xref: /freebsd/sys/kern/subr_vmem.c (revision 78b9f0095b4af3aca6c931b2c7b009ddb8a05125)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5  * Copyright (c) 2013 EMC Corp.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * From:
32  *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
33  *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
34  */
35 
36 /*
37  * reference:
38  * -	Magazines and Vmem: Extending the Slab Allocator
39  *	to Many CPUs and Arbitrary Resources
40  *	http://www.usenix.org/event/usenix01/bonwick.html
41  */
42 
43 #include <sys/cdefs.h>
44 __FBSDID("$FreeBSD$");
45 
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/queue.h>
52 #include <sys/callout.h>
53 #include <sys/hash.h>
54 #include <sys/lock.h>
55 #include <sys/malloc.h>
56 #include <sys/mutex.h>
57 #include <sys/smp.h>
58 #include <sys/condvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/taskqueue.h>
61 #include <sys/vmem.h>
62 #include <sys/vmmeter.h>
63 
64 #include "opt_vm.h"
65 
66 #include <vm/uma.h>
67 #include <vm/vm.h>
68 #include <vm/pmap.h>
69 #include <vm/vm_map.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_kern.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_param.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_pageout.h>
76 #include <vm/vm_phys.h>
77 #include <vm/vm_pagequeue.h>
78 #include <vm/uma_int.h>
79 
80 int	vmem_startup_count(void);
81 
82 #define	VMEM_OPTORDER		5
83 #define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
84 #define	VMEM_MAXORDER						\
85     (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)
86 
87 #define	VMEM_HASHSIZE_MIN	16
88 #define	VMEM_HASHSIZE_MAX	131072
89 
90 #define	VMEM_QCACHE_IDX_MAX	16
91 
92 #define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT)
93 
94 #define	VMEM_FLAGS						\
95     (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)
96 
97 #define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)
98 
99 #define	QC_NAME_MAX	16
100 
101 /*
102  * Data structures private to vmem.
103  */
104 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");
105 
106 typedef struct vmem_btag bt_t;
107 
108 TAILQ_HEAD(vmem_seglist, vmem_btag);
109 LIST_HEAD(vmem_freelist, vmem_btag);
110 LIST_HEAD(vmem_hashlist, vmem_btag);
111 
112 struct qcache {
113 	uma_zone_t	qc_cache;
114 	vmem_t 		*qc_vmem;
115 	vmem_size_t	qc_size;
116 	char		qc_name[QC_NAME_MAX];
117 };
118 typedef struct qcache qcache_t;
119 #define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))
120 
121 #define	VMEM_NAME_MAX	16
122 
123 /* vmem arena */
124 struct vmem {
125 	struct mtx_padalign	vm_lock;
126 	struct cv		vm_cv;
127 	char			vm_name[VMEM_NAME_MAX+1];
128 	LIST_ENTRY(vmem)	vm_alllist;
129 	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
130 	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
131 	struct vmem_seglist	vm_seglist;
132 	struct vmem_hashlist	*vm_hashlist;
133 	vmem_size_t		vm_hashsize;
134 
135 	/* Constant after init */
136 	vmem_size_t		vm_qcache_max;
137 	vmem_size_t		vm_quantum_mask;
138 	vmem_size_t		vm_import_quantum;
139 	int			vm_quantum_shift;
140 
141 	/* Written on alloc/free */
142 	LIST_HEAD(, vmem_btag)	vm_freetags;
143 	int			vm_nfreetags;
144 	int			vm_nbusytag;
145 	vmem_size_t		vm_inuse;
146 	vmem_size_t		vm_size;
147 	vmem_size_t		vm_limit;
148 
149 	/* Used on import. */
150 	vmem_import_t		*vm_importfn;
151 	vmem_release_t		*vm_releasefn;
152 	void			*vm_arg;
153 
154 	/* Space exhaustion callback. */
155 	vmem_reclaim_t		*vm_reclaimfn;
156 
157 	/* quantum cache */
158 	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
159 };
160 
161 /* boundary tag */
162 struct vmem_btag {
163 	TAILQ_ENTRY(vmem_btag) bt_seglist;
164 	union {
165 		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
166 		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
167 	} bt_u;
168 #define	bt_hashlist	bt_u.u_hashlist
169 #define	bt_freelist	bt_u.u_freelist
170 	vmem_addr_t	bt_start;
171 	vmem_size_t	bt_size;
172 	int		bt_type;
173 };
174 
175 #define	BT_TYPE_SPAN		1	/* Allocated from importfn */
176 #define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
177 #define	BT_TYPE_FREE		3	/* Available space. */
178 #define	BT_TYPE_BUSY		4	/* Used space. */
179 #define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
180 
181 #define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)
182 
183 #if defined(DIAGNOSTIC)
184 static int enable_vmem_check = 1;
185 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
186     &enable_vmem_check, 0, "Enable vmem check");
187 static void vmem_check(vmem_t *);
188 #endif
189 
190 static struct callout	vmem_periodic_ch;
191 static int		vmem_periodic_interval;
192 static struct task	vmem_periodic_wk;
193 
194 static struct mtx_padalign __exclusive_cache_line vmem_list_lock;
195 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
196 static uma_zone_t vmem_zone;
197 
198 /* ---- misc */
199 #define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
200 #define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
201 #define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
202 #define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)
203 
204 
205 #define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
206 #define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
207 #define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
208 #define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
209 #define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
210 #define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);
211 
212 #define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))
213 
214 #define	VMEM_CROSS_P(addr1, addr2, boundary) \
215 	((((addr1) ^ (addr2)) & -(boundary)) != 0)
216 
217 #define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
218     (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
219 #define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
220     (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))
221 
222 /*
223  * Maximum number of boundary tags that may be required to satisfy an
224  * allocation.  Two may be required to import.  Another two may be
225  * required to clip edges.
226  */
227 #define	BT_MAXALLOC	4
228 
229 /*
230  * Max free limits the number of locally cached boundary tags.  We
231  * just want to avoid hitting the zone allocator for every call.
