1 /*- 2 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, 3 * Copyright (c) 2013 EMC Corp. 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 /* 29 * From: 30 * $NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $ 31 * $NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $ 32 */ 33 34 /* 35 * reference: 36 * - Magazines and Vmem: Extending the Slab Allocator 37 * to Many CPUs and Arbitrary Resources 38 * http://www.usenix.org/event/usenix01/bonwick.html 39 */ 40 41 #include <sys/cdefs.h> 42 __FBSDID("$FreeBSD$"); 43 44 #include "opt_ddb.h" 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/queue.h> 50 #include <sys/callout.h> 51 #include <sys/hash.h> 52 #include <sys/lock.h> 53 #include <sys/malloc.h> 54 #include <sys/mutex.h> 55 #include <sys/smp.h> 56 #include <sys/condvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/taskqueue.h> 59 #include <sys/vmem.h> 60 61 #include "opt_vm.h" 62 63 #include <vm/uma.h> 64 #include <vm/vm.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/vm_object.h> 68 #include <vm/vm_kern.h> 69 #include <vm/vm_extern.h> 70 #include <vm/vm_param.h> 71 #include <vm/vm_pageout.h> 72 73 #define VMEM_OPTORDER 5 74 #define VMEM_OPTVALUE (1 << VMEM_OPTORDER) 75 #define VMEM_MAXORDER \ 76 (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER) 77 78 #define VMEM_HASHSIZE_MIN 16 79 #define VMEM_HASHSIZE_MAX 131072 80 81 #define VMEM_QCACHE_IDX_MAX 16 82 83 #define VMEM_FITMASK (M_BESTFIT | M_FIRSTFIT) 84 85 #define VMEM_FLAGS \ 86 (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT) 87 88 #define BT_FLAGS (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM) 89 90 #define QC_NAME_MAX 16 91 92 /* 93 * Data structures private to vmem. 94 */ 95 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures"); 96 97 typedef struct vmem_btag bt_t; 98 99 TAILQ_HEAD(vmem_seglist, vmem_btag); 100 LIST_HEAD(vmem_freelist, vmem_btag); 101 LIST_HEAD(vmem_hashlist, vmem_btag); 102 103 struct qcache { 104 uma_zone_t qc_cache; 105 vmem_t *qc_vmem; 106 vmem_size_t qc_size; 107 char qc_name[QC_NAME_MAX]; 108 }; 109 typedef struct qcache qcache_t; 110 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache)) 111 112 #define VMEM_NAME_MAX 16 113 114 /* vmem arena */ 115 struct vmem { 116 struct mtx_padalign vm_lock; 117 struct cv vm_cv; 118 char vm_name[VMEM_NAME_MAX+1]; 119 LIST_ENTRY(vmem) vm_alllist; 120 struct vmem_hashlist vm_hash0[VMEM_HASHSIZE_MIN]; 121 struct vmem_freelist vm_freelist[VMEM_MAXORDER]; 122 struct vmem_seglist vm_seglist; 123 struct vmem_hashlist *vm_hashlist; 124 vmem_size_t vm_hashsize; 125 126 /* Constant after init */ 127 vmem_size_t vm_qcache_max; 128 vmem_size_t vm_quantum_mask; 129 vmem_size_t vm_import_quantum; 130 int vm_quantum_shift; 131 132 /* Written on alloc/free */ 133 LIST_HEAD(, vmem_btag) vm_freetags; 134 int vm_nfreetags; 135 int vm_nbusytag; 136 vmem_size_t vm_inuse; 137 vmem_size_t vm_size; 138 139 /* Used on import. */ 140 vmem_import_t *vm_importfn; 141 vmem_release_t *vm_releasefn; 142 void *vm_arg; 143 144 /* Space exhaustion callback. */ 145 vmem_reclaim_t *vm_reclaimfn; 146 147 /* quantum cache */ 148 qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX]; 149 }; 150 151 /* boundary tag */ 152 struct vmem_btag { 153 TAILQ_ENTRY(vmem_btag) bt_seglist; 154 union { 155 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */ 156 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */ 157 } bt_u; 158 #define bt_hashlist bt_u.u_hashlist 159 #define bt_freelist bt_u.u_freelist 160 vmem_addr_t bt_start; 161 vmem_size_t bt_size; 162 int bt_type; 163 }; 164 165 #define BT_TYPE_SPAN 1 /* Allocated from importfn */ 166 #define BT_TYPE_SPAN_STATIC 2 /* vmem_add() or create. */ 167 #define BT_TYPE_FREE 3 /* Available space. */ 168 #define BT_TYPE_BUSY 4 /* Used space. */ 169 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC) 170 171 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1) 172 173 #if defined(DIAGNOSTIC) 174 static int enable_vmem_check = 1; 175 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN, 176 &enable_vmem_check, 0, "Enable vmem check"); 177 static void vmem_check(vmem_t *); 178 #endif 179 180 static struct callout vmem_periodic_ch; 181 static int vmem_periodic_interval; 182 static struct task vmem_periodic_wk; 183 184 static struct mtx_padalign vmem_list_lock; 185 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); 186 187 /* ---- misc */ 188 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) 189 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) 190 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) 191 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) 192 193 194 #define VMEM_LOCK(vm) mtx_lock(&vm->vm_lock) 195 #define VMEM_TRYLOCK(vm) mtx_trylock(&vm->vm_lock) 196 #define VMEM_UNLOCK(vm) mtx_unlock(&vm->vm_lock) 197 #define VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF) 198 #define VMEM_LOCK_DESTROY(vm) mtx_destroy(&vm->vm_lock) 199 #define VMEM_ASSERT_LOCKED(vm) mtx_assert(&vm->vm_lock, MA_OWNED); 200 201 #define VMEM_ALIGNUP(addr, align) (-(-(addr) & -(align))) 202 203 #define VMEM_CROSS_P(addr1, addr2, boundary) \ 204 ((((addr1) ^ (addr2)) & -(boundary)) != 0) 205 206 #define ORDER2SIZE(order) ((order) < VMEM_OPTVALUE ? ((order) + 1) : \ 207 (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1))) 208 #define SIZE2ORDER(size) ((size) <= VMEM_OPTVALUE ? ((size) - 1) : \ 209 (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2))) 210 211 /* 212 * Maximum number of boundary tags that may be required to satisfy an 213 * allocation. Two may be required to import. Another two may be 214 * required to clip edges. 