1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is allocated from a UMA zone 50 * and attached to that thread. When a thread blocks on a lock, if it is the 51 * first thread to block, it lends its turnstile to the lock. If the lock 52 * already has a turnstile, then it gives its turnstile to the lock's 53 * turnstile's free list. When a thread is woken up, it takes a turnstile from 54 * the free list if there are any other waiters. If it is the only thread 55 * blocked on the lock, then it reclaims the turnstile associated with the lock 56 * and removes it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_kdtrace.h" 64 #include "opt_turnstile_profiling.h" 65 #include "opt_sched.h" 66 67 #include <sys/param.h> 68 #include <sys/systm.h> 69 #include <sys/kdb.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/queue.h> 76 #include <sys/sched.h> 77 #include <sys/sdt.h> 78 #include <sys/sysctl.h> 79 #include <sys/turnstile.h> 80 81 #include <vm/uma.h> 82 83 #ifdef DDB 84 #include <ddb/ddb.h> 85 #include <sys/lockmgr.h> 86 #include <sys/sx.h> 87 #endif 88 89 /* 90 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 91 * number chosen because the sleep queue's use the same value for the 92 * shift. Basically, we ignore the lower 8 bits of the address. 93 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 94 */ 95 #define TC_TABLESIZE 128 /* Must be power of 2. */ 96 #define TC_MASK (TC_TABLESIZE - 1) 97 #define TC_SHIFT 8 98 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 99 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 100 101 /* 102 * There are three different lists of turnstiles as follows. The list 103 * connected by ts_link entries is a per-thread list of all the turnstiles 104 * attached to locks that we own. This is used to fixup our priority when 105 * a lock is released. The other two lists use the ts_hash entries. The 106 * first of these two is the turnstile chain list that a turnstile is on 107 * when it is attached to a lock. The second list to use ts_hash is the 108 * free list hung off of a turnstile that is attached to a lock. 109 * 110 * Each turnstile contains three lists of threads. The two ts_blocked lists 111 * are linked list of threads blocked on the turnstile's lock. One list is 112 * for exclusive waiters, and the other is for shared waiters. The 113 * ts_pending list is a linked list of threads previously awakened by 114 * turnstile_signal() or turnstile_wait() that are waiting to be put on 115 * the run queue. 116 * 117 * Locking key: 118 * c - turnstile chain lock 119 * q - td_contested lock 120 */ 121 struct turnstile { 122 struct mtx ts_lock; /* Spin lock for self. */ 123 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 124 struct threadqueue ts_pending; /* (c) Pending threads. */ 125 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 126 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 127 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 128 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 129 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 130 }; 131 132 struct turnstile_chain { 133 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 134 struct mtx tc_lock; /* Spin lock for this chain. */ 135 #ifdef TURNSTILE_PROFILING 136 u_int tc_depth; /* Length of tc_queues. */ 137 u_int tc_max_depth; /* Max length of tc_queues. */ 138 #endif 139 }; 140 141 #ifdef TURNSTILE_PROFILING 142 u_int turnstile_max_depth; 143 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, 144 "turnstile profiling"); 145 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 146 "turnstile chain stats"); 147 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 148 &turnstile_max_depth, 0, "maximum depth achieved of a single chain"); 149 #endif 150 static struct mtx td_contested_lock; 151 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 152 static uma_zone_t turnstile_zone; 153 154 /* 155 * Prototypes for non-exported routines. 