xref: /freebsd/sys/kern/subr_turnstile.c (revision dc03b7f41fca3279985e64df07109f57981175b8)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is malloc'd and attached to
50  * that thread.  When a thread blocks on a lock, if it is the first thread
51  * to block, it lends its turnstile to the lock.  If the lock already has
52  * a turnstile, then it gives its turnstile to the lock's turnstile's free
53  * list.  When a thread is woken up, it takes a turnstile from the free list
54  * if there are any other waiters.  If it is the only thread blocked on the
55  * lock, then it reclaims the turnstile associated with the lock and removes
56  * it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/ktr.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/queue.h>
74 #include <sys/sched.h>
75 #include <sys/sysctl.h>
76 #include <sys/turnstile.h>
77 
78 #ifdef DDB
79 #include <sys/kdb.h>
80 #include <ddb/ddb.h>
81 #include <sys/lockmgr.h>
82 #include <sys/sx.h>
83 #endif
84 
85 /*
86  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
87  * number chosen because the sleep queue's use the same value for the
88  * shift.  Basically, we ignore the lower 8 bits of the address.
89  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
90  */
91 #define	TC_TABLESIZE	128			/* Must be power of 2. */
92 #define	TC_MASK		(TC_TABLESIZE - 1)
93 #define	TC_SHIFT	8
94 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
95 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
96 
97 /*
98  * There are three different lists of turnstiles as follows.  The list
99  * connected by ts_link entries is a per-thread list of all the turnstiles
100  * attached to locks that we own.  This is used to fixup our priority when
101  * a lock is released.  The other two lists use the ts_hash entries.  The
102  * first of these two is the turnstile chain list that a turnstile is on
103  * when it is attached to a lock.  The second list to use ts_hash is the
104  * free list hung off of a turnstile that is attached to a lock.
105  *
106  * Each turnstile contains three lists of threads.  The two ts_blocked lists
107  * are linked list of threads blocked on the turnstile's lock.  One list is
108  * for exclusive waiters, and the other is for shared waiters.  The
109  * ts_pending list is a linked list of threads previously awakened by
110  * turnstile_signal() or turnstile_wait() that are waiting to be put on
111  * the run queue.
112  *
113  * Locking key:
114  *  c - turnstile chain lock
115  *  q - td_contested lock
116  */
117 struct turnstile {
118 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
119 	struct threadqueue ts_pending;		/* (c) Pending threads. */
120 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
121 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
122 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
123 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
124 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
125 };
126 
127 struct turnstile_chain {
128 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
129 	struct mtx tc_lock;			/* Spin lock for this chain. */
130 #ifdef TURNSTILE_PROFILING
131 	u_int	tc_depth;			/* Length of tc_queues. */
132 	u_int	tc_max_depth;			/* Max length of tc_queues. */
133 #endif
134 };
135 
136 #ifdef TURNSTILE_PROFILING
137 u_int turnstile_max_depth;
138 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
139 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "turnstile chain stats");
141 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
142     &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
143 #endif
144 static struct mtx td_contested_lock;
145 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
146 
147 static MALLOC_DEFINE(M_TURNSTILE, "turnstiles", "turnstiles");
148 
149 /*
150  * Prototypes for non-exported routines.
151  */
152 static void	init_turnstile0(void *dummy);
153 #ifdef TURNSTILE_PROFILING
154 static void	init_turnstile_profiling(void *arg);
155 #endif
156 static void	propagate_priority(struct thread *td);
157 static int	turnstile_adjust_thread(struct turnstile *ts,
158 		    struct thread *td);
159 static struct thread *turnstile_first_waiter(struct turnstile *ts);
160 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
161 
162 /*
163  * Walks the chain of turnstiles and their owners to propagate the priority
164  * of the thread being blocked to all the threads holding locks that have to
165  * release their locks before this thread can run again.
166  */
167 static void
168 propagate_priority(struct thread *td)
169 {
170 	struct turnstile_chain *tc;
171 	struct turnstile *ts;
172 	int pri;
173 
174 	mtx_assert(&sched_lock, MA_OWNED);
175 	pri = td->td_priority;
176 	ts = td->td_blocked;
177 	for (;;) {
178 		td = ts->ts_owner;
179 
180 		if (td == NULL) {
181 			/*
182 			 * This might be a read lock with no owner.  There's
183 			 * not much we can do, so just bail.
184 			 */
185 			return;
186 		}
187 
188 		MPASS(td->td_proc != NULL);
189 		MPASS(td->td_proc->p_magic == P_MAGIC);
190 
191 		/*
192 		 * If the thread is asleep, then we are probably about
193 		 * to deadlock.  To make debugging this easier, just
194 		 * panic and tell the user which thread misbehaved so
195 		 * they can hopefully get a stack trace from the truly
196 		 * misbehaving thread.