215 */ 216 #define BT_MAXALLOC 4 217 218 /* 219 * Max free limits the number of locally cached boundary tags. We 220 * just want to avoid hitting the zone allocator for every call. 221 */ 222 #define BT_MAXFREE (BT_MAXALLOC * 8) 223 224 /* Allocator for boundary tags. */ 225 static uma_zone_t vmem_bt_zone; 226 227 /* boot time arena storage. */ 228 static struct vmem kernel_arena_storage; 229 static struct vmem kmem_arena_storage; 230 static struct vmem buffer_arena_storage; 231 static struct vmem transient_arena_storage; 232 vmem_t *kernel_arena = &kernel_arena_storage; 233 vmem_t *kmem_arena = &kmem_arena_storage; 234 vmem_t *buffer_arena = &buffer_arena_storage; 235 vmem_t *transient_arena = &transient_arena_storage; 236 237 #ifdef DEBUG_MEMGUARD 238 static struct vmem memguard_arena_storage; 239 vmem_t *memguard_arena = &memguard_arena_storage; 240 #endif 241 242 /* 243 * Fill the vmem's boundary tag cache. We guarantee that boundary tag 244 * allocation will not fail once bt_fill() passes. To do so we cache 245 * at least the maximum possible tag allocations in the arena. 246 */ 247 static int 248 bt_fill(vmem_t *vm, int flags) 249 { 250 bt_t *bt; 251 252 VMEM_ASSERT_LOCKED(vm); 253 254 /* 255 * Only allow the kmem arena to dip into reserve tags. It is the 256 * vmem where new tags come from. 257 */ 258 flags &= BT_FLAGS; 259 if (vm != kmem_arena) 260 flags &= ~M_USE_RESERVE; 261 262 /* 263 * Loop until we meet the reserve. To minimize the lock shuffle 264 * and prevent simultaneous fills we first try a NOWAIT regardless 265 * of the caller's flags. Specify M_NOVM so we don't recurse while 266 * holding a vmem lock. 267 */ 268 while (vm->vm_nfreetags < BT_MAXALLOC) { 269 bt = uma_zalloc(vmem_bt_zone, 270 (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM); 271 if (bt == NULL) { 272 VMEM_UNLOCK(vm); 273 bt = uma_zalloc(vmem_bt_zone, flags); 274 VMEM_LOCK(vm); 275 if (bt == NULL && (flags & M_NOWAIT) != 0) 276 break; 277 } 278 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 279 vm->vm_nfreetags++; 280 } 281 282 if (vm->vm_nfreetags < BT_MAXALLOC) 283 return ENOMEM; 284 285 return 0; 286 } 287 288 /* 289 * Pop a tag off of the freetag stack. 290 */ 291 static bt_t * 292 bt_alloc(vmem_t *vm) 293 { 294 bt_t *bt; 295 296 VMEM_ASSERT_LOCKED(vm); 297 bt = LIST_FIRST(&vm->vm_freetags); 298 MPASS(bt != NULL); 299 LIST_REMOVE(bt, bt_freelist); 300 vm->vm_nfreetags--; 301 302 return bt; 303 } 304 305 /* 306 * Trim the per-vmem free list. Returns with the lock released to 307 * avoid allocator recursions. 308 */ 309 static void 310 bt_freetrim(vmem_t *vm, int freelimit) 311 { 312 LIST_HEAD(, vmem_btag) freetags; 313 bt_t *bt; 314 315 LIST_INIT(&freetags); 316 VMEM_ASSERT_LOCKED(vm); 317 while (vm->vm_nfreetags > freelimit) { 318 bt = LIST_FIRST(&vm->vm_freetags); 319 LIST_REMOVE(bt, bt_freelist); 320 vm->vm_nfreetags--; 321 LIST_INSERT_HEAD(&freetags, bt, bt_freelist); 322 } 323 VMEM_UNLOCK(vm); 324 while ((bt = LIST_FIRST(&freetags)) != NULL) { 325 LIST_REMOVE(bt, bt_freelist); 326 uma_zfree(vmem_bt_zone, bt); 327 } 328 } 329 330 static inline void 331 bt_free(vmem_t *vm, bt_t *bt) 332 { 333 334 VMEM_ASSERT_LOCKED(vm); 335 MPASS(LIST_FIRST(&vm->vm_freetags) != bt); 336 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 337 vm->vm_nfreetags++; 338 } 339 340 /* 341 * freelist[0] ... [1, 1] 342 * freelist[1] ... [2, 2] 343 * : 344 * freelist[29] ... [30, 30] 345 * freelist[30] ... [31, 31] 346 * freelist[31] ... [32, 63] 347 * freelist[33] ... [64, 127] 348 * : 349 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1] 350 * : 351 */ 352 353 static struct vmem_freelist * 354 bt_freehead_tofree(vmem_t *vm, vmem_size_t size) 355 { 356 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 357 const int idx = SIZE2ORDER(qsize); 358 359 MPASS(size != 0 && qsize != 0); 360 MPASS((size & vm->vm_quantum_mask) == 0); 361 MPASS(idx >= 0); 362 MPASS(idx < VMEM_MAXORDER); 363 364 return &vm->vm_freelist[idx]; 365 } 366 367 /* 368 * bt_freehead_toalloc: return the freelist for the given size and allocation 369 * strategy. 