1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is malloc'd and attached to 50 * that thread. When a thread blocks on a lock, if it is the first thread 51 * to block, it lends its turnstile to the lock. If the lock already has 52 * a turnstile, then it gives its turnstile to the lock's turnstile's free 53 * list. When a thread is woken up, it takes a turnstile from the free list 54 * if there are any other waiters. If it is the only thread blocked on the 55 * lock, then it reclaims the turnstile associated with the lock and removes 56 * it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_turnstile_profiling.h" 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/malloc.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/queue.h> 74 #include <sys/sched.h> 75 #include <sys/sysctl.h> 76 #include <sys/turnstile.h> 77 78 #ifdef DDB 79 #include <sys/kdb.h> 80 #include <ddb/ddb.h> 81 #endif 82 83 /* 84 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 85 * number chosen because the sleep queue's use the same value for the 86 * shift. Basically, we ignore the lower 8 bits of the address. 87 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 88 */ 89 #define TC_TABLESIZE 128 /* Must be power of 2. */ 90 #define TC_MASK (TC_TABLESIZE - 1) 91 #define TC_SHIFT 8 92 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 93 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 94 95 /* 96 * There are three different lists of turnstiles as follows. The list 97 * connected by ts_link entries is a per-thread list of all the turnstiles 98 * attached to locks that we own. This is used to fixup our priority when 99 * a lock is released. The other two lists use the ts_hash entries. The 100 * first of these two is the turnstile chain list that a turnstile is on 101 * when it is attached to a lock. The second list to use ts_hash is the 102 * free list hung off of a turnstile that is attached to a lock. 103 * 104 * Each turnstile contains three lists of threads. The two ts_blocked lists 105 * are linked list of threads blocked on the turnstile's lock. One list is 106 * for exclusive waiters, and the other is for shared waiters. The 107 * ts_pending list is a linked list of threads previously awakened by 108 * turnstile_signal() or turnstile_wait() that are waiting to be put on 109 * the run queue. 110 * 111 * Locking key: 112 * c - turnstile chain lock 113 * q - td_contested lock 114 */ 115 struct turnstile { 116 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 117 struct threadqueue ts_pending; /* (c) Pending threads. */ 118 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 119 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 120 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 121 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 122 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 123 }; 124 125 struct turnstile_chain { 126 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 127 struct mtx tc_lock; /* Spin lock for this chain. */ 128 #ifdef TURNSTILE_PROFILING 129 u_int tc_depth; /* Length of tc_queues. */ 130 u_int tc_max_depth; /* Max length of tc_queues. */ 131 #endif 132 }; 133 134 #ifdef TURNSTILE_PROFILING 135 u_int turnstile_max_depth; 136 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling"); 137 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 138 "turnstile chain stats"); 139 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 140 &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain"); 141 #endif 142 static struct mtx td_contested_lock; 143 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 144 145 static MALLOC_DEFINE(M_TURNSTILE, "turnstiles", "turnstiles"); 146 147 /* 148 * Prototypes for non-exported routines. 149 */ 150 static void init_turnstile0(void *dummy); 151 #ifdef TURNSTILE_PROFILING 152 static void init_turnstile_profiling(void *arg); 153 #endif 154 static void propagate_priority(struct thread *td); 155 static int turnstile_adjust_thread(struct turnstile *ts, 156 struct thread *td); 157 static struct thread *turnstile_first_waiter(struct turnstile *ts); 158 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 159 160 /* 161 * Walks the chain of turnstiles and their owners to propagate the priority 162 * of the thread being blocked to all the threads holding locks that have to 163 * release their locks before this thread can run again. 