156 */ 157 static void init_turnstile0(void *dummy); 158 #ifdef TURNSTILE_PROFILING 159 static void init_turnstile_profiling(void *arg); 160 #endif 161 static void propagate_priority(struct thread *td); 162 static int turnstile_adjust_thread(struct turnstile *ts, 163 struct thread *td); 164 static struct thread *turnstile_first_waiter(struct turnstile *ts); 165 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 166 #ifdef INVARIANTS 167 static void turnstile_dtor(void *mem, int size, void *arg); 168 #endif 169 static int turnstile_init(void *mem, int size, int flags); 170 static void turnstile_fini(void *mem, int size); 171 172 SDT_PROVIDER_DECLARE(sched); 173 SDT_PROBE_DEFINE(sched, , , sleep, sleep); 174 SDT_PROBE_DEFINE2(sched, , , wakeup, wakeup, "struct thread *", 175 "struct proc *"); 176 177 /* 178 * Walks the chain of turnstiles and their owners to propagate the priority 179 * of the thread being blocked to all the threads holding locks that have to 180 * release their locks before this thread can run again. 181 */ 182 static void 183 propagate_priority(struct thread *td) 184 { 185 struct turnstile *ts; 186 int pri; 187 188 THREAD_LOCK_ASSERT(td, MA_OWNED); 189 pri = td->td_priority; 190 ts = td->td_blocked; 191 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 192 /* 193 * Grab a recursive lock on this turnstile chain so it stays locked 194 * for the whole operation. The caller expects us to return with 195 * the original lock held. We only ever lock down the chain so 196 * the lock order is constant. 197 */ 198 mtx_lock_spin(&ts->ts_lock); 199 for (;;) { 200 td = ts->ts_owner; 201 202 if (td == NULL) { 203 /* 204 * This might be a read lock with no owner. There's 205 * not much we can do, so just bail. 206 */ 207 mtx_unlock_spin(&ts->ts_lock); 208 return; 209 } 210 211 thread_lock_flags(td, MTX_DUPOK); 212 mtx_unlock_spin(&ts->ts_lock); 213 MPASS(td->td_proc != NULL); 214 MPASS(td->td_proc->p_magic == P_MAGIC); 215 216 /* 217 * If the thread is asleep, then we are probably about 218 * to deadlock. To make debugging this easier, just 219 * panic and tell the user which thread misbehaved so 220 * they can hopefully get a stack trace from the truly 221 * misbehaving thread. 222 */ 223 if (TD_IS_SLEEPING(td)) { 224 printf( 225 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 226 td->td_tid, td->td_proc->p_pid); 227 kdb_backtrace_thread(td); 228 panic("sleeping thread"); 229 } 230 231 /* 232 * If this thread already has higher priority than the 233 * thread that is being blocked, we are finished. 234 */ 235 if (td->td_priority <= pri) { 236 thread_unlock(td); 237 return; 238 } 239 240 /* 241 * Bump this thread's priority. 242 */ 243 sched_lend_prio(td, pri); 244 245 /* 246 * If lock holder is actually running or on the run queue 247 * then we are done. 248 */ 249 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 250 MPASS(td->td_blocked == NULL); 251 thread_unlock(td); 252 return; 253 } 254 255 #ifndef SMP 256 /* 257 * For UP, we check to see if td is curthread (this shouldn't 258 * ever happen however as it would mean we are in a deadlock.) 259 */ 260 KASSERT(td != curthread, ("Deadlock detected")); 261 #endif 262 263 /* 264 * If we aren't blocked on a lock, we should be. 265 */ 266 KASSERT(TD_ON_LOCK(td), ( 267 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 268 td->td_tid, td->td_name, td->td_state, 269 ts->ts_lockobj->lo_name)); 270 271 /* 272 * Pick up the lock that td is blocked on. 273 */ 274 ts = td->td_blocked; 275 MPASS(ts != NULL); 276 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 277 /* Resort td on the list if needed. */ 278 if (!turnstile_adjust_thread(ts, td)) { 279 mtx_unlock_spin(&ts->ts_lock); 280 return; 281 } 282 /* The thread lock is released as ts lock above. */ 283 } 284 } 285 286 /* 287 * Adjust the thread's position on a turnstile after its priority has been 288 * changed. 