1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Berkeley Software Design Inc's name may not be used to endorse or 15 * promote products derived from this software without specific prior 16 * written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 31 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 32 */ 33 34 /* 35 * Implementation of turnstiles used to hold queue of threads blocked on 36 * non-sleepable locks. Sleepable locks use condition variables to 37 * implement their queues. Turnstiles differ from a sleep queue in that 38 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 39 * when one thread is enqueued onto a turnstile, it can lend its priority 40 * to the owning thread. 41 * 42 * We wish to avoid bloating locks with an embedded turnstile and we do not 43 * want to use back-pointers in the locks for the same reason. Thus, we 44 * use a similar approach to that of Solaris 7 as described in Solaris 45 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 46 * in a hash table based on the address of the lock. Each entry in the 47 * hash table is a linked-lists of turnstiles and is called a turnstile 48 * chain. Each chain contains a spin mutex that protects all of the 49 * turnstiles in the chain. 50 * 51 * Each time a thread is created, a turnstile is allocated from a UMA zone 52 * and attached to that thread. When a thread blocks on a lock, if it is the 53 * first thread to block, it lends its turnstile to the lock. If the lock 54 * already has a turnstile, then it gives its turnstile to the lock's 55 * turnstile's free list. When a thread is woken up, it takes a turnstile from 56 * the free list if there are any other waiters. If it is the only thread 57 * blocked on the lock, then it reclaims the turnstile associated with the lock 58 * and removes it from the hash table. 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_ddb.h" 65 #include "opt_turnstile_profiling.h" 66 #include "opt_sched.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kdb.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/queue.h> 77 #include <sys/sched.h> 78 #include <sys/sdt.h> 79 #include <sys/sysctl.h> 80 #include <sys/turnstile.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #include <sys/lockmgr.h> 87 #include <sys/sx.h> 88 #endif 89 90 /* 91 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 92 * number chosen because the sleep queue's use the same value for the 93 * shift. Basically, we ignore the lower 8 bits of the address. 94 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 95 */ 96 #define TC_TABLESIZE 128 /* Must be power of 2. */ 97 #define TC_MASK (TC_TABLESIZE - 1) 98 #define TC_SHIFT 8 99 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 100 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 101 102 /* 103 * There are three different lists of turnstiles as follows. The list 104 * connected by ts_link entries is a per-thread list of all the turnstiles 105 * attached to locks that we own. This is used to fixup our priority when 106 * a lock is released. The other two lists use the ts_hash entries. The 107 * first of these two is the turnstile chain list that a turnstile is on 108 * when it is attached to a lock. The second list to use ts_hash is the 109 * free list hung off of a turnstile that is attached to a lock. 110 * 111 * Each turnstile contains three lists of threads. The two ts_blocked lists 112 * are linked list of threads blocked on the turnstile's lock. One list is 113 * for exclusive waiters, and the other is for shared waiters. The 114 * ts_pending list is a linked list of threads previously awakened by 115 * turnstile_signal() or turnstile_wait() that are waiting to be put on 116 * the run queue. 117 * 118 * Locking key: 119 * c - turnstile chain lock 120 * q - td_contested lock 121 */ 122 struct turnstile { 123 struct mtx ts_lock; /* Spin lock for self. */ 124 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 125 struct threadqueue ts_pending; /* (c) Pending threads. */ 126 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 127 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 128 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 129 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 130 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 131 }; 132 133 struct turnstile_chain { 134 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 135 struct mtx tc_lock; /* Spin lock for this chain. */ 136 #ifdef TURNSTILE_PROFILING 137 u_int tc_depth; /* Length of tc_queues. */ 138 u_int tc_max_depth; /* Max length of tc_queues. */ 139 #endif 140 }; 141 142 #ifdef TURNSTILE_PROFILING 143 u_int turnstile_max_depth; 144 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 145 "turnstile profiling"); 146 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, 147 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 148 "turnstile chain stats"); 149 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 150 &turnstile_max_depth, 0, "maximum depth achieved of a single chain"); 151 #endif 152 static struct mtx td_contested_lock; 153 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 154 static uma_zone_t turnstile_zone; 155 156 /* 157 * Prototypes for non-exported routines. 