370 * 371 * For M_FIRSTFIT, return the list in which any blocks are large enough 372 * for the requested size. otherwise, return the list which can have blocks 373 * large enough for the requested size. 374 */ 375 static struct vmem_freelist * 376 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat) 377 { 378 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 379 int idx = SIZE2ORDER(qsize); 380 381 MPASS(size != 0 && qsize != 0); 382 MPASS((size & vm->vm_quantum_mask) == 0); 383 384 if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) { 385 idx++; 386 /* check too large request? */ 387 } 388 MPASS(idx >= 0); 389 MPASS(idx < VMEM_MAXORDER); 390 391 return &vm->vm_freelist[idx]; 392 } 393 394 /* ---- boundary tag hash */ 395 396 static struct vmem_hashlist * 397 bt_hashhead(vmem_t *vm, vmem_addr_t addr) 398 { 399 struct vmem_hashlist *list; 400 unsigned int hash; 401 402 hash = hash32_buf(&addr, sizeof(addr), 0); 403 list = &vm->vm_hashlist[hash % vm->vm_hashsize]; 404 405 return list; 406 } 407 408 static bt_t * 409 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) 410 { 411 struct vmem_hashlist *list; 412 bt_t *bt; 413 414 VMEM_ASSERT_LOCKED(vm); 415 list = bt_hashhead(vm, addr); 416 LIST_FOREACH(bt, list, bt_hashlist) { 417 if (bt->bt_start == addr) { 418 break; 419 } 420 } 421 422 return bt; 423 } 424 425 static void 426 bt_rembusy(vmem_t *vm, bt_t *bt) 427 { 428 429 VMEM_ASSERT_LOCKED(vm); 430 MPASS(vm->vm_nbusytag > 0); 431 vm->vm_inuse -= bt->bt_size; 432 vm->vm_nbusytag--; 433 LIST_REMOVE(bt, bt_hashlist); 434 } 435 436 static void 437 bt_insbusy(vmem_t *vm, bt_t *bt) 438 { 439 struct vmem_hashlist *list; 440 441 VMEM_ASSERT_LOCKED(vm); 442 MPASS(bt->bt_type == BT_TYPE_BUSY); 443 444 list = bt_hashhead(vm, bt->bt_start); 445 LIST_INSERT_HEAD(list, bt, bt_hashlist); 446 vm->vm_nbusytag++; 447 vm->vm_inuse += bt->bt_size; 448 } 449 450 /* ---- boundary tag list */ 451 452 static void 453 bt_remseg(vmem_t *vm, bt_t *bt) 454 { 455 456 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); 457 bt_free(vm, bt); 458 } 459 460 static void 461 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) 462 { 463 464 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); 465 } 466 467 static void 468 bt_insseg_tail(vmem_t *vm, bt_t *bt) 469 { 470 471 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); 472 } 473 474 static void 475 bt_remfree(vmem_t *vm, bt_t *bt) 476 { 477 478 MPASS(bt->bt_type == BT_TYPE_FREE); 479 480 LIST_REMOVE(bt, bt_freelist); 481 } 482 483 static void 484 bt_insfree(vmem_t *vm, bt_t *bt) 485 { 486 struct vmem_freelist *list; 487 488 list = bt_freehead_tofree(vm, bt->bt_size); 489 LIST_INSERT_HEAD(list, bt, bt_freelist); 490 } 491 492 /* ---- vmem internal functions */ 493 494 /* 495 * Import from the arena into the quantum cache in UMA. 496 */ 497 static int 498 qc_import(void *arg, void **store, int cnt, int flags) 499 { 500 qcache_t *qc; 501 vmem_addr_t addr; 502 int i; 503 504 qc = arg; 505 if ((flags & VMEM_FITMASK) == 0) 506 flags |= M_BESTFIT; 507 for (i = 0; i < cnt; i++) { 508 if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0, 509 VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0) 510 break; 511 store[i] = (void *)addr; 512 /* Only guarantee one allocation. */ 513 flags &= ~M_WAITOK; 514 flags |= M_NOWAIT; 515 } 516 return i; 517 } 518 519 /* 520 * Release memory from the UMA cache to the arena. 521 */ 522 static void 523 qc_release(void *arg, void **store, int cnt) 524 { 525 qcache_t *qc; 526 int i; 527 528 qc = arg; 529 for (i = 0; i < cnt; i++) 530 vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size); 531 } 532 533 static void 534 qc_init(vmem_t *vm, vmem_size_t qcache_max) 535 { 536 qcache_t *qc; 537 vmem_size_t size; 538 int qcache_idx_max; 539 int i; 540 541 MPASS((qcache_max & vm->vm_quantum_mask) == 0); 542 qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift, 543 VMEM_QCACHE_IDX_MAX); 544 vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift; 545 for (i = 0; i < qcache_idx_max; i++) { 546 qc = &vm->vm_qcache[i]; 547 size = (i + 1) << vm->vm_quantum_shift; 548 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu", 549 vm->vm_name, size); 550 qc->qc_vmem = vm; 551 qc->qc_size = size; 552 qc->qc_cache = uma_zcache_create(qc->qc_name, size, 553 NULL, NULL, NULL, NULL, qc_import, qc_release, qc, 554 UMA_ZONE_VM); 555 MPASS(qc->qc_cache); 556 } 557 } 558 559 static void 560 qc_destroy(vmem_t *vm) 561 { 562 int qcache_idx_max; 563 int i; 564 565 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 566 for (i = 0; i < qcache_idx_max; i++) 567 uma_zdestroy(vm->vm_qcache[i].qc_cache); 568 } 569 570 static void 571 qc_drain(vmem_t *vm) 572 { 573 int qcache_idx_max; 574 int i; 575 576 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 577 for (i = 0; i < qcache_idx_max; i++) 578 zone_drain(vm->vm_qcache[i].qc_cache); 579 } 580 581 #ifndef UMA_MD_SMALL_ALLOC 582 583 static struct mtx_padalign vmem_bt_lock; 584 585 /* 586 * vmem_bt_alloc: Allocate a new page of boundary tags. 587 * 588 * On architectures with uma_small_alloc there is no recursion; no address 589 * space need be allocated to allocate boundary tags. For the others, we 590 * must handle recursion. Boundary tags are necessary to allocate new 591 * boundary tags. 592 * 593 * UMA guarantees that enough tags are held in reserve to allocate a new 594 * page of kva. We dip into this reserve by specifying M_USE_RESERVE only 595 * when allocating the page to hold new boundary tags. In this way the 596 * reserve is automatically filled by the allocation that uses the reserve. 597 * 598 * We still have to guarantee that the new tags are allocated atomically since 599 * many threads may try concurrently. The bt_lock provides this guarantee. 