289 */ 290 static int 291 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 292 { 293 struct thread *td1, *td2; 294 int queue; 295 296 THREAD_LOCK_ASSERT(td, MA_OWNED); 297 MPASS(TD_ON_LOCK(td)); 298 299 /* 300 * This thread may not be blocked on this turnstile anymore 301 * but instead might already be woken up on another CPU 302 * that is waiting on the thread lock in turnstile_unpend() to 303 * finish waking this thread up. We can detect this case 304 * by checking to see if this thread has been given a 305 * turnstile by either turnstile_signal() or 306 * turnstile_broadcast(). In this case, treat the thread as 307 * if it was already running. 308 */ 309 if (td->td_turnstile != NULL) 310 return (0); 311 312 /* 313 * Check if the thread needs to be moved on the blocked chain. 314 * It needs to be moved if either its priority is lower than 315 * the previous thread or higher than the next thread. 316 */ 317 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 318 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 319 td2 = TAILQ_NEXT(td, td_lockq); 320 if ((td1 != NULL && td->td_priority < td1->td_priority) || 321 (td2 != NULL && td->td_priority > td2->td_priority)) { 322 323 /* 324 * Remove thread from blocked chain and determine where 325 * it should be moved to. 326 */ 327 queue = td->td_tsqueue; 328 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 329 mtx_lock_spin(&td_contested_lock); 330 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 331 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 332 MPASS(td1->td_proc->p_magic == P_MAGIC); 333 if (td1->td_priority > td->td_priority) 334 break; 335 } 336 337 if (td1 == NULL) 338 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 339 else 340 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 341 mtx_unlock_spin(&td_contested_lock); 342 if (td1 == NULL) 343 CTR3(KTR_LOCK, 344 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 345 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 346 else 347 CTR4(KTR_LOCK, 348 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 349 td->td_tid, td1->td_tid, ts->ts_lockobj, 350 ts->ts_lockobj->lo_name); 351 } 352 return (1); 353 } 354 355 /* 356 * Early initialization of turnstiles. This is not done via a SYSINIT() 357 * since this needs to be initialized very early when mutexes are first 358 * initialized. 359 */ 360 void 361 init_turnstiles(void) 362 { 363 int i; 364 365 for (i = 0; i < TC_TABLESIZE; i++) { 366 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 367 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 368 NULL, MTX_SPIN); 369 } 370 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 371 LIST_INIT(&thread0.td_contested); 372 thread0.td_turnstile = NULL; 373 } 374 375 #ifdef TURNSTILE_PROFILING 376 static void 377 init_turnstile_profiling(void *arg) 378 { 379 struct sysctl_oid *chain_oid; 380 char chain_name[10]; 381 int i; 382 383 for (i = 0; i < TC_TABLESIZE; i++) { 384 snprintf(chain_name, sizeof(chain_name), "%d", i); 385 chain_oid = SYSCTL_ADD_NODE(NULL, 386 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 387 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 388 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 389 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 390 NULL); 391 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 392 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 393 0, NULL); 394 } 395 } 396 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 397 init_turnstile_profiling, NULL); 398 #endif 399 400 static void 401 init_turnstile0(void *dummy) 402 { 403 404 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 405 NULL, 406 #ifdef INVARIANTS 407 turnstile_dtor, 408 #else 409 NULL, 410 #endif 411 turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 412 thread0.td_turnstile = turnstile_alloc(); 413 } 414 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 415 416 /* 417 * Update a thread on the turnstile list after it's priority has been changed. 418 * The old priority is passed in as an argument. 