1 /*- 2 * Copyright (c) 2008 Isilon Systems, Inc. 3 * Copyright (c) 2008 Ilya Maykov <ivmaykov@gmail.com> 4 * Copyright (c) 1998 Berkeley Software Design, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Berkeley Software Design Inc's name may not be used to endorse or 16 * promote products derived from this software without specific prior 17 * written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 32 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 33 */ 34 35 /* 36 * Implementation of the `witness' lock verifier. Originally implemented for 37 * mutexes in BSD/OS. Extended to handle generic lock objects and lock 38 * classes in FreeBSD. 39 */ 40 41 /* 42 * Main Entry: witness 43 * Pronunciation: 'wit-n&s 44 * Function: noun 45 * Etymology: Middle English witnesse, from Old English witnes knowledge, 46 * testimony, witness, from 2wit 47 * Date: before 12th century 48 * 1 : attestation of a fact or event : TESTIMONY 49 * 2 : one that gives evidence; specifically : one who testifies in 50 * a cause or before a judicial tribunal 51 * 3 : one asked to be present at a transaction so as to be able to 52 * testify to its having taken place 53 * 4 : one who has personal knowledge of something 54 * 5 a : something serving as evidence or proof : SIGN 55 * b : public affirmation by word or example of usually 56 * religious faith or conviction <the heroic witness to divine 57 * life -- Pilot> 58 * 6 capitalized : a member of the Jehovah's Witnesses 59 */ 60 61 /* 62 * Special rules concerning Giant and lock orders: 63 * 64 * 1) Giant must be acquired before any other mutexes. Stated another way, 65 * no other mutex may be held when Giant is acquired. 66 * 67 * 2) Giant must be released when blocking on a sleepable lock. 68 * 69 * This rule is less obvious, but is a result of Giant providing the same 70 * semantics as spl(). Basically, when a thread sleeps, it must release 71 * Giant. When a thread blocks on a sleepable lock, it sleeps. Hence rule 72 * 2). 73 * 74 * 3) Giant may be acquired before or after sleepable locks. 75 * 76 * This rule is also not quite as obvious. Giant may be acquired after 77 * a sleepable lock because it is a non-sleepable lock and non-sleepable 78 * locks may always be acquired while holding a sleepable lock. The second 79 * case, Giant before a sleepable lock, follows from rule 2) above. Suppose 80 * you have two threads T1 and T2 and a sleepable lock X. Suppose that T1 81 * acquires X and blocks on Giant. Then suppose that T2 acquires Giant and 82 * blocks on X. When T2 blocks on X, T2 will release Giant allowing T1 to 83 * execute. Thus, acquiring Giant both before and after a sleepable lock 84 * will not result in a lock order reversal. 85 */ 86 87 #include <sys/cdefs.h> 88 __FBSDID("$FreeBSD$"); 89 90 #include "opt_ddb.h" 91 #include "opt_hwpmc_hooks.h" 92 #include "opt_stack.h" 93 #include "opt_witness.h" 94 95 #include <sys/param.h> 96 #include <sys/bus.h> 97 #include <sys/kdb.h> 98 #include <sys/kernel.h> 99 #include <sys/ktr.h> 100 #include <sys/lock.h> 101 #include <sys/malloc.h> 102 #include <sys/mutex.h> 103 #include <sys/priv.h> 104 #include <sys/proc.h> 105 #include <sys/sbuf.h> 106 #include <sys/sched.h> 107 #include <sys/stack.h> 108 #include <sys/sysctl.h> 109 #include <sys/systm.h> 110 111 #ifdef DDB 112 #include <ddb/ddb.h> 113 #endif 114 115 #include <machine/stdarg.h> 116 117 #if !defined(DDB) && !defined(STACK) 118 #error "DDB or STACK options are required for WITNESS" 119 #endif 120 121 /* Note that these traces do not work with KTR_ALQ. */ 122 #if 0 123 #define KTR_WITNESS KTR_SUBSYS 124 #else 125 #define KTR_WITNESS 0 126 #endif 127 128 #define LI_RECURSEMASK 0x0000ffff /* Recursion depth of lock instance. */ 129 #define LI_EXCLUSIVE 0x00010000 /* Exclusive lock instance. */ 130 #define LI_NORELEASE 0x00020000 /* Lock not allowed to be released. */ 131 132 /* Define this to check for blessed mutexes */ 133 #undef BLESSING 134 135 #ifndef WITNESS_COUNT 136 #define WITNESS_COUNT 1536 137 #endif 138 #define WITNESS_HASH_SIZE 251 /* Prime, gives load factor < 2 */ 139 #define WITNESS_PENDLIST (1024 + MAXCPU) 140 141 /* Allocate 256 KB of stack data space */ 142 #define WITNESS_LO_DATA_COUNT 2048 143 144 /* Prime, gives load factor of ~2 at full load */ 145 #define WITNESS_LO_HASH_SIZE 1021 146 147 /* 148 * XXX: This is somewhat bogus, as we assume here that at most 2048 threads 149 * will hold LOCK_NCHILDREN locks. We handle failure ok, and we should 150 * probably be safe for the most part, but it's still a SWAG. 151 */ 152 #define LOCK_NCHILDREN 5 153 #define LOCK_CHILDCOUNT 2048 154 155 #define MAX_W_NAME 64 156 157 #define FULLGRAPH_SBUF_SIZE 512 158 159 /* 160 * These flags go in the witness relationship matrix and describe the 161 * relationship between any two struct witness objects. 162 */ 163 #define WITNESS_UNRELATED 0x00 /* No lock order relation. */ 164 #define WITNESS_PARENT 0x01 /* Parent, aka direct ancestor. */ 165 #define WITNESS_ANCESTOR 0x02 /* Direct or indirect ancestor. */ 166 #define WITNESS_CHILD 0x04 /* Child, aka direct descendant. */ 167 #define WITNESS_DESCENDANT 0x08 /* Direct or indirect descendant. */ 168 #define WITNESS_ANCESTOR_MASK (WITNESS_PARENT | WITNESS_ANCESTOR) 169 #define WITNESS_DESCENDANT_MASK (WITNESS_CHILD | WITNESS_DESCENDANT) 170 #define WITNESS_RELATED_MASK \ 171 (WITNESS_ANCESTOR_MASK | WITNESS_DESCENDANT_MASK) 172 #define WITNESS_REVERSAL 0x10 /* A lock order reversal has been 173 * observed. */ 174 #define WITNESS_RESERVED1 0x20 /* Unused flag, reserved. */ 175 #define WITNESS_RESERVED2 0x40 /* Unused flag, reserved. */ 176 #define WITNESS_LOCK_ORDER_KNOWN 0x80 /* This lock order is known. */ 177 178 /* Descendant to ancestor flags */ 179 #define WITNESS_DTOA(x) (((x) & WITNESS_RELATED_MASK) >> 2) 180 181 /* Ancestor to descendant flags */ 182 #define WITNESS_ATOD(x) (((x) & WITNESS_RELATED_MASK) << 2) 183 184 #define WITNESS_INDEX_ASSERT(i) \ 185 MPASS((i) > 0 && (i) <= w_max_used_index && (i) < witness_count) 186 187 static MALLOC_DEFINE(M_WITNESS, "Witness", "Witness"); 188 189 /* 190 * Lock instances. A lock instance is the data associated with a lock while 191 * it is held by witness. For example, a lock instance will hold the 192 * recursion count of a lock. Lock instances are held in lists. Spin locks 193 * are held in a per-cpu list while sleep locks are held in per-thread list. 194 */ 195 struct lock_instance { 196 struct lock_object *li_lock; 197 const char *li_file; 198 int li_line; 199 u_int li_flags; 200 }; 201 202 /* 203 * A simple list type used to build the list of locks held by a thread 204 * or CPU. We can't simply embed the list in struct lock_object since a 205 * lock may be held by more than one thread if it is a shared lock. Locks 206 * are added to the head of the list, so we fill up each list entry from 207 * "the back" logically. To ease some of the arithmetic, we actually fill 208 * in each list entry the normal way (children[0] then children[1], etc.) but 209 * when we traverse the list we read children[count-1] as the first entry 210 * down to children[0] as the final entry. 211 */ 212 struct lock_list_entry { 213 struct lock_list_entry *ll_next; 214 struct lock_instance ll_children[LOCK_NCHILDREN]; 215 u_int ll_count; 216 }; 217 218 /* 219 * The main witness structure. One of these per named lock type in the system 220 * (for example, "vnode interlock"). 221 */ 222 struct witness { 223 char w_name[MAX_W_NAME]; 224 uint32_t w_index; /* Index in the relationship matrix */ 225 struct lock_class *w_class; 226 STAILQ_ENTRY(witness) w_list; /* List of all witnesses. */ 227 STAILQ_ENTRY(witness) w_typelist; /* Witnesses of a type. */ 228 struct witness *w_hash_next; /* Linked list in hash buckets. */ 229 const char *w_file; /* File where last acquired */ 230 uint32_t w_line; /* Line where last acquired */ 231 uint32_t w_refcount; 232 uint16_t w_num_ancestors; /* direct/indirect 233 * ancestor count */ 234 uint16_t w_num_descendants; /* direct/indirect 235 * descendant count */ 236 int16_t w_ddb_level; 237 unsigned w_displayed:1; 238 unsigned w_reversed:1; 239 }; 240 241 STAILQ_HEAD(witness_list, witness); 242 243 /* 244 * The witness hash table. Keys are witness names (const char *), elements are 245 * witness objects (struct witness *). 246 */ 247 struct witness_hash { 248 struct witness *wh_array[WITNESS_HASH_SIZE]; 249 uint32_t wh_size; 250 uint32_t wh_count; 251 }; 252 253 /* 254 * Key type for the lock order data hash table. 255 */ 256 struct witness_lock_order_key { 257 uint16_t from; 258 uint16_t to; 259 }; 260 261 struct witness_lock_order_data { 262 struct stack wlod_stack; 263 struct witness_lock_order_key wlod_key; 264 struct witness_lock_order_data *wlod_next; 265 }; 266 267 /* 268 * The witness lock order data hash table. Keys are witness index tuples 269 * (struct witness_lock_order_key), elements are lock order data objects 270 * (struct witness_lock_order_data). 271 */ 272 struct witness_lock_order_hash { 273 struct witness_lock_order_data *wloh_array[WITNESS_LO_HASH_SIZE]; 274 u_int wloh_size; 275 u_int wloh_count; 276 }; 277 278 #ifdef BLESSING 279 struct witness_blessed { 280 const char *b_lock1; 281 const char *b_lock2; 282 }; 283 #endif 284 285 struct witness_pendhelp { 286 const char *wh_type; 287 struct lock_object *wh_lock; 288 }; 289 290 struct witness_order_list_entry { 291 const char *w_name; 292 struct lock_class *w_class; 293 }; 294 295 /* 296 * Returns 0 if one of the locks is a spin lock and the other is not. 297 * Returns 1 otherwise. 