600 * We convert WAITOK allocations to NOWAIT and then handle the blocking here 601 * on failure. It's ok to return NULL for a WAITOK allocation as UMA will 602 * loop again after checking to see if we lost the race to allocate. 603 * 604 * There is a small race between vmem_bt_alloc() returning the page and the 605 * zone lock being acquired to add the page to the zone. For WAITOK 606 * allocations we just pause briefly. NOWAIT may experience a transient 607 * failure. To alleviate this we permit a small number of simultaneous 608 * fills to proceed concurrently so NOWAIT is less likely to fail unless 609 * we are really out of KVA. 610 */ 611 static void * 612 vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 613 { 614 vmem_addr_t addr; 615 616 *pflag = UMA_SLAB_KMEM; 617 618 /* 619 * Single thread boundary tag allocation so that the address space 620 * and memory are added in one atomic operation. 621 */ 622 mtx_lock(&vmem_bt_lock); 623 if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN, 624 VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, 625 &addr) == 0) { 626 if (kmem_back(kmem_object, addr, bytes, 627 M_NOWAIT | M_USE_RESERVE) == 0) { 628 mtx_unlock(&vmem_bt_lock); 629 return ((void *)addr); 630 } 631 vmem_xfree(kmem_arena, addr, bytes); 632 mtx_unlock(&vmem_bt_lock); 633 /* 634 * Out of memory, not address space. This may not even be 635 * possible due to M_USE_RESERVE page allocation. 636 */ 637 if (wait & M_WAITOK) 638 VM_WAIT; 639 return (NULL); 640 } 641 mtx_unlock(&vmem_bt_lock); 642 /* 643 * We're either out of address space or lost a fill race. 644 */ 645 if (wait & M_WAITOK) 646 pause("btalloc", 1); 647 648 return (NULL); 649 } 650 #endif 651 652 void 653 vmem_startup(void) 654 { 655 656 mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF); 657 vmem_bt_zone = uma_zcreate("vmem btag", 658 sizeof(struct vmem_btag), NULL, NULL, NULL, NULL, 659 UMA_ALIGN_PTR, UMA_ZONE_VM); 660 #ifndef UMA_MD_SMALL_ALLOC 661 mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF); 662 uma_prealloc(vmem_bt_zone, BT_MAXALLOC); 663 /* 664 * Reserve enough tags to allocate new tags. We allow multiple 665 * CPUs to attempt to allocate new tags concurrently to limit 666 * false restarts in UMA. 667 */ 668 uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2); 669 uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc); 670 #endif 671 } 672 673 /* ---- rehash */ 674 675 static int 676 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize) 677 { 678 bt_t *bt; 679 int i; 680 struct vmem_hashlist *newhashlist; 681 struct vmem_hashlist *oldhashlist; 682 vmem_size_t oldhashsize; 683 684 MPASS(newhashsize > 0); 685 686 newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize, 687 M_VMEM, M_NOWAIT); 688 if (newhashlist == NULL) 689 return ENOMEM; 690 for (i = 0; i < newhashsize; i++) { 691 LIST_INIT(&newhashlist[i]); 692 } 693 694 VMEM_LOCK(vm); 695 oldhashlist = vm->vm_hashlist; 696 oldhashsize = vm->vm_hashsize; 697 vm->vm_hashlist = newhashlist; 698 vm->vm_hashsize = newhashsize; 699 if (oldhashlist == NULL) { 700 VMEM_UNLOCK(vm); 701 return 0; 702 } 703 for (i = 0; i < oldhashsize; i++) { 704 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { 705 bt_rembusy(vm, bt); 706 bt_insbusy(vm, bt); 707 } 708 } 709 VMEM_UNLOCK(vm); 710 711 if (oldhashlist != vm->vm_hash0) { 712 free(oldhashlist, M_VMEM); 713 } 714 715 return 0; 716 } 717 718 static void 719 vmem_periodic_kick(void *dummy) 720 { 721 722 taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk); 723 } 724 725 static void 726 vmem_periodic(void *unused, int pending) 727 { 728 vmem_t *vm; 729 vmem_size_t desired; 730 vmem_size_t current; 731 732 mtx_lock(&vmem_list_lock); 733 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 734 #ifdef DIAGNOSTIC 735 /* Convenient time to verify vmem state. */ 736 if (enable_vmem_check == 1) { 737 VMEM_LOCK(vm); 738 vmem_check(vm); 739 VMEM_UNLOCK(vm); 740 } 741 #endif 742 desired = 1 << flsl(vm->vm_nbusytag); 743 desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN), 744 VMEM_HASHSIZE_MAX); 745 current = vm->vm_hashsize; 746 747 /* Grow in powers of two. Shrink less aggressively. */ 748 if (desired >= current * 2 || desired * 4 <= current) 749 vmem_rehash(vm, desired); 750 751 /* 752 * Periodically wake up threads waiting for resources, 753 * so they could ask for reclamation again. 754 */ 755 VMEM_CONDVAR_BROADCAST(vm); 756 } 757 mtx_unlock(&vmem_list_lock); 758 759 callout_reset(&vmem_periodic_ch, vmem_periodic_interval, 760 vmem_periodic_kick, NULL); 761 } 762 763 static void 764 vmem_start_callout(void *unused) 765 { 766 767 TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL); 768 vmem_periodic_interval = hz * 10; 769 callout_init(&vmem_periodic_ch, 1); 770 callout_reset(&vmem_periodic_ch, vmem_periodic_interval, 771 vmem_periodic_kick, NULL); 772 } 773 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL); 774 775 static void 776 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type) 777 { 778 bt_t *btspan; 779 bt_t *btfree; 780 781 MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC); 782 MPASS((size & vm->vm_quantum_mask) == 0); 783 784 btspan = bt_alloc(vm); 785 btspan->bt_type = type; 786 btspan->bt_start = addr; 787 btspan->bt_size = size; 788 bt_insseg_tail(vm, btspan); 789 790 btfree = bt_alloc(vm); 791 btfree->bt_type = BT_TYPE_FREE; 792 btfree->bt_start = addr; 793 btfree->bt_size = size; 794 bt_insseg(vm, btfree, btspan); 795 bt_insfree(vm, btfree); 796 797 vm->vm_size += size; 798 } 799 800 static void 801 vmem_destroy1(vmem_t *vm) 802 { 803 bt_t *bt; 804 805 /* 806 * Drain per-cpu quantum caches. 