164 */ 165 static void 166 propagate_priority(struct thread *td) 167 { 168 struct turnstile_chain *tc; 169 struct turnstile *ts; 170 int pri; 171 172 mtx_assert(&sched_lock, MA_OWNED); 173 pri = td->td_priority; 174 ts = td->td_blocked; 175 for (;;) { 176 td = ts->ts_owner; 177 178 if (td == NULL) { 179 /* 180 * This might be a read lock with no owner. There's 181 * not much we can do, so just bail. 182 */ 183 return; 184 } 185 186 MPASS(td->td_proc != NULL); 187 MPASS(td->td_proc->p_magic == P_MAGIC); 188 189 /* 190 * If the thread is asleep, then we are probably about 191 * to deadlock. To make debugging this easier, just 192 * panic and tell the user which thread misbehaved so 193 * they can hopefully get a stack trace from the truly 194 * misbehaving thread. 195 */ 196 if (TD_IS_SLEEPING(td)) { 197 printf( 198 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 199 td->td_tid, td->td_proc->p_pid); 200 #ifdef DDB 201 db_trace_thread(td, -1); 202 #endif 203 panic("sleeping thread"); 204 } 205 206 /* 207 * If this thread already has higher priority than the 208 * thread that is being blocked, we are finished. 209 */ 210 if (td->td_priority <= pri) 211 return; 212 213 /* 214 * Bump this thread's priority. 215 */ 216 sched_lend_prio(td, pri); 217 218 /* 219 * If lock holder is actually running or on the run queue 220 * then we are done. 221 */ 222 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 223 MPASS(td->td_blocked == NULL); 224 return; 225 } 226 227 #ifndef SMP 228 /* 229 * For UP, we check to see if td is curthread (this shouldn't 230 * ever happen however as it would mean we are in a deadlock.) 231 */ 232 KASSERT(td != curthread, ("Deadlock detected")); 233 #endif 234 235 /* 236 * If we aren't blocked on a lock, we should be. 237 */ 238 KASSERT(TD_ON_LOCK(td), ( 239 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 240 td->td_tid, td->td_proc->p_comm, td->td_state, 241 ts->ts_lockobj->lo_name)); 242 243 /* 244 * Pick up the lock that td is blocked on. 245 */ 246 ts = td->td_blocked; 247 MPASS(ts != NULL); 248 tc = TC_LOOKUP(ts->ts_lockobj); 249 mtx_lock_spin(&tc->tc_lock); 250 251 /* Resort td on the list if needed. */ 252 if (!turnstile_adjust_thread(ts, td)) { 253 mtx_unlock_spin(&tc->tc_lock); 254 return; 255 } 256 mtx_unlock_spin(&tc->tc_lock); 257 } 258 } 259 260 /* 261 * Adjust the thread's position on a turnstile after its priority has been 262 * changed. 263 */ 264 static int 265 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 266 { 267 struct turnstile_chain *tc; 268 struct thread *td1, *td2; 269 int queue; 270 271 mtx_assert(&sched_lock, MA_OWNED); 272 MPASS(TD_ON_LOCK(td)); 273 274 /* 275 * This thread may not be blocked on this turnstile anymore 276 * but instead might already be woken up on another CPU 277 * that is waiting on sched_lock in turnstile_unpend() to 278 * finish waking this thread up. We can detect this case 279 * by checking to see if this thread has been given a 280 * turnstile by either turnstile_signal() or 281 * turnstile_broadcast(). In this case, treat the thread as 282 * if it was already running. 283 */ 284 if (td->td_turnstile != NULL) 285 return (0); 286 287 /* 288 * Check if the thread needs to be moved on the blocked chain. 289 * It needs to be moved if either its priority is lower than 290 * the previous thread or higher than the next thread. 