1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi, 5 * Copyright (c) 2013 EMC Corp. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * From: 32 * $NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $ 33 * $NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $ 34 */ 35 36 /* 37 * reference: 38 * - Magazines and Vmem: Extending the Slab Allocator 39 * to Many CPUs and Arbitrary Resources 40 * http://www.usenix.org/event/usenix01/bonwick.html 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include "opt_ddb.h" 47 48 #include <sys/param.h> 49 #include <sys/systm.h> 50 #include <sys/kernel.h> 51 #include <sys/queue.h> 52 #include <sys/callout.h> 53 #include <sys/hash.h> 54 #include <sys/lock.h> 55 #include <sys/malloc.h> 56 #include <sys/mutex.h> 57 #include <sys/smp.h> 58 #include <sys/condvar.h> 59 #include <sys/sysctl.h> 60 #include <sys/taskqueue.h> 61 #include <sys/vmem.h> 62 63 #include "opt_vm.h" 64 65 #include <vm/uma.h> 66 #include <vm/vm.h> 67 #include <vm/pmap.h> 68 #include <vm/vm_map.h> 69 #include <vm/vm_object.h> 70 #include <vm/vm_kern.h> 71 #include <vm/vm_extern.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_page.h> 74 #include <vm/vm_pageout.h> 75 76 #define VMEM_OPTORDER 5 77 #define VMEM_OPTVALUE (1 << VMEM_OPTORDER) 78 #define VMEM_MAXORDER \ 79 (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER) 80 81 #define VMEM_HASHSIZE_MIN 16 82 #define VMEM_HASHSIZE_MAX 131072 83 84 #define VMEM_QCACHE_IDX_MAX 16 85 86 #define VMEM_FITMASK (M_BESTFIT | M_FIRSTFIT) 87 88 #define VMEM_FLAGS \ 89 (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT) 90 91 #define BT_FLAGS (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM) 92 93 #define QC_NAME_MAX 16 94 95 /* 96 * Data structures private to vmem. 97 */ 98 MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures"); 99 100 typedef struct vmem_btag bt_t; 101 102 TAILQ_HEAD(vmem_seglist, vmem_btag); 103 LIST_HEAD(vmem_freelist, vmem_btag); 104 LIST_HEAD(vmem_hashlist, vmem_btag); 105 106 struct qcache { 107 uma_zone_t qc_cache; 108 vmem_t *qc_vmem; 109 vmem_size_t qc_size; 110 char qc_name[QC_NAME_MAX]; 111 }; 112 typedef struct qcache qcache_t; 113 #define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache)) 114 115 #define VMEM_NAME_MAX 16 116 117 /* vmem arena */ 118 struct vmem { 119 struct mtx_padalign vm_lock; 120 struct cv vm_cv; 121 char vm_name[VMEM_NAME_MAX+1]; 122 LIST_ENTRY(vmem) vm_alllist; 123 struct vmem_hashlist vm_hash0[VMEM_HASHSIZE_MIN]; 124 struct vmem_freelist vm_freelist[VMEM_MAXORDER]; 125 struct vmem_seglist vm_seglist; 126 struct vmem_hashlist *vm_hashlist; 127 vmem_size_t vm_hashsize; 128 129 /* Constant after init */ 130 vmem_size_t vm_qcache_max; 131 vmem_size_t vm_quantum_mask; 132 vmem_size_t vm_import_quantum; 133 int vm_quantum_shift; 134 135 /* Written on alloc/free */ 136 LIST_HEAD(, vmem_btag) vm_freetags; 137 int vm_nfreetags; 138 int vm_nbusytag; 139 vmem_size_t vm_inuse; 140 vmem_size_t vm_size; 141 vmem_size_t vm_limit; 142 143 /* Used on import. */ 144 vmem_import_t *vm_importfn; 145 vmem_release_t *vm_releasefn; 146 void *vm_arg; 147 148 /* Space exhaustion callback. */ 149 vmem_reclaim_t *vm_reclaimfn; 150 151 /* quantum cache */ 152 qcache_t vm_qcache[VMEM_QCACHE_IDX_MAX]; 153 }; 154 155 /* boundary tag */ 156 struct vmem_btag { 157 TAILQ_ENTRY(vmem_btag) bt_seglist; 158 union { 159 LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */ 160 LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */ 161 } bt_u; 162 #define bt_hashlist bt_u.u_hashlist 163 #define bt_freelist bt_u.u_freelist 164 vmem_addr_t bt_start; 165 vmem_size_t bt_size; 166 int bt_type; 167 }; 168 169 #define BT_TYPE_SPAN 1 /* Allocated from importfn */ 170 #define BT_TYPE_SPAN_STATIC 2 /* vmem_add() or create. */ 171 #define BT_TYPE_FREE 3 /* Available space. */ 172 #define BT_TYPE_BUSY 4 /* Used space. */ 173 #define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC) 174 175 #define BT_END(bt) ((bt)->bt_start + (bt)->bt_size - 1) 176 177 #if defined(DIAGNOSTIC) 178 static int enable_vmem_check = 1; 179 SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN, 180 &enable_vmem_check, 0, "Enable vmem check"); 181 static void vmem_check(vmem_t *); 182 #endif 183 184 static struct callout vmem_periodic_ch; 185 static int vmem_periodic_interval; 186 static struct task vmem_periodic_wk; 187 188 static struct mtx_padalign __exclusive_cache_line vmem_list_lock; 189 static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list); 190 static uma_zone_t vmem_zone; 191 192 /* ---- misc */ 193 #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan) 194 #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv) 195 #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock) 196 #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv) 197 198 199 #define VMEM_LOCK(vm) mtx_lock(&vm->vm_lock) 200 #define VMEM_TRYLOCK(vm) mtx_trylock(&vm->vm_lock) 201 #define VMEM_UNLOCK(vm) mtx_unlock(&vm->vm_lock) 202 #define VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF) 203 #define VMEM_LOCK_DESTROY(vm) mtx_destroy(&vm->vm_lock) 204 #define VMEM_ASSERT_LOCKED(vm) mtx_assert(&vm->vm_lock, MA_OWNED); 205 206 #define VMEM_ALIGNUP(addr, align) (-(-(addr) & -(align))) 207 208 #define VMEM_CROSS_P(addr1, addr2, boundary) \ 209 ((((addr1) ^ (addr2)) & -(boundary)) != 0) 210 211 #define ORDER2SIZE(order) ((order) < VMEM_OPTVALUE ? ((order) + 1) : \ 212 (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1))) 213 #define SIZE2ORDER(size) ((size) <= VMEM_OPTVALUE ? ((size) - 1) : \ 214 (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2))) 215 216 /* 217 * Maximum number of boundary tags that may be required to satisfy an 218 * allocation. Two may be required to import. Another two may be 219 * required to clip edges. 