232  */
233 #define BT_MAXFREE	(BT_MAXALLOC * 8)
234 
235 /* Allocator for boundary tags. */
236 static uma_zone_t vmem_bt_zone;
237 
238 /* boot time arena storage. */
239 static struct vmem kernel_arena_storage;
240 static struct vmem buffer_arena_storage;
241 static struct vmem transient_arena_storage;
242 /* kernel and kmem arenas are aliased for backwards KPI compat. */
243 vmem_t *kernel_arena = &kernel_arena_storage;
244 #if VM_NRESERVLEVEL > 0
245 vmem_t *kernel_rwx_arena = NULL;
246 #endif
247 vmem_t *kmem_arena = &kernel_arena_storage;
248 vmem_t *buffer_arena = &buffer_arena_storage;
249 vmem_t *transient_arena = &transient_arena_storage;
250 
251 #ifdef DEBUG_MEMGUARD
252 static struct vmem memguard_arena_storage;
253 vmem_t *memguard_arena = &memguard_arena_storage;
254 #endif
255 
256 /*
257  * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
258  * allocation will not fail once bt_fill() passes.  To do so we cache
259  * at least the maximum possible tag allocations in the arena.
260  */
261 static int
262 bt_fill(vmem_t *vm, int flags)
263 {
264 	bt_t *bt;
265 
266 	VMEM_ASSERT_LOCKED(vm);
267 
268 	/*
269 	 * Only allow the kernel arena and arenas derived from kernel arena to
270 	 * dip into reserve tags.  They are where new tags come from.
271 	 */
272 	flags &= BT_FLAGS;
273 	if (vm != kernel_arena && vm->vm_arg != kernel_arena)
274 		flags &= ~M_USE_RESERVE;
275 
276 	/*
277 	 * Loop until we meet the reserve.  To minimize the lock shuffle
278 	 * and prevent simultaneous fills we first try a NOWAIT regardless
279 	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
280 	 * holding a vmem lock.
281 	 */
282 	while (vm->vm_nfreetags < BT_MAXALLOC) {
283 		bt = uma_zalloc(vmem_bt_zone,
284 		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
285 		if (bt == NULL) {
286 			VMEM_UNLOCK(vm);
287 			bt = uma_zalloc(vmem_bt_zone, flags);
288 			VMEM_LOCK(vm);
289 			if (bt == NULL && (flags & M_NOWAIT) != 0)
290 				break;
291 		}
292 		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
293 		vm->vm_nfreetags++;
294 	}
295 
296 	if (vm->vm_nfreetags < BT_MAXALLOC)
297 		return ENOMEM;
298 
299 	return 0;
300 }
301 
302 /*
303  * Pop a tag off of the freetag stack.
304  */
305 static bt_t *
306 bt_alloc(vmem_t *vm)
307 {
308 	bt_t *bt;
309 
310 	VMEM_ASSERT_LOCKED(vm);
311 	bt = LIST_FIRST(&vm->vm_freetags);
312 	MPASS(bt != NULL);
313 	LIST_REMOVE(bt, bt_freelist);
314 	vm->vm_nfreetags--;
315 
316 	return bt;
317 }
318 
319 /*
320  * Trim the per-vmem free list.  Returns with the lock released to
321  * avoid allocator recursions.
322  */
323 static void
324 bt_freetrim(vmem_t *vm, int freelimit)
325 {
326 	LIST_HEAD(, vmem_btag) freetags;
327 	bt_t *bt;
328 
329 	LIST_INIT(&freetags);
330 	VMEM_ASSERT_LOCKED(vm);
331 	while (vm->vm_nfreetags > freelimit) {
332 		bt = LIST_FIRST(&vm->vm_freetags);
333 		LIST_REMOVE(bt, bt_freelist);
334 		vm->vm_nfreetags--;
335 		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
336 	}
337 	VMEM_UNLOCK(vm);
338 	while ((bt = LIST_FIRST(&freetags)) != NULL) {
339 		LIST_REMOVE(bt, bt_freelist);
340 		uma_zfree(vmem_bt_zone, bt);
341 	}
342 }
343 
344 static inline void
345 bt_free(vmem_t *vm, bt_t *bt)
346 {
347 
348 	VMEM_ASSERT_LOCKED(vm);
349 	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
350 	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
351 	vm->vm_nfreetags++;
352 }
353 
354 /*
355  * freelist[0] ... [1, 1]
356  * freelist[1] ... [2, 2]
357  *  :
358  * freelist[29] ... [30, 30]
359  * freelist[30] ... [31, 31]
360  * freelist[31] ... [32, 63]
361  * freelist[33] ... [64, 127]
362  *  :
363  * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
364  *  :
365  */
366 
367 static struct vmem_freelist *
368 bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
369 {
370 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
371 	const int idx = SIZE2ORDER(qsize);
372 
373 	MPASS(size != 0 && qsize != 0);
374 	MPASS((size & vm->vm_quantum_mask) == 0);
375 	MPASS(idx >= 0);
376 	MPASS(idx < VMEM_MAXORDER);
377 
378 	return &vm->vm_freelist[idx];
379 }
380 
381 /*
382  * bt_freehead_toalloc: return the freelist for the given size and allocation
383  * strategy.
384  *
385  * For M_FIRSTFIT, return the list in which any blocks are large enough
386  * for the requested size.  otherwise, return the list which can have blocks
387  * large enough for the requested size.