291 */ 292 tc = TC_LOOKUP(ts->ts_lockobj); 293 mtx_assert(&tc->tc_lock, MA_OWNED); 294 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 295 td2 = TAILQ_NEXT(td, td_lockq); 296 if ((td1 != NULL && td->td_priority < td1->td_priority) || 297 (td2 != NULL && td->td_priority > td2->td_priority)) { 298 299 /* 300 * Remove thread from blocked chain and determine where 301 * it should be moved to. 302 */ 303 queue = td->td_tsqueue; 304 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 305 mtx_lock_spin(&td_contested_lock); 306 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 307 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 308 MPASS(td1->td_proc->p_magic == P_MAGIC); 309 if (td1->td_priority > td->td_priority) 310 break; 311 } 312 313 if (td1 == NULL) 314 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 315 else 316 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 317 mtx_unlock_spin(&td_contested_lock); 318 if (td1 == NULL) 319 CTR3(KTR_LOCK, 320 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 321 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 322 else 323 CTR4(KTR_LOCK, 324 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 325 td->td_tid, td1->td_tid, ts->ts_lockobj, 326 ts->ts_lockobj->lo_name); 327 } 328 return (1); 329 } 330 331 /* 332 * Early initialization of turnstiles. This is not done via a SYSINIT() 333 * since this needs to be initialized very early when mutexes are first 334 * initialized. 335 */ 336 void 337 init_turnstiles(void) 338 { 339 int i; 340 341 for (i = 0; i < TC_TABLESIZE; i++) { 342 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 343 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 344 NULL, MTX_SPIN); 345 } 346 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 347 LIST_INIT(&thread0.td_contested); 348 thread0.td_turnstile = NULL; 349 } 350 351 #ifdef TURNSTILE_PROFILING 352 static void 353 init_turnstile_profiling(void *arg) 354 { 355 struct sysctl_oid *chain_oid; 356 char chain_name[10]; 357 int i; 358 359 for (i = 0; i < TC_TABLESIZE; i++) { 360 snprintf(chain_name, sizeof(chain_name), "%d", i); 361 chain_oid = SYSCTL_ADD_NODE(NULL, 362 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 363 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 364 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 365 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 366 NULL); 367 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 368 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 369 0, NULL); 370 } 371 } 372 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 373 init_turnstile_profiling, NULL); 374 #endif 375 376 static void 377 init_turnstile0(void *dummy) 378 { 379 380 thread0.td_turnstile = turnstile_alloc(); 381 } 382 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 383 384 /* 385 * Update a thread on the turnstile list after it's priority has been changed. 386 * The old priority is passed in as an argument. 387 */ 388 void 389 turnstile_adjust(struct thread *td, u_char oldpri) 390 { 391 struct turnstile_chain *tc; 392 struct turnstile *ts; 393 394 mtx_assert(&sched_lock, MA_OWNED); 395 MPASS(TD_ON_LOCK(td)); 396 397 /* 398 * Pick up the lock that td is blocked on. 399 */ 400 ts = td->td_blocked; 401 MPASS(ts != NULL); 402 tc = TC_LOOKUP(ts->ts_lockobj); 403 mtx_lock_spin(&tc->tc_lock); 404 405 /* Resort the turnstile on the list. */ 406 if (!turnstile_adjust_thread(ts, td)) { 407 mtx_unlock_spin(&tc->tc_lock); 408 return; 409 } 410 411 /* 412 * If our priority was lowered and we are at the head of the 413 * turnstile, then propagate our new priority up the chain. 414 * Note that we currently don't try to revoke lent priorities 415 * when our priority goes up. 416 */ 417 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 418 td->td_tsqueue == TS_SHARED_QUEUE); 419 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 420 td->td_priority < oldpri) { 421 mtx_unlock_spin(&tc->tc_lock); 422 propagate_priority(td); 423 } else 424 mtx_unlock_spin(&tc->tc_lock); 425 } 426 427 /* 428 * Set the owner of the lock this turnstile is attached to. 429 */ 430 static void 431 turnstile_setowner(struct turnstile *ts, struct thread *owner) 432 { 433 434 mtx_assert(&td_contested_lock, MA_OWNED); 435 MPASS(ts->ts_owner == NULL); 436 437 /* A shared lock might not have an owner. */ 438 if (owner == NULL) 439 return; 440 441 MPASS(owner->td_proc->p_magic == P_MAGIC); 442 ts->ts_owner = owner; 443 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 444 } 445 446 /* 447 * Malloc a turnstile for a new thread, initialize it and return it. 448 */ 449 struct turnstile * 450 turnstile_alloc(void) 451 { 452 struct turnstile *ts; 453 454 ts = malloc(sizeof(struct turnstile), M_TURNSTILE, M_WAITOK | M_ZERO); 455 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 456 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 457 TAILQ_INIT(&ts->ts_pending); 458 LIST_INIT(&ts->ts_free); 459 return (ts); 460 } 461 462 /* 463 * Free a turnstile when a thread is destroyed. 