220 */ 221 #define BT_MAXALLOC 4 222 223 /* 224 * Max free limits the number of locally cached boundary tags. We 225 * just want to avoid hitting the zone allocator for every call. 226 */ 227 #define BT_MAXFREE (BT_MAXALLOC * 8) 228 229 /* Allocator for boundary tags. */ 230 static uma_zone_t vmem_bt_zone; 231 232 /* boot time arena storage. */ 233 static struct vmem kernel_arena_storage; 234 static struct vmem buffer_arena_storage; 235 static struct vmem transient_arena_storage; 236 /* kernel and kmem arenas are aliased for backwards KPI compat. */ 237 vmem_t *kernel_arena = &kernel_arena_storage; 238 vmem_t *kmem_arena = &kernel_arena_storage; 239 vmem_t *buffer_arena = &buffer_arena_storage; 240 vmem_t *transient_arena = &transient_arena_storage; 241 242 #ifdef DEBUG_MEMGUARD 243 static struct vmem memguard_arena_storage; 244 vmem_t *memguard_arena = &memguard_arena_storage; 245 #endif 246 247 /* 248 * Fill the vmem's boundary tag cache. We guarantee that boundary tag 249 * allocation will not fail once bt_fill() passes. To do so we cache 250 * at least the maximum possible tag allocations in the arena. 251 */ 252 static int 253 bt_fill(vmem_t *vm, int flags) 254 { 255 bt_t *bt; 256 257 VMEM_ASSERT_LOCKED(vm); 258 259 /* 260 * Only allow the kernel arena and arenas derived from kernel arena to 261 * dip into reserve tags. They are where new tags come from. 262 */ 263 flags &= BT_FLAGS; 264 if (vm != kernel_arena && vm->vm_arg != kernel_arena) 265 flags &= ~M_USE_RESERVE; 266 267 /* 268 * Loop until we meet the reserve. To minimize the lock shuffle 269 * and prevent simultaneous fills we first try a NOWAIT regardless 270 * of the caller's flags. Specify M_NOVM so we don't recurse while 271 * holding a vmem lock. 272 */ 273 while (vm->vm_nfreetags < BT_MAXALLOC) { 274 bt = uma_zalloc(vmem_bt_zone, 275 (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM); 276 if (bt == NULL) { 277 VMEM_UNLOCK(vm); 278 bt = uma_zalloc(vmem_bt_zone, flags); 279 VMEM_LOCK(vm); 280 if (bt == NULL && (flags & M_NOWAIT) != 0) 281 break; 282 } 283 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 284 vm->vm_nfreetags++; 285 } 286 287 if (vm->vm_nfreetags < BT_MAXALLOC) 288 return ENOMEM; 289 290 return 0; 291 } 292 293 /* 294 * Pop a tag off of the freetag stack. 295 */ 296 static bt_t * 297 bt_alloc(vmem_t *vm) 298 { 299 bt_t *bt; 300 301 VMEM_ASSERT_LOCKED(vm); 302 bt = LIST_FIRST(&vm->vm_freetags); 303 MPASS(bt != NULL); 304 LIST_REMOVE(bt, bt_freelist); 305 vm->vm_nfreetags--; 306 307 return bt; 308 } 309 310 /* 311 * Trim the per-vmem free list. Returns with the lock released to 312 * avoid allocator recursions. 313 */ 314 static void 315 bt_freetrim(vmem_t *vm, int freelimit) 316 { 317 LIST_HEAD(, vmem_btag) freetags; 318 bt_t *bt; 319 320 LIST_INIT(&freetags); 321 VMEM_ASSERT_LOCKED(vm); 322 while (vm->vm_nfreetags > freelimit) { 323 bt = LIST_FIRST(&vm->vm_freetags); 324 LIST_REMOVE(bt, bt_freelist); 325 vm->vm_nfreetags--; 326 LIST_INSERT_HEAD(&freetags, bt, bt_freelist); 327 } 328 VMEM_UNLOCK(vm); 329 while ((bt = LIST_FIRST(&freetags)) != NULL) { 330 LIST_REMOVE(bt, bt_freelist); 331 uma_zfree(vmem_bt_zone, bt); 332 } 333 } 334 335 static inline void 336 bt_free(vmem_t *vm, bt_t *bt) 337 { 338 339 VMEM_ASSERT_LOCKED(vm); 340 MPASS(LIST_FIRST(&vm->vm_freetags) != bt); 341 LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist); 342 vm->vm_nfreetags++; 343 } 344 345 /* 346 * freelist[0] ... [1, 1] 347 * freelist[1] ... [2, 2] 348 * : 349 * freelist[29] ... [30, 30] 350 * freelist[30] ... [31, 31] 351 * freelist[31] ... [32, 63] 352 * freelist[33] ... [64, 127] 353 * : 354 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1] 355 * : 356 */ 357 358 static struct vmem_freelist * 359 bt_freehead_tofree(vmem_t *vm, vmem_size_t size) 360 { 361 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 362 const int idx = SIZE2ORDER(qsize); 363 364 MPASS(size != 0 && qsize != 0); 365 MPASS((size & vm->vm_quantum_mask) == 0); 366 MPASS(idx >= 0); 367 MPASS(idx < VMEM_MAXORDER); 368 369 return &vm->vm_freelist[idx]; 370 } 371 372 /* 373 * bt_freehead_toalloc: return the freelist for the given size and allocation 374 * strategy. 