388  */
389 static struct vmem_freelist *
390 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
391 {
392 	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
393 	int idx = SIZE2ORDER(qsize);
394 
395 	MPASS(size != 0 && qsize != 0);
396 	MPASS((size & vm->vm_quantum_mask) == 0);
397 
398 	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
399 		idx++;
400 		/* check too large request? */
401 	}
402 	MPASS(idx >= 0);
403 	MPASS(idx < VMEM_MAXORDER);
404 
405 	return &vm->vm_freelist[idx];
406 }
407 
408 /* ---- boundary tag hash */
409 
410 static struct vmem_hashlist *
411 bt_hashhead(vmem_t *vm, vmem_addr_t addr)
412 {
413 	struct vmem_hashlist *list;
414 	unsigned int hash;
415 
416 	hash = hash32_buf(&addr, sizeof(addr), 0);
417 	list = &vm->vm_hashlist[hash % vm->vm_hashsize];
418 
419 	return list;
420 }
421 
422 static bt_t *
423 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
424 {
425 	struct vmem_hashlist *list;
426 	bt_t *bt;
427 
428 	VMEM_ASSERT_LOCKED(vm);
429 	list = bt_hashhead(vm, addr);
430 	LIST_FOREACH(bt, list, bt_hashlist) {
431 		if (bt->bt_start == addr) {
432 			break;
433 		}
434 	}
435 
436 	return bt;
437 }
438 
439 static void
440 bt_rembusy(vmem_t *vm, bt_t *bt)
441 {
442 
443 	VMEM_ASSERT_LOCKED(vm);
444 	MPASS(vm->vm_nbusytag > 0);
445 	vm->vm_inuse -= bt->bt_size;
446 	vm->vm_nbusytag--;
447 	LIST_REMOVE(bt, bt_hashlist);
448 }
449 
450 static void
451 bt_insbusy(vmem_t *vm, bt_t *bt)
452 {
453 	struct vmem_hashlist *list;
454 
455 	VMEM_ASSERT_LOCKED(vm);
456 	MPASS(bt->bt_type == BT_TYPE_BUSY);
457 
458 	list = bt_hashhead(vm, bt->bt_start);
459 	LIST_INSERT_HEAD(list, bt, bt_hashlist);
460 	vm->vm_nbusytag++;
461 	vm->vm_inuse += bt->bt_size;
462 }
463 
464 /* ---- boundary tag list */
465 
466 static void
467 bt_remseg(vmem_t *vm, bt_t *bt)
468 {
469 
470 	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
471 	bt_free(vm, bt);
472 }
473 
474 static void
475 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
476 {
477 
478 	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
479 }
480 
481 static void
482 bt_insseg_tail(vmem_t *vm, bt_t *bt)
483 {
484 
485 	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
486 }
487 
488 static void
489 bt_remfree(vmem_t *vm, bt_t *bt)
490 {
491 
492 	MPASS(bt->bt_type == BT_TYPE_FREE);
493 
494 	LIST_REMOVE(bt, bt_freelist);
495 }
496 
497 static void
498 bt_insfree(vmem_t *vm, bt_t *bt)
499 {
500 	struct vmem_freelist *list;
501 
502 	list = bt_freehead_tofree(vm, bt->bt_size);
503 	LIST_INSERT_HEAD(list, bt, bt_freelist);
504 }
505 
506 /* ---- vmem internal functions */
507 
508 /*
509  * Import from the arena into the quantum cache in UMA.
510  */
511 static int
512 qc_import(void *arg, void **store, int cnt, int domain, int flags)
513 {
514 	qcache_t *qc;
515 	vmem_addr_t addr;
516 	int i;
517 
518 	qc = arg;
519 	if ((flags & VMEM_FITMASK) == 0)
520 		flags |= M_BESTFIT;
521 	for (i = 0; i < cnt; i++) {
522 		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
523 		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
524 			break;
525 		store[i] = (void *)addr;
526 		/* Only guarantee one allocation. */
527 		flags &= ~M_WAITOK;
528 		flags |= M_NOWAIT;
529 	}
530 	return i;
531 }
532 
533 /*
534  * Release memory from the UMA cache to the arena.
535  */
536 static void
537 qc_release(void *arg, void **store, int cnt)
538 {
539 	qcache_t *qc;
540 	int i;
541 
542 	qc = arg;
543 	for (i = 0; i < cnt; i++)
544 		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
545 }
546 
547 static void
548 qc_init(vmem_t *vm, vmem_size_t qcache_max)
549 {
550 	qcache_t *qc;
551 	vmem_size_t size;
552 	int qcache_idx_max;
553 	int i;
554 
555 	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
556 	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
557 	    VMEM_QCACHE_IDX_MAX);
558 	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
559 	for (i = 0; i < qcache_idx_max; i++) {
560 		qc = &vm->vm_qcache[i];
561 		size = (i + 1) << vm->vm_quantum_shift;
562 		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
563 		    vm->vm_name, size);
564 		qc->qc_vmem = vm;
565 		qc->qc_size = size;
566 		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
567 		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
568 		    UMA_ZONE_VM);
569 		MPASS(qc->qc_cache);
570 	}
571 }
572 
573 static void
574 qc_destroy(vmem_t *vm)
575 {
576 	int qcache_idx_max;
577 	int i;
578 
579 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
580 	for (i = 0; i < qcache_idx_max; i++)
581 		uma_zdestroy(vm->vm_qcache[i].qc_cache);
582 }
583 
584 static void
585 qc_drain(vmem_t *vm)
586 {
587 	int qcache_idx_max;
588 	int i;
589 
590 	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
591 	for (i = 0; i < qcache_idx_max; i++)
592 		zone_drain(vm->vm_qcache[i].qc_cache);
593 }
594 
595 #ifndef UMA_MD_SMALL_ALLOC
596 
597 static struct mtx_padalign __exclusive_cache_line vmem_bt_lock;
598 
599 /*
600  * vmem_bt_alloc:  Allocate a new page of boundary tags.
601  *
602  * On architectures with uma_small_alloc there is no recursion; no address
603  * space need be allocated to allocate boundary tags.  For the others, we
604  * must handle recursion.  Boundary tags are necessary to allocate new
605  * boundary tags.
606  *
607  * UMA guarantees that enough tags are held in reserve to allocate a new
608  * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
609  * when allocating the page to hold new boundary tags.  In this way the
610  * reserve is automatically filled by the allocation that uses the reserve.
611  *
612  * We still have to guarantee that the new tags are allocated atomically since
613  * many threads may try concurrently.  The bt_lock provides this guarantee.
614  * We convert WAITOK allocations to NOWAIT and then handle the blocking here
615  * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
616  * loop again after checking to see if we lost the race to allocate.
617  *
618  * There is a small race between vmem_bt_alloc() returning the page and the
619  * zone lock being acquired to add the page to the zone.  For WAITOK
620  * allocations we just pause briefly.  NOWAIT may experience a transient
621  * failure.  To alleviate this we permit a small number of simultaneous
622  * fills to proceed concurrently so NOWAIT is less likely to fail unless
623  * we are really out of KVA.
624  */
625 static void *
626 vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
627     int wait)
628 {
629 	vmem_addr_t addr;
630 
631 	*pflag = UMA_SLAB_KERNEL;
632 
633 	/*
634 	 * Single thread boundary tag allocation so that the address space
635 	 * and memory are added in one atomic operation.