197 		 */
198 		if (TD_IS_SLEEPING(td)) {
199 			printf(
200 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
201 			    td->td_tid, td->td_proc->p_pid);
202 #ifdef DDB
203 			db_trace_thread(td, -1);
204 #endif
205 			panic("sleeping thread");
206 		}
207 
208 		/*
209 		 * If this thread already has higher priority than the
210 		 * thread that is being blocked, we are finished.
211 		 */
212 		if (td->td_priority <= pri)
213 			return;
214 
215 		/*
216 		 * Bump this thread's priority.
217 		 */
218 		sched_lend_prio(td, pri);
219 
220 		/*
221 		 * If lock holder is actually running or on the run queue
222 		 * then we are done.
223 		 */
224 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
225 			MPASS(td->td_blocked == NULL);
226 			return;
227 		}
228 
229 #ifndef SMP
230 		/*
231 		 * For UP, we check to see if td is curthread (this shouldn't
232 		 * ever happen however as it would mean we are in a deadlock.)
233 		 */
234 		KASSERT(td != curthread, ("Deadlock detected"));
235 #endif
236 
237 		/*
238 		 * If we aren't blocked on a lock, we should be.
239 		 */
240 		KASSERT(TD_ON_LOCK(td), (
241 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
242 		    td->td_tid, td->td_proc->p_comm, td->td_state,
243 		    ts->ts_lockobj->lo_name));
244 
245 		/*
246 		 * Pick up the lock that td is blocked on.
247 		 */
248 		ts = td->td_blocked;
249 		MPASS(ts != NULL);
250 		tc = TC_LOOKUP(ts->ts_lockobj);
251 		mtx_lock_spin(&tc->tc_lock);
252 
253 		/* Resort td on the list if needed. */
254 		if (!turnstile_adjust_thread(ts, td)) {
255 			mtx_unlock_spin(&tc->tc_lock);
256 			return;
257 		}
258 		mtx_unlock_spin(&tc->tc_lock);
259 	}
260 }
261 
262 /*
263  * Adjust the thread's position on a turnstile after its priority has been
264  * changed.
265  */
266 static int
267 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
268 {
269 	struct turnstile_chain *tc;
270 	struct thread *td1, *td2;
271 	int queue;
272 
273 	mtx_assert(&sched_lock, MA_OWNED);
274 	MPASS(TD_ON_LOCK(td));
275 
276 	/*
277 	 * This thread may not be blocked on this turnstile anymore
278 	 * but instead might already be woken up on another CPU
279 	 * that is waiting on sched_lock in turnstile_unpend() to
280 	 * finish waking this thread up.  We can detect this case
281 	 * by checking to see if this thread has been given a
282 	 * turnstile by either turnstile_signal() or
283 	 * turnstile_broadcast().  In this case, treat the thread as
284 	 * if it was already running.
285 	 */
286 	if (td->td_turnstile != NULL)
287 		return (0);
288 
289 	/*
290 	 * Check if the thread needs to be moved on the blocked chain.
291 	 * It needs to be moved if either its priority is lower than
292 	 * the previous thread or higher than the next thread.
293 	 */
294 	tc = TC_LOOKUP(ts->ts_lockobj);
295 	mtx_assert(&tc->tc_lock, MA_OWNED);
296 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
297 	td2 = TAILQ_NEXT(td, td_lockq);
298 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
299 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
300 
301 		/*
302 		 * Remove thread from blocked chain and determine where
303 		 * it should be moved to.
304 		 */
305 		queue = td->td_tsqueue;
306 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
307 		mtx_lock_spin(&td_contested_lock);
308 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
309 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
310 			MPASS(td1->td_proc->p_magic == P_MAGIC);
311 			if (td1->td_priority > td->td_priority)
312 				break;
313 		}
314 
315 		if (td1 == NULL)
316 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
317 		else
318 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
319 		mtx_unlock_spin(&td_contested_lock);
320 		if (td1 == NULL)
321 			CTR3(KTR_LOCK,
322 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
323 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
324 		else
325 			CTR4(KTR_LOCK,
326 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
327 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
328 			    ts->ts_lockobj->lo_name);
329 	}
330 	return (1);
331 }
332 
333 /*
334  * Early initialization of turnstiles.  This is not done via a SYSINIT()
335  * since this needs to be initialized very early when mutexes are first
336  * initialized.