298 */ 299 static __inline int 300 witness_lock_type_equal(struct witness *w1, struct witness *w2) 301 { 302 303 return ((w1->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK)) == 304 (w2->w_class->lc_flags & (LC_SLEEPLOCK | LC_SPINLOCK))); 305 } 306 307 static __inline int 308 witness_lock_order_key_equal(const struct witness_lock_order_key *a, 309 const struct witness_lock_order_key *b) 310 { 311 312 return (a->from == b->from && a->to == b->to); 313 } 314 315 static int _isitmyx(struct witness *w1, struct witness *w2, int rmask, 316 const char *fname); 317 #ifdef KDB 318 static void _witness_debugger(int cond, const char *msg); 319 #endif 320 static void adopt(struct witness *parent, struct witness *child); 321 #ifdef BLESSING 322 static int blessed(struct witness *, struct witness *); 323 #endif 324 static void depart(struct witness *w); 325 static struct witness *enroll(const char *description, 326 struct lock_class *lock_class); 327 static struct lock_instance *find_instance(struct lock_list_entry *list, 328 const struct lock_object *lock); 329 static int isitmychild(struct witness *parent, struct witness *child); 330 static int isitmydescendant(struct witness *parent, struct witness *child); 331 static void itismychild(struct witness *parent, struct witness *child); 332 static int sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS); 333 static int sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS); 334 static int sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS); 335 static void witness_add_fullgraph(struct sbuf *sb, struct witness *parent); 336 #ifdef DDB 337 static void witness_ddb_compute_levels(void); 338 static void witness_ddb_display(int(*)(const char *fmt, ...)); 339 static void witness_ddb_display_descendants(int(*)(const char *fmt, ...), 340 struct witness *, int indent); 341 static void witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 342 struct witness_list *list); 343 static void witness_ddb_level_descendants(struct witness *parent, int l); 344 static void witness_ddb_list(struct thread *td); 345 #endif 346 static void witness_free(struct witness *m); 347 static struct witness *witness_get(void); 348 static uint32_t witness_hash_djb2(const uint8_t *key, uint32_t size); 349 static struct witness *witness_hash_get(const char *key); 350 static void witness_hash_put(struct witness *w); 351 static void witness_init_hash_tables(void); 352 static void witness_increment_graph_generation(void); 353 static void witness_lock_list_free(struct lock_list_entry *lle); 354 static struct lock_list_entry *witness_lock_list_get(void); 355 static int witness_lock_order_add(struct witness *parent, 356 struct witness *child); 357 static int witness_lock_order_check(struct witness *parent, 358 struct witness *child); 359 static struct witness_lock_order_data *witness_lock_order_get( 360 struct witness *parent, 361 struct witness *child); 362 static void witness_list_lock(struct lock_instance *instance, 363 int (*prnt)(const char *fmt, ...)); 364 static void witness_setflag(struct lock_object *lock, int flag, int set); 365 366 #ifdef KDB 367 #define witness_debugger(c) _witness_debugger(c, __func__) 368 #else 369 #define witness_debugger(c) 370 #endif 371 372 static SYSCTL_NODE(_debug, OID_AUTO, witness, CTLFLAG_RW, NULL, 373 "Witness Locking"); 374 375 /* 376 * If set to 0, lock order checking is disabled. If set to -1, 377 * witness is completely disabled. Otherwise witness performs full 378 * lock order checking for all locks. At runtime, lock order checking 379 * may be toggled. However, witness cannot be reenabled once it is 380 * completely disabled. 381 */ 382 static int witness_watch = 1; 383 SYSCTL_PROC(_debug_witness, OID_AUTO, watch, CTLFLAG_RWTUN | CTLTYPE_INT, NULL, 0, 384 sysctl_debug_witness_watch, "I", "witness is watching lock operations"); 385 386 #ifdef KDB 387 /* 388 * When KDB is enabled and witness_kdb is 1, it will cause the system 389 * to drop into kdebug() when: 390 * - a lock hierarchy violation occurs 391 * - locks are held when going to sleep. 392 */ 393 #ifdef WITNESS_KDB 394 int witness_kdb = 1; 395 #else 396 int witness_kdb = 0; 397 #endif 398 SYSCTL_INT(_debug_witness, OID_AUTO, kdb, CTLFLAG_RWTUN, &witness_kdb, 0, ""); 399 400 /* 401 * When KDB is enabled and witness_trace is 1, it will cause the system 402 * to print a stack trace: 403 * - a lock hierarchy violation occurs 404 * - locks are held when going to sleep. 405 */ 406 int witness_trace = 1; 407 SYSCTL_INT(_debug_witness, OID_AUTO, trace, CTLFLAG_RWTUN, &witness_trace, 0, ""); 408 #endif /* KDB */ 409 410 #ifdef WITNESS_SKIPSPIN 411 int witness_skipspin = 1; 412 #else 413 int witness_skipspin = 0; 414 #endif 415 SYSCTL_INT(_debug_witness, OID_AUTO, skipspin, CTLFLAG_RDTUN, &witness_skipspin, 0, ""); 416 417 int badstack_sbuf_size; 418 419 int witness_count = WITNESS_COUNT; 420 SYSCTL_INT(_debug_witness, OID_AUTO, witness_count, CTLFLAG_RDTUN, 421 &witness_count, 0, ""); 422 423 /* 424 * Call this to print out the relations between locks. 425 */ 426 SYSCTL_PROC(_debug_witness, OID_AUTO, fullgraph, CTLTYPE_STRING | CTLFLAG_RD, 427 NULL, 0, sysctl_debug_witness_fullgraph, "A", "Show locks relation graphs"); 428 429 /* 430 * Call this to print out the witness faulty stacks. 431 */ 432 SYSCTL_PROC(_debug_witness, OID_AUTO, badstacks, CTLTYPE_STRING | CTLFLAG_RD, 433 NULL, 0, sysctl_debug_witness_badstacks, "A", "Show bad witness stacks"); 434 435 static struct mtx w_mtx; 436 437 /* w_list */ 438 static struct witness_list w_free = STAILQ_HEAD_INITIALIZER(w_free); 439 static struct witness_list w_all = STAILQ_HEAD_INITIALIZER(w_all); 440 441 /* w_typelist */ 442 static struct witness_list w_spin = STAILQ_HEAD_INITIALIZER(w_spin); 443 static struct witness_list w_sleep = STAILQ_HEAD_INITIALIZER(w_sleep); 444 445 /* lock list */ 446 static struct lock_list_entry *w_lock_list_free = NULL; 447 static struct witness_pendhelp pending_locks[WITNESS_PENDLIST]; 448 static u_int pending_cnt; 449 450 static int w_free_cnt, w_spin_cnt, w_sleep_cnt; 451 SYSCTL_INT(_debug_witness, OID_AUTO, free_cnt, CTLFLAG_RD, &w_free_cnt, 0, ""); 452 SYSCTL_INT(_debug_witness, OID_AUTO, spin_cnt, CTLFLAG_RD, &w_spin_cnt, 0, ""); 453 SYSCTL_INT(_debug_witness, OID_AUTO, sleep_cnt, CTLFLAG_RD, &w_sleep_cnt, 0, 454 ""); 455 456 static struct witness *w_data; 457 static uint8_t **w_rmatrix; 458 static struct lock_list_entry w_locklistdata[LOCK_CHILDCOUNT]; 459 static struct witness_hash w_hash; /* The witness hash table. */ 460 461 /* The lock order data hash */ 462 static struct witness_lock_order_data w_lodata[WITNESS_LO_DATA_COUNT]; 463 static struct witness_lock_order_data *w_lofree = NULL; 464 static struct witness_lock_order_hash w_lohash; 465 static int w_max_used_index = 0; 466 static unsigned int w_generation = 0; 467 static const char w_notrunning[] = "Witness not running\n"; 468 static const char w_stillcold[] = "Witness is still cold\n"; 469 470 471 static struct witness_order_list_entry order_lists[] = { 472 /* 473 * sx locks 474 */ 475 { "proctree", &lock_class_sx }, 476 { "allproc", &lock_class_sx }, 477 { "allprison", &lock_class_sx }, 478 { NULL, NULL }, 479 /* 480 * Various mutexes 481 */ 482 { "Giant", &lock_class_mtx_sleep }, 483 { "pipe mutex", &lock_class_mtx_sleep }, 484 { "sigio lock", &lock_class_mtx_sleep }, 485 { "process group", &lock_class_mtx_sleep }, 486 { "process lock", &lock_class_mtx_sleep }, 487 { "session", &lock_class_mtx_sleep }, 488 { "uidinfo hash", &lock_class_rw }, 489 #ifdef HWPMC_HOOKS 490 { "pmc-sleep", &lock_class_mtx_sleep }, 491 #endif 492 { "time lock", &lock_class_mtx_sleep }, 493 { NULL, NULL }, 494 /* 495 * Sockets 496 */ 497 { "accept", &lock_class_mtx_sleep }, 498 { "so_snd", &lock_class_mtx_sleep }, 499 { "so_rcv", &lock_class_mtx_sleep }, 500 { "sellck", &lock_class_mtx_sleep }, 501 { NULL, NULL }, 502 /* 503 * Routing 504 */ 505 { "so_rcv", &lock_class_mtx_sleep }, 506 { "radix node head", &lock_class_rw }, 507 { "rtentry", &lock_class_mtx_sleep }, 508 { "ifaddr", &lock_class_mtx_sleep }, 509 { NULL, NULL }, 510 /* 511 * IPv4 multicast: 512 * protocol locks before interface locks, after UDP locks. 513 */ 514 { "udpinp", &lock_class_rw }, 515 { "in_multi_mtx", &lock_class_mtx_sleep }, 516 { "igmp_mtx", &lock_class_mtx_sleep }, 517 { "if_addr_lock", &lock_class_rw }, 518 { NULL, NULL }, 519 /* 520 * IPv6 multicast: 521 * protocol locks before interface locks, after UDP locks. 522 */ 523 { "udpinp", &lock_class_rw }, 524 { "in6_multi_mtx", &lock_class_mtx_sleep }, 525 { "mld_mtx", &lock_class_mtx_sleep }, 526 { "if_addr_lock", &lock_class_rw }, 527 { NULL, NULL }, 528 /* 529 * UNIX Domain Sockets 530 */ 531 { "unp_link_rwlock", &lock_class_rw }, 532 { "unp_list_lock", &lock_class_mtx_sleep }, 533 { "unp", &lock_class_mtx_sleep }, 534 { "so_snd", &lock_class_mtx_sleep }, 535 { NULL, NULL }, 536 /* 537 * UDP/IP 538 */ 539 { "udp", &lock_class_rw }, 540 { "udpinp", &lock_class_rw }, 541 { "so_snd", &lock_class_mtx_sleep }, 542 { NULL, NULL }, 543 /* 544 * TCP/IP 545 */ 546 { "tcp", &lock_class_rw }, 547 { "tcpinp", &lock_class_rw }, 548 { "so_snd", &lock_class_mtx_sleep }, 549 { NULL, NULL }, 550 /* 551 * BPF 552 */ 553 { "bpf global lock", &lock_class_mtx_sleep }, 554 { "bpf interface lock", &lock_class_rw }, 555 { "bpf cdev lock", &lock_class_mtx_sleep }, 556 { NULL, NULL }, 557 /* 558 * NFS server 559 */ 560 { "nfsd_mtx", &lock_class_mtx_sleep }, 561 { "so_snd", &lock_class_mtx_sleep }, 562 { NULL, NULL }, 563 564 /* 565 * IEEE 802.11 566 */ 567 { "802.11 com lock", &lock_class_mtx_sleep}, 568 { NULL, NULL }, 569 /* 570 * Network drivers 571 */ 572 { "network driver", &lock_class_mtx_sleep}, 573 { NULL, NULL }, 574 575 /* 576 * Netgraph 577 */ 578 { "ng_node", &lock_class_mtx_sleep }, 579 { "ng_worklist", &lock_class_mtx_sleep }, 580 { NULL, NULL }, 581 /* 582 * CDEV 583 */ 584 { "vm map (system)", &lock_class_mtx_sleep }, 585 { "vm page queue", &lock_class_mtx_sleep }, 586 { "vnode interlock", &lock_class_mtx_sleep }, 587 { "cdev", &lock_class_mtx_sleep }, 588 { NULL, NULL }, 589 /* 590 * VM 591 */ 592 { "vm map (user)", &lock_class_sx }, 593 { "vm object", &lock_class_rw }, 594 { "vm page", &lock_class_mtx_sleep }, 595 { "vm page queue", &lock_class_mtx_sleep }, 596 { "pmap pv global", &lock_class_rw }, 597 { "pmap", &lock_class_mtx_sleep }, 598 { "pmap pv list", &lock_class_rw }, 599 { "vm page free queue", &lock_class_mtx_sleep }, 600 { NULL, NULL }, 601 /* 602 * kqueue/VFS interaction 603 */ 604 { "kqueue", &lock_class_mtx_sleep }, 605 { "struct mount mtx", &lock_class_mtx_sleep }, 606 { "vnode interlock", &lock_class_mtx_sleep }, 607 { NULL, NULL }, 608 /* 609 * ZFS locking 610 */ 611 { "dn->dn_mtx", &lock_class_sx }, 612 { "dr->dt.di.dr_mtx", &lock_class_sx }, 613 { "db->db_mtx", &lock_class_sx }, 614 { NULL, NULL }, 615 /* 616 * spin locks 617 */ 618 #ifdef SMP 619 { "ap boot", &lock_class_mtx_spin }, 620 #endif 621 { "rm.mutex_mtx", &lock_class_mtx_spin }, 622 { "sio", &lock_class_mtx_spin }, 623 { "scrlock", &lock_class_mtx_spin }, 624 #ifdef __i386__ 625 { "cy", &lock_class_mtx_spin }, 626 #endif 627 #ifdef __sparc64__ 628 { "pcib_mtx", &lock_class_mtx_spin }, 629 { "rtc_mtx", &lock_class_mtx_spin }, 630 #endif 631 { "scc_hwmtx", &lock_class_mtx_spin }, 632 { "uart_hwmtx", &lock_class_mtx_spin }, 633 { "fast_taskqueue", &lock_class_mtx_spin }, 634 { "intr table", &lock_class_mtx_spin }, 635 #ifdef HWPMC_HOOKS 636 { "pmc-per-proc", &lock_class_mtx_spin }, 637 #endif 638 { "process slock", &lock_class_mtx_spin }, 639 { "sleepq chain", &lock_class_mtx_spin }, 640 { "umtx lock", &lock_class_mtx_spin }, 641 { "rm_spinlock", &lock_class_mtx_spin }, 642 { "turnstile chain", &lock_class_mtx_spin }, 643 { "turnstile lock", &lock_class_mtx_spin }, 644 { "sched lock", &lock_class_mtx_spin }, 645 { "td_contested", &lock_class_mtx_spin }, 646 { "callout", &lock_class_mtx_spin }, 647 { "entropy harvest mutex", &lock_class_mtx_spin }, 648 { "syscons video lock", &lock_class_mtx_spin }, 649 #ifdef SMP 650 { "smp rendezvous", &lock_class_mtx_spin }, 651 #endif 652 #ifdef __powerpc__ 653 { "tlb0", &lock_class_mtx_spin }, 654 #endif 655 /* 656 * leaf locks 657 */ 658 { "intrcnt", &lock_class_mtx_spin }, 659 { "icu", &lock_class_mtx_spin }, 660 #ifdef __i386__ 661 { "allpmaps", &lock_class_mtx_spin }, 662 { "descriptor tables", &lock_class_mtx_spin }, 663 #endif 664 { "clk", &lock_class_mtx_spin }, 665 { "cpuset", &lock_class_mtx_spin }, 666 { "mprof lock", &lock_class_mtx_spin }, 667 { "zombie lock", &lock_class_mtx_spin }, 668 { "ALD Queue", &lock_class_mtx_spin }, 669 #if defined(__i386__) || defined(__amd64__) 670 { "pcicfg", &lock_class_mtx_spin }, 671 { "NDIS thread lock", &lock_class_mtx_spin }, 672 #endif 673 { "tw_osl_io_lock", &lock_class_mtx_spin }, 674 { "tw_osl_q_lock", &lock_class_mtx_spin }, 675 { "tw_cl_io_lock", &lock_class_mtx_spin }, 676 { "tw_cl_intr_lock", &lock_class_mtx_spin }, 677 { "tw_cl_gen_lock", &lock_class_mtx_spin }, 678 #ifdef HWPMC_HOOKS 679 { "pmc-leaf", &lock_class_mtx_spin }, 680 #endif 681 { "blocked lock", &lock_class_mtx_spin }, 682 { NULL, NULL }, 683 { NULL, NULL } 684 }; 685 686 #ifdef BLESSING 687 /* 688 * Pairs of locks which have been blessed 689 * Don't complain about order problems with blessed locks 690 */ 691 static struct witness_blessed blessed_list[] = { 692 }; 693 static int blessed_count = 694 sizeof(blessed_list) / sizeof(struct witness_blessed); 695 #endif 696 697 /* 698 * This global is set to 0 once it becomes safe to use the witness code. 699 */ 700 static int witness_cold = 1; 701 702 /* 703 * This global is set to 1 once the static lock orders have been enrolled 704 * so that a warning can be issued for any spin locks enrolled later. 