807 */ 808 qc_destroy(vm); 809 810 /* 811 * The vmem should now only contain empty segments. 812 */ 813 VMEM_LOCK(vm); 814 MPASS(vm->vm_nbusytag == 0); 815 816 while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL) 817 bt_remseg(vm, bt); 818 819 if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0) 820 free(vm->vm_hashlist, M_VMEM); 821 822 bt_freetrim(vm, 0); 823 824 VMEM_CONDVAR_DESTROY(vm); 825 VMEM_LOCK_DESTROY(vm); 826 free(vm, M_VMEM); 827 } 828 829 static int 830 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags) 831 { 832 vmem_addr_t addr; 833 int error; 834 835 if (vm->vm_importfn == NULL) 836 return EINVAL; 837 838 /* 839 * To make sure we get a span that meets the alignment we double it 840 * and add the size to the tail. This slightly overestimates. 841 */ 842 if (align != vm->vm_quantum_mask + 1) 843 size = (align * 2) + size; 844 size = roundup(size, vm->vm_import_quantum); 845 846 /* 847 * Hide MAXALLOC tags so we're guaranteed to be able to add this 848 * span and the tag we want to allocate from it. 849 */ 850 MPASS(vm->vm_nfreetags >= BT_MAXALLOC); 851 vm->vm_nfreetags -= BT_MAXALLOC; 852 VMEM_UNLOCK(vm); 853 error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); 854 VMEM_LOCK(vm); 855 vm->vm_nfreetags += BT_MAXALLOC; 856 if (error) 857 return ENOMEM; 858 859 vmem_add1(vm, addr, size, BT_TYPE_SPAN); 860 861 return 0; 862 } 863 864 /* 865 * vmem_fit: check if a bt can satisfy the given restrictions. 866 * 867 * it's a caller's responsibility to ensure the region is big enough 868 * before calling us. 869 */ 870 static int 871 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, 872 vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr, 873 vmem_addr_t maxaddr, vmem_addr_t *addrp) 874 { 875 vmem_addr_t start; 876 vmem_addr_t end; 877 878 MPASS(size > 0); 879 MPASS(bt->bt_size >= size); /* caller's responsibility */ 880 881 /* 882 * XXX assumption: vmem_addr_t and vmem_size_t are 883 * unsigned integer of the same size. 884 */ 885 886 start = bt->bt_start; 887 if (start < minaddr) { 888 start = minaddr; 889 } 890 end = BT_END(bt); 891 if (end > maxaddr) 892 end = maxaddr; 893 if (start > end) 894 return (ENOMEM); 895 896 start = VMEM_ALIGNUP(start - phase, align) + phase; 897 if (start < bt->bt_start) 898 start += align; 899 if (VMEM_CROSS_P(start, start + size - 1, nocross)) { 900 MPASS(align < nocross); 901 start = VMEM_ALIGNUP(start - phase, nocross) + phase; 902 } 903 if (start <= end && end - start >= size - 1) { 904 MPASS((start & (align - 1)) == phase); 905 MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross)); 906 MPASS(minaddr <= start); 907 MPASS(maxaddr == 0 || start + size - 1 <= maxaddr); 908 MPASS(bt->bt_start <= start); 909 MPASS(BT_END(bt) - start >= size - 1); 910 *addrp = start; 911 912 return (0); 913 } 914 return (ENOMEM); 915 } 916 917 /* 918 * vmem_clip: Trim the boundary tag edges to the requested start and size. 919 */ 920 static void 921 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size) 922 { 923 bt_t *btnew; 924 bt_t *btprev; 925 926 VMEM_ASSERT_LOCKED(vm); 927 MPASS(bt->bt_type == BT_TYPE_FREE); 928 MPASS(bt->bt_size >= size); 929 bt_remfree(vm, bt); 930 if (bt->bt_start != start) { 931 btprev = bt_alloc(vm); 932 btprev->bt_type = BT_TYPE_FREE; 933 btprev->bt_start = bt->bt_start; 934 btprev->bt_size = start - bt->bt_start; 935 bt->bt_start = start; 936 bt->bt_size -= btprev->bt_size; 937 bt_insfree(vm, btprev); 938 bt_insseg(vm, btprev, 939 TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 940 } 941 MPASS(bt->bt_start == start); 942 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { 943 /* split */ 944 btnew = bt_alloc(vm); 945 btnew->bt_type = BT_TYPE_BUSY; 946 btnew->bt_start = bt->bt_start; 947 btnew->bt_size = size; 948 bt->bt_start = bt->bt_start + size; 949 bt->bt_size -= size; 950 bt_insfree(vm, bt); 951 bt_insseg(vm, btnew, 952 TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 953 bt_insbusy(vm, btnew); 954 bt = btnew; 955 } else { 956 bt->bt_type = BT_TYPE_BUSY; 957 bt_insbusy(vm, bt); 958 } 959 MPASS(bt->bt_size >= size); 960 bt->bt_type = BT_TYPE_BUSY; 961 } 962 963 /* ---- vmem API */ 964 965 void 966 vmem_set_import(vmem_t *vm, vmem_import_t *importfn, 967 vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum) 968 { 969 970 VMEM_LOCK(vm); 971 vm->vm_importfn = importfn; 972 vm->vm_releasefn = releasefn; 973 vm->vm_arg = arg; 974 vm->vm_import_quantum = import_quantum; 975 VMEM_UNLOCK(vm); 976 } 977 978 void 979 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn) 980 { 981 982 VMEM_LOCK(vm); 983 vm->vm_reclaimfn = reclaimfn; 984 VMEM_UNLOCK(vm); 985 } 986 987 /* 988 * vmem_init: Initializes vmem arena. 