158 */ 159 static void init_turnstile0(void *dummy); 160 #ifdef TURNSTILE_PROFILING 161 static void init_turnstile_profiling(void *arg); 162 #endif 163 static void propagate_priority(struct thread *td); 164 static int turnstile_adjust_thread(struct turnstile *ts, 165 struct thread *td); 166 static struct thread *turnstile_first_waiter(struct turnstile *ts); 167 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 168 #ifdef INVARIANTS 169 static void turnstile_dtor(void *mem, int size, void *arg); 170 #endif 171 static int turnstile_init(void *mem, int size, int flags); 172 static void turnstile_fini(void *mem, int size); 173 174 SDT_PROVIDER_DECLARE(sched); 175 SDT_PROBE_DEFINE(sched, , , sleep); 176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *", 177 "struct proc *"); 178 179 static inline void 180 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts) 181 { 182 183 if (ts != top) 184 mtx_unlock_spin(&ts->ts_lock); 185 } 186 187 static inline void 188 propagate_unlock_td(struct turnstile *top, struct thread *td) 189 { 190 191 if (td->td_lock != &top->ts_lock) 192 thread_unlock(td); 193 } 194 195 /* 196 * Walks the chain of turnstiles and their owners to propagate the priority 197 * of the thread being blocked to all the threads holding locks that have to 198 * release their locks before this thread can run again. 199 */ 200 static void 201 propagate_priority(struct thread *td) 202 { 203 struct turnstile *ts, *top; 204 int pri; 205 206 THREAD_LOCK_ASSERT(td, MA_OWNED); 207 pri = td->td_priority; 208 top = ts = td->td_blocked; 209 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 210 211 /* 212 * The original turnstile lock is held across the entire 213 * operation. We only ever lock down the chain so the lock 214 * order is constant. 215 */ 216 for (;;) { 217 td = ts->ts_owner; 218 219 if (td == NULL) { 220 /* 221 * This might be a read lock with no owner. There's 222 * not much we can do, so just bail. 223 */ 224 propagate_unlock_ts(top, ts); 225 return; 226 } 227 228 /* 229 * Wait for the thread lock to be stable and then only 230 * acquire if it is not the turnstile lock. 231 */ 232 thread_lock_block_wait(td); 233 if (td->td_lock != &ts->ts_lock) { 234 thread_lock_flags(td, MTX_DUPOK); 235 propagate_unlock_ts(top, ts); 236 } 237 MPASS(td->td_proc != NULL); 238 MPASS(td->td_proc->p_magic == P_MAGIC); 239 240 /* 241 * If the thread is asleep, then we are probably about 242 * to deadlock. To make debugging this easier, show 243 * backtrace of misbehaving thread and panic to not 244 * leave the kernel deadlocked. 245 */ 246 if (TD_IS_SLEEPING(td)) { 247 printf( 248 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 249 td->td_tid, td->td_proc->p_pid); 250 kdb_backtrace_thread(td); 251 panic("sleeping thread"); 252 } 253 254 /* 255 * If this thread already has higher priority than the 256 * thread that is being blocked, we are finished. 257 */ 258 if (td->td_priority <= pri) { 259 propagate_unlock_td(top, td); 260 return; 261 } 262 263 /* 264 * Bump this thread's priority. 265 */ 266 sched_lend_prio(td, pri); 267 268 /* 269 * If lock holder is actually running or on the run queue 270 * then we are done. 271 */ 272 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 273 MPASS(td->td_blocked == NULL); 274 propagate_unlock_td(top, td); 275 return; 276 } 277 278 #ifndef SMP 279 /* 280 * For UP, we check to see if td is curthread (this shouldn't 281 * ever happen however as it would mean we are in a deadlock.) 282 */ 283 KASSERT(td != curthread, ("Deadlock detected")); 284 #endif 285 286 /* 287 * If we aren't blocked on a lock, we should be. 288 */ 289 KASSERT(TD_ON_LOCK(td), ( 290 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 291 td->td_tid, td->td_name, td->td_state, 292 ts->ts_lockobj->lo_name)); 293 294 /* 295 * Pick up the lock that td is blocked on. 296 */ 297 ts = td->td_blocked; 298 MPASS(ts != NULL); 299 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 300 /* Resort td on the list if needed. */ 301 if (!turnstile_adjust_thread(ts, td)) { 302 propagate_unlock_ts(top, ts); 303 return; 304 } 305 /* The thread lock is released as ts lock above. */ 306 } 307 } 308 309 /* 310 * Adjust the thread's position on a turnstile after its priority has been 311 * changed. 