705 */ 706 static int witness_spin_warn = 0; 707 708 /* Trim useless garbage from filenames. */ 709 static const char * 710 fixup_filename(const char *file) 711 { 712 713 if (file == NULL) 714 return (NULL); 715 while (strncmp(file, "../", 3) == 0) 716 file += 3; 717 return (file); 718 } 719 720 /* 721 * The WITNESS-enabled diagnostic code. Note that the witness code does 722 * assume that the early boot is single-threaded at least until after this 723 * routine is completed. 724 */ 725 static void 726 witness_initialize(void *dummy __unused) 727 { 728 struct lock_object *lock; 729 struct witness_order_list_entry *order; 730 struct witness *w, *w1; 731 int i; 732 733 w_data = malloc(sizeof (struct witness) * witness_count, M_WITNESS, 734 M_WAITOK | M_ZERO); 735 736 w_rmatrix = malloc(sizeof(*w_rmatrix) * (witness_count + 1), 737 M_WITNESS, M_WAITOK | M_ZERO); 738 739 for (i = 0; i < witness_count + 1; i++) { 740 w_rmatrix[i] = malloc(sizeof(*w_rmatrix[i]) * 741 (witness_count + 1), M_WITNESS, M_WAITOK | M_ZERO); 742 } 743 badstack_sbuf_size = witness_count * 256; 744 745 /* 746 * We have to release Giant before initializing its witness 747 * structure so that WITNESS doesn't get confused. 748 */ 749 mtx_unlock(&Giant); 750 mtx_assert(&Giant, MA_NOTOWNED); 751 752 CTR1(KTR_WITNESS, "%s: initializing witness", __func__); 753 mtx_init(&w_mtx, "witness lock", NULL, MTX_SPIN | MTX_QUIET | 754 MTX_NOWITNESS | MTX_NOPROFILE); 755 for (i = witness_count - 1; i >= 0; i--) { 756 w = &w_data[i]; 757 memset(w, 0, sizeof(*w)); 758 w_data[i].w_index = i; /* Witness index never changes. */ 759 witness_free(w); 760 } 761 KASSERT(STAILQ_FIRST(&w_free)->w_index == 0, 762 ("%s: Invalid list of free witness objects", __func__)); 763 764 /* Witness with index 0 is not used to aid in debugging. */ 765 STAILQ_REMOVE_HEAD(&w_free, w_list); 766 w_free_cnt--; 767 768 for (i = 0; i < witness_count; i++) { 769 memset(w_rmatrix[i], 0, sizeof(*w_rmatrix[i]) * 770 (witness_count + 1)); 771 } 772 773 for (i = 0; i < LOCK_CHILDCOUNT; i++) 774 witness_lock_list_free(&w_locklistdata[i]); 775 witness_init_hash_tables(); 776 777 /* First add in all the specified order lists. */ 778 for (order = order_lists; order->w_name != NULL; order++) { 779 w = enroll(order->w_name, order->w_class); 780 if (w == NULL) 781 continue; 782 w->w_file = "order list"; 783 for (order++; order->w_name != NULL; order++) { 784 w1 = enroll(order->w_name, order->w_class); 785 if (w1 == NULL) 786 continue; 787 w1->w_file = "order list"; 788 itismychild(w, w1); 789 w = w1; 790 } 791 } 792 witness_spin_warn = 1; 793 794 /* Iterate through all locks and add them to witness. */ 795 for (i = 0; pending_locks[i].wh_lock != NULL; i++) { 796 lock = pending_locks[i].wh_lock; 797 KASSERT(lock->lo_flags & LO_WITNESS, 798 ("%s: lock %s is on pending list but not LO_WITNESS", 799 __func__, lock->lo_name)); 800 lock->lo_witness = enroll(pending_locks[i].wh_type, 801 LOCK_CLASS(lock)); 802 } 803 804 /* Mark the witness code as being ready for use. */ 805 witness_cold = 0; 806 807 mtx_lock(&Giant); 808 } 809 SYSINIT(witness_init, SI_SUB_WITNESS, SI_ORDER_FIRST, witness_initialize, 810 NULL); 811 812 void 813 witness_init(struct lock_object *lock, const char *type) 814 { 815 struct lock_class *class; 816 817 /* Various sanity checks. */ 818 class = LOCK_CLASS(lock); 819 if ((lock->lo_flags & LO_RECURSABLE) != 0 && 820 (class->lc_flags & LC_RECURSABLE) == 0) 821 kassert_panic("%s: lock (%s) %s can not be recursable", 822 __func__, class->lc_name, lock->lo_name); 823 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 824 (class->lc_flags & LC_SLEEPABLE) == 0) 825 kassert_panic("%s: lock (%s) %s can not be sleepable", 826 __func__, class->lc_name, lock->lo_name); 827 if ((lock->lo_flags & LO_UPGRADABLE) != 0 && 828 (class->lc_flags & LC_UPGRADABLE) == 0) 829 kassert_panic("%s: lock (%s) %s can not be upgradable", 830 __func__, class->lc_name, lock->lo_name); 831 832 /* 833 * If we shouldn't watch this lock, then just clear lo_witness. 834 * Otherwise, if witness_cold is set, then it is too early to 835 * enroll this lock, so defer it to witness_initialize() by adding 836 * it to the pending_locks list. If it is not too early, then enroll 837 * the lock now. 838 */ 839 if (witness_watch < 1 || panicstr != NULL || 840 (lock->lo_flags & LO_WITNESS) == 0) 841 lock->lo_witness = NULL; 842 else if (witness_cold) { 843 pending_locks[pending_cnt].wh_lock = lock; 844 pending_locks[pending_cnt++].wh_type = type; 845 if (pending_cnt > WITNESS_PENDLIST) 846 panic("%s: pending locks list is too small, " 847 "increase WITNESS_PENDLIST\n", 848 __func__); 849 } else 850 lock->lo_witness = enroll(type, class); 851 } 852 853 void 854 witness_destroy(struct lock_object *lock) 855 { 856 struct lock_class *class; 857 struct witness *w; 858 859 class = LOCK_CLASS(lock); 860 861 if (witness_cold) 862 panic("lock (%s) %s destroyed while witness_cold", 863 class->lc_name, lock->lo_name); 864 865 /* XXX: need to verify that no one holds the lock */ 866 if ((lock->lo_flags & LO_WITNESS) == 0 || lock->lo_witness == NULL) 867 return; 868 w = lock->lo_witness; 869 870 mtx_lock_spin(&w_mtx); 871 MPASS(w->w_refcount > 0); 872 w->w_refcount--; 873 874 if (w->w_refcount == 0) 875 depart(w); 876 mtx_unlock_spin(&w_mtx); 877 } 878 879 #ifdef DDB 880 static void 881 witness_ddb_compute_levels(void) 882 { 883 struct witness *w; 884 885 /* 886 * First clear all levels. 887 */ 888 STAILQ_FOREACH(w, &w_all, w_list) 889 w->w_ddb_level = -1; 890 891 /* 892 * Look for locks with no parents and level all their descendants. 893 */ 894 STAILQ_FOREACH(w, &w_all, w_list) { 895 896 /* If the witness has ancestors (is not a root), skip it. */ 897 if (w->w_num_ancestors > 0) 898 continue; 899 witness_ddb_level_descendants(w, 0); 900 } 901 } 902 903 static void 904 witness_ddb_level_descendants(struct witness *w, int l) 905 { 906 int i; 907 908 if (w->w_ddb_level >= l) 909 return; 910 911 w->w_ddb_level = l; 912 l++; 913 914 for (i = 1; i <= w_max_used_index; i++) { 915 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 916 witness_ddb_level_descendants(&w_data[i], l); 917 } 918 } 919 920 static void 921 witness_ddb_display_descendants(int(*prnt)(const char *fmt, ...), 922 struct witness *w, int indent) 923 { 924 int i; 925 926 for (i = 0; i < indent; i++) 927 prnt(" "); 928 prnt("%s (type: %s, depth: %d, active refs: %d)", 929 w->w_name, w->w_class->lc_name, 930 w->w_ddb_level, w->w_refcount); 931 if (w->w_displayed) { 932 prnt(" -- (already displayed)\n"); 933 return; 934 } 935 w->w_displayed = 1; 936 if (w->w_file != NULL && w->w_line != 0) 937 prnt(" -- last acquired @ %s:%d\n", fixup_filename(w->w_file), 938 w->w_line); 939 else 940 prnt(" -- never acquired\n"); 941 indent++; 942 WITNESS_INDEX_ASSERT(w->w_index); 943 for (i = 1; i <= w_max_used_index; i++) { 944 if (db_pager_quit) 945 return; 946 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) 947 witness_ddb_display_descendants(prnt, &w_data[i], 948 indent); 949 } 950 } 951 952 static void 953 witness_ddb_display_list(int(*prnt)(const char *fmt, ...), 954 struct witness_list *list) 955 { 956 struct witness *w; 957 958 STAILQ_FOREACH(w, list, w_typelist) { 959 if (w->w_file == NULL || w->w_ddb_level > 0) 960 continue; 961 962 /* This lock has no anscestors - display its descendants. */ 963 witness_ddb_display_descendants(prnt, w, 0); 964 if (db_pager_quit) 965 return; 966 } 967 } 968 969 static void 970 witness_ddb_display(int(*prnt)(const char *fmt, ...)) 971 { 972 struct witness *w; 973 974 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 975 witness_ddb_compute_levels(); 976 977 /* Clear all the displayed flags. */ 978 STAILQ_FOREACH(w, &w_all, w_list) 979 w->w_displayed = 0; 980 981 /* 982 * First, handle sleep locks which have been acquired at least 983 * once. 984 */ 985 prnt("Sleep locks:\n"); 986 witness_ddb_display_list(prnt, &w_sleep); 987 if (db_pager_quit) 988 return; 989 990 /* 991 * Now do spin locks which have been acquired at least once. 992 */ 993 prnt("\nSpin locks:\n"); 994 witness_ddb_display_list(prnt, &w_spin); 995 if (db_pager_quit) 996 return; 997 998 /* 999 * Finally, any locks which have not been acquired yet. 1000 */ 1001 prnt("\nLocks which were never acquired:\n"); 1002 STAILQ_FOREACH(w, &w_all, w_list) { 1003 if (w->w_file != NULL || w->w_refcount == 0) 1004 continue; 1005 prnt("%s (type: %s, depth: %d)\n", w->w_name, 1006 w->w_class->lc_name, w->w_ddb_level); 1007 if (db_pager_quit) 1008 return; 1009 } 1010 } 1011 #endif /* DDB */ 1012 1013 int 1014 witness_defineorder(struct lock_object *lock1, struct lock_object *lock2) 1015 { 1016 1017 if (witness_watch == -1 || panicstr != NULL) 1018 return (0); 1019 1020 /* Require locks that witness knows about. */ 1021 if (lock1 == NULL || lock1->lo_witness == NULL || lock2 == NULL || 1022 lock2->lo_witness == NULL) 1023 return (EINVAL); 1024 1025 mtx_assert(&w_mtx, MA_NOTOWNED); 1026 mtx_lock_spin(&w_mtx); 1027 1028 /* 1029 * If we already have either an explicit or implied lock order that 1030 * is the other way around, then return an error. 