337  */
338 void
339 init_turnstiles(void)
340 {
341 	int i;
342 
343 	for (i = 0; i < TC_TABLESIZE; i++) {
344 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
345 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
346 		    NULL, MTX_SPIN);
347 	}
348 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
349 	LIST_INIT(&thread0.td_contested);
350 	thread0.td_turnstile = NULL;
351 }
352 
353 #ifdef TURNSTILE_PROFILING
354 static void
355 init_turnstile_profiling(void *arg)
356 {
357 	struct sysctl_oid *chain_oid;
358 	char chain_name[10];
359 	int i;
360 
361 	for (i = 0; i < TC_TABLESIZE; i++) {
362 		snprintf(chain_name, sizeof(chain_name), "%d", i);
363 		chain_oid = SYSCTL_ADD_NODE(NULL,
364 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
365 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
366 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
367 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
368 		    NULL);
369 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
370 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
371 		    0, NULL);
372 	}
373 }
374 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
375     init_turnstile_profiling, NULL);
376 #endif
377 
378 static void
379 init_turnstile0(void *dummy)
380 {
381 
382 	thread0.td_turnstile = turnstile_alloc();
383 }
384 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
385 
386 /*
387  * Update a thread on the turnstile list after it's priority has been changed.
388  * The old priority is passed in as an argument.
389  */
390 void
391 turnstile_adjust(struct thread *td, u_char oldpri)
392 {
393 	struct turnstile_chain *tc;
394 	struct turnstile *ts;
395 
396 	mtx_assert(&sched_lock, MA_OWNED);
397 	MPASS(TD_ON_LOCK(td));
398 
399 	/*
400 	 * Pick up the lock that td is blocked on.
401 	 */
402 	ts = td->td_blocked;
403 	MPASS(ts != NULL);
404 	tc = TC_LOOKUP(ts->ts_lockobj);
405 	mtx_lock_spin(&tc->tc_lock);
406 
407 	/* Resort the turnstile on the list. */
408 	if (!turnstile_adjust_thread(ts, td)) {
409 		mtx_unlock_spin(&tc->tc_lock);
410 		return;
411 	}
412 
413 	/*
414 	 * If our priority was lowered and we are at the head of the
415 	 * turnstile, then propagate our new priority up the chain.
416 	 * Note that we currently don't try to revoke lent priorities
417 	 * when our priority goes up.
418 	 */
419 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
420 	    td->td_tsqueue == TS_SHARED_QUEUE);
421 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
422 	    td->td_priority < oldpri) {
423 		mtx_unlock_spin(&tc->tc_lock);
424 		propagate_priority(td);
425 	} else
426 		mtx_unlock_spin(&tc->tc_lock);
427 }
428 
429 /*
430  * Set the owner of the lock this turnstile is attached to.
431  */
432 static void
433 turnstile_setowner(struct turnstile *ts, struct thread *owner)
434 {
435 
436 	mtx_assert(&td_contested_lock, MA_OWNED);
437 	MPASS(ts->ts_owner == NULL);
438 
439 	/* A shared lock might not have an owner. */
440 	if (owner == NULL)
441 		return;
442 
443 	MPASS(owner->td_proc->p_magic == P_MAGIC);
444 	ts->ts_owner = owner;
445 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
446 }
447 
448 /*
449  * Malloc a turnstile for a new thread, initialize it and return it.
450  */
451 struct turnstile *
452 turnstile_alloc(void)
453 {
454 	struct turnstile *ts;
455 
456 	ts = malloc(sizeof(struct turnstile), M_TURNSTILE, M_WAITOK | M_ZERO);
457 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
458 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
459 	TAILQ_INIT(&ts->ts_pending);
460 	LIST_INIT(&ts->ts_free);
461 	return (ts);
462 }
463 
464 /*
465  * Free a turnstile when a thread is destroyed.
466  */
467 void
468 turnstile_free(struct turnstile *ts)
469 {
470 
471 	MPASS(ts != NULL);
472 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
473 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
474 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
475 	free(ts, M_TURNSTILE);
476 }
477 
478 /*
479  * Lock the turnstile chain associated with the specified lock.
480  */
481 void
482 turnstile_lock(struct lock_object *lock)
483 {
484 	struct turnstile_chain *tc;
485 
486 	tc = TC_LOOKUP(lock);
487 	mtx_lock_spin(&tc->tc_lock);
488 }
489 
490 /*
491  * Look up the turnstile for a lock in the hash table locking the associated
492  * turnstile chain along the way.  If no turnstile is found in the hash
493  * table, NULL is returned.
494  */
495 struct turnstile *
496 turnstile_lookup(struct lock_object *lock)
497 {
498 	struct turnstile_chain *tc;
499 	struct turnstile *ts;
500 
501 	tc = TC_LOOKUP(lock);
502 	mtx_assert(&tc->tc_lock, MA_OWNED);
503 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
504 		if (ts->ts_lockobj == lock)
505 			return (ts);
506 	return (NULL);
507 }
508 
509 /*
510  * Unlock the turnstile chain associated with a given lock.