636 	 */
637 	mtx_lock(&vmem_bt_lock);
638 	if (vmem_xalloc(vm_dom[domain].vmd_kernel_arena, bytes, 0, 0, 0,
639 	    VMEM_ADDR_MIN, VMEM_ADDR_MAX,
640 	    M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, &addr) == 0) {
641 		if (kmem_back_domain(domain, kernel_object, addr, bytes,
642 		    M_NOWAIT | M_USE_RESERVE) == 0) {
643 			mtx_unlock(&vmem_bt_lock);
644 			return ((void *)addr);
645 		}
646 		vmem_xfree(vm_dom[domain].vmd_kernel_arena, addr, bytes);
647 		mtx_unlock(&vmem_bt_lock);
648 		/*
649 		 * Out of memory, not address space.  This may not even be
650 		 * possible due to M_USE_RESERVE page allocation.
651 		 */
652 		if (wait & M_WAITOK)
653 			vm_wait_domain(domain);
654 		return (NULL);
655 	}
656 	mtx_unlock(&vmem_bt_lock);
657 	/*
658 	 * We're either out of address space or lost a fill race.
659 	 */
660 	if (wait & M_WAITOK)
661 		pause("btalloc", 1);
662 
663 	return (NULL);
664 }
665 
666 /*
667  * How many pages do we need to startup_alloc.
668  */
669 int
670 vmem_startup_count(void)
671 {
672 
673 	return (howmany(BT_MAXALLOC,
674 	    UMA_SLAB_SPACE / sizeof(struct vmem_btag)));
675 }
676 #endif
677 
678 void
679 vmem_startup(void)
680 {
681 
682 	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
683 	vmem_zone = uma_zcreate("vmem",
684 	    sizeof(struct vmem), NULL, NULL, NULL, NULL,
685 	    UMA_ALIGN_PTR, UMA_ZONE_VM);
686 	vmem_bt_zone = uma_zcreate("vmem btag",
687 	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
688 	    UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
689 #ifndef UMA_MD_SMALL_ALLOC
690 	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
691 	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
692 	/*
693 	 * Reserve enough tags to allocate new tags.  We allow multiple
694 	 * CPUs to attempt to allocate new tags concurrently to limit
695 	 * false restarts in UMA.
696 	 */
697 	uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
698 	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
699 #endif
700 }
701 
702 /* ---- rehash */
703 
704 static int
705 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
706 {
707 	bt_t *bt;
708 	int i;
709 	struct vmem_hashlist *newhashlist;
710 	struct vmem_hashlist *oldhashlist;
711 	vmem_size_t oldhashsize;
712 
713 	MPASS(newhashsize > 0);
714 
715 	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
716 	    M_VMEM, M_NOWAIT);
717 	if (newhashlist == NULL)
718 		return ENOMEM;
719 	for (i = 0; i < newhashsize; i++) {
720 		LIST_INIT(&newhashlist[i]);
721 	}
722 
723 	VMEM_LOCK(vm);
724 	oldhashlist = vm->vm_hashlist;
725 	oldhashsize = vm->vm_hashsize;
726 	vm->vm_hashlist = newhashlist;
727 	vm->vm_hashsize = newhashsize;
728 	if (oldhashlist == NULL) {
729 		VMEM_UNLOCK(vm);
730 		return 0;
731 	}
732 	for (i = 0; i < oldhashsize; i++) {
733 		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
734 			bt_rembusy(vm, bt);
735 			bt_insbusy(vm, bt);
736 		}
737 	}
738 	VMEM_UNLOCK(vm);
739 
740 	if (oldhashlist != vm->vm_hash0) {
741 		free(oldhashlist, M_VMEM);
742 	}
743 
744 	return 0;
745 }
746 
747 static void
748 vmem_periodic_kick(void *dummy)
749 {
750 
751 	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
752 }
753 
754 static void
755 vmem_periodic(void *unused, int pending)
756 {
757 	vmem_t *vm;
758 	vmem_size_t desired;
759 	vmem_size_t current;
760 
761 	mtx_lock(&vmem_list_lock);
762 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
763 #ifdef DIAGNOSTIC
764 		/* Convenient time to verify vmem state. */
765 		if (enable_vmem_check == 1) {
766 			VMEM_LOCK(vm);
767 			vmem_check(vm);
768 			VMEM_UNLOCK(vm);
769 		}
770 #endif
771 		desired = 1 << flsl(vm->vm_nbusytag);
772 		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
773 		    VMEM_HASHSIZE_MAX);
774 		current = vm->vm_hashsize;
775 
776 		/* Grow in powers of two.  Shrink less aggressively. */
777 		if (desired >= current * 2 || desired * 4 <= current)
778 			vmem_rehash(vm, desired);
779 
780 		/*
781 		 * Periodically wake up threads waiting for resources,
782 		 * so they could ask for reclamation again.
783 		 */
784 		VMEM_CONDVAR_BROADCAST(vm);
785 	}
786 	mtx_unlock(&vmem_list_lock);
787 
788 	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
789 	    vmem_periodic_kick, NULL);
790 }
791 
792 static void
793 vmem_start_callout(void *unused)
794 {
795 
796 	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
797 	vmem_periodic_interval = hz * 10;
798 	callout_init(&vmem_periodic_ch, 1);
799 	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
800 	    vmem_periodic_kick, NULL);
801 }
802 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);
803 
804 static void
805 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
806 {
807 	bt_t *btspan;
808 	bt_t *btfree;
809 
810 	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
811 	MPASS((size & vm->vm_quantum_mask) == 0);
812 
813 	btspan = bt_alloc(vm);
814 	btspan->bt_type = type;
815 	btspan->bt_start = addr;
816 	btspan->bt_size = size;
817 	bt_insseg_tail(vm, btspan);
818 
819 	btfree = bt_alloc(vm);
820 	btfree->bt_type = BT_TYPE_FREE;
821 	btfree->bt_start = addr;
822 	btfree->bt_size = size;
823 	bt_insseg(vm, btfree, btspan);
824 	bt_insfree(vm, btfree);
825 
826 	vm->vm_size += size;
827 }
828 
829 static void
830 vmem_destroy1(vmem_t *vm)
831 {
832 	bt_t *bt;
833 
834 	/*
835 	 * Drain per-cpu quantum caches.