312 */ 313 static int 314 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 315 { 316 struct thread *td1, *td2; 317 int queue; 318 319 THREAD_LOCK_ASSERT(td, MA_OWNED); 320 MPASS(TD_ON_LOCK(td)); 321 322 /* 323 * This thread may not be blocked on this turnstile anymore 324 * but instead might already be woken up on another CPU 325 * that is waiting on the thread lock in turnstile_unpend() to 326 * finish waking this thread up. We can detect this case 327 * by checking to see if this thread has been given a 328 * turnstile by either turnstile_signal() or 329 * turnstile_broadcast(). In this case, treat the thread as 330 * if it was already running. 331 */ 332 if (td->td_turnstile != NULL) 333 return (0); 334 335 /* 336 * Check if the thread needs to be moved on the blocked chain. 337 * It needs to be moved if either its priority is lower than 338 * the previous thread or higher than the next thread. 339 */ 340 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 341 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 342 td2 = TAILQ_NEXT(td, td_lockq); 343 if ((td1 != NULL && td->td_priority < td1->td_priority) || 344 (td2 != NULL && td->td_priority > td2->td_priority)) { 345 346 /* 347 * Remove thread from blocked chain and determine where 348 * it should be moved to. 349 */ 350 queue = td->td_tsqueue; 351 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 352 mtx_lock_spin(&td_contested_lock); 353 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 354 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 355 MPASS(td1->td_proc->p_magic == P_MAGIC); 356 if (td1->td_priority > td->td_priority) 357 break; 358 } 359 360 if (td1 == NULL) 361 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 362 else 363 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 364 mtx_unlock_spin(&td_contested_lock); 365 if (td1 == NULL) 366 CTR3(KTR_LOCK, 367 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 368 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 369 else 370 CTR4(KTR_LOCK, 371 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 372 td->td_tid, td1->td_tid, ts->ts_lockobj, 373 ts->ts_lockobj->lo_name); 374 } 375 return (1); 376 } 377 378 /* 379 * Early initialization of turnstiles. This is not done via a SYSINIT() 380 * since this needs to be initialized very early when mutexes are first 381 * initialized. 382 */ 383 void 384 init_turnstiles(void) 385 { 386 int i; 387 388 for (i = 0; i < TC_TABLESIZE; i++) { 389 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 390 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 391 NULL, MTX_SPIN); 392 } 393 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 394 LIST_INIT(&thread0.td_contested); 395 thread0.td_turnstile = NULL; 396 } 397 398 #ifdef TURNSTILE_PROFILING 399 static void 400 init_turnstile_profiling(void *arg) 401 { 402 struct sysctl_oid *chain_oid; 403 char chain_name[10]; 404 int i; 405 406 for (i = 0; i < TC_TABLESIZE; i++) { 407 snprintf(chain_name, sizeof(chain_name), "%d", i); 408 chain_oid = SYSCTL_ADD_NODE(NULL, 409 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 410 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 411 "turnstile chain stats"); 412 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 413 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 414 NULL); 415 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 416 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 417 0, NULL); 418 } 419 } 420 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 421 init_turnstile_profiling, NULL); 422 #endif 423 424 static void 425 init_turnstile0(void *dummy) 426 { 427 428 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 429 NULL, 430 #ifdef INVARIANTS 431 turnstile_dtor, 432 #else 433 NULL, 434 #endif 435 turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 436 thread0.td_turnstile = turnstile_alloc(); 437 } 438 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 439 440 /* 441 * Update a thread on the turnstile list after it's priority has been changed. 442 * The old priority is passed in as an argument. 443 */ 444 void 445 turnstile_adjust(struct thread *td, u_char oldpri) 446 { 447 struct turnstile *ts; 448 449 MPASS(TD_ON_LOCK(td)); 450 451 /* 452 * Pick up the lock that td is blocked on. 453 */ 454 ts = td->td_blocked; 455 MPASS(ts != NULL); 456 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 457 mtx_assert(&ts->ts_lock, MA_OWNED); 458 459 /* Resort the turnstile on the list. */ 460 if (!turnstile_adjust_thread(ts, td)) 461 return; 462 /* 463 * If our priority was lowered and we are at the head of the 464 * turnstile, then propagate our new priority up the chain. 