375 * 376 * For M_FIRSTFIT, return the list in which any blocks are large enough 377 * for the requested size. otherwise, return the list which can have blocks 378 * large enough for the requested size. 379 */ 380 static struct vmem_freelist * 381 bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat) 382 { 383 const vmem_size_t qsize = size >> vm->vm_quantum_shift; 384 int idx = SIZE2ORDER(qsize); 385 386 MPASS(size != 0 && qsize != 0); 387 MPASS((size & vm->vm_quantum_mask) == 0); 388 389 if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) { 390 idx++; 391 /* check too large request? */ 392 } 393 MPASS(idx >= 0); 394 MPASS(idx < VMEM_MAXORDER); 395 396 return &vm->vm_freelist[idx]; 397 } 398 399 /* ---- boundary tag hash */ 400 401 static struct vmem_hashlist * 402 bt_hashhead(vmem_t *vm, vmem_addr_t addr) 403 { 404 struct vmem_hashlist *list; 405 unsigned int hash; 406 407 hash = hash32_buf(&addr, sizeof(addr), 0); 408 list = &vm->vm_hashlist[hash % vm->vm_hashsize]; 409 410 return list; 411 } 412 413 static bt_t * 414 bt_lookupbusy(vmem_t *vm, vmem_addr_t addr) 415 { 416 struct vmem_hashlist *list; 417 bt_t *bt; 418 419 VMEM_ASSERT_LOCKED(vm); 420 list = bt_hashhead(vm, addr); 421 LIST_FOREACH(bt, list, bt_hashlist) { 422 if (bt->bt_start == addr) { 423 break; 424 } 425 } 426 427 return bt; 428 } 429 430 static void 431 bt_rembusy(vmem_t *vm, bt_t *bt) 432 { 433 434 VMEM_ASSERT_LOCKED(vm); 435 MPASS(vm->vm_nbusytag > 0); 436 vm->vm_inuse -= bt->bt_size; 437 vm->vm_nbusytag--; 438 LIST_REMOVE(bt, bt_hashlist); 439 } 440 441 static void 442 bt_insbusy(vmem_t *vm, bt_t *bt) 443 { 444 struct vmem_hashlist *list; 445 446 VMEM_ASSERT_LOCKED(vm); 447 MPASS(bt->bt_type == BT_TYPE_BUSY); 448 449 list = bt_hashhead(vm, bt->bt_start); 450 LIST_INSERT_HEAD(list, bt, bt_hashlist); 451 vm->vm_nbusytag++; 452 vm->vm_inuse += bt->bt_size; 453 } 454 455 /* ---- boundary tag list */ 456 457 static void 458 bt_remseg(vmem_t *vm, bt_t *bt) 459 { 460 461 TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist); 462 bt_free(vm, bt); 463 } 464 465 static void 466 bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev) 467 { 468 469 TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist); 470 } 471 472 static void 473 bt_insseg_tail(vmem_t *vm, bt_t *bt) 474 { 475 476 TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist); 477 } 478 479 static void 480 bt_remfree(vmem_t *vm, bt_t *bt) 481 { 482 483 MPASS(bt->bt_type == BT_TYPE_FREE); 484 485 LIST_REMOVE(bt, bt_freelist); 486 } 487 488 static void 489 bt_insfree(vmem_t *vm, bt_t *bt) 490 { 491 struct vmem_freelist *list; 492 493 list = bt_freehead_tofree(vm, bt->bt_size); 494 LIST_INSERT_HEAD(list, bt, bt_freelist); 495 } 496 497 /* ---- vmem internal functions */ 498 499 /* 500 * Import from the arena into the quantum cache in UMA. 501 */ 502 static int 503 qc_import(void *arg, void **store, int cnt, int domain, int flags) 504 { 505 qcache_t *qc; 506 vmem_addr_t addr; 507 int i; 508 509 qc = arg; 510 if ((flags & VMEM_FITMASK) == 0) 511 flags |= M_BESTFIT; 512 for (i = 0; i < cnt; i++) { 513 if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0, 514 VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0) 515 break; 516 store[i] = (void *)addr; 517 /* Only guarantee one allocation. */ 518 flags &= ~M_WAITOK; 519 flags |= M_NOWAIT; 520 } 521 return i; 522 } 523 524 /* 525 * Release memory from the UMA cache to the arena. 526 */ 527 static void 528 qc_release(void *arg, void **store, int cnt) 529 { 530 qcache_t *qc; 531 int i; 532 533 qc = arg; 534 for (i = 0; i < cnt; i++) 535 vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size); 536 } 537 538 static void 539 qc_init(vmem_t *vm, vmem_size_t qcache_max) 540 { 541 qcache_t *qc; 542 vmem_size_t size; 543 int qcache_idx_max; 544 int i; 545 546 MPASS((qcache_max & vm->vm_quantum_mask) == 0); 547 qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift, 548 VMEM_QCACHE_IDX_MAX); 549 vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift; 550 for (i = 0; i < qcache_idx_max; i++) { 551 qc = &vm->vm_qcache[i]; 552 size = (i + 1) << vm->vm_quantum_shift; 553 snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu", 554 vm->vm_name, size); 555 qc->qc_vmem = vm; 556 qc->qc_size = size; 557 qc->qc_cache = uma_zcache_create(qc->qc_name, size, 558 NULL, NULL, NULL, NULL, qc_import, qc_release, qc, 559 UMA_ZONE_VM); 560 MPASS(qc->qc_cache); 561 } 562 } 563 564 static void 565 qc_destroy(vmem_t *vm) 566 { 567 int qcache_idx_max; 568 int i; 569 570 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 571 for (i = 0; i < qcache_idx_max; i++) 572 uma_zdestroy(vm->vm_qcache[i].qc_cache); 573 } 574 575 static void 576 qc_drain(vmem_t *vm) 577 { 578 int qcache_idx_max; 579 int i; 580 581 qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift; 582 for (i = 0; i < qcache_idx_max; i++) 583 zone_drain(vm->vm_qcache[i].qc_cache); 584 } 585 586 #ifndef UMA_MD_SMALL_ALLOC 587 588 static struct mtx_padalign __exclusive_cache_line vmem_bt_lock; 589 590 /* 591 * vmem_bt_alloc: Allocate a new page of boundary tags. 592 * 593 * On architectures with uma_small_alloc there is no recursion; no address 594 * space need be allocated to allocate boundary tags. For the others, we 595 * must handle recursion. Boundary tags are necessary to allocate new 596 * boundary tags. 597 * 598 * UMA guarantees that enough tags are held in reserve to allocate a new 599 * page of kva. We dip into this reserve by specifying M_USE_RESERVE only 600 * when allocating the page to hold new boundary tags. In this way the 601 * reserve is automatically filled by the allocation that uses the reserve. 602 * 603 * We still have to guarantee that the new tags are allocated atomically since 604 * many threads may try concurrently. The bt_lock provides this guarantee. 