836 	 */
837 	qc_destroy(vm);
838 
839 	/*
840 	 * The vmem should now only contain empty segments.
841 	 */
842 	VMEM_LOCK(vm);
843 	MPASS(vm->vm_nbusytag == 0);
844 
845 	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
846 		bt_remseg(vm, bt);
847 
848 	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
849 		free(vm->vm_hashlist, M_VMEM);
850 
851 	bt_freetrim(vm, 0);
852 
853 	VMEM_CONDVAR_DESTROY(vm);
854 	VMEM_LOCK_DESTROY(vm);
855 	uma_zfree(vmem_zone, vm);
856 }
857 
858 static int
859 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
860 {
861 	vmem_addr_t addr;
862 	int error;
863 
864 	if (vm->vm_importfn == NULL)
865 		return (EINVAL);
866 
867 	/*
868 	 * To make sure we get a span that meets the alignment we double it
869 	 * and add the size to the tail.  This slightly overestimates.
870 	 */
871 	if (align != vm->vm_quantum_mask + 1)
872 		size = (align * 2) + size;
873 	size = roundup(size, vm->vm_import_quantum);
874 
875 	if (vm->vm_limit != 0 && vm->vm_limit < vm->vm_size + size)
876 		return (ENOMEM);
877 
878 	/*
879 	 * Hide MAXALLOC tags so we're guaranteed to be able to add this
880 	 * span and the tag we want to allocate from it.
881 	 */
882 	MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
883 	vm->vm_nfreetags -= BT_MAXALLOC;
884 	VMEM_UNLOCK(vm);
885 	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
886 	VMEM_LOCK(vm);
887 	vm->vm_nfreetags += BT_MAXALLOC;
888 	if (error)
889 		return (ENOMEM);
890 
891 	vmem_add1(vm, addr, size, BT_TYPE_SPAN);
892 
893 	return 0;
894 }
895 
896 /*
897  * vmem_fit: check if a bt can satisfy the given restrictions.
898  *
899  * it's a caller's responsibility to ensure the region is big enough
900  * before calling us.
901  */
902 static int
903 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
904     vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
905     vmem_addr_t maxaddr, vmem_addr_t *addrp)
906 {
907 	vmem_addr_t start;
908 	vmem_addr_t end;
909 
910 	MPASS(size > 0);
911 	MPASS(bt->bt_size >= size); /* caller's responsibility */
912 
913 	/*
914 	 * XXX assumption: vmem_addr_t and vmem_size_t are
915 	 * unsigned integer of the same size.
916 	 */
917 
918 	start = bt->bt_start;
919 	if (start < minaddr) {
920 		start = minaddr;
921 	}
922 	end = BT_END(bt);
923 	if (end > maxaddr)
924 		end = maxaddr;
925 	if (start > end)
926 		return (ENOMEM);
927 
928 	start = VMEM_ALIGNUP(start - phase, align) + phase;
929 	if (start < bt->bt_start)
930 		start += align;
931 	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
932 		MPASS(align < nocross);
933 		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
934 	}
935 	if (start <= end && end - start >= size - 1) {
936 		MPASS((start & (align - 1)) == phase);
937 		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
938 		MPASS(minaddr <= start);
939 		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
940 		MPASS(bt->bt_start <= start);
941 		MPASS(BT_END(bt) - start >= size - 1);
942 		*addrp = start;
943 
944 		return (0);
945 	}
946 	return (ENOMEM);
947 }
948 
949 /*
950  * vmem_clip:  Trim the boundary tag edges to the requested start and size.
951  */
952 static void
953 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
954 {
955 	bt_t *btnew;
956 	bt_t *btprev;
957 
958 	VMEM_ASSERT_LOCKED(vm);
959 	MPASS(bt->bt_type == BT_TYPE_FREE);
960 	MPASS(bt->bt_size >= size);
961 	bt_remfree(vm, bt);
962 	if (bt->bt_start != start) {
963 		btprev = bt_alloc(vm);
964 		btprev->bt_type = BT_TYPE_FREE;
965 		btprev->bt_start = bt->bt_start;
966 		btprev->bt_size = start - bt->bt_start;
967 		bt->bt_start = start;
968 		bt->bt_size -= btprev->bt_size;
969 		bt_insfree(vm, btprev);
970 		bt_insseg(vm, btprev,
971 		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
972 	}
973 	MPASS(bt->bt_start == start);
974 	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
975 		/* split */
976 		btnew = bt_alloc(vm);
977 		btnew->bt_type = BT_TYPE_BUSY;
978 		btnew->bt_start = bt->bt_start;
979 		btnew->bt_size = size;
980 		bt->bt_start = bt->bt_start + size;
981 		bt->bt_size -= size;
982 		bt_insfree(vm, bt);
983 		bt_insseg(vm, btnew,
984 		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
985 		bt_insbusy(vm, btnew);
986 		bt = btnew;
987 	} else {
988 		bt->bt_type = BT_TYPE_BUSY;
989 		bt_insbusy(vm, bt);
990 	}
991 	MPASS(bt->bt_size >= size);
992 }
993 
994 /* ---- vmem API */
995 
996 void
997 vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
998      vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
999 {
1000 
1001 	VMEM_LOCK(vm);
1002 	vm->vm_importfn = importfn;
1003 	vm->vm_releasefn = releasefn;
1004 	vm->vm_arg = arg;
1005 	vm->vm_import_quantum = import_quantum;
1006 	VMEM_UNLOCK(vm);
1007 }
1008 
1009 void
1010 vmem_set_limit(vmem_t *vm, vmem_size_t limit)
1011 {
1012 
1013 	VMEM_LOCK(vm);
1014 	vm->vm_limit = limit;
1015 	VMEM_UNLOCK(vm);
1016 }
1017 
1018 void
1019 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
1020 {
1021 
1022 	VMEM_LOCK(vm);
1023 	vm->vm_reclaimfn = reclaimfn;
1024 	VMEM_UNLOCK(vm);
1025 }
1026 
1027 /*
1028  * vmem_init: Initializes vmem arena.