465 * Note that we currently don't try to revoke lent priorities 466 * when our priority goes up. 467 */ 468 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 469 td->td_tsqueue == TS_SHARED_QUEUE); 470 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 471 td->td_priority < oldpri) { 472 propagate_priority(td); 473 } 474 } 475 476 /* 477 * Set the owner of the lock this turnstile is attached to. 478 */ 479 static void 480 turnstile_setowner(struct turnstile *ts, struct thread *owner) 481 { 482 483 mtx_assert(&td_contested_lock, MA_OWNED); 484 MPASS(ts->ts_owner == NULL); 485 486 /* A shared lock might not have an owner. */ 487 if (owner == NULL) 488 return; 489 490 MPASS(owner->td_proc->p_magic == P_MAGIC); 491 ts->ts_owner = owner; 492 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 493 } 494 495 #ifdef INVARIANTS 496 /* 497 * UMA zone item deallocator. 498 */ 499 static void 500 turnstile_dtor(void *mem, int size, void *arg) 501 { 502 struct turnstile *ts; 503 504 ts = mem; 505 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 506 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 507 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 508 } 509 #endif 510 511 /* 512 * UMA zone item initializer. 513 */ 514 static int 515 turnstile_init(void *mem, int size, int flags) 516 { 517 struct turnstile *ts; 518 519 bzero(mem, size); 520 ts = mem; 521 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 522 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 523 TAILQ_INIT(&ts->ts_pending); 524 LIST_INIT(&ts->ts_free); 525 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN); 526 return (0); 527 } 528 529 static void 530 turnstile_fini(void *mem, int size) 531 { 532 struct turnstile *ts; 533 534 ts = mem; 535 mtx_destroy(&ts->ts_lock); 536 } 537 538 /* 539 * Get a turnstile for a new thread. 540 */ 541 struct turnstile * 542 turnstile_alloc(void) 543 { 544 545 return (uma_zalloc(turnstile_zone, M_WAITOK)); 546 } 547 548 /* 549 * Free a turnstile when a thread is destroyed. 550 */ 551 void 552 turnstile_free(struct turnstile *ts) 553 { 554 555 uma_zfree(turnstile_zone, ts); 556 } 557 558 /* 559 * Lock the turnstile chain associated with the specified lock. 560 */ 561 void 562 turnstile_chain_lock(struct lock_object *lock) 563 { 564 struct turnstile_chain *tc; 565 566 tc = TC_LOOKUP(lock); 567 mtx_lock_spin(&tc->tc_lock); 568 } 569 570 struct turnstile * 571 turnstile_trywait(struct lock_object *lock) 572 { 573 struct turnstile_chain *tc; 574 struct turnstile *ts; 575 576 tc = TC_LOOKUP(lock); 577 mtx_lock_spin(&tc->tc_lock); 578 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 579 if (ts->ts_lockobj == lock) { 580 mtx_lock_spin(&ts->ts_lock); 581 return (ts); 582 } 583 584 ts = curthread->td_turnstile; 585 MPASS(ts != NULL); 586 mtx_lock_spin(&ts->ts_lock); 587 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 588 ts->ts_lockobj = lock; 589 590 return (ts); 591 } 592 593 bool 594 turnstile_lock(struct turnstile *ts, struct lock_object **lockp, 595 struct thread **tdp) 596 { 597 struct turnstile_chain *tc; 598 struct lock_object *lock; 599 600 if ((lock = ts->ts_lockobj) == NULL) 601 return (false); 602 tc = TC_LOOKUP(lock); 603 mtx_lock_spin(&tc->tc_lock); 604 mtx_lock_spin(&ts->ts_lock); 605 if (__predict_false(lock != ts->ts_lockobj)) { 606 mtx_unlock_spin(&tc->tc_lock); 607 mtx_unlock_spin(&ts->ts_lock); 608 return (false); 609 } 610 *lockp = lock; 611 *tdp = ts->ts_owner; 612 return (true); 613 } 614 615 void 616 turnstile_unlock(struct turnstile *ts, struct lock_object *lock) 617 { 618 struct turnstile_chain *tc; 619 620 mtx_assert(&ts->ts_lock, MA_OWNED); 621 mtx_unlock_spin(&ts->ts_lock); 622 if (ts == curthread->td_turnstile) 623 ts->ts_lockobj = NULL; 624 tc = TC_LOOKUP(lock); 625 mtx_unlock_spin(&tc->tc_lock); 626 } 627 628 void 629 turnstile_assert(struct turnstile *ts) 630 { 631 MPASS(ts->ts_lockobj == NULL); 632 } 633 634 void 635 turnstile_cancel(struct turnstile *ts) 636 { 637 struct turnstile_chain *tc; 638 struct lock_object *lock; 639 640 mtx_assert(&ts->ts_lock, MA_OWNED); 641 642 mtx_unlock_spin(&ts->ts_lock); 643 lock = ts->ts_lockobj; 644 if (ts == curthread->td_turnstile) 645 ts->ts_lockobj = NULL; 646 tc = TC_LOOKUP(lock); 647 mtx_unlock_spin(&tc->tc_lock); 648 } 649 650 /* 651 * Look up the turnstile for a lock in the hash table locking the associated 652 * turnstile chain along the way. If no turnstile is found in the hash 653 * table, NULL is returned. 654 */ 655 struct turnstile * 656 turnstile_lookup(struct lock_object *lock) 657 { 658 struct turnstile_chain *tc; 659 struct turnstile *ts; 660 661 tc = TC_LOOKUP(lock); 662 mtx_assert(&tc->tc_lock, MA_OWNED); 663 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 664 if (ts->ts_lockobj == lock) { 665 mtx_lock_spin(&ts->ts_lock); 666 return (ts); 667 } 668 return (NULL); 669 } 670 671 /* 672 * Unlock the turnstile chain associated with a given lock. 673 */ 674 void 675 turnstile_chain_unlock(struct lock_object *lock) 676 { 677 struct turnstile_chain *tc; 678 679 tc = TC_LOOKUP(lock); 680 mtx_unlock_spin(&tc->tc_lock); 681 } 682 683 /* 684 * Return a pointer to the thread waiting on this turnstile with the 685 * most important priority or NULL if the turnstile has no waiters. 