511  */
512 void
513 turnstile_release(struct lock_object *lock)
514 {
515 	struct turnstile_chain *tc;
516 
517 	tc = TC_LOOKUP(lock);
518 	mtx_unlock_spin(&tc->tc_lock);
519 }
520 
521 /*
522  * Return a pointer to the thread waiting on this turnstile with the
523  * most important priority or NULL if the turnstile has no waiters.
524  */
525 static struct thread *
526 turnstile_first_waiter(struct turnstile *ts)
527 {
528 	struct thread *std, *xtd;
529 
530 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
531 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
532 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
533 		return (std);
534 	return (xtd);
535 }
536 
537 /*
538  * Take ownership of a turnstile and adjust the priority of the new
539  * owner appropriately.
540  */
541 void
542 turnstile_claim(struct lock_object *lock)
543 {
544 	struct turnstile_chain *tc;
545 	struct turnstile *ts;
546 	struct thread *td, *owner;
547 
548 	tc = TC_LOOKUP(lock);
549 	mtx_assert(&tc->tc_lock, MA_OWNED);
550 	ts = turnstile_lookup(lock);
551 	MPASS(ts != NULL);
552 
553 	owner = curthread;
554 	mtx_lock_spin(&td_contested_lock);
555 	turnstile_setowner(ts, owner);
556 	mtx_unlock_spin(&td_contested_lock);
557 
558 	td = turnstile_first_waiter(ts);
559 	MPASS(td != NULL);
560 	MPASS(td->td_proc->p_magic == P_MAGIC);
561 	mtx_unlock_spin(&tc->tc_lock);
562 
563 	/*
564 	 * Update the priority of the new owner if needed.
565 	 */
566 	mtx_lock_spin(&sched_lock);
567 	if (td->td_priority < owner->td_priority)
568 		sched_lend_prio(owner, td->td_priority);
569 	mtx_unlock_spin(&sched_lock);
570 }
571 
572 /*
573  * Block the current thread on the turnstile assicated with 'lock'.  This
574  * function will context switch and not return until this thread has been
575  * woken back up.  This function must be called with the appropriate
576  * turnstile chain locked and will return with it unlocked.
577  */
578 void
579 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue)
580 {
581 	struct turnstile_chain *tc;
582 	struct turnstile *ts;
583 	struct thread *td, *td1;
584 
585 	td = curthread;
586 	tc = TC_LOOKUP(lock);
587 	mtx_assert(&tc->tc_lock, MA_OWNED);
588 	MPASS(td->td_turnstile != NULL);
589 	if (queue == TS_SHARED_QUEUE)
590 		MPASS(owner != NULL);
591 	if (owner)
592 		MPASS(owner->td_proc->p_magic == P_MAGIC);
593 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
594 
595 	/* Look up the turnstile associated with the lock 'lock'. */
596 	ts = turnstile_lookup(lock);
597 
598 	/*
599 	 * If the lock does not already have a turnstile, use this thread's
600 	 * turnstile.  Otherwise insert the current thread into the
601 	 * turnstile already in use by this lock.
602 	 */
603 	if (ts == NULL) {
604 #ifdef TURNSTILE_PROFILING
605 		tc->tc_depth++;
606 		if (tc->tc_depth > tc->tc_max_depth) {
607 			tc->tc_max_depth = tc->tc_depth;
608 			if (tc->tc_max_depth > turnstile_max_depth)
609 				turnstile_max_depth = tc->tc_max_depth;
610 		}
611 #endif
612 		ts = td->td_turnstile;
613 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
614 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
615 		    ("thread's turnstile has pending threads"));
616 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
617 		    ("thread's turnstile has exclusive waiters"));
618 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
619 		    ("thread's turnstile has shared waiters"));
620 		KASSERT(LIST_EMPTY(&ts->ts_free),
621 		    ("thread's turnstile has a non-empty free list"));
622 		KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
623 		ts->ts_lockobj = lock;
624 		mtx_lock_spin(&td_contested_lock);
625 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
626 		turnstile_setowner(ts, owner);
627 		mtx_unlock_spin(&td_contested_lock);
628 	} else {
629 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
630 			if (td1->td_priority > td->td_priority)
631 				break;
632 		mtx_lock_spin(&td_contested_lock);
633 		if (td1 != NULL)
634 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
635 		else
636 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
637 		MPASS(owner == ts->ts_owner);
638 		mtx_unlock_spin(&td_contested_lock);
639 		MPASS(td->td_turnstile != NULL);
640 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
641 	}
642 	td->td_turnstile = NULL;
643 	mtx_unlock_spin(&tc->tc_lock);
644 
645 	mtx_lock_spin(&sched_lock);
646 	/*
647 	 * Handle race condition where a thread on another CPU that owns
648 	 * lock 'lock' could have woken us in between us dropping the
649 	 * turnstile chain lock and acquiring the sched_lock.