605 * We convert WAITOK allocations to NOWAIT and then handle the blocking here 606 * on failure. It's ok to return NULL for a WAITOK allocation as UMA will 607 * loop again after checking to see if we lost the race to allocate. 608 * 609 * There is a small race between vmem_bt_alloc() returning the page and the 610 * zone lock being acquired to add the page to the zone. For WAITOK 611 * allocations we just pause briefly. NOWAIT may experience a transient 612 * failure. To alleviate this we permit a small number of simultaneous 613 * fills to proceed concurrently so NOWAIT is less likely to fail unless 614 * we are really out of KVA. 615 */ 616 static void * 617 vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 618 int wait) 619 { 620 vmem_addr_t addr; 621 622 *pflag = UMA_SLAB_KERNEL; 623 624 /* 625 * Single thread boundary tag allocation so that the address space 626 * and memory are added in one atomic operation. 627 */ 628 mtx_lock(&vmem_bt_lock); 629 if (vmem_xalloc(vm_dom[domain].vmd_kernel_arena, bytes, 0, 0, 0, 630 VMEM_ADDR_MIN, VMEM_ADDR_MAX, 631 M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT, &addr) == 0) { 632 if (kmem_back_domain(domain, kernel_object, addr, bytes, 633 M_NOWAIT | M_USE_RESERVE) == 0) { 634 mtx_unlock(&vmem_bt_lock); 635 return ((void *)addr); 636 } 637 vmem_xfree(vm_dom[domain].vmd_kernel_arena, addr, bytes); 638 mtx_unlock(&vmem_bt_lock); 639 /* 640 * Out of memory, not address space. This may not even be 641 * possible due to M_USE_RESERVE page allocation. 642 */ 643 if (wait & M_WAITOK) 644 VM_WAIT; 645 return (NULL); 646 } 647 mtx_unlock(&vmem_bt_lock); 648 /* 649 * We're either out of address space or lost a fill race. 650 */ 651 if (wait & M_WAITOK) 652 pause("btalloc", 1); 653 654 return (NULL); 655 } 656 #endif 657 658 void 659 vmem_startup(void) 660 { 661 662 mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF); 663 vmem_zone = uma_zcreate("vmem", 664 sizeof(struct vmem), NULL, NULL, NULL, NULL, 665 UMA_ALIGN_PTR, UMA_ZONE_VM); 666 vmem_bt_zone = uma_zcreate("vmem btag", 667 sizeof(struct vmem_btag), NULL, NULL, NULL, NULL, 668 UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE); 669 #ifndef UMA_MD_SMALL_ALLOC 670 mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF); 671 uma_prealloc(vmem_bt_zone, BT_MAXALLOC); 672 /* 673 * Reserve enough tags to allocate new tags. We allow multiple 674 * CPUs to attempt to allocate new tags concurrently to limit 675 * false restarts in UMA. 676 */ 677 uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2); 678 uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc); 679 #endif 680 } 681 682 /* ---- rehash */ 683 684 static int 685 vmem_rehash(vmem_t *vm, vmem_size_t newhashsize) 686 { 687 bt_t *bt; 688 int i; 689 struct vmem_hashlist *newhashlist; 690 struct vmem_hashlist *oldhashlist; 691 vmem_size_t oldhashsize; 692 693 MPASS(newhashsize > 0); 694 695 newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize, 696 M_VMEM, M_NOWAIT); 697 if (newhashlist == NULL) 698 return ENOMEM; 699 for (i = 0; i < newhashsize; i++) { 700 LIST_INIT(&newhashlist[i]); 701 } 702 703 VMEM_LOCK(vm); 704 oldhashlist = vm->vm_hashlist; 705 oldhashsize = vm->vm_hashsize; 706 vm->vm_hashlist = newhashlist; 707 vm->vm_hashsize = newhashsize; 708 if (oldhashlist == NULL) { 709 VMEM_UNLOCK(vm); 710 return 0; 711 } 712 for (i = 0; i < oldhashsize; i++) { 713 while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) { 714 bt_rembusy(vm, bt); 715 bt_insbusy(vm, bt); 716 } 717 } 718 VMEM_UNLOCK(vm); 719 720 if (oldhashlist != vm->vm_hash0) { 721 free(oldhashlist, M_VMEM); 722 } 723 724 return 0; 725 } 726 727 static void 728 vmem_periodic_kick(void *dummy) 729 { 730 731 taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk); 732 } 733 734 static void 735 vmem_periodic(void *unused, int pending) 736 { 737 vmem_t *vm; 738 vmem_size_t desired; 739 vmem_size_t current; 740 741 mtx_lock(&vmem_list_lock); 742 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 743 #ifdef DIAGNOSTIC 744 /* Convenient time to verify vmem state. */ 745 if (enable_vmem_check == 1) { 746 VMEM_LOCK(vm); 747 vmem_check(vm); 748 VMEM_UNLOCK(vm); 749 } 750 #endif 751 desired = 1 << flsl(vm->vm_nbusytag); 752 desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN), 753 VMEM_HASHSIZE_MAX); 754 current = vm->vm_hashsize; 755 756 /* Grow in powers of two. Shrink less aggressively. */ 757 if (desired >= current * 2 || desired * 4 <= current) 758 vmem_rehash(vm, desired); 759 760 /* 761 * Periodically wake up threads waiting for resources, 762 * so they could ask for reclamation again. 763 */ 764 VMEM_CONDVAR_BROADCAST(vm); 765 } 766 mtx_unlock(&vmem_list_lock); 767 768 callout_reset(&vmem_periodic_ch, vmem_periodic_interval, 769 vmem_periodic_kick, NULL); 770 } 771 772 static void 773 vmem_start_callout(void *unused) 774 { 775 776 TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL); 777 vmem_periodic_interval = hz * 10; 778 callout_init(&vmem_periodic_ch, 1); 779 callout_reset(&vmem_periodic_ch, vmem_periodic_interval, 780 vmem_periodic_kick, NULL); 781 } 782 SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL); 783 784 static void 785 vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type) 786 { 787 bt_t *btspan; 788 bt_t *btfree; 789 790 MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC); 791 MPASS((size & vm->vm_quantum_mask) == 0); 792 793 btspan = bt_alloc(vm); 794 btspan->bt_type = type; 795 btspan->bt_start = addr; 796 btspan->bt_size = size; 797 bt_insseg_tail(vm, btspan); 798 799 btfree = bt_alloc(vm); 800 btfree->bt_type = BT_TYPE_FREE; 801 btfree->bt_start = addr; 802 btfree->bt_size = size; 803 bt_insseg(vm, btfree, btspan); 804 bt_insfree(vm, btfree); 805 806 vm->vm_size += size; 807 } 808 809 static void 810 vmem_destroy1(vmem_t *vm) 811 { 812 bt_t *bt; 813 814 /* 815 * Drain per-cpu quantum caches. 