464 */ 465 void 466 turnstile_free(struct turnstile *ts) 467 { 468 469 MPASS(ts != NULL); 470 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 471 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 472 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 473 free(ts, M_TURNSTILE); 474 } 475 476 /* 477 * Lock the turnstile chain associated with the specified lock. 478 */ 479 void 480 turnstile_lock(struct lock_object *lock) 481 { 482 struct turnstile_chain *tc; 483 484 tc = TC_LOOKUP(lock); 485 mtx_lock_spin(&tc->tc_lock); 486 } 487 488 /* 489 * Look up the turnstile for a lock in the hash table locking the associated 490 * turnstile chain along the way. If no turnstile is found in the hash 491 * table, NULL is returned. 492 */ 493 struct turnstile * 494 turnstile_lookup(struct lock_object *lock) 495 { 496 struct turnstile_chain *tc; 497 struct turnstile *ts; 498 499 tc = TC_LOOKUP(lock); 500 mtx_assert(&tc->tc_lock, MA_OWNED); 501 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 502 if (ts->ts_lockobj == lock) 503 return (ts); 504 return (NULL); 505 } 506 507 /* 508 * Unlock the turnstile chain associated with a given lock. 509 */ 510 void 511 turnstile_release(struct lock_object *lock) 512 { 513 struct turnstile_chain *tc; 514 515 tc = TC_LOOKUP(lock); 516 mtx_unlock_spin(&tc->tc_lock); 517 } 518 519 /* 520 * Return a pointer to the thread waiting on this turnstile with the 521 * most important priority or NULL if the turnstile has no waiters. 522 */ 523 static struct thread * 524 turnstile_first_waiter(struct turnstile *ts) 525 { 526 struct thread *std, *xtd; 527 528 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 529 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 530 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 531 return (std); 532 return (xtd); 533 } 534 535 /* 536 * Take ownership of a turnstile and adjust the priority of the new 537 * owner appropriately. 538 */ 539 void 540 turnstile_claim(struct lock_object *lock) 541 { 542 struct turnstile_chain *tc; 543 struct turnstile *ts; 544 struct thread *td, *owner; 545 546 tc = TC_LOOKUP(lock); 547 mtx_assert(&tc->tc_lock, MA_OWNED); 548 ts = turnstile_lookup(lock); 549 MPASS(ts != NULL); 550 551 owner = curthread; 552 mtx_lock_spin(&td_contested_lock); 553 turnstile_setowner(ts, owner); 554 mtx_unlock_spin(&td_contested_lock); 555 556 td = turnstile_first_waiter(ts); 557 MPASS(td != NULL); 558 MPASS(td->td_proc->p_magic == P_MAGIC); 559 mtx_unlock_spin(&tc->tc_lock); 560 561 /* 562 * Update the priority of the new owner if needed. 563 */ 564 mtx_lock_spin(&sched_lock); 565 if (td->td_priority < owner->td_priority) 566 sched_lend_prio(owner, td->td_priority); 567 mtx_unlock_spin(&sched_lock); 568 } 569 570 /* 571 * Block the current thread on the turnstile assicated with 'lock'. This 572 * function will context switch and not return until this thread has been 573 * woken back up. This function must be called with the appropriate 574 * turnstile chain locked and will return with it unlocked. 575 */ 576 void 577 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue) 578 { 579 struct turnstile_chain *tc; 580 struct turnstile *ts; 581 struct thread *td, *td1; 582 583 td = curthread; 584 tc = TC_LOOKUP(lock); 585 mtx_assert(&tc->tc_lock, MA_OWNED); 586 MPASS(td->td_turnstile != NULL); 587 if (queue == TS_SHARED_QUEUE) 588 MPASS(owner != NULL); 589 if (owner) 590 MPASS(owner->td_proc->p_magic == P_MAGIC); 591 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 592 593 /* Look up the turnstile associated with the lock 'lock'. */ 594 ts = turnstile_lookup(lock); 595 596 /* 597 * If the lock does not already have a turnstile, use this thread's 598 * turnstile. Otherwise insert the current thread into the 599 * turnstile already in use by this lock. 600 */ 601 