989 */ 990 vmem_t * 991 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size, 992 vmem_size_t quantum, vmem_size_t qcache_max, int flags) 993 { 994 int i; 995 996 MPASS(quantum > 0); 997 MPASS((quantum & (quantum - 1)) == 0); 998 999 bzero(vm, sizeof(*vm)); 1000 1001 VMEM_CONDVAR_INIT(vm, name); 1002 VMEM_LOCK_INIT(vm, name); 1003 vm->vm_nfreetags = 0; 1004 LIST_INIT(&vm->vm_freetags); 1005 strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); 1006 vm->vm_quantum_mask = quantum - 1; 1007 vm->vm_quantum_shift = flsl(quantum) - 1; 1008 vm->vm_nbusytag = 0; 1009 vm->vm_size = 0; 1010 vm->vm_inuse = 0; 1011 qc_init(vm, qcache_max); 1012 1013 TAILQ_INIT(&vm->vm_seglist); 1014 for (i = 0; i < VMEM_MAXORDER; i++) { 1015 LIST_INIT(&vm->vm_freelist[i]); 1016 } 1017 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0)); 1018 vm->vm_hashsize = VMEM_HASHSIZE_MIN; 1019 vm->vm_hashlist = vm->vm_hash0; 1020 1021 if (size != 0) { 1022 if (vmem_add(vm, base, size, flags) != 0) { 1023 vmem_destroy1(vm); 1024 return NULL; 1025 } 1026 } 1027 1028 mtx_lock(&vmem_list_lock); 1029 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); 1030 mtx_unlock(&vmem_list_lock); 1031 1032 return vm; 1033 } 1034 1035 /* 1036 * vmem_create: create an arena. 1037 */ 1038 vmem_t * 1039 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, 1040 vmem_size_t quantum, vmem_size_t qcache_max, int flags) 1041 { 1042 1043 vmem_t *vm; 1044 1045 vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT)); 1046 if (vm == NULL) 1047 return (NULL); 1048 if (vmem_init(vm, name, base, size, quantum, qcache_max, 1049 flags) == NULL) 1050 return (NULL); 1051 return (vm); 1052 } 1053 1054 void 1055 vmem_destroy(vmem_t *vm) 1056 { 1057 1058 mtx_lock(&vmem_list_lock); 1059 LIST_REMOVE(vm, vm_alllist); 1060 mtx_unlock(&vmem_list_lock); 1061 1062 vmem_destroy1(vm); 1063 } 1064 1065 vmem_size_t 1066 vmem_roundup_size(vmem_t *vm, vmem_size_t size) 1067 { 1068 1069 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; 1070 } 1071 1072 /* 1073 * vmem_alloc: allocate resource from the arena. 1074 */ 1075 int 1076 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp) 1077 { 1078 const int strat __unused = flags & VMEM_FITMASK; 1079 qcache_t *qc; 1080 1081 flags &= VMEM_FLAGS; 1082 MPASS(size > 0); 1083 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT); 1084 if ((flags & M_NOWAIT) == 0) 1085 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc"); 1086 1087 if (size <= vm->vm_qcache_max) { 1088 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift]; 1089 *addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags); 1090 if (*addrp == 0) 1091 return (ENOMEM); 1092 return (0); 1093 } 1094 1095 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 1096 flags, addrp); 1097 } 1098 1099 int 1100 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, 1101 const vmem_size_t phase, const vmem_size_t nocross, 1102 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags, 1103 vmem_addr_t *addrp) 1104 { 1105 const vmem_size_t size = vmem_roundup_size(vm, size0); 1106 struct vmem_freelist *list; 1107 struct vmem_freelist *first; 1108 struct vmem_freelist *end; 1109 vmem_size_t avail; 1110 bt_t *bt; 1111 int error; 1112 int strat; 1113 1114 flags &= VMEM_FLAGS; 1115 strat = flags & VMEM_FITMASK; 1116 MPASS(size0 > 0); 1117 MPASS(size > 0); 1118 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT); 1119 MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK)); 1120 if ((flags & M_NOWAIT) == 0) 1121 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc"); 1122 MPASS((align & vm->vm_quantum_mask) == 0); 1123 MPASS((align & (align - 1)) == 0); 1124 MPASS((phase & vm->vm_quantum_mask) == 0); 1125 MPASS((nocross & vm->vm_quantum_mask) == 0); 1126 MPASS((nocross & (nocross - 1)) == 0); 1127 MPASS((align == 0 && phase == 0) || phase < align); 1128 MPASS(nocross == 0 || nocross >= size); 1129 MPASS(minaddr <= maxaddr); 1130 MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); 1131 1132 if (align == 0) 1133 align = vm->vm_quantum_mask + 1; 1134 1135 *addrp = 0; 1136 end = &vm->vm_freelist[VMEM_MAXORDER]; 1137 /* 1138 * choose a free block from which we allocate. 1139 */ 1140 first = bt_freehead_toalloc(vm, size, strat); 1141 VMEM_LOCK(vm); 1142 for (;;) { 1143 /* 1144 * Make sure we have enough tags to complete the 1145 * operation. 1146 */ 1147 if (vm->vm_nfreetags < BT_MAXALLOC && 1148 bt_fill(vm, flags) != 0) { 1149 error = ENOMEM; 1150 break; 1151 } 1152 /* 1153 * Scan freelists looking for a tag that satisfies the 1154 * allocation. If we're doing BESTFIT we may encounter 1155 * sizes below the request. If we're doing FIRSTFIT we 1156 * inspect only the first element from each list. 1157 */ 1158 for (list = first; list < end; list++) { 1159 LIST_FOREACH(bt, list, bt_freelist) { 1160 if (bt->bt_size >= size) { 1161 error = vmem_fit(bt, size, align, phase, 1162 nocross, minaddr, maxaddr, addrp); 1163 if (error == 0) { 1164 vmem_clip(vm, bt, *addrp, size); 1165 goto out; 1166 } 1167 } 1168 /* FIRST skips to the next list. */ 1169 if (strat == M_FIRSTFIT) 1170 break; 1171 } 1172 } 1173 /* 1174 * Retry if the fast algorithm failed. 