686 */ 687 static struct thread * 688 turnstile_first_waiter(struct turnstile *ts) 689 { 690 struct thread *std, *xtd; 691 692 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 693 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 694 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 695 return (std); 696 return (xtd); 697 } 698 699 /* 700 * Take ownership of a turnstile and adjust the priority of the new 701 * owner appropriately. 702 */ 703 void 704 turnstile_claim(struct turnstile *ts) 705 { 706 struct thread *td, *owner; 707 struct turnstile_chain *tc; 708 709 mtx_assert(&ts->ts_lock, MA_OWNED); 710 MPASS(ts != curthread->td_turnstile); 711 712 owner = curthread; 713 mtx_lock_spin(&td_contested_lock); 714 turnstile_setowner(ts, owner); 715 mtx_unlock_spin(&td_contested_lock); 716 717 td = turnstile_first_waiter(ts); 718 MPASS(td != NULL); 719 MPASS(td->td_proc->p_magic == P_MAGIC); 720 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 721 722 /* 723 * Update the priority of the new owner if needed. 724 */ 725 thread_lock(owner); 726 if (td->td_priority < owner->td_priority) 727 sched_lend_prio(owner, td->td_priority); 728 thread_unlock(owner); 729 tc = TC_LOOKUP(ts->ts_lockobj); 730 mtx_unlock_spin(&ts->ts_lock); 731 mtx_unlock_spin(&tc->tc_lock); 732 } 733 734 /* 735 * Block the current thread on the turnstile assicated with 'lock'. This 736 * function will context switch and not return until this thread has been 737 * woken back up. This function must be called with the appropriate 738 * turnstile chain locked and will return with it unlocked. 739 */ 740 void 741 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue) 742 { 743 struct turnstile_chain *tc; 744 struct thread *td, *td1; 745 struct lock_object *lock; 746 747 td = curthread; 748 mtx_assert(&ts->ts_lock, MA_OWNED); 749 if (owner) 750 MPASS(owner->td_proc->p_magic == P_MAGIC); 751 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 752 753 /* 754 * If the lock does not already have a turnstile, use this thread's 755 * turnstile. Otherwise insert the current thread into the 756 * turnstile already in use by this lock. 757 */ 758 tc = TC_LOOKUP(ts->ts_lockobj); 759 mtx_assert(&tc->tc_lock, MA_OWNED); 760 if (ts == td->td_turnstile) { 761 #ifdef TURNSTILE_PROFILING 762 tc->tc_depth++; 763 if (tc->tc_depth > tc->tc_max_depth) { 764 tc->tc_max_depth = tc->tc_depth; 765 if (tc->tc_max_depth > turnstile_max_depth) 766 turnstile_max_depth = tc->tc_max_depth; 767 } 768 #endif 769 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 770 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 771 ("thread's turnstile has pending threads")); 772 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 773 ("thread's turnstile has exclusive waiters")); 774 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 775 ("thread's turnstile has shared waiters")); 776 KASSERT(LIST_EMPTY(&ts->ts_free), 777 ("thread's turnstile has a non-empty free list")); 778 MPASS(ts->ts_lockobj != NULL); 779 mtx_lock_spin(&td_contested_lock); 780 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 781 turnstile_setowner(ts, owner); 782 mtx_unlock_spin(&td_contested_lock); 783 } else { 784 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 785 if (td1->td_priority > td->td_priority) 786 break; 787 mtx_lock_spin(&td_contested_lock); 788 if (td1 != NULL) 789 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 790 else 791 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 792 MPASS(owner == ts->ts_owner); 793 mtx_unlock_spin(&td_contested_lock); 794 MPASS(td->td_turnstile != NULL); 795 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 796 } 797 thread_lock(td); 798 thread_lock_set(td, &ts->ts_lock); 799 td->td_turnstile = NULL; 800 801 /* Save who we are blocked on and switch. */ 802 lock = ts->ts_lockobj; 803 td->td_tsqueue = queue; 804 td->td_blocked = ts; 805 td->td_lockname = lock->lo_name; 806 td->td_blktick = ticks; 807 TD_SET_LOCK(td); 808 mtx_unlock_spin(&tc->tc_lock); 809 propagate_priority(td); 810 811 if (LOCK_LOG_TEST(lock, 0)) 812 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 813 td->td_tid, lock, lock->lo_name); 814 815 SDT_PROBE0(sched, , , sleep); 816 817 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 818 mi_switch(SW_VOL | SWT_TURNSTILE); 819 820 if (LOCK_LOG_TEST(lock, 0)) 821 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 822 __func__, td->td_tid, lock, lock->lo_name); 823 } 824 825 /* 826 * Pick the highest priority thread on this turnstile and put it on the 827 * pending list. This must be called with the turnstile chain locked. 