1029  */
1030 vmem_t *
1031 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
1032     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1033 {
1034 	int i;
1035 
1036 	MPASS(quantum > 0);
1037 	MPASS((quantum & (quantum - 1)) == 0);
1038 
1039 	bzero(vm, sizeof(*vm));
1040 
1041 	VMEM_CONDVAR_INIT(vm, name);
1042 	VMEM_LOCK_INIT(vm, name);
1043 	vm->vm_nfreetags = 0;
1044 	LIST_INIT(&vm->vm_freetags);
1045 	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
1046 	vm->vm_quantum_mask = quantum - 1;
1047 	vm->vm_quantum_shift = flsl(quantum) - 1;
1048 	vm->vm_nbusytag = 0;
1049 	vm->vm_size = 0;
1050 	vm->vm_limit = 0;
1051 	vm->vm_inuse = 0;
1052 	qc_init(vm, qcache_max);
1053 
1054 	TAILQ_INIT(&vm->vm_seglist);
1055 	for (i = 0; i < VMEM_MAXORDER; i++) {
1056 		LIST_INIT(&vm->vm_freelist[i]);
1057 	}
1058 	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
1059 	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
1060 	vm->vm_hashlist = vm->vm_hash0;
1061 
1062 	if (size != 0) {
1063 		if (vmem_add(vm, base, size, flags) != 0) {
1064 			vmem_destroy1(vm);
1065 			return NULL;
1066 		}
1067 	}
1068 
1069 	mtx_lock(&vmem_list_lock);
1070 	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1071 	mtx_unlock(&vmem_list_lock);
1072 
1073 	return vm;
1074 }
1075 
1076 /*
1077  * vmem_create: create an arena.
1078  */
1079 vmem_t *
1080 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1081     vmem_size_t quantum, vmem_size_t qcache_max, int flags)
1082 {
1083 
1084 	vmem_t *vm;
1085 
1086 	vm = uma_zalloc(vmem_zone, flags & (M_WAITOK|M_NOWAIT));
1087 	if (vm == NULL)
1088 		return (NULL);
1089 	if (vmem_init(vm, name, base, size, quantum, qcache_max,
1090 	    flags) == NULL)
1091 		return (NULL);
1092 	return (vm);
1093 }
1094 
1095 void
1096 vmem_destroy(vmem_t *vm)
1097 {
1098 
1099 	mtx_lock(&vmem_list_lock);
1100 	LIST_REMOVE(vm, vm_alllist);
1101 	mtx_unlock(&vmem_list_lock);
1102 
1103 	vmem_destroy1(vm);
1104 }
1105 
1106 vmem_size_t
1107 vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1108 {
1109 
1110 	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1111 }
1112 
1113 /*
1114  * vmem_alloc: allocate resource from the arena.
1115  */
1116 int
1117 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
1118 {
1119 	const int strat __unused = flags & VMEM_FITMASK;
1120 	qcache_t *qc;
1121 
1122 	flags &= VMEM_FLAGS;
1123 	MPASS(size > 0);
1124 	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1125 	if ((flags & M_NOWAIT) == 0)
1126 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");
1127 
1128 	if (size <= vm->vm_qcache_max) {
1129 		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1130 		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
1131 		if (*addrp == 0)
1132 			return (ENOMEM);
1133 		return (0);
1134 	}
1135 
1136 	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1137 	    flags, addrp);
1138 }
1139 
1140 int
1141 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1142     const vmem_size_t phase, const vmem_size_t nocross,
1143     const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
1144     vmem_addr_t *addrp)
1145 {
1146 	const vmem_size_t size = vmem_roundup_size(vm, size0);
1147 	struct vmem_freelist *list;
1148 	struct vmem_freelist *first;
1149 	struct vmem_freelist *end;
1150 	vmem_size_t avail;
1151 	bt_t *bt;
1152 	int error;
1153 	int strat;
1154 
1155 	flags &= VMEM_FLAGS;
1156 	strat = flags & VMEM_FITMASK;
1157 	MPASS(size0 > 0);
1158 	MPASS(size > 0);
1159 	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
1160 	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
1161 	if ((flags & M_NOWAIT) == 0)
1162 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
1163 	MPASS((align & vm->vm_quantum_mask) == 0);
1164 	MPASS((align & (align - 1)) == 0);
1165 	MPASS((phase & vm->vm_quantum_mask) == 0);
1166 	MPASS((nocross & vm->vm_quantum_mask) == 0);
1167 	MPASS((nocross & (nocross - 1)) == 0);
1168 	MPASS((align == 0 && phase == 0) || phase < align);
1169 	MPASS(nocross == 0 || nocross >= size);
1170 	MPASS(minaddr <= maxaddr);
1171 	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1172 
1173 	if (align == 0)
1174 		align = vm->vm_quantum_mask + 1;
1175 
1176 	*addrp = 0;
1177 	end = &vm->vm_freelist[VMEM_MAXORDER];
1178 	/*
1179 	 * choose a free block from which we allocate.
1180 	 */
1181 	first = bt_freehead_toalloc(vm, size, strat);
1182 	VMEM_LOCK(vm);
1183 	for (;;) {
1184 		/*
1185 		 * Make sure we have enough tags to complete the
1186 		 * operation.
1187 		 */
1188 		if (vm->vm_nfreetags < BT_MAXALLOC &&
1189 		    bt_fill(vm, flags) != 0) {
1190 			error = ENOMEM;
1191 			break;
1192 		}
1193 		/*
1194 	 	 * Scan freelists looking for a tag that satisfies the
1195 		 * allocation.  If we're doing BESTFIT we may encounter
1196 		 * sizes below the request.  If we're doing FIRSTFIT we
1197 		 * inspect only the first element from each list.
1198 		 */
1199 		for (list = first; list < end; list++) {
1200 			LIST_FOREACH(bt, list, bt_freelist) {
1201 				if (bt->bt_size >= size) {
1202 					error = vmem_fit(bt, size, align, phase,
1203 					    nocross, minaddr, maxaddr, addrp);
1204 					if (error == 0) {
1205 						vmem_clip(vm, bt, *addrp, size);
1206 						goto out;
1207 					}
1208 				}
1209 				/* FIRST skips to the next list. */
1210 				if (strat == M_FIRSTFIT)
1211 					break;
1212 			}
1213 		}
1214 		/*
1215 		 * Retry if the fast algorithm failed.