1031 */ 1032 if (witness_watch && 1033 isitmydescendant(lock2->lo_witness, lock1->lo_witness)) { 1034 mtx_unlock_spin(&w_mtx); 1035 return (EDOOFUS); 1036 } 1037 1038 /* Try to add the new order. */ 1039 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1040 lock2->lo_witness->w_name, lock1->lo_witness->w_name); 1041 itismychild(lock1->lo_witness, lock2->lo_witness); 1042 mtx_unlock_spin(&w_mtx); 1043 return (0); 1044 } 1045 1046 void 1047 witness_checkorder(struct lock_object *lock, int flags, const char *file, 1048 int line, struct lock_object *interlock) 1049 { 1050 struct lock_list_entry *lock_list, *lle; 1051 struct lock_instance *lock1, *lock2, *plock; 1052 struct lock_class *class, *iclass; 1053 struct witness *w, *w1; 1054 struct thread *td; 1055 int i, j; 1056 1057 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL || 1058 panicstr != NULL) 1059 return; 1060 1061 w = lock->lo_witness; 1062 class = LOCK_CLASS(lock); 1063 td = curthread; 1064 1065 if (class->lc_flags & LC_SLEEPLOCK) { 1066 1067 /* 1068 * Since spin locks include a critical section, this check 1069 * implicitly enforces a lock order of all sleep locks before 1070 * all spin locks. 1071 */ 1072 if (td->td_critnest != 0 && !kdb_active) 1073 kassert_panic("acquiring blockable sleep lock with " 1074 "spinlock or critical section held (%s) %s @ %s:%d", 1075 class->lc_name, lock->lo_name, 1076 fixup_filename(file), line); 1077 1078 /* 1079 * If this is the first lock acquired then just return as 1080 * no order checking is needed. 1081 */ 1082 lock_list = td->td_sleeplocks; 1083 if (lock_list == NULL || lock_list->ll_count == 0) 1084 return; 1085 } else { 1086 1087 /* 1088 * If this is the first lock, just return as no order 1089 * checking is needed. Avoid problems with thread 1090 * migration pinning the thread while checking if 1091 * spinlocks are held. If at least one spinlock is held 1092 * the thread is in a safe path and it is allowed to 1093 * unpin it. 1094 */ 1095 sched_pin(); 1096 lock_list = PCPU_GET(spinlocks); 1097 if (lock_list == NULL || lock_list->ll_count == 0) { 1098 sched_unpin(); 1099 return; 1100 } 1101 sched_unpin(); 1102 } 1103 1104 /* 1105 * Check to see if we are recursing on a lock we already own. If 1106 * so, make sure that we don't mismatch exclusive and shared lock 1107 * acquires. 1108 */ 1109 lock1 = find_instance(lock_list, lock); 1110 if (lock1 != NULL) { 1111 if ((lock1->li_flags & LI_EXCLUSIVE) != 0 && 1112 (flags & LOP_EXCLUSIVE) == 0) { 1113 printf("shared lock of (%s) %s @ %s:%d\n", 1114 class->lc_name, lock->lo_name, 1115 fixup_filename(file), line); 1116 printf("while exclusively locked from %s:%d\n", 1117 fixup_filename(lock1->li_file), lock1->li_line); 1118 kassert_panic("excl->share"); 1119 } 1120 if ((lock1->li_flags & LI_EXCLUSIVE) == 0 && 1121 (flags & LOP_EXCLUSIVE) != 0) { 1122 printf("exclusive lock of (%s) %s @ %s:%d\n", 1123 class->lc_name, lock->lo_name, 1124 fixup_filename(file), line); 1125 printf("while share locked from %s:%d\n", 1126 fixup_filename(lock1->li_file), lock1->li_line); 1127 kassert_panic("share->excl"); 1128 } 1129 return; 1130 } 1131 1132 /* Warn if the interlock is not locked exactly once. */ 1133 if (interlock != NULL) { 1134 iclass = LOCK_CLASS(interlock); 1135 lock1 = find_instance(lock_list, interlock); 1136 if (lock1 == NULL) 1137 kassert_panic("interlock (%s) %s not locked @ %s:%d", 1138 iclass->lc_name, interlock->lo_name, 1139 fixup_filename(file), line); 1140 else if ((lock1->li_flags & LI_RECURSEMASK) != 0) 1141 kassert_panic("interlock (%s) %s recursed @ %s:%d", 1142 iclass->lc_name, interlock->lo_name, 1143 fixup_filename(file), line); 1144 } 1145 1146 /* 1147 * Find the previously acquired lock, but ignore interlocks. 1148 */ 1149 plock = &lock_list->ll_children[lock_list->ll_count - 1]; 1150 if (interlock != NULL && plock->li_lock == interlock) { 1151 if (lock_list->ll_count > 1) 1152 plock = 1153 &lock_list->ll_children[lock_list->ll_count - 2]; 1154 else { 1155 lle = lock_list->ll_next; 1156 1157 /* 1158 * The interlock is the only lock we hold, so 1159 * simply return. 1160 */ 1161 if (lle == NULL) 1162 return; 1163 plock = &lle->ll_children[lle->ll_count - 1]; 1164 } 1165 } 1166 1167 /* 1168 * Try to perform most checks without a lock. If this succeeds we 1169 * can skip acquiring the lock and return success. 1170 */ 1171 w1 = plock->li_lock->lo_witness; 1172 if (witness_lock_order_check(w1, w)) 1173 return; 1174 1175 /* 1176 * Check for duplicate locks of the same type. Note that we only 1177 * have to check for this on the last lock we just acquired. Any 1178 * other cases will be caught as lock order violations. 1179 */ 1180 mtx_lock_spin(&w_mtx); 1181 witness_lock_order_add(w1, w); 1182 if (w1 == w) { 1183 i = w->w_index; 1184 if (!(lock->lo_flags & LO_DUPOK) && !(flags & LOP_DUPOK) && 1185 !(w_rmatrix[i][i] & WITNESS_REVERSAL)) { 1186 w_rmatrix[i][i] |= WITNESS_REVERSAL; 1187 w->w_reversed = 1; 1188 mtx_unlock_spin(&w_mtx); 1189 printf( 1190 "acquiring duplicate lock of same type: \"%s\"\n", 1191 w->w_name); 1192 printf(" 1st %s @ %s:%d\n", plock->li_lock->lo_name, 1193 fixup_filename(plock->li_file), plock->li_line); 1194 printf(" 2nd %s @ %s:%d\n", lock->lo_name, 1195 fixup_filename(file), line); 1196 witness_debugger(1); 1197 } else 1198 mtx_unlock_spin(&w_mtx); 1199 return; 1200 } 1201 mtx_assert(&w_mtx, MA_OWNED); 1202 1203 /* 1204 * If we know that the lock we are acquiring comes after 1205 * the lock we most recently acquired in the lock order tree, 1206 * then there is no need for any further checks. 1207 */ 1208 if (isitmychild(w1, w)) 1209 goto out; 1210 1211 for (j = 0, lle = lock_list; lle != NULL; lle = lle->ll_next) { 1212 for (i = lle->ll_count - 1; i >= 0; i--, j++) { 1213 1214 MPASS(j < witness_count); 1215 lock1 = &lle->ll_children[i]; 1216 1217 /* 1218 * Ignore the interlock. 1219 */ 1220 if (interlock == lock1->li_lock) 1221 continue; 1222 1223 /* 1224 * If this lock doesn't undergo witness checking, 1225 * then skip it. 1226 */ 1227 w1 = lock1->li_lock->lo_witness; 1228 if (w1 == NULL) { 1229 KASSERT((lock1->li_lock->lo_flags & LO_WITNESS) == 0, 1230 ("lock missing witness structure")); 1231 continue; 1232 } 1233 1234 /* 1235 * If we are locking Giant and this is a sleepable 1236 * lock, then skip it. 1237 */ 1238 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0 && 1239 lock == &Giant.lock_object) 1240 continue; 1241 1242 /* 1243 * If we are locking a sleepable lock and this lock 1244 * is Giant, then skip it. 1245 */ 1246 if ((lock->lo_flags & LO_SLEEPABLE) != 0 && 1247 lock1->li_lock == &Giant.lock_object) 1248 continue; 1249 1250 /* 1251 * If we are locking a sleepable lock and this lock 1252 * isn't sleepable, we want to treat it as a lock 1253 * order violation to enfore a general lock order of 1254 * sleepable locks before non-sleepable locks. 1255 */ 1256 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1257 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1258 goto reversal; 1259 1260 /* 1261 * If we are locking Giant and this is a non-sleepable 1262 * lock, then treat it as a reversal. 1263 */ 1264 if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 && 1265 lock == &Giant.lock_object) 1266 goto reversal; 1267 1268 /* 1269 * Check the lock order hierarchy for a reveresal. 1270 */ 1271 if (!isitmydescendant(w, w1)) 1272 continue; 1273 reversal: 1274 1275 /* 1276 * We have a lock order violation, check to see if it 1277 * is allowed or has already been yelled about. 1278 */ 1279 #ifdef BLESSING 1280 1281 /* 1282 * If the lock order is blessed, just bail. We don't 1283 * look for other lock order violations though, which 1284 * may be a bug. 1285 */ 1286 if (blessed(w, w1)) 1287 goto out; 1288 #endif 1289 1290 /* Bail if this violation is known */ 1291 if (w_rmatrix[w1->w_index][w->w_index] & WITNESS_REVERSAL) 1292 goto out; 1293 1294 /* Record this as a violation */ 1295 w_rmatrix[w1->w_index][w->w_index] |= WITNESS_REVERSAL; 1296 w_rmatrix[w->w_index][w1->w_index] |= WITNESS_REVERSAL; 1297 w->w_reversed = w1->w_reversed = 1; 1298 witness_increment_graph_generation(); 1299 mtx_unlock_spin(&w_mtx); 1300 1301 #ifdef WITNESS_NO_VNODE 1302 /* 1303 * There are known LORs between VNODE locks. They are 1304 * not an indication of a bug. VNODE locks are flagged 1305 * as such (LO_IS_VNODE) and we don't yell if the LOR 1306 * is between 2 VNODE locks. 1307 */ 1308 if ((lock->lo_flags & LO_IS_VNODE) != 0 && 1309 (lock1->li_lock->lo_flags & LO_IS_VNODE) != 0) 1310 return; 1311 #endif 1312 1313 /* 1314 * Ok, yell about it. 1315 */ 1316 if (((lock->lo_flags & LO_SLEEPABLE) != 0 && 1317 (lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0)) 1318 printf( 1319 "lock order reversal: (sleepable after non-sleepable)\n"); 1320 else if ((lock1->li_lock->lo_flags & LO_SLEEPABLE) == 0 1321 && lock == &Giant.lock_object) 1322 printf( 1323 "lock order reversal: (Giant after non-sleepable)\n"); 1324 else 1325 printf("lock order reversal:\n"); 1326 1327 /* 1328 * Try to locate an earlier lock with 1329 * witness w in our list. 1330 */ 1331 do { 1332 lock2 = &lle->ll_children[i]; 1333 MPASS(lock2->li_lock != NULL); 1334 if (lock2->li_lock->lo_witness == w) 1335 break; 1336 if (i == 0 && lle->ll_next != NULL) { 1337 lle = lle->ll_next; 1338 i = lle->ll_count - 1; 1339 MPASS(i >= 0 && i < LOCK_NCHILDREN); 1340 } else 1341 i--; 1342 } while (i >= 0); 1343 if (i < 0) { 1344 printf(" 1st %p %s (%s) @ %s:%d\n", 1345 lock1->li_lock, lock1->li_lock->lo_name, 1346 w1->w_name, fixup_filename(lock1->li_file), 1347 lock1->li_line); 1348 printf(" 2nd %p %s (%s) @ %s:%d\n", lock, 1349 lock->lo_name, w->w_name, 1350 fixup_filename(file), line); 1351 } else { 1352 printf(" 1st %p %s (%s) @ %s:%d\n", 1353 lock2->li_lock, lock2->li_lock->lo_name, 1354 lock2->li_lock->lo_witness->w_name, 1355 fixup_filename(lock2->li_file), 1356 lock2->li_line); 1357 printf(" 2nd %p %s (%s) @ %s:%d\n", 1358 lock1->li_lock, lock1->li_lock->lo_name, 1359 w1->w_name, fixup_filename(lock1->li_file), 1360 lock1->li_line); 1361 printf(" 3rd %p %s (%s) @ %s:%d\n", lock, 1362 lock->lo_name, w->w_name, 1363 fixup_filename(file), line); 1364 } 1365 witness_debugger(1); 1366 return; 1367 } 1368 } 1369 1370 /* 1371 * If requested, build a new lock order. However, don't build a new 1372 * relationship between a sleepable lock and Giant if it is in the 1373 * wrong direction. The correct lock order is that sleepable locks 1374 * always come before Giant. 1375 */ 1376 if (flags & LOP_NEWORDER && 1377 !