if (ts == NULL) { 602 #ifdef TURNSTILE_PROFILING 603 tc->tc_depth++; 604 if (tc->tc_depth > tc->tc_max_depth) { 605 tc->tc_max_depth = tc->tc_depth; 606 if (tc->tc_max_depth > turnstile_max_depth) 607 turnstile_max_depth = tc->tc_max_depth; 608 } 609 #endif 610 ts = td->td_turnstile; 611 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 612 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 613 ("thread's turnstile has pending threads")); 614 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 615 ("thread's turnstile has exclusive waiters")); 616 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 617 ("thread's turnstile has shared waiters")); 618 KASSERT(LIST_EMPTY(&ts->ts_free), 619 ("thread's turnstile has a non-empty free list")); 620 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 621 ts->ts_lockobj = lock; 622 mtx_lock_spin(&td_contested_lock); 623 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 624 turnstile_setowner(ts, owner); 625 mtx_unlock_spin(&td_contested_lock); 626 } else { 627 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 628 if (td1->td_priority > td->td_priority) 629 break; 630 mtx_lock_spin(&td_contested_lock); 631 if (td1 != NULL) 632 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 633 else 634 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 635 MPASS(owner == ts->ts_owner); 636 mtx_unlock_spin(&td_contested_lock); 637 MPASS(td->td_turnstile != NULL); 638 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 639 } 640 td->td_turnstile = NULL; 641 mtx_unlock_spin(&tc->tc_lock); 642 643 mtx_lock_spin(&sched_lock); 644 /* 645 * Handle race condition where a thread on another CPU that owns 646 * lock 'lock' could have woken us in between us dropping the 647 * turnstile chain lock and acquiring the sched_lock. 648 */ 649 if (td->td_flags & TDF_TSNOBLOCK) { 650 td->td_flags &= ~TDF_TSNOBLOCK; 651 mtx_unlock_spin(&sched_lock); 652 return; 653 } 654 655 #ifdef notyet 656 /* 657 * If we're borrowing an interrupted thread's VM context, we 658 * must clean up before going to sleep. 659 */ 660 if (td->td_ithd != NULL) { 661 struct ithd *it = td->td_ithd; 662 663 if (it->it_interrupted) { 664 if (LOCK_LOG_TEST(lock, 0)) 665 CTR3(KTR_LOCK, "%s: %p interrupted %p", 666 __func__, it, it->it_interrupted); 667 intr_thd_fixup(it); 668 } 669 } 670 #endif 671 672 /* Save who we are blocked on and switch. */ 673 td->td_tsqueue = queue; 674 td->td_blocked = ts; 675 td->td_lockname = lock->lo_name; 676 TD_SET_LOCK(td); 677 propagate_priority(td); 678 679 if (LOCK_LOG_TEST(lock, 0)) 680 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 681 td->td_tid, lock, lock->lo_name); 682 683 mi_switch(SW_VOL, NULL); 684 685 if (LOCK_LOG_TEST(lock, 0)) 686 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 687 __func__, td->td_tid, lock, lock->lo_name); 688 689 mtx_unlock_spin(&sched_lock); 690 } 691 692 /* 693 * Pick the highest priority thread on this turnstile and put it on the 694 * pending list. This must be called with the turnstile chain locked. 695 */ 696 int 697 turnstile_signal(struct turnstile *ts, int queue) 698 { 699 struct turnstile_chain *tc; 700 struct thread *td; 701 int empty; 702 703 MPASS(ts != NULL); 704 MPASS(curthread->td_proc->p_magic == P_MAGIC); 705 MPASS(ts->ts_owner == curthread || 706 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 707 tc = TC_LOOKUP(ts->ts_lockobj); 708 mtx_assert(&tc->tc_lock, MA_OWNED); 709 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 710 711 /* 712 * Pick the highest priority thread blocked on this lock and 713 * move it to the pending list. 714 */ 715 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 716 MPASS(td->td_proc->p_magic == P_MAGIC); 717 mtx_lock_spin(&td_contested_lock); 718 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 719 mtx_unlock_spin(&td_contested_lock); 720 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 721 722 /* 723 * If the turnstile is now empty, remove it from its chain and 724 * give it to the about-to-be-woken thread. Otherwise take a 725 * turnstile from the free list and give it to the thread. 