1175 */ 1176 if (strat == M_FIRSTFIT) { 1177 strat = M_BESTFIT; 1178 first = bt_freehead_toalloc(vm, size, strat); 1179 continue; 1180 } 1181 /* 1182 * XXX it is possible to fail to meet restrictions with the 1183 * imported region. It is up to the user to specify the 1184 * import quantum such that it can satisfy any allocation. 1185 */ 1186 if (vmem_import(vm, size, align, flags) == 0) 1187 continue; 1188 1189 /* 1190 * Try to free some space from the quantum cache or reclaim 1191 * functions if available. 1192 */ 1193 if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) { 1194 avail = vm->vm_size - vm->vm_inuse; 1195 VMEM_UNLOCK(vm); 1196 if (vm->vm_qcache_max != 0) 1197 qc_drain(vm); 1198 if (vm->vm_reclaimfn != NULL) 1199 vm->vm_reclaimfn(vm, flags); 1200 VMEM_LOCK(vm); 1201 /* If we were successful retry even NOWAIT. */ 1202 if (vm->vm_size - vm->vm_inuse > avail) 1203 continue; 1204 } 1205 if ((flags & M_NOWAIT) != 0) { 1206 error = ENOMEM; 1207 break; 1208 } 1209 VMEM_CONDVAR_WAIT(vm); 1210 } 1211 out: 1212 VMEM_UNLOCK(vm); 1213 if (error != 0 && (flags & M_NOWAIT) == 0) 1214 panic("failed to allocate waiting allocation\n"); 1215 1216 return (error); 1217 } 1218 1219 /* 1220 * vmem_free: free the resource to the arena. 1221 */ 1222 void 1223 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1224 { 1225 qcache_t *qc; 1226 MPASS(size > 0); 1227 1228 if (size <= vm->vm_qcache_max) { 1229 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift]; 1230 uma_zfree(qc->qc_cache, (void *)addr); 1231 } else 1232 vmem_xfree(vm, addr, size); 1233 } 1234 1235 void 1236 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1237 { 1238 bt_t *bt; 1239 bt_t *t; 1240 1241 MPASS(size > 0); 1242 1243 VMEM_LOCK(vm); 1244 bt = bt_lookupbusy(vm, addr); 1245 MPASS(bt != NULL); 1246 MPASS(bt->bt_start == addr); 1247 MPASS(bt->bt_size == vmem_roundup_size(vm, size) || 1248 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); 1249 MPASS(bt->bt_type == BT_TYPE_BUSY); 1250 bt_rembusy(vm, bt); 1251 bt->bt_type = BT_TYPE_FREE; 1252 1253 /* coalesce */ 1254 t = TAILQ_NEXT(bt, bt_seglist); 1255 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1256 MPASS(BT_END(bt) < t->bt_start); /* YYY */ 1257 bt->bt_size += t->bt_size; 1258 bt_remfree(vm, t); 1259 bt_remseg(vm, t); 1260 } 1261 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1262 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1263 MPASS(BT_END(t) < bt->bt_start); /* YYY */ 1264 bt->bt_size += t->bt_size; 1265 bt->bt_start = t->bt_start; 1266 bt_remfree(vm, t); 1267 bt_remseg(vm, t); 1268 } 1269 1270 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1271 MPASS(t != NULL); 1272 MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); 1273 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && 1274 t->bt_size == bt->bt_size) { 1275 vmem_addr_t spanaddr; 1276 vmem_size_t spansize; 1277 1278 MPASS(t->bt_start == bt->bt_start); 1279 spanaddr = bt->bt_start; 1280 spansize = bt->bt_size; 1281 bt_remseg(vm, bt); 1282 bt_remseg(vm, t); 1283 vm->vm_size -= spansize; 1284 VMEM_CONDVAR_BROADCAST(vm); 1285 bt_freetrim(vm, BT_MAXFREE); 1286 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); 1287 } else { 1288 bt_insfree(vm, bt); 1289 VMEM_CONDVAR_BROADCAST(vm); 1290 bt_freetrim(vm, BT_MAXFREE); 1291 } 1292 } 1293 1294 /* 1295 * vmem_add: 1296 * 1297 */ 1298 int 1299 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags) 1300 { 1301 int error; 1302 1303 error = 0; 1304 flags &= VMEM_FLAGS; 1305 VMEM_LOCK(vm); 1306 if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0) 1307 vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC); 1308 else 1309 error = ENOMEM; 1310 VMEM_UNLOCK(vm); 1311 1312 return (error); 1313 } 1314 1315 /* 1316 * vmem_size: information about arenas size 1317 */ 1318 vmem_size_t 1319 vmem_size(vmem_t *vm, int typemask) 1320 { 1321 int i; 1322 1323 switch (typemask) { 1324 case VMEM_ALLOC: 1325 return vm->vm_inuse; 1326 case VMEM_FREE: 1327 return vm->vm_size - vm->vm_inuse; 1328 case VMEM_FREE|VMEM_ALLOC: 1329 return vm->vm_size; 1330 case VMEM_MAXFREE: 1331 VMEM_LOCK(vm); 1332 for (i = VMEM_MAXORDER - 1; i >= 0; i--) { 1333 if (LIST_EMPTY(&vm->vm_freelist[i])) 1334 continue; 1335 VMEM_UNLOCK(vm); 1336 return ((vmem_size_t)ORDER2SIZE(i) << 1337 vm->vm_quantum_shift); 1338 } 1339 VMEM_UNLOCK(vm); 1340 return (0); 1341 default: 1342 panic("vmem_size"); 1343 } 1344 } 1345 1346 /* ---- debug */ 1347 1348 #if defined(DDB) || defined(DIAGNOSTIC) 1349 1350 static void bt_dump(const bt_t *, int (*)(const char *, ...) 1351 __printflike(1, 2)); 1352 1353 static const char * 1354 bt_type_string(int type) 1355 { 1356 1357 switch (type) { 1358 case BT_TYPE_BUSY: 1359 return "busy"; 1360 case BT_TYPE_FREE: 1361 return "free"; 1362 case BT_TYPE_SPAN: 1363 return "span"; 1364 case BT_TYPE_SPAN_STATIC: 1365 return "static span"; 1366 default: 1367 break; 1368 } 1369 return "BOGUS"; 1370 } 1371 1372 static void 1373 bt_dump(const bt_t *bt, int (*pr)(const char *, ...)) 