(plock->li_lock == &Giant.lock_object && 1378 (lock->lo_flags & LO_SLEEPABLE) != 0)) { 1379 CTR3(KTR_WITNESS, "%s: adding %s as a child of %s", __func__, 1380 w->w_name, plock->li_lock->lo_witness->w_name); 1381 itismychild(plock->li_lock->lo_witness, w); 1382 } 1383 out: 1384 mtx_unlock_spin(&w_mtx); 1385 } 1386 1387 void 1388 witness_lock(struct lock_object *lock, int flags, const char *file, int line) 1389 { 1390 struct lock_list_entry **lock_list, *lle; 1391 struct lock_instance *instance; 1392 struct witness *w; 1393 struct thread *td; 1394 1395 if (witness_cold || witness_watch == -1 || lock->lo_witness == NULL || 1396 panicstr != NULL) 1397 return; 1398 w = lock->lo_witness; 1399 td = curthread; 1400 1401 /* Determine lock list for this lock. */ 1402 if (LOCK_CLASS(lock)->lc_flags & LC_SLEEPLOCK) 1403 lock_list = &td->td_sleeplocks; 1404 else 1405 lock_list = PCPU_PTR(spinlocks); 1406 1407 /* Check to see if we are recursing on a lock we already own. */ 1408 instance = find_instance(*lock_list, lock); 1409 if (instance != NULL) { 1410 instance->li_flags++; 1411 CTR4(KTR_WITNESS, "%s: pid %d recursed on %s r=%d", __func__, 1412 td->td_proc->p_pid, lock->lo_name, 1413 instance->li_flags & LI_RECURSEMASK); 1414 instance->li_file = file; 1415 instance->li_line = line; 1416 return; 1417 } 1418 1419 /* Update per-witness last file and line acquire. */ 1420 w->w_file = file; 1421 w->w_line = line; 1422 1423 /* Find the next open lock instance in the list and fill it. */ 1424 lle = *lock_list; 1425 if (lle == NULL || lle->ll_count == LOCK_NCHILDREN) { 1426 lle = witness_lock_list_get(); 1427 if (lle == NULL) 1428 return; 1429 lle->ll_next = *lock_list; 1430 CTR3(KTR_WITNESS, "%s: pid %d added lle %p", __func__, 1431 td->td_proc->p_pid, lle); 1432 *lock_list = lle; 1433 } 1434 instance = &lle->ll_children[lle->ll_count++]; 1435 instance->li_lock = lock; 1436 instance->li_line = line; 1437 instance->li_file = file; 1438 if ((flags & LOP_EXCLUSIVE) != 0) 1439 instance->li_flags = LI_EXCLUSIVE; 1440 else 1441 instance->li_flags = 0; 1442 CTR4(KTR_WITNESS, "%s: pid %d added %s as lle[%d]", __func__, 1443 td->td_proc->p_pid, lock->lo_name, lle->ll_count - 1); 1444 } 1445 1446 void 1447 witness_upgrade(struct lock_object *lock, int flags, const char *file, int line) 1448 { 1449 struct lock_instance *instance; 1450 struct lock_class *class; 1451 1452 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1453 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1454 return; 1455 class = LOCK_CLASS(lock); 1456 if (witness_watch) { 1457 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1458 kassert_panic( 1459 "upgrade of non-upgradable lock (%s) %s @ %s:%d", 1460 class->lc_name, lock->lo_name, 1461 fixup_filename(file), line); 1462 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1463 kassert_panic( 1464 "upgrade of non-sleep lock (%s) %s @ %s:%d", 1465 class->lc_name, lock->lo_name, 1466 fixup_filename(file), line); 1467 } 1468 instance = find_instance(curthread->td_sleeplocks, lock); 1469 if (instance == NULL) { 1470 kassert_panic("upgrade of unlocked lock (%s) %s @ %s:%d", 1471 class->lc_name, lock->lo_name, 1472 fixup_filename(file), line); 1473 return; 1474 } 1475 if (witness_watch) { 1476 if ((instance->li_flags & LI_EXCLUSIVE) != 0) 1477 kassert_panic( 1478 "upgrade of exclusive lock (%s) %s @ %s:%d", 1479 class->lc_name, lock->lo_name, 1480 fixup_filename(file), line); 1481 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1482 kassert_panic( 1483 "upgrade of recursed lock (%s) %s r=%d @ %s:%d", 1484 class->lc_name, lock->lo_name, 1485 instance->li_flags & LI_RECURSEMASK, 1486 fixup_filename(file), line); 1487 } 1488 instance->li_flags |= LI_EXCLUSIVE; 1489 } 1490 1491 void 1492 witness_downgrade(struct lock_object *lock, int flags, const char *file, 1493 int line) 1494 { 1495 struct lock_instance *instance; 1496 struct lock_class *class; 1497 1498 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 1499 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 1500 return; 1501 class = LOCK_CLASS(lock); 1502 if (witness_watch) { 1503 if ((lock->lo_flags & LO_UPGRADABLE) == 0) 1504 kassert_panic( 1505 "downgrade of non-upgradable lock (%s) %s @ %s:%d", 1506 class->lc_name, lock->lo_name, 1507 fixup_filename(file), line); 1508 if ((class->lc_flags & LC_SLEEPLOCK) == 0) 1509 kassert_panic( 1510 "downgrade of non-sleep lock (%s) %s @ %s:%d", 1511 class->lc_name, lock->lo_name, 1512 fixup_filename(file), line); 1513 } 1514 instance = find_instance(curthread->td_sleeplocks, lock); 1515 if (instance == NULL) { 1516 kassert_panic("downgrade of unlocked lock (%s) %s @ %s:%d", 1517 class->lc_name, lock->lo_name, 1518 fixup_filename(file), line); 1519 return; 1520 } 1521 if (witness_watch) { 1522 if ((instance->li_flags & LI_EXCLUSIVE) == 0) 1523 kassert_panic( 1524 "downgrade of shared lock (%s) %s @ %s:%d", 1525 class->lc_name, lock->lo_name, 1526 fixup_filename(file), line); 1527 if ((instance->li_flags & LI_RECURSEMASK) != 0) 1528 kassert_panic( 1529 "downgrade of recursed lock (%s) %s r=%d @ %s:%d", 1530 class->lc_name, lock->lo_name, 1531 instance->li_flags & LI_RECURSEMASK, 1532 fixup_filename(file), line); 1533 } 1534 instance->li_flags &= ~LI_EXCLUSIVE; 1535 } 1536 1537 void 1538 witness_unlock(struct lock_object *lock, int flags, const char *file, int line) 1539 { 1540 struct lock_list_entry **lock_list, *lle; 1541 struct lock_instance *instance; 1542 struct lock_class *class; 1543 struct thread *td; 1544 register_t s; 1545 int i, j; 1546 1547 if (witness_cold || lock->lo_witness == NULL || panicstr != NULL) 1548 return; 1549 td = curthread; 1550 class = LOCK_CLASS(lock); 1551 1552 /* Find lock instance associated with this lock. */ 1553 if (class->lc_flags & LC_SLEEPLOCK) 1554 lock_list = &td->td_sleeplocks; 1555 else 1556 lock_list = PCPU_PTR(spinlocks); 1557 lle = *lock_list; 1558 for (; *lock_list != NULL; lock_list = &(*lock_list)->ll_next) 1559 for (i = 0; i < (*lock_list)->ll_count; i++) { 1560 instance = &(*lock_list)->ll_children[i]; 1561 if (instance->li_lock == lock) 1562 goto found; 1563 } 1564 1565 /* 1566 * When disabling WITNESS through witness_watch we could end up in 1567 * having registered locks in the td_sleeplocks queue. 1568 * We have to make sure we flush these queues, so just search for 1569 * eventual register locks and remove them. 1570 */ 1571 if (witness_watch > 0) { 1572 kassert_panic("lock (%s) %s not locked @ %s:%d", class->lc_name, 1573 lock->lo_name, fixup_filename(file), line); 1574 return; 1575 } else { 1576 return; 1577 } 1578 found: 1579 1580 /* First, check for shared/exclusive mismatches. */ 1581 if ((instance->li_flags & LI_EXCLUSIVE) != 0 && witness_watch > 0 && 1582 (flags & LOP_EXCLUSIVE) == 0) { 1583 printf("shared unlock of (%s) %s @ %s:%d\n", class->lc_name, 1584 lock->lo_name, fixup_filename(file), line); 1585 printf("while exclusively locked from %s:%d\n", 1586 fixup_filename(instance->li_file), instance->li_line); 1587 kassert_panic("excl->ushare"); 1588 } 1589 if ((instance->li_flags & LI_EXCLUSIVE) == 0 && witness_watch > 0 && 1590 (flags & LOP_EXCLUSIVE) != 0) { 1591 printf("exclusive unlock of (%s) %s @ %s:%d\n", class->lc_name, 1592 lock->lo_name, fixup_filename(file), line); 1593 printf("while share locked from %s:%d\n", 1594 fixup_filename(instance->li_file), 1595 instance->li_line); 1596 kassert_panic("share->uexcl"); 1597 } 1598 /* If we are recursed, unrecurse. */ 1599 if ((instance->li_flags & LI_RECURSEMASK) > 0) { 1600 CTR4(KTR_WITNESS, "%s: pid %d unrecursed on %s r=%d", __func__, 1601 td->td_proc->p_pid, instance->li_lock->lo_name, 1602 instance->li_flags); 1603 instance->li_flags--; 1604 return; 1605 } 1606 /* The lock is now being dropped, check for NORELEASE flag */ 1607 if ((instance->li_flags & LI_NORELEASE) != 0 && witness_watch > 0) { 1608 printf("forbidden unlock of (%s) %s @ %s:%d\n", class->lc_name, 1609 lock->lo_name, fixup_filename(file), line); 1610 kassert_panic("lock marked norelease"); 1611 } 1612 1613 /* Otherwise, remove this item from the list. */ 1614 s = intr_disable(); 1615 CTR4(KTR_WITNESS, "%s: pid %d removed %s from lle[%d]", __func__, 1616 td->td_proc->p_pid, instance->li_lock->lo_name, 1617 (*lock_list)->ll_count - 1); 1618 for (j = i; j < (*lock_list)->ll_count - 1; j++) 1619 (*lock_list)->ll_children[j] = 1620 (*lock_list)->ll_children[j + 1]; 1621 (*lock_list)->ll_count--; 1622 intr_restore(s); 1623 1624 /* 1625 * In order to reduce contention on w_mtx, we want to keep always an 1626 * head object into lists so that frequent allocation from the 1627 * free witness pool (and subsequent locking) is avoided. 1628 * In order to maintain the current code simple, when the head 1629 * object is totally unloaded it means also that we do not have 1630 * further objects in the list, so the list ownership needs to be 1631 * hand over to another object if the current head needs to be freed. 1632 */ 1633 if ((*lock_list)->ll_count == 0) { 1634 if (*lock_list == lle) { 1635 if (lle->ll_next == NULL) 1636 return; 1637 } else 1638 lle = *lock_list; 1639 *lock_list = lle->ll_next; 1640 CTR3(KTR_WITNESS, "%s: pid %d removed lle %p", __func__, 1641 td->td_proc->p_pid, lle); 1642 witness_lock_list_free(lle); 1643 } 1644 } 1645 1646 void 1647 witness_thread_exit(struct thread *td) 1648 { 1649 struct lock_list_entry *lle; 1650 int i, n; 1651 1652 lle = td->td_sleeplocks; 1653 if (lle == NULL || panicstr != NULL) 1654 return; 1655 if (lle->ll_count != 0) { 1656 for (n = 0; lle != NULL; lle = lle->ll_next) 1657 for (i = lle->ll_count - 1; i >= 0; i--) { 1658 if (n == 0) 1659 printf("Thread %p exiting with the following locks held:\n", 1660 td); 1661 n++; 1662 witness_list_lock(&lle->ll_children[i], printf); 1663 1664 } 1665 kassert_panic( 1666 "Thread %p cannot exit while holding sleeplocks\n", td); 1667 } 1668 witness_lock_list_free(lle); 1669 } 1670 1671 /* 1672 * Warn if any locks other than 'lock' are held. Flags can be passed in to 1673 * exempt Giant and sleepable locks from the checks as well. If any 1674 * non-exempt locks are held, then a supplied message is printed to the 1675 * console along with a list of the offending locks. If indicated in the 1676 * flags then a failure results in a panic as well. 1677 */ 1678 int 1679 witness_warn(int flags, struct lock_object *lock, const char *fmt, ...) 1680 { 1681 struct lock_list_entry *lock_list, *lle; 1682 struct lock_instance *lock1; 1683 struct thread *td; 1684 va_list ap; 1685 int i, n; 1686 1687 if (witness_cold || witness_watch < 1 || panicstr != NULL) 1688 return (0); 1689 n = 0; 1690 td = curthread; 1691 for (lle = td->td_sleeplocks; lle != NULL; lle = lle->ll_next) 1692 for (i = lle->ll_count - 1; i >= 0; i--) { 1693 lock1 = &lle->ll_children[i]; 1694 if (lock1->li_lock == lock) 1695 continue; 1696 if (flags & WARN_GIANTOK && 1697 lock1->li_lock == &Giant.lock_object) 1698 continue; 1699 if (flags & WARN_SLEEPOK && 1700 (lock1->li_lock->lo_flags & LO_SLEEPABLE) != 0) 1701 continue; 1702 if (n == 0) { 1703 va_start(ap, fmt); 1704 vprintf(fmt, ap); 1705 va_end(ap); 1706 printf(" with the following"); 1707 if (flags & WARN_SLEEPOK) 1708 printf(" non-sleepable"); 1709 printf(" locks held:\n"); 1710 } 1711 n++; 1712 witness_list_lock(lock1, printf); 1713 } 1714 1715 /* 1716 * Pin the thread in order to avoid problems with thread migration. 1717 * Once that all verifies are passed about spinlocks ownership, 1718 * the thread is in a safe path and it can be unpinned. 