726 */ 727 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 728 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 729 if (empty) { 730 MPASS(LIST_EMPTY(&ts->ts_free)); 731 #ifdef TURNSTILE_PROFILING 732 tc->tc_depth--; 733 #endif 734 } else 735 ts = LIST_FIRST(&ts->ts_free); 736 MPASS(ts != NULL); 737 LIST_REMOVE(ts, ts_hash); 738 td->td_turnstile = ts; 739 740 return (empty); 741 } 742 743 /* 744 * Put all blocked threads on the pending list. This must be called with 745 * the turnstile chain locked. 746 */ 747 void 748 turnstile_broadcast(struct turnstile *ts, int queue) 749 { 750 struct turnstile_chain *tc; 751 struct turnstile *ts1; 752 struct thread *td; 753 754 MPASS(ts != NULL); 755 MPASS(curthread->td_proc->p_magic == P_MAGIC); 756 MPASS(ts->ts_owner == curthread || 757 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 758 tc = TC_LOOKUP(ts->ts_lockobj); 759 mtx_assert(&tc->tc_lock, MA_OWNED); 760 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 761 762 /* 763 * Transfer the blocked list to the pending list. 764 */ 765 mtx_lock_spin(&td_contested_lock); 766 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 767 mtx_unlock_spin(&td_contested_lock); 768 769 /* 770 * Give a turnstile to each thread. The last thread gets 771 * this turnstile if the turnstile is empty. 772 */ 773 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 774 if (LIST_EMPTY(&ts->ts_free)) { 775 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 776 ts1 = ts; 777 #ifdef TURNSTILE_PROFILING 778 tc->tc_depth--; 779 #endif 780 } else 781 ts1 = LIST_FIRST(&ts->ts_free); 782 MPASS(ts1 != NULL); 783 LIST_REMOVE(ts1, ts_hash); 784 td->td_turnstile = ts1; 785 } 786 } 787 788 /* 789 * Wakeup all threads on the pending list and adjust the priority of the 790 * current thread appropriately. This must be called with the turnstile 791 * chain locked. 792 */ 793 void 794 turnstile_unpend(struct turnstile *ts, int owner_type) 795 { 796 TAILQ_HEAD( ,thread) pending_threads; 797 struct turnstile_chain *tc; 798 struct thread *td; 799 u_char cp, pri; 800 801 MPASS(ts != NULL); 802 MPASS(ts->ts_owner == curthread || 803 (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL)); 804 tc = TC_LOOKUP(ts->ts_lockobj); 805 mtx_assert(&tc->tc_lock, MA_OWNED); 806 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 807 808 /* 809 * Move the list of pending threads out of the turnstile and 810 * into a local variable. 811 */ 812 TAILQ_INIT(&pending_threads); 813 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 814 #ifdef INVARIANTS 815 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 816 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 817 ts->ts_lockobj = NULL; 818 #endif 819 820 /* 821 * Remove the turnstile from this thread's list of contested locks 822 * since this thread doesn't own it anymore. New threads will 823 * not be blocking on the turnstile until it is claimed by a new 824 * owner. There might not be a current owner if this is a shared 825 * lock. 826 */ 827 if (ts->ts_owner != NULL) { 828 mtx_lock_spin(&td_contested_lock); 829 ts->ts_owner = NULL; 830 LIST_REMOVE(ts, ts_link); 831 mtx_unlock_spin(&td_contested_lock); 832 } 833 critical_enter(); 834 mtx_unlock_spin(&tc->tc_lock); 835 836 /* 837 * Adjust the priority of curthread based on other contested 838 * locks it owns. Don't lower the priority below the base 839 * priority however. 840 */ 841 td = curthread; 842 pri = PRI_MAX; 843 mtx_lock_spin(&sched_lock); 844 mtx_lock_spin(&td_contested_lock); 845 LIST_FOREACH(ts, &td->td_contested, ts_link) { 846 cp = turnstile_first_waiter(ts)->td_priority; 847 if (cp < pri) 848 pri = cp; 849 } 850 mtx_unlock_spin(&td_contested_lock); 851 sched_unlend_prio(td, pri); 852 853 /* 854 * Wake up all the pending threads. If a thread is not blocked 855 * on a lock, then it is currently executing on another CPU in 856 * turnstile_wait() or sitting on a run queue waiting to resume 857 * in turnstile_wait(). Set a flag to force it to try to acquire 858 * the lock again instead of blocking. 