816 */ 817 qc_destroy(vm); 818 819 /* 820 * The vmem should now only contain empty segments. 821 */ 822 VMEM_LOCK(vm); 823 MPASS(vm->vm_nbusytag == 0); 824 825 while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL) 826 bt_remseg(vm, bt); 827 828 if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0) 829 free(vm->vm_hashlist, M_VMEM); 830 831 bt_freetrim(vm, 0); 832 833 VMEM_CONDVAR_DESTROY(vm); 834 VMEM_LOCK_DESTROY(vm); 835 uma_zfree(vmem_zone, vm); 836 } 837 838 static int 839 vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags) 840 { 841 vmem_addr_t addr; 842 int error; 843 844 if (vm->vm_importfn == NULL) 845 return (EINVAL); 846 847 /* 848 * To make sure we get a span that meets the alignment we double it 849 * and add the size to the tail. This slightly overestimates. 850 */ 851 if (align != vm->vm_quantum_mask + 1) 852 size = (align * 2) + size; 853 size = roundup(size, vm->vm_import_quantum); 854 855 if (vm->vm_limit != 0 && vm->vm_limit < vm->vm_size + size) 856 return (ENOMEM); 857 858 /* 859 * Hide MAXALLOC tags so we're guaranteed to be able to add this 860 * span and the tag we want to allocate from it. 861 */ 862 MPASS(vm->vm_nfreetags >= BT_MAXALLOC); 863 vm->vm_nfreetags -= BT_MAXALLOC; 864 VMEM_UNLOCK(vm); 865 error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr); 866 VMEM_LOCK(vm); 867 vm->vm_nfreetags += BT_MAXALLOC; 868 if (error) 869 return (ENOMEM); 870 871 vmem_add1(vm, addr, size, BT_TYPE_SPAN); 872 873 return 0; 874 } 875 876 /* 877 * vmem_fit: check if a bt can satisfy the given restrictions. 878 * 879 * it's a caller's responsibility to ensure the region is big enough 880 * before calling us. 881 */ 882 static int 883 vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, 884 vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr, 885 vmem_addr_t maxaddr, vmem_addr_t *addrp) 886 { 887 vmem_addr_t start; 888 vmem_addr_t end; 889 890 MPASS(size > 0); 891 MPASS(bt->bt_size >= size); /* caller's responsibility */ 892 893 /* 894 * XXX assumption: vmem_addr_t and vmem_size_t are 895 * unsigned integer of the same size. 896 */ 897 898 start = bt->bt_start; 899 if (start < minaddr) { 900 start = minaddr; 901 } 902 end = BT_END(bt); 903 if (end > maxaddr) 904 end = maxaddr; 905 if (start > end) 906 return (ENOMEM); 907 908 start = VMEM_ALIGNUP(start - phase, align) + phase; 909 if (start < bt->bt_start) 910 start += align; 911 if (VMEM_CROSS_P(start, start + size - 1, nocross)) { 912 MPASS(align < nocross); 913 start = VMEM_ALIGNUP(start - phase, nocross) + phase; 914 } 915 if (start <= end && end - start >= size - 1) { 916 MPASS((start & (align - 1)) == phase); 917 MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross)); 918 MPASS(minaddr <= start); 919 MPASS(maxaddr == 0 || start + size - 1 <= maxaddr); 920 MPASS(bt->bt_start <= start); 921 MPASS(BT_END(bt) - start >= size - 1); 922 *addrp = start; 923 924 return (0); 925 } 926 return (ENOMEM); 927 } 928 929 /* 930 * vmem_clip: Trim the boundary tag edges to the requested start and size. 931 */ 932 static void 933 vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size) 934 { 935 bt_t *btnew; 936 bt_t *btprev; 937 938 VMEM_ASSERT_LOCKED(vm); 939 MPASS(bt->bt_type == BT_TYPE_FREE); 940 MPASS(bt->bt_size >= size); 941 bt_remfree(vm, bt); 942 if (bt->bt_start != start) { 943 btprev = bt_alloc(vm); 944 btprev->bt_type = BT_TYPE_FREE; 945 btprev->bt_start = bt->bt_start; 946 btprev->bt_size = start - bt->bt_start; 947 bt->bt_start = start; 948 bt->bt_size -= btprev->bt_size; 949 bt_insfree(vm, btprev); 950 bt_insseg(vm, btprev, 951 TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 952 } 953 MPASS(bt->bt_start == start); 954 if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) { 955 /* split */ 956 btnew = bt_alloc(vm); 957 btnew->bt_type = BT_TYPE_BUSY; 958 btnew->bt_start = bt->bt_start; 959 btnew->bt_size = size; 960 bt->bt_start = bt->bt_start + size; 961 bt->bt_size -= size; 962 bt_insfree(vm, bt); 963 bt_insseg(vm, btnew, 964 TAILQ_PREV(bt, vmem_seglist, bt_seglist)); 965 bt_insbusy(vm, btnew); 966 bt = btnew; 967 } else { 968 bt->bt_type = BT_TYPE_BUSY; 969 bt_insbusy(vm, bt); 970 } 971 MPASS(bt->bt_size >= size); 972 bt->bt_type = BT_TYPE_BUSY; 973 } 974 975 /* ---- vmem API */ 976 977 void 978 vmem_set_import(vmem_t *vm, vmem_import_t *importfn, 979 vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum) 980 { 981 982 VMEM_LOCK(vm); 983 vm->vm_importfn = importfn; 984 vm->vm_releasefn = releasefn; 985 vm->vm_arg = arg; 986 vm->vm_import_quantum = import_quantum; 987 VMEM_UNLOCK(vm); 988 } 989 990 void 991 vmem_set_limit(vmem_t *vm, vmem_size_t limit) 992 { 993 994 VMEM_LOCK(vm); 995 vm->vm_limit = limit; 996 VMEM_UNLOCK(vm); 997 } 998 999 void 1000 vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn) 1001 { 1002 1003 VMEM_LOCK(vm); 1004 vm->vm_reclaimfn = reclaimfn; 1005 VMEM_UNLOCK(vm); 1006 } 1007 1008 /* 1009 * vmem_init: Initializes vmem arena. 