1719 */ 1720 sched_pin(); 1721 lock_list = PCPU_GET(spinlocks); 1722 if (lock_list != NULL && lock_list->ll_count != 0) { 1723 sched_unpin(); 1724 1725 /* 1726 * We should only have one spinlock and as long as 1727 * the flags cannot match for this locks class, 1728 * check if the first spinlock is the one curthread 1729 * should hold. 1730 */ 1731 lock1 = &lock_list->ll_children[lock_list->ll_count - 1]; 1732 if (lock_list->ll_count == 1 && lock_list->ll_next == NULL && 1733 lock1->li_lock == lock && n == 0) 1734 return (0); 1735 1736 va_start(ap, fmt); 1737 vprintf(fmt, ap); 1738 va_end(ap); 1739 printf(" with the following"); 1740 if (flags & WARN_SLEEPOK) 1741 printf(" non-sleepable"); 1742 printf(" locks held:\n"); 1743 n += witness_list_locks(&lock_list, printf); 1744 } else 1745 sched_unpin(); 1746 if (flags & WARN_PANIC && n) 1747 kassert_panic("%s", __func__); 1748 else 1749 witness_debugger(n); 1750 return (n); 1751 } 1752 1753 const char * 1754 witness_file(struct lock_object *lock) 1755 { 1756 struct witness *w; 1757 1758 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1759 return ("?"); 1760 w = lock->lo_witness; 1761 return (w->w_file); 1762 } 1763 1764 int 1765 witness_line(struct lock_object *lock) 1766 { 1767 struct witness *w; 1768 1769 if (witness_cold || witness_watch < 1 || lock->lo_witness == NULL) 1770 return (0); 1771 w = lock->lo_witness; 1772 return (w->w_line); 1773 } 1774 1775 static struct witness * 1776 enroll(const char *description, struct lock_class *lock_class) 1777 { 1778 struct witness *w; 1779 struct witness_list *typelist; 1780 1781 MPASS(description != NULL); 1782 1783 if (witness_watch == -1 || panicstr != NULL) 1784 return (NULL); 1785 if ((lock_class->lc_flags & LC_SPINLOCK)) { 1786 if (witness_skipspin) 1787 return (NULL); 1788 else 1789 typelist = &w_spin; 1790 } else if ((lock_class->lc_flags & LC_SLEEPLOCK)) { 1791 typelist = &w_sleep; 1792 } else { 1793 kassert_panic("lock class %s is not sleep or spin", 1794 lock_class->lc_name); 1795 return (NULL); 1796 } 1797 1798 mtx_lock_spin(&w_mtx); 1799 w = witness_hash_get(description); 1800 if (w) 1801 goto found; 1802 if ((w = witness_get()) == NULL) 1803 return (NULL); 1804 MPASS(strlen(description) < MAX_W_NAME); 1805 strcpy(w->w_name, description); 1806 w->w_class = lock_class; 1807 w->w_refcount = 1; 1808 STAILQ_INSERT_HEAD(&w_all, w, w_list); 1809 if (lock_class->lc_flags & LC_SPINLOCK) { 1810 STAILQ_INSERT_HEAD(&w_spin, w, w_typelist); 1811 w_spin_cnt++; 1812 } else if (lock_class->lc_flags & LC_SLEEPLOCK) { 1813 STAILQ_INSERT_HEAD(&w_sleep, w, w_typelist); 1814 w_sleep_cnt++; 1815 } 1816 1817 /* Insert new witness into the hash */ 1818 witness_hash_put(w); 1819 witness_increment_graph_generation(); 1820 mtx_unlock_spin(&w_mtx); 1821 return (w); 1822 found: 1823 w->w_refcount++; 1824 mtx_unlock_spin(&w_mtx); 1825 if (lock_class != w->w_class) 1826 kassert_panic( 1827 "lock (%s) %s does not match earlier (%s) lock", 1828 description, lock_class->lc_name, 1829 w->w_class->lc_name); 1830 return (w); 1831 } 1832 1833 static void 1834 depart(struct witness *w) 1835 { 1836 struct witness_list *list; 1837 1838 MPASS(w->w_refcount == 0); 1839 if (w->w_class->lc_flags & LC_SLEEPLOCK) { 1840 list = &w_sleep; 1841 w_sleep_cnt--; 1842 } else { 1843 list = &w_spin; 1844 w_spin_cnt--; 1845 } 1846 /* 1847 * Set file to NULL as it may point into a loadable module. 1848 */ 1849 w->w_file = NULL; 1850 w->w_line = 0; 1851 witness_increment_graph_generation(); 1852 } 1853 1854 1855 static void 1856 adopt(struct witness *parent, struct witness *child) 1857 { 1858 int pi, ci, i, j; 1859 1860 if (witness_cold == 0) 1861 mtx_assert(&w_mtx, MA_OWNED); 1862 1863 /* If the relationship is already known, there's no work to be done. */ 1864 if (isitmychild(parent, child)) 1865 return; 1866 1867 /* When the structure of the graph changes, bump up the generation. */ 1868 witness_increment_graph_generation(); 1869 1870 /* 1871 * The hard part ... create the direct relationship, then propagate all 1872 * indirect relationships. 1873 */ 1874 pi = parent->w_index; 1875 ci = child->w_index; 1876 WITNESS_INDEX_ASSERT(pi); 1877 WITNESS_INDEX_ASSERT(ci); 1878 MPASS(pi != ci); 1879 w_rmatrix[pi][ci] |= WITNESS_PARENT; 1880 w_rmatrix[ci][pi] |= WITNESS_CHILD; 1881 1882 /* 1883 * If parent was not already an ancestor of child, 1884 * then we increment the descendant and ancestor counters. 1885 */ 1886 if ((w_rmatrix[pi][ci] & WITNESS_ANCESTOR) == 0) { 1887 parent->w_num_descendants++; 1888 child->w_num_ancestors++; 1889 } 1890 1891 /* 1892 * Find each ancestor of 'pi'. Note that 'pi' itself is counted as 1893 * an ancestor of 'pi' during this loop. 1894 */ 1895 for (i = 1; i <= w_max_used_index; i++) { 1896 if ((w_rmatrix[i][pi] & WITNESS_ANCESTOR_MASK) == 0 && 1897 (i != pi)) 1898 continue; 1899 1900 /* Find each descendant of 'i' and mark it as a descendant. */ 1901 for (j = 1; j <= w_max_used_index; j++) { 1902 1903 /* 1904 * Skip children that are already marked as 1905 * descendants of 'i'. 1906 */ 1907 if (w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) 1908 continue; 1909 1910 /* 1911 * We are only interested in descendants of 'ci'. Note 1912 * that 'ci' itself is counted as a descendant of 'ci'. 1913 */ 1914 if ((w_rmatrix[ci][j] & WITNESS_ANCESTOR_MASK) == 0 && 1915 (j != ci)) 1916 continue; 1917 w_rmatrix[i][j] |= WITNESS_ANCESTOR; 1918 w_rmatrix[j][i] |= WITNESS_DESCENDANT; 1919 w_data[i].w_num_descendants++; 1920 w_data[j].w_num_ancestors++; 1921 1922 /* 1923 * Make sure we aren't marking a node as both an 1924 * ancestor and descendant. We should have caught 1925 * this as a lock order reversal earlier. 1926 */ 1927 if ((w_rmatrix[i][j] & WITNESS_ANCESTOR_MASK) && 1928 (w_rmatrix[i][j] & WITNESS_DESCENDANT_MASK)) { 1929 printf("witness rmatrix paradox! [%d][%d]=%d " 1930 "both ancestor and descendant\n", 1931 i, j, w_rmatrix[i][j]); 1932 kdb_backtrace(); 1933 printf("Witness disabled.\n"); 1934 witness_watch = -1; 1935 } 1936 if ((w_rmatrix[j][i] & WITNESS_ANCESTOR_MASK) && 1937 (w_rmatrix[j][i] & WITNESS_DESCENDANT_MASK)) { 1938 printf("witness rmatrix paradox! [%d][%d]=%d " 1939 "both ancestor and descendant\n", 1940 j, i, w_rmatrix[j][i]); 1941 kdb_backtrace(); 1942 printf("Witness disabled.\n"); 1943 witness_watch = -1; 1944 } 1945 } 1946 } 1947 } 1948 1949 static void 1950 itismychild(struct witness *parent, struct witness *child) 1951 { 1952 int unlocked; 1953 1954 MPASS(child != NULL && parent != NULL); 1955 if (witness_cold == 0) 1956 mtx_assert(&w_mtx, MA_OWNED); 1957 1958 if (!witness_lock_type_equal(parent, child)) { 1959 if (witness_cold == 0) { 1960 unlocked = 1; 1961 mtx_unlock_spin(&w_mtx); 1962 } else { 1963 unlocked = 0; 1964 } 1965 kassert_panic( 1966 "%s: parent \"%s\" (%s) and child \"%s\" (%s) are not " 1967 "the same lock type", __func__, parent->w_name, 1968 parent->w_class->lc_name, child->w_name, 1969 child->w_class->lc_name); 1970 if (unlocked) 1971 mtx_lock_spin(&w_mtx); 1972 } 1973 adopt(parent, child); 1974 } 1975 1976 /* 1977 * Generic code for the isitmy*() functions. The rmask parameter is the 1978 * expected relationship of w1 to w2. 1979 */ 1980 static int 1981 _isitmyx(struct witness *w1, struct witness *w2, int rmask, const char *fname) 1982 { 1983 unsigned char r1, r2; 1984 int i1, i2; 1985 1986 i1 = w1->w_index; 1987 i2 = w2->w_index; 1988 WITNESS_INDEX_ASSERT(i1); 1989 WITNESS_INDEX_ASSERT(i2); 1990 r1 = w_rmatrix[i1][i2] & WITNESS_RELATED_MASK; 1991 r2 = w_rmatrix[i2][i1] & WITNESS_RELATED_MASK; 1992 1993 /* The flags on one better be the inverse of the flags on the other */ 1994 if (!((WITNESS_ATOD(r1) == r2 && WITNESS_DTOA(r2) == r1) || 1995 (WITNESS_DTOA(r1) == r2 && WITNESS_ATOD(r2) == r1))) { 1996 printf("%s: rmatrix mismatch between %s (index %d) and %s " 1997 "(index %d): w_rmatrix[%d][%d] == %hhx but " 1998 "w_rmatrix[%d][%d] == %hhx\n", 1999 fname, w1->w_name, i1, w2->w_name, i2, i1, i2, r1, 2000 i2, i1, r2); 2001 kdb_backtrace(); 2002 printf("Witness disabled.\n"); 2003 witness_watch = -1; 2004 } 2005 return (r1 & rmask); 2006 } 2007 2008 /* 2009 * Checks if @child is a direct child of @parent. 2010 */ 2011 static int 2012 isitmychild(struct witness *parent, struct witness *child) 2013 { 2014 2015 return (_isitmyx(parent, child, WITNESS_PARENT, __func__)); 2016 } 2017 2018 /* 2019 * Checks if @descendant is a direct or inderect descendant of @ancestor. 2020 */ 2021 static int 2022 isitmydescendant(struct witness *ancestor, struct witness *descendant) 2023 { 2024 2025 return (_isitmyx(ancestor, descendant, WITNESS_ANCESTOR_MASK, 2026 __func__)); 2027 } 2028 2029 #ifdef BLESSING 2030 static int 2031 blessed(struct witness *w1, struct witness *w2) 2032 { 2033 int i; 2034 struct witness_blessed *b; 2035 2036 for (i = 0; i < blessed_count; i++) { 2037 b = &blessed_list[i]; 2038 if (strcmp(w1->w_name, b->b_lock1) == 0) { 2039 if (strcmp(w2->w_name, b->b_lock2) == 0) 2040 return (1); 2041 continue; 2042 } 2043 if (strcmp(w1->w_name, b->b_lock2) == 0) 2044 if (strcmp(w2->w_name, b->b_lock1) == 0) 2045 return (1); 2046 } 2047 return (0); 2048 } 2049 #endif 2050 2051 static struct witness * 2052 witness_get(void) 2053 { 2054 struct witness *w; 2055 int index; 2056 2057 if (witness_cold == 0) 2058 mtx_assert(&w_mtx, MA_OWNED); 2059 2060 if (witness_watch == -1) { 2061 mtx_unlock_spin(&w_mtx); 2062 return (NULL); 2063 } 2064 if (STAILQ_EMPTY(&w_free)) { 2065 witness_watch = -1; 2066 mtx_unlock_spin(&w_mtx); 2067 printf("WITNESS: unable to allocate a new witness object\n"); 2068 return (NULL); 2069 } 2070 w = STAILQ_FIRST(&w_free); 2071 STAILQ_REMOVE_HEAD(&w_free, w_list); 2072 w_free_cnt--; 2073 index = w->w_index; 2074 MPASS(index > 0 && index == w_max_used_index+1 && 2075 index < witness_count); 2076 bzero(w, sizeof(*w)); 2077 w->w_index = index; 2078 if (index > w_max_used_index) 2079 w_max_used_index = index; 2080 return (w); 2081 } 2082 2083 static void 2084 witness_free(struct witness *w) 2085 { 2086 2087 STAILQ_INSERT_HEAD(&w_free, w, w_list); 2088 w_free_cnt++; 2089 } 2090 2091 static struct lock_list_entry * 2092 witness_lock_list_get(void) 2093 { 2094 struct lock_list_entry *lle; 2095 2096 if (witness_watch == -1) 2097 return (NULL); 2098 mtx_lock_spin(&w_mtx); 2099 lle = w_lock_list_free; 2100 if (lle == NULL) { 2101 witness_watch = -1; 2102 mtx_unlock_spin(&w_mtx); 2103 printf("%s: witness exhausted\n", __func__); 2104 return (NULL); 2105 } 2106 w_lock_list_free = lle->ll_next; 2107 mtx_unlock_spin(&w_mtx); 2108 bzero(lle, sizeof(*lle)); 2109 return (lle); 2110 } 2111 2112 static void 2113 witness_lock_list_free(struct lock_list_entry *lle) 2114 { 2115 2116 mtx_lock_spin(&w_mtx); 2117 lle->ll_next = w_lock_list_free; 2118 w_lock_list_free = lle; 2119 mtx_unlock_spin(&w_mtx); 2120 } 2121 2122 static struct lock_instance * 2123 find_instance(struct lock_list_entry *list, const struct lock_object *lock) 2124 { 2125 struct lock_list_entry *lle; 2126 struct lock_instance *instance; 2127 int i; 2128 2129 for (lle = list; lle != NULL; lle = lle->ll_next) 2130 for (i = lle->ll_count - 1; i >= 0; i--) { 2131 instance = &lle->ll_children[i]; 2132 if (instance->li_lock == lock) 2133 return (instance); 2134 } 2135 return (NULL); 2136 } 2137 2138 static void 2139 witness_list_lock(struct lock_instance *instance, 2140 int (*prnt)(const char *fmt, ...)) 