650 	 */
651 	if (td->td_flags & TDF_TSNOBLOCK) {
652 		td->td_flags &= ~TDF_TSNOBLOCK;
653 		mtx_unlock_spin(&sched_lock);
654 		return;
655 	}
656 
657 #ifdef notyet
658 	/*
659 	 * If we're borrowing an interrupted thread's VM context, we
660 	 * must clean up before going to sleep.
661 	 */
662 	if (td->td_ithd != NULL) {
663 		struct ithd *it = td->td_ithd;
664 
665 		if (it->it_interrupted) {
666 			if (LOCK_LOG_TEST(lock, 0))
667 				CTR3(KTR_LOCK, "%s: %p interrupted %p",
668 				    __func__, it, it->it_interrupted);
669 			intr_thd_fixup(it);
670 		}
671 	}
672 #endif
673 
674 	/* Save who we are blocked on and switch. */
675 	td->td_tsqueue = queue;
676 	td->td_blocked = ts;
677 	td->td_lockname = lock->lo_name;
678 	TD_SET_LOCK(td);
679 	propagate_priority(td);
680 
681 	if (LOCK_LOG_TEST(lock, 0))
682 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
683 		    td->td_tid, lock, lock->lo_name);
684 
685 	mi_switch(SW_VOL, NULL);
686 
687 	if (LOCK_LOG_TEST(lock, 0))
688 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
689 		    __func__, td->td_tid, lock, lock->lo_name);
690 
691 	mtx_unlock_spin(&sched_lock);
692 }
693 
694 /*
695  * Pick the highest priority thread on this turnstile and put it on the
696  * pending list.  This must be called with the turnstile chain locked.
697  */
698 int
699 turnstile_signal(struct turnstile *ts, int queue)
700 {
701 	struct turnstile_chain *tc;
702 	struct thread *td;
703 	int empty;
704 
705 	MPASS(ts != NULL);
706 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
707 	MPASS(ts->ts_owner == curthread ||
708 	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
709 	tc = TC_LOOKUP(ts->ts_lockobj);
710 	mtx_assert(&tc->tc_lock, MA_OWNED);
711 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
712 
713 	/*
714 	 * Pick the highest priority thread blocked on this lock and
715 	 * move it to the pending list.
716 	 */
717 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
718 	MPASS(td->td_proc->p_magic == P_MAGIC);
719 	mtx_lock_spin(&td_contested_lock);
720 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
721 	mtx_unlock_spin(&td_contested_lock);
722 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
723 
724 	/*
725 	 * If the turnstile is now empty, remove it from its chain and
726 	 * give it to the about-to-be-woken thread.  Otherwise take a
727 	 * turnstile from the free list and give it to the thread.
728 	 */
729 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
730 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
731 	if (empty) {
732 		MPASS(LIST_EMPTY(&ts->ts_free));
733 #ifdef TURNSTILE_PROFILING
734 		tc->tc_depth--;
735 #endif
736 	} else
737 		ts = LIST_FIRST(&ts->ts_free);
738 	MPASS(ts != NULL);
739 	LIST_REMOVE(ts, ts_hash);
740 	td->td_turnstile = ts;
741 
742 	return (empty);
743 }
744 
745 /*
746  * Put all blocked threads on the pending list.  This must be called with
747  * the turnstile chain locked.
748  */
749 void
750 turnstile_broadcast(struct turnstile *ts, int queue)
751 {
752 	struct turnstile_chain *tc;
753 	struct turnstile *ts1;
754 	struct thread *td;
755 
756 	MPASS(ts != NULL);
757 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
758 	MPASS(ts->ts_owner == curthread ||
759 	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
760 	tc = TC_LOOKUP(ts->ts_lockobj);
761 	mtx_assert(&tc->tc_lock, MA_OWNED);
762 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
763 
764 	/*
765 	 * Transfer the blocked list to the pending list.
766 	 */
767 	mtx_lock_spin(&td_contested_lock);
768 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
769 	mtx_unlock_spin(&td_contested_lock);
770 
771 	/*
772 	 * Give a turnstile to each thread.  The last thread gets
773 	 * this turnstile if the turnstile is empty.
774 	 */
775 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
776 		if (LIST_EMPTY(&ts->ts_free)) {
777 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
778 			ts1 = ts;
779 #ifdef TURNSTILE_PROFILING
780 			tc->tc_depth--;
781 #endif
782 		} else
783 			ts1 = LIST_FIRST(&ts->ts_free);
784 		MPASS(ts1 != NULL);
785 		LIST_REMOVE(ts1, ts_hash);
786 		td->td_turnstile = ts1;
787 	}
788 }
789 
790 /*
791  * Wakeup all threads on the pending list and adjust the priority of the
792  * current thread appropriately.  This must be called with the turnstile
793  * chain locked.
