH(w, &w_all, w_list) { 1509 if (w->w_name == description || (w->w_refcount > 0 && 1510 strcmp(description, w->w_name) == 0)) { 1511 w->w_refcount++; 1512 mtx_unlock_spin(&w_mtx); 1513 if (lock_class != w->w_class) 1514 panic( 1515 "lock (%s) %s does not match earlier (%s) lock", 1516 description, lock_class->lc_name, 1517 w->w_class->lc_name); 1518 return (w); 1519 } 1520 } 1521 if ((w = witness_get()) == NULL) { 1522 printf("WITNESS: unable to allocate a new witness object\n"); 1523 goto out; 1524 } 1525 w->w_name = description; 1526 w->w_class = lock_class; 1527 w->w_refcount = 1; 1528 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1529 if (lock_class->lc_flags & LC_SPINLOCK) { 1530 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1531 w_spin_cnt++; 1532 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1533 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1534 w_sleep_cnt++; 1535 } else { 1536 mtx_unlock_spin(&w_mtx); 1537 panic("lock class %s is not sleep or spin", 1538 lock_class->lc_name); 1539 } 1540 mtx_unlock_spin(&w_mtx); 1541 out: 1542 /* 1543 * We issue a warning for any spin locks not defined in the static 1544 * order list as a way to discourage their use (folks should really 1545 * be using non-spin mutexes most of the time). However, several 1546 * 3rd part device drivers use spin locks because that is all they 1547 * have available on Windows and Linux and they think that normal 1548 * mutexes are insufficient. 1549 */ 1550 if ((lock_class->lc_flags & LC_SPINLOCK) && witness_spin_warn) 1551 printf("WITNESS: spin lock %s not in order list\n", 1552 description); 1553 return (w); 1554 } 1555 1556 /* Don't let the door bang you on the way out... */ 1557 static void 1558 depart(struct witness *w) 1559 { 1560 struct witness_child_list_entry *wcl, *nwcl; 1561 struct witness_list *list; 1562 struct witness *parent; 1563 1564 MPASS(w->w_refcount == 0); 1565 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1566 list = &w_sleep; 1567 w_sleep_cnt--; 1568 } else { 1569 list = &w_spin; 1570 w_spin_cnt--; 1571 } 1572 /* 1573 * First, we run through the entire tree looking for any 1574 * witnesses that the outgoing witness is a child of. For 1575 * each parent that we find, we reparent all the direct 1576 * children of the outgoing witness to its parent. 1577 */ 1578 STAILQ_FOREACH(parent, list, w_typelist) { 1579 if (!isitmychild(parent, w)) 1580 continue; 1581 removechild(parent, w); 1582 } 1583 1584 /* 1585 * Now we go through and free up the child list of the 1586 * outgoing witness. 1587 */ 1588 for (wcl = w->w_children; wcl != NULL; wcl = nwcl) { 1589 nwcl = wcl->wcl_next; 1590 w_child_cnt--; 1591 witness_child_free(wcl); 1592 } 1593 1594 /* 1595 * Detach from various lists and free. 1596 */ 1597 STAILQ_REMOVE(list, w, witness, w_typelist); 1598 STAILQ_REMOVE(&w_all, w, witness, w_list); 1599 witness_free(w); 1600 } 1601 1602 /* 1603 * Add "child" as a direct child of "parent". Returns false if 1604 * we fail due to out of memory. 