859 */ 860 while (!TAILQ_EMPTY(&pending_threads)) { 861 td = TAILQ_FIRST(&pending_threads); 862 TAILQ_REMOVE(&pending_threads, td, td_lockq); 863 MPASS(td->td_proc->p_magic == P_MAGIC); 864 if (TD_ON_LOCK(td)) { 865 td->td_blocked = NULL; 866 td->td_lockname = NULL; 867 #ifdef INVARIANTS 868 td->td_tsqueue = 0xff; 869 #endif 870 TD_CLR_LOCK(td); 871 MPASS(TD_CAN_RUN(td)); 872 setrunqueue(td, SRQ_BORING); 873 } else { 874 td->td_flags |= TDF_TSNOBLOCK; 875 MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td)); 876 } 877 } 878 critical_exit(); 879 mtx_unlock_spin(&sched_lock); 880 } 881 882 /* 883 * Give up ownership of a turnstile. This must be called with the 884 * turnstile chain locked. 885 */ 886 void 887 turnstile_disown(struct turnstile *ts) 888 { 889 struct turnstile_chain *tc; 890 struct thread *td; 891 u_char cp, pri; 892 893 MPASS(ts != NULL); 894 MPASS(ts->ts_owner == curthread); 895 tc = TC_LOOKUP(ts->ts_lockobj); 896 mtx_assert(&tc->tc_lock, MA_OWNED); 897 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 898 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 899 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 900 901 /* 902 * Remove the turnstile from this thread's list of contested locks 903 * since this thread doesn't own it anymore. New threads will 904 * not be blocking on the turnstile until it is claimed by a new 905 * owner. 906 */ 907 mtx_lock_spin(&td_contested_lock); 908 ts->ts_owner = NULL; 909 LIST_REMOVE(ts, ts_link); 910 mtx_unlock_spin(&td_contested_lock); 911 mtx_unlock_spin(&tc->tc_lock); 912 913 /* 914 * Adjust the priority of curthread based on other contested 915 * locks it owns. Don't lower the priority below the base 916 * priority however. 917 */ 918 td = curthread; 919 pri = PRI_MAX; 920 mtx_lock_spin(&sched_lock); 921 mtx_lock_spin(&td_contested_lock); 922 LIST_FOREACH(ts, &td->td_contested, ts_link) { 923 cp = turnstile_first_waiter(ts)->td_priority; 924 if (cp < pri) 925 pri = cp; 926 } 927 mtx_unlock_spin(&td_contested_lock); 928 sched_unlend_prio(td, pri); 929 mtx_unlock_spin(&sched_lock); 930 } 931 932 /* 933 * Return the first thread in a turnstile. 934 */ 935 struct thread * 936 turnstile_head(struct turnstile *ts, int queue) 937 { 938 #ifdef INVARIANTS 939 struct turnstile_chain *tc; 940 941 MPASS(ts != NULL); 942 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 943 tc = TC_LOOKUP(ts->ts_lockobj); 944 mtx_assert(&tc->tc_lock, MA_OWNED); 945 #endif 946 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 947 } 948 949 /* 950 * Returns true if a sub-queue of a turnstile is empty. 951 */ 952 int 953 turnstile_empty(struct turnstile *ts, int queue) 954 { 955 #ifdef INVARIANTS 956 struct turnstile_chain *tc; 957 958 MPASS(ts != NULL); 959 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 960 tc = TC_LOOKUP(ts->ts_lockobj); 961 mtx_assert(&tc->tc_lock, MA_OWNED); 962 #endif 963 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 964 } 965 966 #ifdef DDB 967 static void 968 print_thread(struct thread *td, const char *prefix) 969 { 970 971 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 972 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 973 td->td_proc->p_comm); 974 } 975 976 static void 977 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 978 { 979 struct thread *td; 980 981 db_printf("%s:\n", header); 982 if (TAILQ_EMPTY(queue)) { 983 db_printf("%sempty\n", prefix); 984 return; 985 } 986 TAILQ_FOREACH(td, queue, td_lockq) { 987 print_thread(td, prefix); 988 } 989 } 990 991 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 992 { 993 struct turnstile_chain *tc; 994 struct turnstile *ts; 995 struct lock_object *lock; 996 int i; 997 998 if (!have_addr) 999 return; 1000 1001 /* 1002 * First, see if there is an active turnstile for the lock indicated 1003 * by the address. 1004 */ 1005 lock = (struct lock_object *)addr; 1006 tc = TC_LOOKUP(lock); 1007 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1008 if (ts->ts_lockobj == lock) 1009 goto found; 1010 1011 /* 1012 * Second, see if there is an active turnstile at the address 1013 * indicated. 