1010 */ 1011 vmem_t * 1012 vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size, 1013 vmem_size_t quantum, vmem_size_t qcache_max, int flags) 1014 { 1015 int i; 1016 1017 MPASS(quantum > 0); 1018 MPASS((quantum & (quantum - 1)) == 0); 1019 1020 bzero(vm, sizeof(*vm)); 1021 1022 VMEM_CONDVAR_INIT(vm, name); 1023 VMEM_LOCK_INIT(vm, name); 1024 vm->vm_nfreetags = 0; 1025 LIST_INIT(&vm->vm_freetags); 1026 strlcpy(vm->vm_name, name, sizeof(vm->vm_name)); 1027 vm->vm_quantum_mask = quantum - 1; 1028 vm->vm_quantum_shift = flsl(quantum) - 1; 1029 vm->vm_nbusytag = 0; 1030 vm->vm_size = 0; 1031 vm->vm_limit = 0; 1032 vm->vm_inuse = 0; 1033 qc_init(vm, qcache_max); 1034 1035 TAILQ_INIT(&vm->vm_seglist); 1036 for (i = 0; i < VMEM_MAXORDER; i++) { 1037 LIST_INIT(&vm->vm_freelist[i]); 1038 } 1039 memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0)); 1040 vm->vm_hashsize = VMEM_HASHSIZE_MIN; 1041 vm->vm_hashlist = vm->vm_hash0; 1042 1043 if (size != 0) { 1044 if (vmem_add(vm, base, size, flags) != 0) { 1045 vmem_destroy1(vm); 1046 return NULL; 1047 } 1048 } 1049 1050 mtx_lock(&vmem_list_lock); 1051 LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist); 1052 mtx_unlock(&vmem_list_lock); 1053 1054 return vm; 1055 } 1056 1057 /* 1058 * vmem_create: create an arena. 1059 */ 1060 vmem_t * 1061 vmem_create(const char *name, vmem_addr_t base, vmem_size_t size, 1062 vmem_size_t quantum, vmem_size_t qcache_max, int flags) 1063 { 1064 1065 vmem_t *vm; 1066 1067 vm = uma_zalloc(vmem_zone, flags & (M_WAITOK|M_NOWAIT)); 1068 if (vm == NULL) 1069 return (NULL); 1070 if (vmem_init(vm, name, base, size, quantum, qcache_max, 1071 flags) == NULL) 1072 return (NULL); 1073 return (vm); 1074 } 1075 1076 void 1077 vmem_destroy(vmem_t *vm) 1078 { 1079 1080 mtx_lock(&vmem_list_lock); 1081 LIST_REMOVE(vm, vm_alllist); 1082 mtx_unlock(&vmem_list_lock); 1083 1084 vmem_destroy1(vm); 1085 } 1086 1087 vmem_size_t 1088 vmem_roundup_size(vmem_t *vm, vmem_size_t size) 1089 { 1090 1091 return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask; 1092 } 1093 1094 /* 1095 * vmem_alloc: allocate resource from the arena. 1096 */ 1097 int 1098 vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp) 1099 { 1100 const int strat __unused = flags & VMEM_FITMASK; 1101 qcache_t *qc; 1102 1103 flags &= VMEM_FLAGS; 1104 MPASS(size > 0); 1105 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT); 1106 if ((flags & M_NOWAIT) == 0) 1107 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc"); 1108 1109 if (size <= vm->vm_qcache_max) { 1110 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift]; 1111 *addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags); 1112 if (*addrp == 0) 1113 return (ENOMEM); 1114 return (0); 1115 } 1116 1117 return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX, 1118 flags, addrp); 1119 } 1120 1121 int 1122 vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align, 1123 const vmem_size_t phase, const vmem_size_t nocross, 1124 const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags, 1125 vmem_addr_t *addrp) 1126 { 1127 const vmem_size_t size = vmem_roundup_size(vm, size0); 1128 struct vmem_freelist *list; 1129 struct vmem_freelist *first; 1130 struct vmem_freelist *end; 1131 vmem_size_t avail; 1132 bt_t *bt; 1133 int error; 1134 int strat; 1135 1136 flags &= VMEM_FLAGS; 1137 strat = flags & VMEM_FITMASK; 1138 MPASS(size0 > 0); 1139 MPASS(size > 0); 1140 MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT); 1141 MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK)); 1142 if ((flags & M_NOWAIT) == 0) 1143 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc"); 1144 MPASS((align & vm->vm_quantum_mask) == 0); 1145 MPASS((align & (align - 1)) == 0); 1146 MPASS((phase & vm->vm_quantum_mask) == 0); 1147 MPASS((nocross & vm->vm_quantum_mask) == 0); 1148 MPASS((nocross & (nocross - 1)) == 0); 1149 MPASS((align == 0 && phase == 0) || phase < align); 1150 MPASS(nocross == 0 || nocross >= size); 1151 MPASS(minaddr <= maxaddr); 1152 MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross)); 1153 1154 if (align == 0) 1155 align = vm->vm_quantum_mask + 1; 1156 1157 *addrp = 0; 1158 end = &vm->vm_freelist[VMEM_MAXORDER]; 1159 /* 1160 * choose a free block from which we allocate. 1161 */ 1162 first = bt_freehead_toalloc(vm, size, strat); 1163 VMEM_LOCK(vm); 1164 for (;;) { 1165 /* 1166 * Make sure we have enough tags to complete the 1167 * operation. 1168 */ 1169 if (vm->vm_nfreetags < BT_MAXALLOC && 1170 bt_fill(vm, flags) != 0) { 1171 error = ENOMEM; 1172 break; 1173 } 1174 /* 1175 * Scan freelists looking for a tag that satisfies the 1176 * allocation. If we're doing BESTFIT we may encounter 1177 * sizes below the request. If we're doing FIRSTFIT we 1178 * inspect only the first element from each list. 1179 */ 1180 for (list = first; list < end; list++) { 1181 LIST_FOREACH(bt, list, bt_freelist) { 1182 if (bt->bt_size >= size) { 1183 error = vmem_fit(bt, size, align, phase, 1184 nocross, minaddr, maxaddr, addrp); 1185 if (error == 0) { 1186 vmem_clip(vm, bt, *addrp, size); 1187 goto out; 1188 } 1189 } 1190 /* FIRST skips to the next list. */ 1191 if (strat == M_FIRSTFIT) 1192 break; 1193 } 1194 } 1195 /* 1196 * Retry if the fast algorithm failed. 