794  */
795 void
796 turnstile_unpend(struct turnstile *ts, int owner_type)
797 {
798 	TAILQ_HEAD( ,thread) pending_threads;
799 	struct turnstile_chain *tc;
800 	struct thread *td;
801 	u_char cp, pri;
802 
803 	MPASS(ts != NULL);
804 	MPASS(ts->ts_owner == curthread ||
805 	    (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL));
806 	tc = TC_LOOKUP(ts->ts_lockobj);
807 	mtx_assert(&tc->tc_lock, MA_OWNED);
808 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
809 
810 	/*
811 	 * Move the list of pending threads out of the turnstile and
812 	 * into a local variable.
813 	 */
814 	TAILQ_INIT(&pending_threads);
815 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
816 #ifdef INVARIANTS
817 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
818 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
819 		ts->ts_lockobj = NULL;
820 #endif
821 
822 	/*
823 	 * Remove the turnstile from this thread's list of contested locks
824 	 * since this thread doesn't own it anymore.  New threads will
825 	 * not be blocking on the turnstile until it is claimed by a new
826 	 * owner.  There might not be a current owner if this is a shared
827 	 * lock.
828 	 */
829 	if (ts->ts_owner != NULL) {
830 		mtx_lock_spin(&td_contested_lock);
831 		ts->ts_owner = NULL;
832 		LIST_REMOVE(ts, ts_link);
833 		mtx_unlock_spin(&td_contested_lock);
834 	}
835 	critical_enter();
836 	mtx_unlock_spin(&tc->tc_lock);
837 
838 	/*
839 	 * Adjust the priority of curthread based on other contested
840 	 * locks it owns.  Don't lower the priority below the base
841 	 * priority however.
842 	 */
843 	td = curthread;
844 	pri = PRI_MAX;
845 	mtx_lock_spin(&sched_lock);
846 	mtx_lock_spin(&td_contested_lock);
847 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
848 		cp = turnstile_first_waiter(ts)->td_priority;
849 		if (cp < pri)
850 			pri = cp;
851 	}
852 	mtx_unlock_spin(&td_contested_lock);
853 	sched_unlend_prio(td, pri);
854 
855 	/*
856 	 * Wake up all the pending threads.  If a thread is not blocked
857 	 * on a lock, then it is currently executing on another CPU in
858 	 * turnstile_wait() or sitting on a run queue waiting to resume
859 	 * in turnstile_wait().  Set a flag to force it to try to acquire
860 	 * the lock again instead of blocking.
861 	 */
862 	while (!TAILQ_EMPTY(&pending_threads)) {
863 		td = TAILQ_FIRST(&pending_threads);
864 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
865 		MPASS(td->td_proc->p_magic == P_MAGIC);
866 		if (TD_ON_LOCK(td)) {
867 			td->td_blocked = NULL;
868 			td->td_lockname = NULL;
869 #ifdef INVARIANTS
870 			td->td_tsqueue = 0xff;
871 #endif
872 			TD_CLR_LOCK(td);
873 			MPASS(TD_CAN_RUN(td));
874 			setrunqueue(td, SRQ_BORING);
875 		} else {
876 			td->td_flags |= TDF_TSNOBLOCK;
877 			MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td));
878 		}
879 	}
880 	critical_exit();
881 	mtx_unlock_spin(&sched_lock);
882 }
883 
884 /*
885  * Give up ownership of a turnstile.  This must be called with the
886  * turnstile chain locked.
887  */
888 void
889 turnstile_disown(struct turnstile *ts)
890 {
891 	struct turnstile_chain *tc;
892 	struct thread *td;
893 	u_char cp, pri;
894 
895 	MPASS(ts != NULL);
896 	MPASS(ts->ts_owner == curthread);
897 	tc = TC_LOOKUP(ts->ts_lockobj);
898 	mtx_assert(&tc->tc_lock, MA_OWNED);
899 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
900 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
901 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
902 
903 	/*
904 	 * Remove the turnstile from this thread's list of contested locks
905 	 * since this thread doesn't own it anymore.  New threads will
906 	 * not be blocking on the turnstile until it is claimed by a new
907 	 * owner.
908 	 */
909 	mtx_lock_spin(&td_contested_lock);
910 	ts->ts_owner = NULL;
911 	LIST_REMOVE(ts, ts_link);
912 	mtx_unlock_spin(&td_contested_lock);
913 	mtx_unlock_spin(&tc->tc_lock);
914 
915 	/*
916 	 * Adjust the priority of curthread based on other contested
917 	 * locks it owns.  Don't lower the priority below the base
918 	 * priority however.