2141 { 2142 struct lock_object *lock; 2143 2144 lock = instance->li_lock; 2145 prnt("%s %s %s", (instance->li_flags & LI_EXCLUSIVE) != 0 ? 2146 "exclusive" : "shared", LOCK_CLASS(lock)->lc_name, lock->lo_name); 2147 if (lock->lo_witness->w_name != lock->lo_name) 2148 prnt(" (%s)", lock->lo_witness->w_name); 2149 prnt(" r = %d (%p) locked @ %s:%d\n", 2150 instance->li_flags & LI_RECURSEMASK, lock, 2151 fixup_filename(instance->li_file), instance->li_line); 2152 } 2153 2154 #ifdef DDB 2155 static int 2156 witness_thread_has_locks(struct thread *td) 2157 { 2158 2159 if (td->td_sleeplocks == NULL) 2160 return (0); 2161 return (td->td_sleeplocks->ll_count != 0); 2162 } 2163 2164 static int 2165 witness_proc_has_locks(struct proc *p) 2166 { 2167 struct thread *td; 2168 2169 FOREACH_THREAD_IN_PROC(p, td) { 2170 if (witness_thread_has_locks(td)) 2171 return (1); 2172 } 2173 return (0); 2174 } 2175 #endif 2176 2177 int 2178 witness_list_locks(struct lock_list_entry **lock_list, 2179 int (*prnt)(const char *fmt, ...)) 2180 { 2181 struct lock_list_entry *lle; 2182 int i, nheld; 2183 2184 nheld = 0; 2185 for (lle = *lock_list; lle != NULL; lle = lle->ll_next) 2186 for (i = lle->ll_count - 1; i >= 0; i--) { 2187 witness_list_lock(&lle->ll_children[i], prnt); 2188 nheld++; 2189 } 2190 return (nheld); 2191 } 2192 2193 /* 2194 * This is a bit risky at best. We call this function when we have timed 2195 * out acquiring a spin lock, and we assume that the other CPU is stuck 2196 * with this lock held. So, we go groveling around in the other CPU's 2197 * per-cpu data to try to find the lock instance for this spin lock to 2198 * see when it was last acquired. 2199 */ 2200 void 2201 witness_display_spinlock(struct lock_object *lock, struct thread *owner, 2202 int (*prnt)(const char *fmt, ...)) 2203 { 2204 struct lock_instance *instance; 2205 struct pcpu *pc; 2206 2207 if (owner->td_critnest == 0 || owner->td_oncpu == NOCPU) 2208 return; 2209 pc = pcpu_find(owner->td_oncpu); 2210 instance = find_instance(pc->pc_spinlocks, lock); 2211 if (instance != NULL) 2212 witness_list_lock(instance, prnt); 2213 } 2214 2215 void 2216 witness_save(struct lock_object *lock, const char **filep, int *linep) 2217 { 2218 struct lock_list_entry *lock_list; 2219 struct lock_instance *instance; 2220 struct lock_class *class; 2221 2222 /* 2223 * This function is used independently in locking code to deal with 2224 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2225 * is gone. 2226 */ 2227 if (SCHEDULER_STOPPED()) 2228 return; 2229 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2230 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2231 return; 2232 class = LOCK_CLASS(lock); 2233 if (class->lc_flags & LC_SLEEPLOCK) 2234 lock_list = curthread->td_sleeplocks; 2235 else { 2236 if (witness_skipspin) 2237 return; 2238 lock_list = PCPU_GET(spinlocks); 2239 } 2240 instance = find_instance(lock_list, lock); 2241 if (instance == NULL) { 2242 kassert_panic("%s: lock (%s) %s not locked", __func__, 2243 class->lc_name, lock->lo_name); 2244 return; 2245 } 2246 *filep = instance->li_file; 2247 *linep = instance->li_line; 2248 } 2249 2250 void 2251 witness_restore(struct lock_object *lock, const char *file, int line) 2252 { 2253 struct lock_list_entry *lock_list; 2254 struct lock_instance *instance; 2255 struct lock_class *class; 2256 2257 /* 2258 * This function is used independently in locking code to deal with 2259 * Giant, SCHEDULER_STOPPED() check can be removed here after Giant 2260 * is gone. 2261 */ 2262 if (SCHEDULER_STOPPED()) 2263 return; 2264 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2265 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2266 return; 2267 class = LOCK_CLASS(lock); 2268 if (class->lc_flags & LC_SLEEPLOCK) 2269 lock_list = curthread->td_sleeplocks; 2270 else { 2271 if (witness_skipspin) 2272 return; 2273 lock_list = PCPU_GET(spinlocks); 2274 } 2275 instance = find_instance(lock_list, lock); 2276 if (instance == NULL) 2277 kassert_panic("%s: lock (%s) %s not locked", __func__, 2278 class->lc_name, lock->lo_name); 2279 lock->lo_witness->w_file = file; 2280 lock->lo_witness->w_line = line; 2281 if (instance == NULL) 2282 return; 2283 instance->li_file = file; 2284 instance->li_line = line; 2285 } 2286 2287 void 2288 witness_assert(const struct lock_object *lock, int flags, const char *file, 2289 int line) 2290 { 2291 #ifdef INVARIANT_SUPPORT 2292 struct lock_instance *instance; 2293 struct lock_class *class; 2294 2295 if (lock->lo_witness == NULL || witness_watch < 1 || panicstr != NULL) 2296 return; 2297 class = LOCK_CLASS(lock); 2298 if ((class->lc_flags & LC_SLEEPLOCK) != 0) 2299 instance = find_instance(curthread->td_sleeplocks, lock); 2300 else if ((class->lc_flags & LC_SPINLOCK) != 0) 2301 instance = find_instance(PCPU_GET(spinlocks), lock); 2302 else { 2303 kassert_panic("Lock (%s) %s is not sleep or spin!", 2304 class->lc_name, lock->lo_name); 2305 return; 2306 } 2307 switch (flags) { 2308 case LA_UNLOCKED: 2309 if (instance != NULL) 2310 kassert_panic("Lock (%s) %s locked @ %s:%d.", 2311 class->lc_name, lock->lo_name, 2312 fixup_filename(file), line); 2313 break; 2314 case LA_LOCKED: 2315 case LA_LOCKED | LA_RECURSED: 2316 case LA_LOCKED | LA_NOTRECURSED: 2317 case LA_SLOCKED: 2318 case LA_SLOCKED | LA_RECURSED: 2319 case LA_SLOCKED | LA_NOTRECURSED: 2320 case LA_XLOCKED: 2321 case LA_XLOCKED | LA_RECURSED: 2322 case LA_XLOCKED | LA_NOTRECURSED: 2323 if (instance == NULL) { 2324 kassert_panic("Lock (%s) %s not locked @ %s:%d.", 2325 class->lc_name, lock->lo_name, 2326 fixup_filename(file), line); 2327 break; 2328 } 2329 if ((flags & LA_XLOCKED) != 0 && 2330 (instance->li_flags & LI_EXCLUSIVE) == 0) 2331 kassert_panic( 2332 "Lock (%s) %s not exclusively locked @ %s:%d.", 2333 class->lc_name, lock->lo_name, 2334 fixup_filename(file), line); 2335 if ((flags & LA_SLOCKED) != 0 && 2336 (instance->li_flags & LI_EXCLUSIVE) != 0) 2337 kassert_panic( 2338 "Lock (%s) %s exclusively locked @ %s:%d.", 2339 class->lc_name, lock->lo_name, 2340 fixup_filename(file), line); 2341 if ((flags & LA_RECURSED) != 0 && 2342 (instance->li_flags & LI_RECURSEMASK) == 0) 2343 kassert_panic("Lock (%s) %s not recursed @ %s:%d.", 2344 class->lc_name, lock->lo_name, 2345 fixup_filename(file), line); 2346 if ((flags & LA_NOTRECURSED) != 0 && 2347 (instance->li_flags & LI_RECURSEMASK) != 0) 2348 kassert_panic("Lock (%s) %s recursed @ %s:%d.", 2349 class->lc_name, lock->lo_name, 2350 fixup_filename(file), line); 2351 break; 2352 default: 2353 kassert_panic("Invalid lock assertion at %s:%d.", 2354 fixup_filename(file), line); 2355 2356 } 2357 #endif /* INVARIANT_SUPPORT */ 2358 } 2359 2360 static void 2361 witness_setflag(struct lock_object *lock, int flag, int set) 2362 { 2363 struct lock_list_entry *lock_list; 2364 struct lock_instance *instance; 2365 struct lock_class *class; 2366 2367 if (lock->lo_witness == NULL || witness_watch == -1 || panicstr != NULL) 2368 return; 2369 class = LOCK_CLASS(lock); 2370 if (class->lc_flags & LC_SLEEPLOCK) 2371 lock_list = curthread->td_sleeplocks; 2372 else { 2373 if (witness_skipspin) 2374 return; 2375 lock_list = PCPU_GET(spinlocks); 2376 } 2377 instance = find_instance(lock_list, lock); 2378 if (instance == NULL) { 2379 kassert_panic("%s: lock (%s) %s not locked", __func__, 2380 class->lc_name, lock->lo_name); 2381 return; 2382 } 2383 2384 if (set) 2385 instance->li_flags |= flag; 2386 else 2387 instance->li_flags &= ~flag; 2388 } 2389 2390 void 2391 witness_norelease(struct lock_object *lock) 2392 { 2393 2394 witness_setflag(lock, LI_NORELEASE, 1); 2395 } 2396 2397 void 2398 witness_releaseok(struct lock_object *lock) 2399 { 2400 2401 witness_setflag(lock, LI_NORELEASE, 0); 2402 } 2403 2404 #ifdef DDB 2405 static void 2406 witness_ddb_list(struct thread *td) 2407 { 2408 2409 KASSERT(witness_cold == 0, ("%s: witness_cold", __func__)); 2410 KASSERT(kdb_active, ("%s: not in the debugger", __func__)); 2411 2412 if (witness_watch < 1) 2413 return; 2414 2415 witness_list_locks(&td->td_sleeplocks, db_printf); 2416 2417 /* 2418 * We only handle spinlocks if td == curthread. This is somewhat broken 2419 * if td is currently executing on some other CPU and holds spin locks 2420 * as we won't display those locks. If we had a MI way of getting 2421 * the per-cpu data for a given cpu then we could use 2422 * td->td_oncpu to get the list of spinlocks for this thread 2423 * and "fix" this. 2424 * 2425 * That still wouldn't really fix this unless we locked the scheduler 2426 * lock or stopped the other CPU to make sure it wasn't changing the 2427 * list out from under us. It is probably best to just not try to 2428 * handle threads on other CPU's for now. 2429 */ 2430 if (td == curthread && PCPU_GET(spinlocks) != NULL) 2431 witness_list_locks(PCPU_PTR(spinlocks), db_printf); 2432 } 2433 2434 DB_SHOW_COMMAND(locks, db_witness_list) 2435 { 2436 struct thread *td; 2437 2438 if (have_addr) 2439 td = db_lookup_thread(addr, TRUE); 2440 else 2441 td = kdb_thread; 2442 witness_ddb_list(td); 2443 } 2444 2445 DB_SHOW_ALL_COMMAND(locks, db_witness_list_all) 2446 { 2447 struct thread *td; 2448 struct proc *p; 2449 2450 /* 2451 * It would be nice to list only threads and processes that actually 2452 * held sleep locks, but that information is currently not exported 2453 * by WITNESS. 