1605 */ 1606 static int 1607 insertchild(struct witness *parent, struct witness *child) 1608 { 1609 struct witness_child_list_entry **wcl; 1610 1611 MPASS(child != NULL && parent != NULL); 1612 1613 /* 1614 * Insert "child" after "parent" 1615 */ 1616 wcl = &parent->w_children; 1617 while (*wcl != NULL && (*wcl)->wcl_count == WITNESS_NCHILDREN) 1618 wcl = &(*wcl)->wcl_next; 1619 if (*wcl == NULL) { 1620 *wcl = witness_child_get(); 1621 if (*wcl == NULL) 1622 return (0); 1623 w_child_cnt++; 1624 } 1625 (*wcl)->wcl_children[(*wcl)->wcl_count++] = child; 1626 1627 return (1); 1628 } 1629 1630 1631 static int 1632 itismychild(struct witness *parent, struct witness *child) 1633 { 1634 1635 MPASS(child != NULL && parent != NULL); 1636 if ((parent->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) != 1637 (child->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))) 1638 panic( 1639 "%s: parent (%s) and child (%s) are not the same lock type", 1640 __func__, parent->w_class->lc_name, 1641 child->w_class->lc_name); 1642 1643 return (insertchild(parent, child)); 1644 } 1645 1646 static void 1647 removechild(struct witness *parent, struct witness *child) 1648 { 1649 struct witness_child_list_entry **wcl, *wcl1; 1650 int i; 1651 1652 for (wcl = &parent->w_children; *wcl != NULL; wcl = &(*wcl)->wcl_next) 1653 for (i = 0; i < (*wcl)->wcl_count; i++) 1654 if ((*wcl)->wcl_children[i] == child) 1655 goto found; 1656 return; 1657 found: 1658 (*wcl)->wcl_count--; 1659 if ((*wcl)->wcl_count > i) 1660 (*wcl)->wcl_children[i] = 1661 (*wcl)->wcl_children[(*wcl)->wcl_count]; 1662 MPASS((*wcl)->wcl_children[i] != NULL); 1663 if ((*wcl)->wcl_count != 0) 1664 return; 1665 wcl1 = *wcl; 1666 *wcl = wcl1->wcl_next; 1667 w_child_cnt--; 1668 witness_child_free(wcl1); 1669 } 1670 1671 static int 1672 isitmychild(struct witness *parent, struct witness *child) 1673 { 1674 struct witness_child_list_entry *wcl; 1675 int i; 1676 1677 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) { 1678 for (i = 0; i < wcl->wcl_count; i++) { 1679 if (wcl->wcl_children[i] == child) 1680 return (1); 1681 } 1682 } 1683 return (0); 1684 } 1685 1686 static int 1687 isitmydescendant(struct witness *parent, struct witness *child) 1688 { 1689 struct witness_child_list_entry *wcl; 1690 int i, j; 1691 1692 if (isitmychild(parent, child)) 1693 return (1); 1694 j = 0; 1695 for (wcl = parent->w_children; wcl != NULL; wcl = wcl->wcl_next) { 1696 MPASS(j < 1000); 1697 for (i = 0; i < wcl->wcl_count; i++) { 1698 if (isitmydescendant(wcl->wcl_children[i], child)) 1699 return (1); 1700 } 1701 j++; 1702 } 1703 return (0); 1704 } 1705 1706 #ifdef BLESSING 1707 static int 1708 blessed(struct witness *w1, struct witness *w2) 1709 { 1710 int i; 1711 struct witness_blessed *b; 1712 1713 for (i = 0; i < blessed_count; i++) { 1714 b = &blessed_list[i]; 1715 if (strcmp(w1->w_name, b->b_lock1) == 0) { 1716 if (strcmp(w2->w_name, b->b_lock2) == 0) 1717 return (1); 1718 continue; 1719 } 1720 if (strcmp(w1->w_name, b->b_lock2) == 0) 1721 if (strcmp(w2->w_name, b->b_lock1) == 0) 1722 return (1); 1723 } 1724 return (0); 1725 } 1726 #endif 1727 1728 static struct witness * 1729 witness_get(void) 1730 { 1731 struct witness *w; 1732 1733 if (witness_watch == 0) { 1734 mtx_unlock_spin(&w_mtx); 1735 return (NULL); 1736 } 1737 if (STAILQ_EMPTY(&w_free)) { 1738 witness_watch = 0; 1739 mtx_unlock_spin(&w_mtx); 1740 printf("%s: witness exhausted\n", __func__); 1741 return (NULL); 1742 } 1743 w = STAILQ_FIRST(&w_free); 1744 STAILQ_REMOVE_HEAD(&w_free, w_list); 1745 w_free_cnt--; 1746 bzero(w, sizeof(*w)); 1747 return (w); 1748 } 1749 1750 static void 1751 witness_free(struct witness *w) 1752 { 1753 1754 STAILQ_INSERT_HEAD(&w_free, w, w_list); 1755 w_free_cnt++; 1756 } 1757 1758 static struct witness_child_list_entry * 1759 witness_child_get(void) 1760 { 1761 struct witness_child_list_entry *wcl; 1762 1763 if (witness_watch == 0) { 1764 mtx_unlock_spin(&w_mtx); 1765 return (NULL); 1766 } 1767 wcl = w_child_free; 1768 if (wcl == NULL) { 1769 witness_watch = 0; 1770 mtx_unlock_spin(&w_mtx); 1771 printf("%s: witness exhausted\n", __func__); 1772 return (NULL); 1773 } 1774 w_child_free = wcl->wcl_next; 1775 w_child_free_cnt--; 1776 bzero(wcl, sizeof(*wcl)); 1777 return (wcl); 1778 } 1779 1780 static void 1781 witness_child_free(struct witness_child_list_entry *wcl) 1782 { 1783 1784 wcl->wcl_next = w_child_free; 1785 w_child_free = wcl; 1786 w_child_free_cnt++; 1787 } 1788 1789 static struct lock_list_entry * 1790 witness_lock_list_get(void) 1791 { 1792 struct lock_list_entry *lle; 1793 1794 if (witness_watch == 0) 1795 return (NULL); 1796 mtx_lock_spin(&w_mtx); 1797 lle = w_lock_list_free; 1798 if (lle == NULL) { 1799 witness_watch = 0; 1800 mtx_unlock_spin(&w_mtx); 1801 printf("%s: witness exhausted\n", __func__); 1802 return (NULL); 1803 } 1804 w_lock_list_free = lle->ll_next; 1805 mtx_unlock_spin(&w_mtx); 1806 bzero(lle, sizeof(*lle)); 1807 return (lle); 1808 } 1809 1810 static void 1811 witness_lock_list_free(struct lock_list_entry *lle) 1812 { 1813 1814 mtx_lock_spin(&w_mtx); 1815 lle->ll_next = w_lock_list_free; 1816 w_lock_list_free = lle; 1817 mtx_unlock_spin(&w_mtx); 1818 } 1819 1820 static struct lock_instance * 1821 find_instance(struct lock_list_entry *lock_list, struct lock_object *lock) 1822 { 1823 struct lock_list_entry *lle; 1824 struct lock_instance *instance; 1825 int i; 1826 1827 for (lle = lock_list; lle != NULL; lle = lle->ll_next) 1828 for (i = lle->ll_count - 1; i >= 0; i--) { 1829 instance = &lle->ll_children[i]; 1830 if (instance->li_lock == lock) 1831 return (instance); 1832 } 1833 return (NULL); 1834 } 1835 1836 static void 1837 witness_list_lock(struct lock_instance *instance) 1838 { 1839 struct lock_object *lock; 1840 1841 lock = instance->li_lock; 1842 printf("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 1843 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 1844 if (lock->lo_witness->w_name != lock->lo_name) 1845 printf(" (%s)", lock->lo_witness->w_name); 1846 printf(" r = %d (%p) locked @ %s:%d\n", 1847 instance->li_flags & LI_RECURSEMASK, lock, instance->li_file, 1848 instance->li_line); 1849 } 1850 1851 #ifdef DDB 1852 static int 1853 witness_thread_has_locks(struct thread *td) 1854 { 1855 1856 return (td->td_sleeplocks != NULL); 1857 } 1858 1859 static int 1860 witness_proc_has_locks(struct proc *p) 1861 { 1862 struct thread *td; 1863 1864 FOREACH_THREAD_IN_PROC(p, td) { 1865 if (witness_thread_has_locks(td)) 1866 return (1); 1867 } 1868 return (0); 1869 } 1870 #endif 1871 1872 int 1873 witness_list_locks(struct lock_list_entry **lock_list) 1874 { 1875 struct lock_list_entry *lle; 1876 int i, nheld; 1877 1878 nheld = 0; 1879 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 1880 for (i = lle->ll_count - 1; i >= 0; i--) { 1881 witness_list_lock(&lle->ll_children[i]); 1882 nheld++; 1883 } 1884 return (nheld); 1885 } 1886 1887 /* 1888 * This is a bit risky at best. We call this function when we have timed 1889 * out acquiring a spin lock, and we assume that the other CPU is stuck 1890 * with this lock held. So, we go groveling around in the other CPU's 1891 * per-cpu data to try to find the lock instance for this spin lock to 1892 * see when it was last acquired. 