919 	 */
920 	td = curthread;
921 	pri = PRI_MAX;
922 	mtx_lock_spin(&sched_lock);
923 	mtx_lock_spin(&td_contested_lock);
924 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
925 		cp = turnstile_first_waiter(ts)->td_priority;
926 		if (cp < pri)
927 			pri = cp;
928 	}
929 	mtx_unlock_spin(&td_contested_lock);
930 	sched_unlend_prio(td, pri);
931 	mtx_unlock_spin(&sched_lock);
932 }
933 
934 /*
935  * Return the first thread in a turnstile.
936  */
937 struct thread *
938 turnstile_head(struct turnstile *ts, int queue)
939 {
940 #ifdef INVARIANTS
941 	struct turnstile_chain *tc;
942 
943 	MPASS(ts != NULL);
944 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
945 	tc = TC_LOOKUP(ts->ts_lockobj);
946 	mtx_assert(&tc->tc_lock, MA_OWNED);
947 #endif
948 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
949 }
950 
951 /*
952  * Returns true if a sub-queue of a turnstile is empty.
953  */
954 int
955 turnstile_empty(struct turnstile *ts, int queue)
956 {
957 #ifdef INVARIANTS
958 	struct turnstile_chain *tc;
959 
960 	MPASS(ts != NULL);
961 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
962 	tc = TC_LOOKUP(ts->ts_lockobj);
963 	mtx_assert(&tc->tc_lock, MA_OWNED);
964 #endif
965 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
966 }
967 
968 #ifdef DDB
969 static void
970 print_thread(struct thread *td, const char *prefix)
971 {
972 
973 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
974 	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
975 	    td->td_proc->p_comm);
976 }
977 
978 static void
979 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
980 {
981 	struct thread *td;
982 
983 	db_printf("%s:\n", header);
984 	if (TAILQ_EMPTY(queue)) {
985 		db_printf("%sempty\n", prefix);
986 		return;
987 	}
988 	TAILQ_FOREACH(td, queue, td_lockq) {
989 		print_thread(td, prefix);
990 	}
991 }
992 
993 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
994 {
995 	struct turnstile_chain *tc;
996 	struct turnstile *ts;
997 	struct lock_object *lock;
998 	int i;
999 
1000 	if (!have_addr)
1001 		return;
1002 
1003 	/*
1004 	 * First, see if there is an active turnstile for the lock indicated
1005 	 * by the address.
1006 	 */
1007 	lock = (struct lock_object *)addr;
1008 	tc = TC_LOOKUP(lock);
1009 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1010 		if (ts->ts_lockobj == lock)
1011 			goto found;
1012 
1013 	/*
1014 	 * Second, see if there is an active turnstile at the address
1015 	 * indicated.
1016 	 */
1017 	for (i = 0; i < TC_TABLESIZE; i++)
1018 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1019 			if (ts == (struct turnstile *)addr)
1020 				goto found;
1021 		}
1022 
1023 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1024 	return;
1025 found:
1026 	lock = ts->ts_lockobj;
1027 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1028 	    lock->lo_name);
1029 	if (ts->ts_owner)
1030 		print_thread(ts->ts_owner, "Lock Owner: ");
1031 	else
1032 		db_printf("Lock Owner: none\n");
1033 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1034 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1035 	    "\t");
1036 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1037 
1038 }
1039 
1040 /*
1041  * Show all the threads a particular thread is waiting on based on
1042  * non-sleepable and non-spin locks.
1043  */
1044 static void
1045 print_lockchain(struct thread *td, const char *prefix)
1046 {
1047 	struct lock_object *lock;
1048 	struct lock_class *class;
1049 	struct turnstile *ts;
1050 
1051 	/*
1052 	 * Follow the chain.  We keep walking as long as the thread is
1053 	 * blocked on a turnstile that has an owner.
1054 	 */
1055 	while (!db_pager_quit) {
1056 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1057 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1058 		    td->td_proc->p_comm);
1059 		switch (td->td_state) {
1060 		case TDS_INACTIVE:
1061 			db_printf("is inactive\n");
1062 			return;
1063 		case TDS_CAN_RUN:
1064 			db_printf("can run\n");
1065 			return;
1066 		case TDS_RUNQ:
1067 			db_printf("is on a run queue\n");
1068 			return;
1069 		case TDS_RUNNING:
1070 			db_printf("running on CPU %d\n", td->td_oncpu);
1071 			return;
1072 		case TDS_INHIBITED:
1073 			if (TD_ON_LOCK(td)) {
1074 				ts = td->td_blocked;
1075 				lock = ts->ts_lockobj;
1076 				class = LOCK_CLASS(lock);
1077 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1078 				    lock, class->lc_name, lock->lo_name);
1079 				if (ts->ts_owner == NULL)
1080 					return;
1081 				td = ts->ts_owner;
1082 				break;
1083 			}
1084 			db_printf("inhibited\n");
1085 			return;
1086 		default:
1087 			db_printf("??? (%#x)\n", td->td_state);
1088 			return;
1089 		}
1090 	}
1091 }
1092 
1093 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1094 {
1095 	struct thread *td;
1096 
1097 	/* Figure out which thread to start with. */
1098 	if (have_addr)
1099 		td = db_lookup_thread(addr, TRUE);
1100 	else
1101 		td = kdb_thread;
1102 
1103 	print_lockchain(td, "");
1104 }
1105 
1106 DB_SHOW_COMMAND(allchains, db_show_allchains)
1107 {
1108 	struct thread *td;
1109 	struct proc *p;
1110 	int i;
1111 
1112 	i = 1;
1113 	LIST_FOREACH(p, &allproc, p_list) {
1114 		FOREACH_THREAD_IN_PROC(p, td) {
1115 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1116 				db_printf("chain %d:\n", i++);
1117 				print_lockchain(td, " ");
1118 			}
1119 			if (db_pager_quit)
1120 				return;
1121 		}
1122 	}
1123 }
1124 
1125 /*
1126  * Show all the threads a particular thread is waiting on based on
1127  * sleepable locks.