2454 */ 2455 FOREACH_PROC_IN_SYSTEM(p) { 2456 if (!witness_proc_has_locks(p)) 2457 continue; 2458 FOREACH_THREAD_IN_PROC(p, td) { 2459 if (!witness_thread_has_locks(td)) 2460 continue; 2461 db_printf("Process %d (%s) thread %p (%d)\n", p->p_pid, 2462 p->p_comm, td, td->td_tid); 2463 witness_ddb_list(td); 2464 if (db_pager_quit) 2465 return; 2466 } 2467 } 2468 } 2469 DB_SHOW_ALIAS(alllocks, db_witness_list_all) 2470 2471 DB_SHOW_COMMAND(witness, db_witness_display) 2472 { 2473 2474 witness_ddb_display(db_printf); 2475 } 2476 #endif 2477 2478 static int 2479 sysctl_debug_witness_badstacks(SYSCTL_HANDLER_ARGS) 2480 { 2481 struct witness_lock_order_data *data1, *data2, *tmp_data1, *tmp_data2; 2482 struct witness *tmp_w1, *tmp_w2, *w1, *w2; 2483 struct sbuf *sb; 2484 u_int w_rmatrix1, w_rmatrix2; 2485 int error, generation, i, j; 2486 2487 tmp_data1 = NULL; 2488 tmp_data2 = NULL; 2489 tmp_w1 = NULL; 2490 tmp_w2 = NULL; 2491 if (witness_watch < 1) { 2492 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2493 return (error); 2494 } 2495 if (witness_cold) { 2496 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2497 return (error); 2498 } 2499 error = 0; 2500 sb = sbuf_new(NULL, NULL, badstack_sbuf_size, SBUF_AUTOEXTEND); 2501 if (sb == NULL) 2502 return (ENOMEM); 2503 2504 /* Allocate and init temporary storage space. */ 2505 tmp_w1 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2506 tmp_w2 = malloc(sizeof(struct witness), M_TEMP, M_WAITOK | M_ZERO); 2507 tmp_data1 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2508 M_WAITOK | M_ZERO); 2509 tmp_data2 = malloc(sizeof(struct witness_lock_order_data), M_TEMP, 2510 M_WAITOK | M_ZERO); 2511 stack_zero(&tmp_data1->wlod_stack); 2512 stack_zero(&tmp_data2->wlod_stack); 2513 2514 restart: 2515 mtx_lock_spin(&w_mtx); 2516 generation = w_generation; 2517 mtx_unlock_spin(&w_mtx); 2518 sbuf_printf(sb, "Number of known direct relationships is %d\n", 2519 w_lohash.wloh_count); 2520 for (i = 1; i < w_max_used_index; i++) { 2521 mtx_lock_spin(&w_mtx); 2522 if (generation != w_generation) { 2523 mtx_unlock_spin(&w_mtx); 2524 2525 /* The graph has changed, try again. */ 2526 req->oldidx = 0; 2527 sbuf_clear(sb); 2528 goto restart; 2529 } 2530 2531 w1 = &w_data[i]; 2532 if (w1->w_reversed == 0) { 2533 mtx_unlock_spin(&w_mtx); 2534 continue; 2535 } 2536 2537 /* Copy w1 locally so we can release the spin lock. */ 2538 *tmp_w1 = *w1; 2539 mtx_unlock_spin(&w_mtx); 2540 2541 if (tmp_w1->w_reversed == 0) 2542 continue; 2543 for (j = 1; j < w_max_used_index; j++) { 2544 if ((w_rmatrix[i][j] & WITNESS_REVERSAL) == 0 || i > j) 2545 continue; 2546 2547 mtx_lock_spin(&w_mtx); 2548 if (generation != w_generation) { 2549 mtx_unlock_spin(&w_mtx); 2550 2551 /* The graph has changed, try again. */ 2552 req->oldidx = 0; 2553 sbuf_clear(sb); 2554 goto restart; 2555 } 2556 2557 w2 = &w_data[j]; 2558 data1 = witness_lock_order_get(w1, w2); 2559 data2 = witness_lock_order_get(w2, w1); 2560 2561 /* 2562 * Copy information locally so we can release the 2563 * spin lock. 2564 */ 2565 *tmp_w2 = *w2; 2566 w_rmatrix1 = (unsigned int)w_rmatrix[i][j]; 2567 w_rmatrix2 = (unsigned int)w_rmatrix[j][i]; 2568 2569 if (data1) { 2570 stack_zero(&tmp_data1->wlod_stack); 2571 stack_copy(&data1->wlod_stack, 2572 &tmp_data1->wlod_stack); 2573 } 2574 if (data2 && data2 != data1) { 2575 stack_zero(&tmp_data2->wlod_stack); 2576 stack_copy(&data2->wlod_stack, 2577 &tmp_data2->wlod_stack); 2578 } 2579 mtx_unlock_spin(&w_mtx); 2580 2581 sbuf_printf(sb, 2582 "\nLock order reversal between \"%s\"(%s) and \"%s\"(%s)!\n", 2583 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2584 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2585 #if 0 2586 sbuf_printf(sb, 2587 "w_rmatrix[%s][%s] == %x, w_rmatrix[%s][%s] == %x\n", 2588 tmp_w1->name, tmp_w2->w_name, w_rmatrix1, 2589 tmp_w2->name, tmp_w1->w_name, w_rmatrix2); 2590 #endif 2591 if (data1) { 2592 sbuf_printf(sb, 2593 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2594 tmp_w1->w_name, tmp_w1->w_class->lc_name, 2595 tmp_w2->w_name, tmp_w2->w_class->lc_name); 2596 stack_sbuf_print(sb, &tmp_data1->wlod_stack); 2597 sbuf_printf(sb, "\n"); 2598 } 2599 if (data2 && data2 != data1) { 2600 sbuf_printf(sb, 2601 "Lock order \"%s\"(%s) -> \"%s\"(%s) first seen at:\n", 2602 tmp_w2->w_name, tmp_w2->w_class->lc_name, 2603 tmp_w1->w_name, tmp_w1->w_class->lc_name); 2604 stack_sbuf_print(sb, &tmp_data2->wlod_stack); 2605 sbuf_printf(sb, "\n"); 2606 } 2607 } 2608 } 2609 mtx_lock_spin(&w_mtx); 2610 if (generation != w_generation) { 2611 mtx_unlock_spin(&w_mtx); 2612 2613 /* 2614 * The graph changed while we were printing stack data, 2615 * try again. 2616 */ 2617 req->oldidx = 0; 2618 sbuf_clear(sb); 2619 goto restart; 2620 } 2621 mtx_unlock_spin(&w_mtx); 2622 2623 /* Free temporary storage space. */ 2624 free(tmp_data1, M_TEMP); 2625 free(tmp_data2, M_TEMP); 2626 free(tmp_w1, M_TEMP); 2627 free(tmp_w2, M_TEMP); 2628 2629 sbuf_finish(sb); 2630 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 2631 sbuf_delete(sb); 2632 2633 return (error); 2634 } 2635 2636 static int 2637 sysctl_debug_witness_fullgraph(SYSCTL_HANDLER_ARGS) 2638 { 2639 struct witness *w; 2640 struct sbuf *sb; 2641 int error; 2642 2643 if (witness_watch < 1) { 2644 error = SYSCTL_OUT(req, w_notrunning, sizeof(w_notrunning)); 2645 return (error); 2646 } 2647 if (witness_cold) { 2648 error = SYSCTL_OUT(req, w_stillcold, sizeof(w_stillcold)); 2649 return (error); 2650 } 2651 error = 0; 2652 2653 error = sysctl_wire_old_buffer(req, 0); 2654 if (error != 0) 2655 return (error); 2656 sb = sbuf_new_for_sysctl(NULL, NULL, FULLGRAPH_SBUF_SIZE, req); 2657 if (sb == NULL) 2658 return (ENOMEM); 2659 sbuf_printf(sb, "\n"); 2660 2661 mtx_lock_spin(&w_mtx); 2662 STAILQ_FOREACH(w, &w_all, w_list) 2663 w->w_displayed = 0; 2664 STAILQ_FOREACH(w, &w_all, w_list) 2665 witness_add_fullgraph(sb, w); 2666 mtx_unlock_spin(&w_mtx); 2667 2668 /* 2669 * Close the sbuf and return to userland. 2670 */ 2671 error = sbuf_finish(sb); 2672 sbuf_delete(sb); 2673 2674 return (error); 2675 } 2676 2677 static int 2678 sysctl_debug_witness_watch(SYSCTL_HANDLER_ARGS) 2679 { 2680 int error, value; 2681 2682 value = witness_watch; 2683 error = sysctl_handle_int(oidp, &value, 0, req); 2684 if (error != 0 || req->newptr == NULL) 2685 return (error); 2686 if (value > 1 || value < -1 || 2687 (witness_watch == -1 && value != witness_watch)) 2688 return (EINVAL); 2689 witness_watch = value; 2690 return (0); 2691 } 2692 2693 static void 2694 witness_add_fullgraph(struct sbuf *sb, struct witness *w) 2695 { 2696 int i; 2697 2698 if (w->w_displayed != 0 || (w->w_file == NULL && w->w_line == 0)) 2699 return; 2700 w->w_displayed = 1; 2701 2702 WITNESS_INDEX_ASSERT(w->w_index); 2703 for (i = 1; i <= w_max_used_index; i++) { 2704 if (w_rmatrix[w->w_index][i] & WITNESS_PARENT) { 2705 sbuf_printf(sb, "\"%s\",\"%s\"\n", w->w_name, 2706 w_data[i].w_name); 2707 witness_add_fullgraph(sb, &w_data[i]); 2708 } 2709 } 2710 } 2711 2712 /* 2713 * A simple hash function. Takes a key pointer and a key size. If size == 0, 2714 * interprets the key as a string and reads until the null 2715 * terminator. Otherwise, reads the first size bytes. Returns an unsigned 32-bit 2716 * hash value computed from the key. 2717 */ 2718 static uint32_t 2719 witness_hash_djb2(const uint8_t *key, uint32_t size) 2720 { 2721 unsigned int hash = 5381; 2722 int i; 2723 2724 /* hash = hash * 33 + key[i] */ 2725 if (size) 2726 for (i = 0; i < size; i++) 2727 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2728 else 2729 for (i = 0; key[i] != 0; i++) 2730 hash = ((hash << 5) + hash) + (unsigned int)key[i]; 2731 2732 return (hash); 2733 } 2734 2735 2736 /* 2737 * Initializes the two witness hash tables. Called exactly once from 2738 * witness_initialize(). 2739 */ 2740 static void 2741 witness_init_hash_tables(void) 2742 { 2743 int i; 2744 2745 MPASS(witness_cold); 2746 2747 /* Initialize the hash tables. */ 2748 for (i = 0; i < WITNESS_HASH_SIZE; i++) 2749 w_hash.wh_array[i] = NULL; 2750 2751 w_hash.wh_size = WITNESS_HASH_SIZE; 2752 w_hash.wh_count = 0; 2753 2754 /* Initialize the lock order data hash. */ 2755 w_lofree = NULL; 2756 for (i = 0; i < WITNESS_LO_DATA_COUNT; i++) { 2757 memset(&w_lodata[i], 0, sizeof(w_lodata[i])); 2758 w_lodata[i].wlod_next = w_lofree; 2759 w_lofree = &w_lodata[i]; 2760 } 2761 w_lohash.wloh_size = WITNESS_LO_HASH_SIZE; 2762 w_lohash.wloh_count = 0; 2763 for (i = 0; i < WITNESS_LO_HASH_SIZE; i++) 2764 w_lohash.wloh_array[i] = NULL; 2765 } 2766 2767 static struct witness * 2768 witness_hash_get(const char *key) 2769 { 2770 struct witness *w; 2771 uint32_t hash; 2772 2773 MPASS(key != NULL); 2774 if (witness_cold == 0) 2775 mtx_assert(&w_mtx, MA_OWNED); 2776 hash = witness_hash_djb2(key, 0) % w_hash.wh_size; 2777 w = w_hash.wh_array[hash]; 2778 while (w != NULL) { 2779 if (strcmp(w->w_name, key) == 0) 2780 goto out; 2781 w = w->w_hash_next; 2782 } 2783 2784 out: 2785 return (w); 2786 } 2787 2788 static void 2789 witness_hash_put(struct witness *w) 2790 { 2791 uint32_t hash; 2792 2793 MPASS(w != NULL); 2794 MPASS(w->w_name != NULL); 2795 if (witness_cold == 0) 2796 mtx_assert(&w_mtx, MA_OWNED); 2797 KASSERT(witness_hash_get(w->w_name) == NULL, 2798 ("%s: trying to add a hash entry that already exists!", __func__)); 2799 KASSERT(w->w_hash_next == NULL, 2800 ("%s: w->w_hash_next != NULL", __func__)); 2801 2802 hash = witness_hash_djb2(w->w_name, 0) % w_hash.wh_size; 2803 w->w_hash_next = w_hash.wh_array[hash]; 2804 w_hash.wh_array[hash] = w; 2805 w_hash.wh_count++; 2806 } 2807 2808 2809 static struct witness_lock_order_data * 2810 witness_lock_order_get(struct witness *parent, struct witness *child) 2811 { 2812 struct witness_lock_order_data *data = NULL; 2813 struct witness_lock_order_key key; 2814 unsigned int hash; 2815 2816 MPASS(parent != NULL && child != NULL); 2817 key.from = parent->w_index; 2818 key.to = child->w_index; 2819 WITNESS_INDEX_ASSERT(key.from); 2820 WITNESS_INDEX_ASSERT(key.to); 2821 if ((w_rmatrix[parent->w_index][child->w_index] 2822 & WITNESS_LOCK_ORDER_KNOWN) == 0) 2823 goto out; 2824 2825 hash = witness_hash_djb2((const char*)&key, 2826 sizeof(key)) % w_lohash.wloh_size; 2827 data = w_lohash.wloh_array[hash]; 2828 while (data != NULL) { 2829 if (witness_lock_order_key_equal(&data->wlod_key, &key)) 2830 break; 2831 data = data->wlod_next; 2832 } 2833 2834 out: 2835 return (data); 2836 } 2837 2838 /* 2839 * Verify that parent and child have a known relationship, are not the same, 2840 * and child is actually a child of parent. This is done without w_mtx 2841 * to avoid contention in the common case. 2842 */ 2843 static int 2844 witness_lock_order_check(struct witness *parent, struct witness *child) 2845 { 2846 2847 if (parent != child && 2848 w_rmatrix[parent->w_index][child->w_index] 2849 & WITNESS_LOCK_ORDER_KNOWN && 2850 isitmychild(parent, child)) 2851 return (1); 2852 2853 return (0); 2854 } 2855 2856 static int 2857 witness_lock_order_add(struct witness *parent, struct witness *child) 2858 { 2859 struct witness_lock_order_data *data = NULL; 2860 struct witness_lock_order_key key; 2861 unsigned int hash; 2862 2863 MPASS(parent != NULL && child != NULL); 2864 key.from = parent->w_index; 2865 key.to = child->w_index; 2866 WITNESS_INDEX_ASSERT(key.from); 2867 WITNESS_INDEX_ASSERT(key.to); 2868 if (w_rmatrix[parent->w_index][child->w_index] 2869 & WITNESS_LOCK_ORDER_KNOWN) 2870 return (1); 2871 2872 hash = witness_hash_djb2((const char*)&key, 2873 sizeof(key)) % w_lohash.wloh_size; 2874 w_rmatrix[parent->w_index][child->w_index] |= WITNESS_LOCK_ORDER_KNOWN; 2875 data = w_lofree; 2876 if (data == NULL) 2877 return (0); 2878 w_lofree = data->wlod_next; 2879 data->wlod_next = w_lohash.wloh_array[hash]; 2880 data->wlod_key = key; 2881 w_lohash.wloh_array[hash] = data; 2882 w_lohash.wloh_count++; 2883 stack_zero(&data->wlod_stack); 2884 stack_save(&data->wlod_stack); 2885 return (1); 2886 } 2887 2888 /* Call this whenver the structure of the witness graph changes. */ 2889 static void 2890 witness_increment_graph_generation(void) 2891 { 2892 2893 if (witness_cold == 0) 2894 mtx_assert(&w_mtx, MA_OWNED); 2895 w_generation++; 2896 } 2897 2898 #ifdef KDB 2899 static void 2900 _witness_debugger(int cond, const char *msg) 2901 { 2902 2903 if (witness_trace && cond) 2904 kdb_backtrace(); 2905 if (witness_kdb && cond) 2906 kdb_enter(KDB_WHY_WITNESS, msg); 2907 } 2908 #endif 2909