1893 */ 1894 void 1895 witness_display_spinlock(struct lock_object *lock, struct thread *owner) 1896 { 1897 struct lock_instance *instance; 1898 struct pcpu *pc; 1899 1900 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 1901 return; 1902 pc = pcpu_find(owner->td_oncpu); 1903 instance = find_instance(pc->pc_spinlocks, lock); 1904 if (instance != NULL) 1905 witness_list_lock(instance); 1906 } 1907 1908 void 1909 witness_save(struct lock_object *lock, const char **filep, int *linep) 1910 { 1911 struct lock_list_entry *lock_list; 1912 struct lock_instance *instance; 1913 struct lock_class *class; 1914 1915 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1916 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1917 return; 1918 class = LOCK_CLASS(lock); 1919 if (class->lc_flags & LC_SLEEPLOCK) 1920 lock_list = curthread->td_sleeplocks; 1921 else { 1922 if (witness_skipspin) 1923 return; 1924 lock_list = PCPU_GET(spinlocks); 1925 } 1926 instance = find_instance(lock_list, lock); 1927 if (instance == NULL) 1928 panic("%s: lock (%s) %s not locked", __func__, 1929 class->lc_name, lock->lo_name); 1930 *filep = instance->li_file; 1931 *linep = instance->li_line; 1932 } 1933 1934 void 1935 witness_restore(struct lock_object *lock, const char *file, int line) 1936 { 1937 struct lock_list_entry *lock_list; 1938 struct lock_instance *instance; 1939 struct lock_class *class; 1940 1941 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 1942 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1943 return; 1944 class = LOCK_CLASS(lock); 1945 if (class->lc_flags & LC_SLEEPLOCK) 1946 lock_list = curthread->td_sleeplocks; 1947 else { 1948 if (witness_skipspin) 1949 return; 1950 lock_list = PCPU_GET(spinlocks); 1951 } 1952 instance = find_instance(lock_list, lock); 1953 if (instance == NULL) 1954 panic("%s: lock (%s) %s not locked", __func__, 1955 class->lc_name, lock->lo_name); 1956 lock->lo_witness->w_file = file; 1957 lock->lo_witness->w_line = line; 1958 instance->li_file = file; 1959 instance->li_line = line; 1960 } 1961 1962 void 1963 witness_assert(struct lock_object *lock, int flags, const char *file, int line) 1964 { 1965 #ifdef INVARIANT_SUPPORT 1966 struct lock_instance *instance; 1967 struct lock_class *class; 1968 1969 if (lock->lo_witness == NULL || witness_watch == 0 || panicstr != NULL) 1970 return; 1971 class = LOCK_CLASS(lock); 1972 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 1973 instance = find_instance(curthread->td_sleeplocks, lock); 1974 else if ((class->lc_flags & LC_SPINLOCK) != 0) 1975 instance = find_instance(PCPU_GET(spinlocks), lock); 1976 else { 1977 panic("Lock (%s) %s is not sleep or spin!", 1978 class->lc_name, lock->lo_name); 1979 } 1980 file = fixup_filename(file); 1981 switch (flags) { 1982 case LA_UNLOCKED: 1983 if (instance != NULL) 1984 panic("Lock (%s) %s locked @ %s:%d.", 1985 class->lc_name, lock->lo_name, file, line); 1986 break; 1987 case LA_LOCKED: 1988 case