828 */ 829 int 830 turnstile_signal(struct turnstile *ts, int queue) 831 { 832 struct turnstile_chain *tc __unused; 833 struct thread *td; 834 int empty; 835 836 MPASS(ts != NULL); 837 mtx_assert(&ts->ts_lock, MA_OWNED); 838 MPASS(curthread->td_proc->p_magic == P_MAGIC); 839 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 840 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 841 842 /* 843 * Pick the highest priority thread blocked on this lock and 844 * move it to the pending list. 845 */ 846 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 847 MPASS(td->td_proc->p_magic == P_MAGIC); 848 mtx_lock_spin(&td_contested_lock); 849 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 850 mtx_unlock_spin(&td_contested_lock); 851 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 852 853 /* 854 * If the turnstile is now empty, remove it from its chain and 855 * give it to the about-to-be-woken thread. Otherwise take a 856 * turnstile from the free list and give it to the thread. 857 */ 858 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 859 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 860 if (empty) { 861 tc = TC_LOOKUP(ts->ts_lockobj); 862 mtx_assert(&tc->tc_lock, MA_OWNED); 863 MPASS(LIST_EMPTY(&ts->ts_free)); 864 #ifdef TURNSTILE_PROFILING 865 tc->tc_depth--; 866 #endif 867 } else 868 ts = LIST_FIRST(&ts->ts_free); 869 MPASS(ts != NULL); 870 LIST_REMOVE(ts, ts_hash); 871 td->td_turnstile = ts; 872 873 return (empty); 874 } 875 876 /* 877 * Put all blocked threads on the pending list. This must be called with 878 * the turnstile chain locked. 879 */ 880 void 881 turnstile_broadcast(struct turnstile *ts, int queue) 882 { 883 struct turnstile_chain *tc __unused; 884 struct turnstile *ts1; 885 struct thread *td; 886 887 MPASS(ts != NULL); 888 mtx_assert(&ts->ts_lock, MA_OWNED); 889 MPASS(curthread->td_proc->p_magic == P_MAGIC); 890 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 891 /* 892 * We must have the chain locked so that we can remove the empty 893 * turnstile from the hash queue. 894 */ 895 tc = TC_LOOKUP(ts->ts_lockobj); 896 mtx_assert(&tc->tc_lock, MA_OWNED); 897 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 898 899 /* 900 * Transfer the blocked list to the pending list. 901 */ 902 mtx_lock_spin(&td_contested_lock); 903 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 904 mtx_unlock_spin(&td_contested_lock); 905 906 /* 907 * Give a turnstile to each thread. The last thread gets 908 * this turnstile if the turnstile is empty. 909 */ 910 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 911 if (LIST_EMPTY(&ts->ts_free)) { 912 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 913 ts1 = ts; 914 #ifdef TURNSTILE_PROFILING 915 tc->tc_depth--; 916 #endif 917 } else 918 ts1 = LIST_FIRST(&ts->ts_free); 919 MPASS(ts1 != NULL); 920 LIST_REMOVE(ts1, ts_hash); 921 td->td_turnstile = ts1; 922 } 923 } 924 925 static u_char 926 turnstile_calc_unlend_prio_locked(struct thread *td) 927 { 928 struct turnstile *nts; 929 u_char cp, pri; 930 931 THREAD_LOCK_ASSERT(td, MA_OWNED); 932 mtx_assert(&td_contested_lock, MA_OWNED); 933 934 pri = PRI_MAX; 935 LIST_FOREACH(nts, &td->td_contested, ts_link) { 936 cp = turnstile_first_waiter(nts)->td_priority; 937 if (cp < pri) 938 pri = cp; 939 } 940 return (pri); 941 } 942 943 /* 944 * Wakeup all threads on the pending list and adjust the priority of the 945 * current thread appropriately. This must be called with the turnstile 946 * chain locked. 947 */ 948 void 949 turnstile_unpend(struct turnstile *ts) 950 { 951 TAILQ_HEAD( ,thread) pending_threads; 952 struct thread *td; 953 u_char pri; 954 955 MPASS(ts != NULL); 956 mtx_assert(&ts->ts_lock, MA_OWNED); 957 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 958 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 959 960 /* 961 * Move the list of pending threads out of the turnstile and 962 * into a local variable. 963 */ 964 TAILQ_INIT(&pending_threads); 965 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 966 #ifdef INVARIANTS 967 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 968 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 969 ts->ts_lockobj = NULL; 970 #endif 971 /* 972 * Adjust the priority of curthread based on other contested 973 * locks it owns. Don't lower the priority below the base 974 * priority however. 