1374 { 1375 1376 (*pr)("\t%p: %jx %jx, %d(%s)\n", 1377 bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size, 1378 bt->bt_type, bt_type_string(bt->bt_type)); 1379 } 1380 1381 static void 1382 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2)) 1383 { 1384 const bt_t *bt; 1385 int i; 1386 1387 (*pr)("vmem %p '%s'\n", vm, vm->vm_name); 1388 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1389 bt_dump(bt, pr); 1390 } 1391 1392 for (i = 0; i < VMEM_MAXORDER; i++) { 1393 const struct vmem_freelist *fl = &vm->vm_freelist[i]; 1394 1395 if (LIST_EMPTY(fl)) { 1396 continue; 1397 } 1398 1399 (*pr)("freelist[%d]\n", i); 1400 LIST_FOREACH(bt, fl, bt_freelist) { 1401 bt_dump(bt, pr); 1402 } 1403 } 1404 } 1405 1406 #endif /* defined(DDB) || defined(DIAGNOSTIC) */ 1407 1408 #if defined(DDB) 1409 #include <ddb/ddb.h> 1410 1411 static bt_t * 1412 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr) 1413 { 1414 bt_t *bt; 1415 1416 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1417 if (BT_ISSPAN_P(bt)) { 1418 continue; 1419 } 1420 if (bt->bt_start <= addr && addr <= BT_END(bt)) { 1421 return bt; 1422 } 1423 } 1424 1425 return NULL; 1426 } 1427 1428 void 1429 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...)) 1430 { 1431 vmem_t *vm; 1432 1433 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1434 bt_t *bt; 1435 1436 bt = vmem_whatis_lookup(vm, addr); 1437 if (bt == NULL) { 1438 continue; 1439 } 1440 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n", 1441 (void *)addr, (void *)bt->bt_start, 1442 (vmem_size_t)(addr - bt->bt_start), vm->vm_name, 1443 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free"); 1444 } 1445 } 1446 1447 void 1448 vmem_printall(const char *modif, int (*pr)(const char *, ...)) 1449 { 1450 const vmem_t *vm; 1451 1452 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1453 vmem_dump(vm, pr); 1454 } 1455 } 1456 1457 void 1458 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...)) 1459 { 1460 const vmem_t *vm = (const void *)addr; 1461 1462 vmem_dump(vm, pr); 1463 } 1464 1465 DB_SHOW_COMMAND(vmemdump, vmemdump) 1466 { 1467 1468 if (!have_addr) { 1469 db_printf("usage: show vmemdump <addr>\n"); 1470 return; 1471 } 1472 1473 vmem_dump((const vmem_t *)addr, db_printf); 1474 } 1475 1476 DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall) 1477 { 1478 const vmem_t *vm; 1479 1480 LIST_FOREACH(vm, &vmem_list, vm_alllist) 1481 vmem_dump(vm, db_printf); 1482 } 1483 1484 DB_SHOW_COMMAND(vmem, vmem_summ) 1485 { 1486 const vmem_t *vm = (const void *)addr; 1487 const bt_t *bt; 1488 size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER]; 1489 size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER]; 1490 int ord; 1491 1492 if (!have_addr) { 1493 db_printf("usage: show vmem <addr>\n"); 1494 return; 1495 } 1496 1497 db_printf("vmem %p '%s'\n", vm, vm->vm_name); 1498 db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1); 1499 db_printf("\tsize:\t%zu\n", vm->vm_size); 1500 db_printf("\tinuse:\t%zu\n", vm->vm_inuse); 1501 db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse); 1502 db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag); 1503 db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags); 1504 1505 memset(&ft, 0, sizeof(ft)); 1506 memset(&ut, 0, sizeof(ut)); 1507 memset(&fs, 0, sizeof(fs)); 1508 memset(&us, 0, sizeof(us)); 1509 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1510 ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift); 1511 if (bt->bt_type == BT_TYPE_BUSY) { 1512 ut[ord]++; 1513 us[ord] += bt->bt_size; 1514 } else if (bt->bt_type == BT_TYPE_FREE) { 1515 ft[ord]++; 1516 fs[ord] += bt->bt_size; 1517 } 1518 } 1519 db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n"); 1520 for (ord = 0; ord < VMEM_MAXORDER; ord++) { 1521 if (ut[ord] == 0 && ft[ord] == 0) 1522 continue; 1523 db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n", 1524 ORDER2SIZE(ord) << vm->vm_quantum_shift, 1525 ut[ord], us[ord], ft[ord], fs[ord]); 1526 } 1527 } 1528 1529 DB_SHOW_ALL_COMMAND(vmem, vmem_summall) 1530 { 1531 const vmem_t *vm; 1532 1533 LIST_FOREACH(vm, &vmem_list, vm_alllist) 1534 vmem_summ((db_expr_t)vm, TRUE, count, modif); 1535 } 1536 #endif /* defined(DDB) */ 1537 1538 #define vmem_printf printf 1539 1540 #if defined(DIAGNOSTIC) 1541 1542 static bool 1543 vmem_check_sanity(vmem_t *vm) 1544 { 1545 const bt_t *bt, *bt2; 1546 1547 MPASS(vm != NULL); 1548 1549 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1550 if (bt->bt_start > BT_END(bt)) { 1551 printf("corrupted tag\n"); 1552 bt_dump(bt, vmem_printf); 1553 return false; 1554 } 1555 } 1556 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1557 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { 1558 if (bt == bt2) { 1559 continue; 1560 } 1561 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { 1562 continue; 1563 } 1564 if (bt->bt_start <= BT_END(bt2) && 1565 bt2->bt_start <= BT_END(bt)) { 1566 printf("overwrapped tags\n"); 1567 bt_dump(bt, vmem_printf); 1568 bt_dump(bt2, vmem_printf); 1569 return false; 1570 } 1571 } 1572 } 1573 1574 return true; 1575 } 1576 1577 static void 1578 vmem_check(vmem_t *vm) 1579 { 1580 1581 if (!vmem_check_sanity(vm)) { 1582 panic("insanity vmem %p", vm); 1583 } 1584 } 1585 1586 #endif /* defined(DIAGNOSTIC) */ 1587