LA_LOCKED | LA_RECURSED: 1989 case LA_LOCKED | LA_NOTRECURSED: 1990 case LA_SLOCKED: 1991 case LA_SLOCKED | LA_RECURSED: 1992 case LA_SLOCKED | LA_NOTRECURSED: 1993 case LA_XLOCKED: 1994 case LA_XLOCKED | LA_RECURSED: 1995 case LA_XLOCKED | LA_NOTRECURSED: 1996 if (instance == NULL) { 1997 panic("Lock (%s) %s not locked @ %s:%d.", 1998 class->lc_name, lock->lo_name, file, line); 1999 break; 2000 } 2001 if ((flags & LA_XLOCKED) != 0 && 2002 (instance->li_flags & LI_EXCLUSIVE) == 0) 2003 panic("Lock (%s) %s not exclusively locked @ %s:%d.", 2004 class->lc_name, lock->lo_name, file, line); 2005 if ((flags & LA_SLOCKED) != 0 && 2006 (instance->li_flags & LI_EXCLUSIVE) != 0) 2007 panic("Lock (%s) %s exclusively locked @ %s:%d.", 2008 class->lc_name, lock->lo_name, file, line); 2009 if ((flags & LA_RECURSED) != 0 && 2010 (instance->li_flags & LI_RECURSEMASK) == 0) 2011 panic("Lock (%s) %s not recursed @ %s:%d.", 2012 class->lc_name, lock->lo_name, file, line); 2013 if ((flags & LA_NOTRECURSED) != 0 && 2014 (instance->li_flags & LI_RECURSEMASK) != 0) 2015 panic("Lock (%s) %s recursed @ %s:%d.", 2016 class->lc_name, lock->lo_name, file, line); 2017 break; 2018 default: 2019 panic("Invalid lock assertion at %s:%d.", file, line); 2020 2021 } 2022 #endif /* INVARIANT_SUPPORT */ 2023 } 2024 2025 #ifdef DDB 2026 static void 2027 witness_list(struct thread *td) 2028 { 2029 2030 KASSERT(!witness_cold, ("%s: witness_cold", __func__)); 2031 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2032 2033 if (witness_watch == 0) 2034 return; 2035 2036 witness_list_locks(&td->td_sleeplocks); 2037 2038 /* 2039 * We only handle spinlocks if td == curthread. This is somewhat broken 2040 * if td is currently executing on some other CPU and holds spin locks 2041 * as we won't display those locks. If we had a MI way of getting 2042 * the per-cpu data for a given cpu then we could use 2043 * td->td_oncpu to get the list of spinlocks for this thread 2044 * and "fix" this. 2045 * 2046 * That still wouldn't really fix this unless we locked the scheduler 2047 * lock or stopped the other CPU to make sure it wasn't changing the 2048 * list out from under us. It is probably best to just not try to 2049 * handle threads on other CPU's for now. 2050 */ 2051 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2052 witness_list_locks(PCPU_PTR(spinlocks)); 2053 } 2054 2055 DB_SHOW_COMMAND(locks, db_witness_list) 2056 { 2057 struct thread *td; 2058 2059 if (have_addr) 2060 td = db_lookup_thread(addr, TRUE); 2061 else 2062 td = kdb_thread; 2063 witness_list(td); 2064 } 2065 2066 DB_SHOW_COMMAND(alllocks, db_witness_list_all) 2067 { 2068 struct thread *td; 2069 struct proc *p; 2070 2071 /* 2072 * It would be nice to list only threads and processes that actually 2073 * held sleep locks, but that information is currently not exported 2074 * by WITNESS. 2075 */ 2076 FOREACH_PROC_IN_SYSTEM(p) { 2077 if (!witness_proc_has_locks(p)) 2078 continue; 2079 FOREACH_THREAD_IN_PROC(p, td) { 2080 if (!witness_thread_has_locks(td)) 2081 continue; 2082 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2083 td->td_name, td, td->td_tid); 2084 witness_list(td); 2085 } 2086 } 2087 } 2088 2089 DB_SHOW_COMMAND(witness, db_witness_display) 2090 { 2091 2092 witness_display(db_printf); 2093 } 2094 #endif 2095