1197 */ 1198 if (strat == M_FIRSTFIT) { 1199 strat = M_BESTFIT; 1200 first = bt_freehead_toalloc(vm, size, strat); 1201 continue; 1202 } 1203 /* 1204 * XXX it is possible to fail to meet restrictions with the 1205 * imported region. It is up to the user to specify the 1206 * import quantum such that it can satisfy any allocation. 1207 */ 1208 if (vmem_import(vm, size, align, flags) == 0) 1209 continue; 1210 1211 /* 1212 * Try to free some space from the quantum cache or reclaim 1213 * functions if available. 1214 */ 1215 if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) { 1216 avail = vm->vm_size - vm->vm_inuse; 1217 VMEM_UNLOCK(vm); 1218 if (vm->vm_qcache_max != 0) 1219 qc_drain(vm); 1220 if (vm->vm_reclaimfn != NULL) 1221 vm->vm_reclaimfn(vm, flags); 1222 VMEM_LOCK(vm); 1223 /* If we were successful retry even NOWAIT. */ 1224 if (vm->vm_size - vm->vm_inuse > avail) 1225 continue; 1226 } 1227 if ((flags & M_NOWAIT) != 0) { 1228 error = ENOMEM; 1229 break; 1230 } 1231 VMEM_CONDVAR_WAIT(vm); 1232 } 1233 out: 1234 VMEM_UNLOCK(vm); 1235 if (error != 0 && (flags & M_NOWAIT) == 0) 1236 panic("failed to allocate waiting allocation\n"); 1237 1238 return (error); 1239 } 1240 1241 /* 1242 * vmem_free: free the resource to the arena. 1243 */ 1244 void 1245 vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1246 { 1247 qcache_t *qc; 1248 MPASS(size > 0); 1249 1250 if (size <= vm->vm_qcache_max) { 1251 qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift]; 1252 uma_zfree(qc->qc_cache, (void *)addr); 1253 } else 1254 vmem_xfree(vm, addr, size); 1255 } 1256 1257 void 1258 vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size) 1259 { 1260 bt_t *bt; 1261 bt_t *t; 1262 1263 MPASS(size > 0); 1264 1265 VMEM_LOCK(vm); 1266 bt = bt_lookupbusy(vm, addr); 1267 MPASS(bt != NULL); 1268 MPASS(bt->bt_start == addr); 1269 MPASS(bt->bt_size == vmem_roundup_size(vm, size) || 1270 bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask); 1271 MPASS(bt->bt_type == BT_TYPE_BUSY); 1272 bt_rembusy(vm, bt); 1273 bt->bt_type = BT_TYPE_FREE; 1274 1275 /* coalesce */ 1276 t = TAILQ_NEXT(bt, bt_seglist); 1277 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1278 MPASS(BT_END(bt) < t->bt_start); /* YYY */ 1279 bt->bt_size += t->bt_size; 1280 bt_remfree(vm, t); 1281 bt_remseg(vm, t); 1282 } 1283 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1284 if (t != NULL && t->bt_type == BT_TYPE_FREE) { 1285 MPASS(BT_END(t) < bt->bt_start); /* YYY */ 1286 bt->bt_size += t->bt_size; 1287 bt->bt_start = t->bt_start; 1288 bt_remfree(vm, t); 1289 bt_remseg(vm, t); 1290 } 1291 1292 t = TAILQ_PREV(bt, vmem_seglist, bt_seglist); 1293 MPASS(t != NULL); 1294 MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY); 1295 if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN && 1296 t->bt_size == bt->bt_size) { 1297 vmem_addr_t spanaddr; 1298 vmem_size_t spansize; 1299 1300 MPASS(t->bt_start == bt->bt_start); 1301 spanaddr = bt->bt_start; 1302 spansize = bt->bt_size; 1303 bt_remseg(vm, bt); 1304 bt_remseg(vm, t); 1305 vm->vm_size -= spansize; 1306 VMEM_CONDVAR_BROADCAST(vm); 1307 bt_freetrim(vm, BT_MAXFREE); 1308 (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize); 1309 } else { 1310 bt_insfree(vm, bt); 1311 VMEM_CONDVAR_BROADCAST(vm); 1312 bt_freetrim(vm, BT_MAXFREE); 1313 } 1314 } 1315 1316 /* 1317 * vmem_add: 1318 * 1319 */ 1320 int 1321 vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags) 1322 { 1323 int error; 1324 1325 error = 0; 1326 flags &= VMEM_FLAGS; 1327 VMEM_LOCK(vm); 1328 if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0) 1329 vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC); 1330 else 1331 error = ENOMEM; 1332 VMEM_UNLOCK(vm); 1333 1334 return (error); 1335 } 1336 1337 /* 1338 * vmem_size: information about arenas size 1339 */ 1340 vmem_size_t 1341 vmem_size(vmem_t *vm, int typemask) 1342 { 1343 int i; 1344 1345 switch (typemask) { 1346 case VMEM_ALLOC: 1347 return vm->vm_inuse; 1348 case VMEM_FREE: 1349 return vm->vm_size - vm->vm_inuse; 1350 case VMEM_FREE|VMEM_ALLOC: 1351 return vm->vm_size; 1352 case VMEM_MAXFREE: 1353 VMEM_LOCK(vm); 1354 for (i = VMEM_MAXORDER - 1; i >= 0; i--) { 1355 if (LIST_EMPTY(&vm->vm_freelist[i])) 1356 continue; 1357 VMEM_UNLOCK(vm); 1358 return ((vmem_size_t)ORDER2SIZE(i) << 1359 vm->vm_quantum_shift); 1360 } 1361 VMEM_UNLOCK(vm); 1362 return (0); 1363 default: 1364 panic("vmem_size"); 1365 } 1366 } 1367 1368 /* ---- debug */ 1369 1370 #if defined(DDB) || defined(DIAGNOSTIC) 1371 1372 static void bt_dump(const bt_t *, int (*)(const char *, ...) 1373 __printflike(1, 2)); 1374 1375 static const char * 1376 bt_type_string(int type) 1377 { 1378 1379 switch (type) { 1380 case BT_TYPE_BUSY: 1381 return "busy"; 1382 case BT_TYPE_FREE: 1383 return "free"; 1384 case BT_TYPE_SPAN: 1385 return "span"; 1386 case BT_TYPE_SPAN_STATIC: 1387 return "static span"; 1388 default: 1389 break; 1390 } 1391 return "BOGUS"; 1392 } 1393 1394 static void 1395 bt_dump(const bt_t *bt, int (*pr)(const char *, ...)) 