975 */ 976 td = curthread; 977 thread_lock(td); 978 mtx_lock_spin(&td_contested_lock); 979 /* 980 * Remove the turnstile from this thread's list of contested locks 981 * since this thread doesn't own it anymore. New threads will 982 * not be blocking on the turnstile until it is claimed by a new 983 * owner. There might not be a current owner if this is a shared 984 * lock. 985 */ 986 if (ts->ts_owner != NULL) { 987 ts->ts_owner = NULL; 988 LIST_REMOVE(ts, ts_link); 989 } 990 pri = turnstile_calc_unlend_prio_locked(td); 991 mtx_unlock_spin(&td_contested_lock); 992 sched_unlend_prio(td, pri); 993 thread_unlock(td); 994 /* 995 * Wake up all the pending threads. If a thread is not blocked 996 * on a lock, then it is currently executing on another CPU in 997 * turnstile_wait() or sitting on a run queue waiting to resume 998 * in turnstile_wait(). Set a flag to force it to try to acquire 999 * the lock again instead of blocking. 1000 */ 1001 while (!TAILQ_EMPTY(&pending_threads)) { 1002 td = TAILQ_FIRST(&pending_threads); 1003 TAILQ_REMOVE(&pending_threads, td, td_lockq); 1004 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 1005 thread_lock_block_wait(td); 1006 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 1007 MPASS(td->td_proc->p_magic == P_MAGIC); 1008 MPASS(TD_ON_LOCK(td)); 1009 TD_CLR_LOCK(td); 1010 MPASS(TD_CAN_RUN(td)); 1011 td->td_blocked = NULL; 1012 td->td_lockname = NULL; 1013 td->td_blktick = 0; 1014 #ifdef INVARIANTS 1015 td->td_tsqueue = 0xff; 1016 #endif 1017 sched_add(td, SRQ_HOLD | SRQ_BORING); 1018 } 1019 mtx_unlock_spin(&ts->ts_lock); 1020 } 1021 1022 /* 1023 * Give up ownership of a turnstile. This must be called with the 1024 * turnstile chain locked. 1025 */ 1026 void 1027 turnstile_disown(struct turnstile *ts) 1028 { 1029 struct thread *td; 1030 u_char pri; 1031 1032 MPASS(ts != NULL); 1033 mtx_assert(&ts->ts_lock, MA_OWNED); 1034 MPASS(ts->ts_owner == curthread); 1035 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 1036 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 1037 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 1038 1039 /* 1040 * Remove the turnstile from this thread's list of contested locks 1041 * since this thread doesn't own it anymore. New threads will 1042 * not be blocking on the turnstile until it is claimed by a new 1043 * owner. 1044 */ 1045 mtx_lock_spin(&td_contested_lock); 1046 ts->ts_owner = NULL; 1047 LIST_REMOVE(ts, ts_link); 1048 mtx_unlock_spin(&td_contested_lock); 1049 1050 /* 1051 * Adjust the priority of curthread based on other contested 1052 * locks it owns. Don't lower the priority below the base 1053 * priority however. 1054 */ 1055 td = curthread; 1056 thread_lock(td); 1057 mtx_unlock_spin(&ts->ts_lock); 1058 mtx_lock_spin(&td_contested_lock); 1059 pri = turnstile_calc_unlend_prio_locked(td); 1060 mtx_unlock_spin(&td_contested_lock); 1061 sched_unlend_prio(td, pri); 1062 thread_unlock(td); 1063 } 1064 1065 /* 1066 * Return the first thread in a turnstile. 1067 */ 1068 struct thread * 1069 turnstile_head(struct turnstile *ts, int queue) 1070 { 1071 #ifdef INVARIANTS 1072 1073 MPASS(ts != NULL); 1074 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1075 mtx_assert(&ts->ts_lock, MA_OWNED); 1076 #endif 1077 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 1078 } 1079 1080 /* 1081 * Returns true if a sub-queue of a turnstile is empty. 1082 */ 1083 int 1084 turnstile_empty(struct turnstile *ts, int queue) 1085 { 1086 #ifdef INVARIANTS 1087 1088 MPASS(ts != NULL); 1089 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1090 mtx_assert(&ts->ts_lock, MA_OWNED); 1091 #endif 1092 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1093 } 1094 1095 #ifdef DDB 1096 static void 1097 print_thread(struct thread *td, const char *prefix) 1098 { 1099 1100 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1101 td->td_proc->p_pid, td->td_name); 1102 } 1103 1104 static void 1105 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1106 { 1107 struct thread *td; 1108 1109 db_printf("%s:\n", header); 1110 if (TAILQ_EMPTY(queue)) { 1111 db_printf("%sempty\n", prefix); 1112 return; 1113 } 1114 TAILQ_FOREACH(td, queue, td_lockq) { 1115 print_thread(td, prefix); 1116 } 1117 } 1118 1119 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1120 { 1121 struct turnstile_chain *tc; 1122 struct turnstile *ts; 1123 struct lock_object *lock; 1124 int i; 1125 1126 if (!have_addr) 1127 return; 1128 1129 /* 1130 * First, see if there is an active turnstile for the lock indicated 1131 * by the address. 1132 */ 1133 lock = (struct lock_object *)addr; 1134 tc = TC_LOOKUP(lock); 1135 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1136 if (ts->ts_lockobj == lock) 1137 goto found; 1138 1139 /* 1140 * Second, see if there is an active turnstile at the address 1141 * indicated. 