1216 		 */
1217 		if (strat == M_FIRSTFIT) {
1218 			strat = M_BESTFIT;
1219 			first = bt_freehead_toalloc(vm, size, strat);
1220 			continue;
1221 		}
1222 		/*
1223 		 * XXX it is possible to fail to meet restrictions with the
1224 		 * imported region.  It is up to the user to specify the
1225 		 * import quantum such that it can satisfy any allocation.
1226 		 */
1227 		if (vmem_import(vm, size, align, flags) == 0)
1228 			continue;
1229 
1230 		/*
1231 		 * Try to free some space from the quantum cache or reclaim
1232 		 * functions if available.
1233 		 */
1234 		if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
1235 			avail = vm->vm_size - vm->vm_inuse;
1236 			VMEM_UNLOCK(vm);
1237 			if (vm->vm_qcache_max != 0)
1238 				qc_drain(vm);
1239 			if (vm->vm_reclaimfn != NULL)
1240 				vm->vm_reclaimfn(vm, flags);
1241 			VMEM_LOCK(vm);
1242 			/* If we were successful retry even NOWAIT. */
1243 			if (vm->vm_size - vm->vm_inuse > avail)
1244 				continue;
1245 		}
1246 		if ((flags & M_NOWAIT) != 0) {
1247 			error = ENOMEM;
1248 			break;
1249 		}
1250 		VMEM_CONDVAR_WAIT(vm);
1251 	}
1252 out:
1253 	VMEM_UNLOCK(vm);
1254 	if (error != 0 && (flags & M_NOWAIT) == 0)
1255 		panic("failed to allocate waiting allocation\n");
1256 
1257 	return (error);
1258 }
1259 
1260 /*
1261  * vmem_free: free the resource to the arena.
1262  */
1263 void
1264 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1265 {
1266 	qcache_t *qc;
1267 	MPASS(size > 0);
1268 
1269 	if (size <= vm->vm_qcache_max) {
1270 		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
1271 		uma_zfree(qc->qc_cache, (void *)addr);
1272 	} else
1273 		vmem_xfree(vm, addr, size);
1274 }
1275 
1276 void
1277 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1278 {
1279 	bt_t *bt;
1280 	bt_t *t;
1281 
1282 	MPASS(size > 0);
1283 
1284 	VMEM_LOCK(vm);
1285 	bt = bt_lookupbusy(vm, addr);
1286 	MPASS(bt != NULL);
1287 	MPASS(bt->bt_start == addr);
1288 	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
1289 	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1290 	MPASS(bt->bt_type == BT_TYPE_BUSY);
1291 	bt_rembusy(vm, bt);
1292 	bt->bt_type = BT_TYPE_FREE;
1293 
1294 	/* coalesce */
1295 	t = TAILQ_NEXT(bt, bt_seglist);
1296 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1297 		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
1298 		bt->bt_size += t->bt_size;
1299 		bt_remfree(vm, t);
1300 		bt_remseg(vm, t);
1301 	}
1302 	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1303 	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1304 		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
1305 		bt->bt_size += t->bt_size;
1306 		bt->bt_start = t->bt_start;
1307 		bt_remfree(vm, t);
1308 		bt_remseg(vm, t);
1309 	}
1310 
1311 	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1312 	MPASS(t != NULL);
1313 	MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1314 	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1315 	    t->bt_size == bt->bt_size) {
1316 		vmem_addr_t spanaddr;
1317 		vmem_size_t spansize;
1318 
1319 		MPASS(t->bt_start == bt->bt_start);
1320 		spanaddr = bt->bt_start;
1321 		spansize = bt->bt_size;
1322 		bt_remseg(vm, bt);
1323 		bt_remseg(vm, t);
1324 		vm->vm_size -= spansize;
1325 		VMEM_CONDVAR_BROADCAST(vm);
1326 		bt_freetrim(vm, BT_MAXFREE);
1327 		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1328 	} else {
1329 		bt_insfree(vm, bt);
1330 		VMEM_CONDVAR_BROADCAST(vm);
1331 		bt_freetrim(vm, BT_MAXFREE);
1332 	}
1333 }
1334 
1335 /*
1336  * vmem_add:
1337  *
1338  */
1339 int
1340 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
1341 {
1342 	int error;
1343 
1344 	error = 0;
1345 	flags &= VMEM_FLAGS;
1346 	VMEM_LOCK(vm);
1347 	if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
1348 		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
1349 	else
1350 		error = ENOMEM;
1351 	VMEM_UNLOCK(vm);
1352 
1353 	return (error);
1354 }
1355 
1356 /*
1357  * vmem_size: information about arenas size
1358  */
1359 vmem_size_t
1360 vmem_size(vmem_t *vm, int typemask)
1361 {
1362 	int i;
1363 
1364 	switch (typemask) {
1365 	case VMEM_ALLOC:
1366 		return vm->vm_inuse;
1367 	case VMEM_FREE:
1368 		return vm->vm_size - vm->vm_inuse;
1369 	case VMEM_FREE|VMEM_ALLOC:
1370 		return vm->vm_size;
1371 	case VMEM_MAXFREE:
1372 		VMEM_LOCK(vm);
1373 		for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
1374 			if (LIST_EMPTY(&vm->vm_freelist[i]))
1375 				continue;
1376 			VMEM_UNLOCK(vm);
1377 			return ((vmem_size_t)ORDER2SIZE(i) <<
1378 			    vm->vm_quantum_shift);
1379 		}
1380 		VMEM_UNLOCK(vm);
1381 		return (0);
1382 	default:
1383 		panic("vmem_size");
1384 	}
1385 }
1386 
1387 /* ---- debug */
1388 
1389 #if defined(DDB) || defined(DIAGNOSTIC)
1390 
1391 static void bt_dump(const bt_t *, int (*)(const char *, ...)