1396 { 1397 1398 (*pr)("\t%p: %jx %jx, %d(%s)\n", 1399 bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size, 1400 bt->bt_type, bt_type_string(bt->bt_type)); 1401 } 1402 1403 static void 1404 vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2)) 1405 { 1406 const bt_t *bt; 1407 int i; 1408 1409 (*pr)("vmem %p '%s'\n", vm, vm->vm_name); 1410 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1411 bt_dump(bt, pr); 1412 } 1413 1414 for (i = 0; i < VMEM_MAXORDER; i++) { 1415 const struct vmem_freelist *fl = &vm->vm_freelist[i]; 1416 1417 if (LIST_EMPTY(fl)) { 1418 continue; 1419 } 1420 1421 (*pr)("freelist[%d]\n", i); 1422 LIST_FOREACH(bt, fl, bt_freelist) { 1423 bt_dump(bt, pr); 1424 } 1425 } 1426 } 1427 1428 #endif /* defined(DDB) || defined(DIAGNOSTIC) */ 1429 1430 #if defined(DDB) 1431 #include <ddb/ddb.h> 1432 1433 static bt_t * 1434 vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr) 1435 { 1436 bt_t *bt; 1437 1438 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1439 if (BT_ISSPAN_P(bt)) { 1440 continue; 1441 } 1442 if (bt->bt_start <= addr && addr <= BT_END(bt)) { 1443 return bt; 1444 } 1445 } 1446 1447 return NULL; 1448 } 1449 1450 void 1451 vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...)) 1452 { 1453 vmem_t *vm; 1454 1455 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1456 bt_t *bt; 1457 1458 bt = vmem_whatis_lookup(vm, addr); 1459 if (bt == NULL) { 1460 continue; 1461 } 1462 (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n", 1463 (void *)addr, (void *)bt->bt_start, 1464 (vmem_size_t)(addr - bt->bt_start), vm->vm_name, 1465 (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free"); 1466 } 1467 } 1468 1469 void 1470 vmem_printall(const char *modif, int (*pr)(const char *, ...)) 1471 { 1472 const vmem_t *vm; 1473 1474 LIST_FOREACH(vm, &vmem_list, vm_alllist) { 1475 vmem_dump(vm, pr); 1476 } 1477 } 1478 1479 void 1480 vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...)) 1481 { 1482 const vmem_t *vm = (const void *)addr; 1483 1484 vmem_dump(vm, pr); 1485 } 1486 1487 DB_SHOW_COMMAND(vmemdump, vmemdump) 1488 { 1489 1490 if (!have_addr) { 1491 db_printf("usage: show vmemdump <addr>\n"); 1492 return; 1493 } 1494 1495 vmem_dump((const vmem_t *)addr, db_printf); 1496 } 1497 1498 DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall) 1499 { 1500 const vmem_t *vm; 1501 1502 LIST_FOREACH(vm, &vmem_list, vm_alllist) 1503 vmem_dump(vm, db_printf); 1504 } 1505 1506 DB_SHOW_COMMAND(vmem, vmem_summ) 1507 { 1508 const vmem_t *vm = (const void *)addr; 1509 const bt_t *bt; 1510 size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER]; 1511 size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER]; 1512 int ord; 1513 1514 if (!have_addr) { 1515 db_printf("usage: show vmem <addr>\n"); 1516 return; 1517 } 1518 1519 db_printf("vmem %p '%s'\n", vm, vm->vm_name); 1520 db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1); 1521 db_printf("\tsize:\t%zu\n", vm->vm_size); 1522 db_printf("\tinuse:\t%zu\n", vm->vm_inuse); 1523 db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse); 1524 db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag); 1525 db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags); 1526 1527 memset(&ft, 0, sizeof(ft)); 1528 memset(&ut, 0, sizeof(ut)); 1529 memset(&fs, 0, sizeof(fs)); 1530 memset(&us, 0, sizeof(us)); 1531 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1532 ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift); 1533 if (bt->bt_type == BT_TYPE_BUSY) { 1534 ut[ord]++; 1535 us[ord] += bt->bt_size; 1536 } else if (bt->bt_type == BT_TYPE_FREE) { 1537 ft[ord]++; 1538 fs[ord] += bt->bt_size; 1539 } 1540 } 1541 db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n"); 1542 for (ord = 0; ord < VMEM_MAXORDER; ord++) { 1543 if (ut[ord] == 0 && ft[ord] == 0) 1544 continue; 1545 db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n", 1546 ORDER2SIZE(ord) << vm->vm_quantum_shift, 1547 ut[ord], us[ord], ft[ord], fs[ord]); 1548 } 1549 } 1550 1551 DB_SHOW_ALL_COMMAND(vmem, vmem_summall) 1552 { 1553 const vmem_t *vm; 1554 1555 LIST_FOREACH(vm, &vmem_list, vm_alllist) 1556 vmem_summ((db_expr_t)vm, TRUE, count, modif); 1557 } 1558 #endif /* defined(DDB) */ 1559 1560 #define vmem_printf printf 1561 1562 #if defined(DIAGNOSTIC) 1563 1564 static bool 1565 vmem_check_sanity(vmem_t *vm) 1566 { 1567 const bt_t *bt, *bt2; 1568 1569 MPASS(vm != NULL); 1570 1571 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1572 if (bt->bt_start > BT_END(bt)) { 1573 printf("corrupted tag\n"); 1574 bt_dump(bt, vmem_printf); 1575 return false; 1576 } 1577 } 1578 TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) { 1579 TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) { 1580 if (bt == bt2) { 1581 continue; 1582 } 1583 if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) { 1584 continue; 1585 } 1586 if (bt->bt_start <= BT_END(bt2) && 1587 bt2->bt_start <= BT_END(bt)) { 1588 printf("overwrapped tags\n"); 1589 bt_dump(bt, vmem_printf); 1590 bt_dump(bt2, vmem_printf); 1591 return false; 1592 } 1593 } 1594 } 1595 1596 return true; 1597 } 1598 1599 static void 1600 vmem_check(vmem_t *vm) 1601 { 1602 1603 if (!vmem_check_sanity(vm)) { 1604 panic("insanity vmem %p", vm); 1605 } 1606 } 1607 1608 #endif /* defined(DIAGNOSTIC) */ 1609