1142 */ 1143 for (i = 0; i < TC_TABLESIZE; i++) 1144 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1145 if (ts == (struct turnstile *)addr) 1146 goto found; 1147 } 1148 1149 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1150 return; 1151 found: 1152 lock = ts->ts_lockobj; 1153 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1154 lock->lo_name); 1155 if (ts->ts_owner) 1156 print_thread(ts->ts_owner, "Lock Owner: "); 1157 else 1158 db_printf("Lock Owner: none\n"); 1159 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1160 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1161 "\t"); 1162 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1163 1164 } 1165 1166 /* 1167 * Show all the threads a particular thread is waiting on based on 1168 * non-spin locks. 1169 */ 1170 static void 1171 print_lockchain(struct thread *td, const char *prefix) 1172 { 1173 struct lock_object *lock; 1174 struct lock_class *class; 1175 struct turnstile *ts; 1176 struct thread *owner; 1177 1178 /* 1179 * Follow the chain. We keep walking as long as the thread is 1180 * blocked on a lock that has an owner. 1181 */ 1182 while (!db_pager_quit) { 1183 if (td == (void *)LK_KERNPROC) { 1184 db_printf("%sdisowned (LK_KERNPROC)\n", prefix); 1185 return; 1186 } 1187 db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid, 1188 td->td_proc->p_pid, td->td_name); 1189 switch (td->td_state) { 1190 case TDS_INACTIVE: 1191 db_printf("inactive\n"); 1192 return; 1193 case TDS_CAN_RUN: 1194 db_printf("runnable\n"); 1195 return; 1196 case TDS_RUNQ: 1197 db_printf("on a run queue\n"); 1198 return; 1199 case TDS_RUNNING: 1200 db_printf("running on CPU %d\n", td->td_oncpu); 1201 return; 1202 case TDS_INHIBITED: 1203 if (TD_ON_LOCK(td)) { 1204 ts = td->td_blocked; 1205 lock = ts->ts_lockobj; 1206 class = LOCK_CLASS(lock); 1207 db_printf("blocked on lock %p (%s) \"%s\"\n", 1208 lock, class->lc_name, lock->lo_name); 1209 if (ts->ts_owner == NULL) 1210 return; 1211 td = ts->ts_owner; 1212 break; 1213 } else if (TD_ON_SLEEPQ(td)) { 1214 if (!lockmgr_chain(td, &owner) && 1215 !sx_chain(td, &owner)) { 1216 db_printf("sleeping on %p \"%s\"\n", 1217 td->td_wchan, td->td_wmesg); 1218 return; 1219 } 1220 if (owner == NULL) 1221 return; 1222 td = owner; 1223 break; 1224 } 1225 db_printf("inhibited: %s\n", KTDSTATE(td)); 1226 return; 1227 default: 1228 db_printf("??? (%#x)\n", td->td_state); 1229 return; 1230 } 1231 } 1232 } 1233 1234 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1235 { 1236 struct thread *td; 1237 1238 /* Figure out which thread to start with. */ 1239 if (have_addr) 1240 td = db_lookup_thread(addr, true); 1241 else 1242 td = kdb_thread; 1243 1244 print_lockchain(td, ""); 1245 } 1246 DB_SHOW_ALIAS(sleepchain, db_show_lockchain); 1247 1248 DB_SHOW_ALL_COMMAND(chains, db_show_allchains) 1249 { 1250 struct thread *td; 1251 struct proc *p; 1252 int i; 1253 1254 i = 1; 1255 FOREACH_PROC_IN_SYSTEM(p) { 1256 FOREACH_THREAD_IN_PROC(p, td) { 1257 if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) 1258 || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) { 1259 db_printf("chain %d:\n", i++); 1260 print_lockchain(td, " "); 1261 } 1262 if (db_pager_quit) 1263 return; 1264 } 1265 } 1266 } 1267 DB_SHOW_ALIAS(allchains, db_show_allchains) 1268 1269 static void print_waiters(struct turnstile *ts, int indent); 1270 1271 static void 1272 print_waiter(struct thread *td, int indent) 1273 { 1274 struct turnstile *ts; 1275 int i; 1276 1277 if (db_pager_quit) 1278 return; 1279 for (i = 0; i < indent; i++) 1280 db_printf(" "); 1281 print_thread(td, "thread "); 1282 LIST_FOREACH(ts, &td->td_contested, ts_link) 1283 print_waiters(ts, indent + 1); 1284 } 1285 1286 static void 1287 print_waiters(struct turnstile *ts, int indent) 1288 { 1289 struct lock_object *lock; 1290 struct lock_class *class; 1291 struct thread *td; 1292 int i; 1293 1294 if (db_pager_quit) 1295 return; 1296 lock = ts->ts_lockobj; 1297 class = LOCK_CLASS(lock); 1298 for (i = 0; i < indent; i++) 1299 db_printf(" "); 1300 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1301 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1302 print_waiter(td, indent + 1); 1303 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1304 print_waiter(td, indent + 1); 1305 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1306 print_waiter(td, indent + 1); 1307 } 1308 1309 DB_SHOW_COMMAND(locktree, db_show_locktree) 1310 { 1311 struct lock_object *lock; 1312 struct lock_class *class; 1313 struct turnstile_chain *tc; 1314 struct turnstile *ts; 1315 1316 if (!have_addr) 1317 return; 1318 lock = (struct lock_object *)addr; 1319 tc = TC_LOOKUP(lock); 1320 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1321 if (ts->ts_lockobj == lock) 1322 break; 1323 if (ts == NULL) { 1324 class = LOCK_CLASS(lock); 1325 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1326 lock->lo_name); 1327 } else 1328 print_waiters(ts, 0); 1329 } 1330 #endif 1331