1128  */
1129 static void
1130 print_sleepchain(struct thread *td, const char *prefix)
1131 {
1132 	struct thread *owner;
1133 
1134 	/*
1135 	 * Follow the chain.  We keep walking as long as the thread is
1136 	 * blocked on a sleep lock that has an owner.
1137 	 */
1138 	while (!db_pager_quit) {
1139 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1140 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1141 		    td->td_proc->p_comm);
1142 		switch (td->td_state) {
1143 		case TDS_INACTIVE:
1144 			db_printf("is inactive\n");
1145 			return;
1146 		case TDS_CAN_RUN:
1147 			db_printf("can run\n");
1148 			return;
1149 		case TDS_RUNQ:
1150 			db_printf("is on a run queue\n");
1151 			return;
1152 		case TDS_RUNNING:
1153 			db_printf("running on CPU %d\n", td->td_oncpu);
1154 			return;
1155 		case TDS_INHIBITED:
1156 			if (TD_ON_SLEEPQ(td)) {
1157 				if (lockmgr_chain(td, &owner) ||
1158 				    sx_chain(td, &owner)) {
1159 					if (owner == NULL)
1160 						return;
1161 					td = owner;
1162 					break;
1163 				}
1164 				db_printf("sleeping on %p \"%s\"\n",
1165 				    td->td_wchan, td->td_wmesg);
1166 				return;
1167 			}
1168 			db_printf("inhibited\n");
1169 			return;
1170 		default:
1171 			db_printf("??? (%#x)\n", td->td_state);
1172 			return;
1173 		}
1174 	}
1175 }
1176 
1177 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1178 {
1179 	struct thread *td;
1180 
1181 	/* Figure out which thread to start with. */
1182 	if (have_addr)
1183 		td = db_lookup_thread(addr, TRUE);
1184 	else
1185 		td = kdb_thread;
1186 
1187 	print_sleepchain(td, "");
1188 }
1189 
1190 static void	print_waiters(struct turnstile *ts, int indent);
1191 
1192 static void
1193 print_waiter(struct thread *td, int indent)
1194 {
1195 	struct turnstile *ts;
1196 	int i;
1197 
1198 	if (db_pager_quit)
1199 		return;
1200 	for (i = 0; i < indent; i++)
1201 		db_printf(" ");
1202 	print_thread(td, "thread ");
1203 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1204 		print_waiters(ts, indent + 1);
1205 }
1206 
1207 static void
1208 print_waiters(struct turnstile *ts, int indent)
1209 {
1210 	struct lock_object *lock;
1211 	struct lock_class *class;
1212 	struct thread *td;
1213 	int i;
1214 
1215 	if (db_pager_quit)
1216 		return;
1217 	lock = ts->ts_lockobj;
1218 	class = LOCK_CLASS(lock);
1219 	for (i = 0; i < indent; i++)
1220 		db_printf(" ");
1221 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1222 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1223 		print_waiter(td, indent + 1);
1224 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1225 		print_waiter(td, indent + 1);
1226 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1227 		print_waiter(td, indent + 1);
1228 }
1229 
1230 DB_SHOW_COMMAND(locktree, db_show_locktree)
1231 {
1232 	struct lock_object *lock;
1233 	struct lock_class *class;
1234 	struct turnstile_chain *tc;
1235 	struct turnstile *ts;
1236 
1237 	if (!have_addr)
1238 		return;
1239 	lock = (struct lock_object *)addr;
1240 	tc = TC_LOOKUP(lock);
1241 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1242 		if (ts->ts_lockobj == lock)
1243 			break;
1244 	if (ts == NULL) {
1245 		class = LOCK_CLASS(lock);
1246 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1247 		    lock->lo_name);
1248 	} else
1249 		print_waiters(ts, 0);
1250 }
1251 #endif
1252