1392     __printflike(1, 2));
1393 
1394 static const char *
1395 bt_type_string(int type)
1396 {
1397 
1398 	switch (type) {
1399 	case BT_TYPE_BUSY:
1400 		return "busy";
1401 	case BT_TYPE_FREE:
1402 		return "free";
1403 	case BT_TYPE_SPAN:
1404 		return "span";
1405 	case BT_TYPE_SPAN_STATIC:
1406 		return "static span";
1407 	default:
1408 		break;
1409 	}
1410 	return "BOGUS";
1411 }
1412 
1413 static void
1414 bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
1415 {
1416 
1417 	(*pr)("\t%p: %jx %jx, %d(%s)\n",
1418 	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
1419 	    bt->bt_type, bt_type_string(bt->bt_type));
1420 }
1421 
1422 static void
1423 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
1424 {
1425 	const bt_t *bt;
1426 	int i;
1427 
1428 	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1429 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1430 		bt_dump(bt, pr);
1431 	}
1432 
1433 	for (i = 0; i < VMEM_MAXORDER; i++) {
1434 		const struct vmem_freelist *fl = &vm->vm_freelist[i];
1435 
1436 		if (LIST_EMPTY(fl)) {
1437 			continue;
1438 		}
1439 
1440 		(*pr)("freelist[%d]\n", i);
1441 		LIST_FOREACH(bt, fl, bt_freelist) {
1442 			bt_dump(bt, pr);
1443 		}
1444 	}
1445 }
1446 
1447 #endif /* defined(DDB) || defined(DIAGNOSTIC) */
1448 
1449 #if defined(DDB)
1450 #include <ddb/ddb.h>
1451 
1452 static bt_t *
1453 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
1454 {
1455 	bt_t *bt;
1456 
1457 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1458 		if (BT_ISSPAN_P(bt)) {
1459 			continue;
1460 		}
1461 		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1462 			return bt;
1463 		}
1464 	}
1465 
1466 	return NULL;
1467 }
1468 
1469 void
1470 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
1471 {
1472 	vmem_t *vm;
1473 
1474 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1475 		bt_t *bt;
1476 
1477 		bt = vmem_whatis_lookup(vm, addr);
1478 		if (bt == NULL) {
1479 			continue;
1480 		}
1481 		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1482 		    (void *)addr, (void *)bt->bt_start,
1483 		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
1484 		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1485 	}
1486 }
1487 
1488 void
1489 vmem_printall(const char *modif, int (*pr)(const char *, ...))
1490 {
1491 	const vmem_t *vm;
1492 
1493 	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1494 		vmem_dump(vm, pr);
1495 	}
1496 }
1497 
1498 void
1499 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
1500 {
1501 	const vmem_t *vm = (const void *)addr;
1502 
1503 	vmem_dump(vm, pr);
1504 }
1505 
1506 DB_SHOW_COMMAND(vmemdump, vmemdump)
1507 {
1508 
1509 	if (!have_addr) {
1510 		db_printf("usage: show vmemdump <addr>\n");
1511 		return;
1512 	}
1513 
1514 	vmem_dump((const vmem_t *)addr, db_printf);
1515 }
1516 
1517 DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall)
1518 {
1519 	const vmem_t *vm;
1520 
1521 	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1522 		vmem_dump(vm, db_printf);
1523 }
1524 
1525 DB_SHOW_COMMAND(vmem, vmem_summ)
1526 {
1527 	const vmem_t *vm = (const void *)addr;
1528 	const bt_t *bt;
1529 	size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER];
1530 	size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER];
1531 	int ord;
1532 
1533 	if (!have_addr) {
1534 		db_printf("usage: show vmem <addr>\n");
1535 		return;
1536 	}
1537 
1538 	db_printf("vmem %p '%s'\n", vm, vm->vm_name);
1539 	db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1);
1540 	db_printf("\tsize:\t%zu\n", vm->vm_size);
1541 	db_printf("\tinuse:\t%zu\n", vm->vm_inuse);
1542 	db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse);
1543 	db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag);
1544 	db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags);
1545 
1546 	memset(&ft, 0, sizeof(ft));
1547 	memset(&ut, 0, sizeof(ut));
1548 	memset(&fs, 0, sizeof(fs));
1549 	memset(&us, 0, sizeof(us));
1550 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1551 		ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift);
1552 		if (bt->bt_type == BT_TYPE_BUSY) {
1553 			ut[ord]++;
1554 			us[ord] += bt->bt_size;
1555 		} else if (bt->bt_type == BT_TYPE_FREE) {
1556 			ft[ord]++;
1557 			fs[ord] += bt->bt_size;
1558 		}
1559 	}
1560 	db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n");
1561 	for (ord = 0; ord < VMEM_MAXORDER; ord++) {
1562 		if (ut[ord] == 0 && ft[ord] == 0)
1563 			continue;
1564 		db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n",
1565 		    ORDER2SIZE(ord) << vm->vm_quantum_shift,
1566 		    ut[ord], us[ord], ft[ord], fs[ord]);
1567 	}
1568 }
1569 
1570 DB_SHOW_ALL_COMMAND(vmem, vmem_summall)
1571 {
1572 	const vmem_t *vm;
1573 
1574 	LIST_FOREACH(vm, &vmem_list, vm_alllist)
1575 		vmem_summ((db_expr_t)vm, TRUE, count, modif);
1576 }
1577 #endif /* defined(DDB) */
1578 
1579 #define vmem_printf printf
1580 
1581 #if defined(DIAGNOSTIC)
1582 
1583 static bool
1584 vmem_check_sanity(vmem_t *vm)
1585 {
1586 	const bt_t *bt, *bt2;
1587 
1588 	MPASS(vm != NULL);
1589 
1590 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1591 		if (bt->bt_start > BT_END(bt)) {
1592 			printf("corrupted tag\n");
1593 			bt_dump(bt, vmem_printf);
1594 			return false;
1595 		}
1596 	}
1597 	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1598 		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1599 			if (bt == bt2) {
1600 				continue;
1601 			}
1602 			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1603 				continue;
1604 			}
1605 			if (bt->bt_start <= BT_END(bt2) &&
1606 			    bt2->bt_start <= BT_END(bt)) {
1607 				printf("overwrapped tags\n");
1608 				bt_dump(bt, vmem_printf);
1609 				bt_dump(bt2, vmem_printf);
1610 				return false;
1611 			}
1612 		}
1613 	}
1614 
1615 	return true;
1616 }
1617 
1618 static void
1619 vmem_check(vmem_t *vm)
1620 {
1621 
1622 	if (!vmem_check_sanity(vm)) {
1623 		panic("insanity vmem %p", vm);
1624 	}
1625 }
1626 
1627 #endif /* defined(DIAGNOSTIC) */
1628