1014 */ 1015 for (i = 0; i < TC_TABLESIZE; i++) 1016 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1017 if (ts == (struct turnstile *)addr) 1018 goto found; 1019 } 1020 1021 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1022 return; 1023 found: 1024 lock = ts->ts_lockobj; 1025 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1026 lock->lo_name); 1027 if (ts->ts_owner) 1028 print_thread(ts->ts_owner, "Lock Owner: "); 1029 else 1030 db_printf("Lock Owner: none\n"); 1031 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1032 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1033 "\t"); 1034 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1035 1036 } 1037 1038 static void 1039 print_threadchain(struct thread *td, const char *prefix) 1040 { 1041 struct lock_object *lock; 1042 struct lock_class *class; 1043 struct turnstile *ts; 1044 1045 /* 1046 * Follow the chain. We keep walking as long as the thread is 1047 * blocked on a turnstile that has an owner. 1048 */ 1049 while (!db_pager_quit) { 1050 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1051 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1052 td->td_proc->p_comm); 1053 switch (td->td_state) { 1054 case TDS_INACTIVE: 1055 db_printf("is inactive\n"); 1056 return; 1057 case TDS_CAN_RUN: 1058 db_printf("can run\n"); 1059 return; 1060 case TDS_RUNQ: 1061 db_printf("is on a run queue\n"); 1062 return; 1063 case TDS_RUNNING: 1064 db_printf("running on CPU %d\n", td->td_oncpu); 1065 return; 1066 case TDS_INHIBITED: 1067 if (TD_ON_LOCK(td)) { 1068 ts = td->td_blocked; 1069 lock = ts->ts_lockobj; 1070 class = LOCK_CLASS(lock); 1071 db_printf("blocked on lock %p (%s) \"%s\"\n", 1072 lock, class->lc_name, lock->lo_name); 1073 if (ts->ts_owner == NULL) 1074 return; 1075 td = ts->ts_owner; 1076 break; 1077 } 1078 db_printf("inhibited\n"); 1079 return; 1080 default: 1081 db_printf("??? (%#x)\n", td->td_state); 1082 return; 1083 } 1084 } 1085 } 1086 1087 DB_SHOW_COMMAND(threadchain, db_show_threadchain) 1088 { 1089 struct thread *td; 1090 1091 /* Figure out which thread to start with. */ 1092 if (have_addr) 1093 td = db_lookup_thread(addr, TRUE); 1094 else 1095 td = kdb_thread; 1096 1097 print_threadchain(td, ""); 1098 } 1099 1100 DB_SHOW_COMMAND(allchains, db_show_allchains) 1101 { 1102 struct thread *td; 1103 struct proc *p; 1104 int i; 1105 1106 i = 1; 1107 LIST_FOREACH(p, &allproc, p_list) { 1108 FOREACH_THREAD_IN_PROC(p, td) { 1109 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1110 db_printf("chain %d:\n", i++); 1111 print_threadchain(td, " "); 1112 } 1113 if (db_pager_quit) 1114 return; 1115 } 1116 } 1117 } 1118 1119 static void print_waiters(struct turnstile *ts, int indent); 1120 1121 static void 1122 print_waiter(struct thread *td, int indent) 1123 { 1124 struct turnstile *ts; 1125 int i; 1126 1127 if (db_pager_quit) 1128 return; 1129 for (i = 0; i < indent; i++) 1130 db_printf(" "); 1131 print_thread(td, "thread "); 1132 LIST_FOREACH(ts, &td->td_contested, ts_link) 1133 print_waiters(ts, indent + 1); 1134 } 1135 1136 static void 1137 print_waiters(struct turnstile *ts, int indent) 1138 { 1139 struct lock_object *lock; 1140 struct lock_class *class; 1141 struct thread *td; 1142 int i; 1143 1144 if (db_pager_quit) 1145 return; 1146 lock = ts->ts_lockobj; 1147 class = LOCK_CLASS(lock); 1148 for (i = 0; i < indent; i++) 1149 db_printf(" "); 1150 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1151 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1152 print_waiter(td, indent + 1); 1153 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1154 print_waiter(td, indent + 1); 1155 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1156 print_waiter(td, indent + 1); 1157 } 1158 1159 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1160 { 1161 struct lock_object *lock; 1162 struct lock_class *class; 1163 struct turnstile_chain *tc; 1164 struct turnstile *ts; 1165 1166 if (!have_addr) 1167 return; 1168 lock = (struct lock_object *)addr; 1169 tc = TC_LOOKUP(lock); 1170 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1171 if (ts->ts_lockobj == lock) 1172 break; 1173 if (ts == NULL) { 1174 class = LOCK_CLASS(lock); 1175 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1176 lock->lo_name); 1177 } else 1178 print_waiters(ts, 0); 1179 } 1180 #endif 1181