419 */ 420 void 421 turnstile_adjust(struct thread *td, u_char oldpri) 422 { 423 struct turnstile *ts; 424 425 MPASS(TD_ON_LOCK(td)); 426 427 /* 428 * Pick up the lock that td is blocked on. 429 */ 430 ts = td->td_blocked; 431 MPASS(ts != NULL); 432 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 433 mtx_assert(&ts->ts_lock, MA_OWNED); 434 435 /* Resort the turnstile on the list. */ 436 if (!turnstile_adjust_thread(ts, td)) 437 return; 438 /* 439 * If our priority was lowered and we are at the head of the 440 * turnstile, then propagate our new priority up the chain. 441 * Note that we currently don't try to revoke lent priorities 442 * when our priority goes up. 443 */ 444 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 445 td->td_tsqueue == TS_SHARED_QUEUE); 446 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 447 td->td_priority < oldpri) { 448 propagate_priority(td); 449 } 450 } 451 452 /* 453 * Set the owner of the lock this turnstile is attached to. 454 */ 455 static void 456 turnstile_setowner(struct turnstile *ts, struct thread *owner) 457 { 458 459 mtx_assert(&td_contested_lock, MA_OWNED); 460 MPASS(ts->ts_owner == NULL); 461 462 /* A shared lock might not have an owner. */ 463 if (owner == NULL) 464 return; 465 466 MPASS(owner->td_proc->p_magic == P_MAGIC); 467 ts->ts_owner = owner; 468 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 469 } 470 471 #ifdef INVARIANTS 472 /* 473 * UMA zone item deallocator. 474 */ 475 static void 476 turnstile_dtor(void *mem, int size, void *arg) 477 { 478 struct turnstile *ts; 479 480 ts = mem; 481 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 482 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 483 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 484 } 485 #endif 486 487 /* 488 * UMA zone item initializer. 489 */ 490 static int 491 turnstile_init(void *mem, int size, int flags) 492 { 493 struct turnstile *ts; 494 495 bzero(mem, size); 496 ts = mem; 497 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 498 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 499 TAILQ_INIT(&ts->ts_pending); 500 LIST_INIT(&ts->ts_free); 501 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE); 502 return (0); 503 } 504 505 static void 506 turnstile_fini(void *mem, int size) 507 { 508 struct turnstile *ts; 509 510 ts = mem; 511 mtx_destroy(&ts->ts_lock); 512 } 513 514 /* 515 * Get a turnstile for a new thread. 516 */ 517 struct turnstile * 518 turnstile_alloc(void) 519 { 520 521 return (uma_zalloc(turnstile_zone, M_WAITOK)); 522 } 523 524 /* 525 * Free a turnstile when a thread is destroyed. 526 */ 527 void 528 turnstile_free(struct turnstile *ts) 529 { 530 531 uma_zfree(turnstile_zone, ts); 532 } 533 534 /* 535 * Lock the turnstile chain associated with the specified lock. 536 */ 537 void 538 turnstile_chain_lock(struct lock_object *lock) 539 { 540 struct turnstile_chain *tc; 541 542 tc = TC_LOOKUP(lock); 543 mtx_lock_spin(&tc->tc_lock); 544 } 545 546 struct turnstile * 547 turnstile_trywait(struct lock_object *lock) 548 { 549 struct turnstile_chain *tc; 550 struct turnstile *ts; 551 552 tc = TC_LOOKUP(lock); 553 mtx_lock_spin(&tc->tc_lock); 554 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 555 if (ts->ts_lockobj == lock) { 556 mtx_lock_spin(&ts->ts_lock); 557 return (ts); 558 } 559 560 ts = curthread->td_turnstile; 561 MPASS(ts != NULL); 562 mtx_lock_spin(&ts->ts_lock); 563 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 564 ts->ts_lockobj = lock; 565 566 return (ts); 567 } 568 569 void 570 turnstile_cancel(struct turnstile *ts) 571 { 572 struct turnstile_chain *tc; 573 struct lock_object *lock; 574 575 mtx_assert(&ts->ts_lock, MA_OWNED); 576 577 mtx_unlock_spin(&ts->ts_lock); 578 lock = ts->ts_lockobj; 579 if (ts == curthread->td_turnstile) 580 ts->ts_lockobj = NULL; 581 tc = TC_LOOKUP(lock); 582 mtx_unlock_spin(&tc->tc_lock); 583 } 584 585 /* 586 * Look up the turnstile for a lock in the hash table locking the associated 587 * turnstile chain along the way. If no turnstile is found in the hash 588 * table, NULL is returned. 589 */ 590 struct turnstile * 591 turnstile_lookup(struct lock_object *lock) 592 { 593 struct turnstile_chain *tc; 594 struct turnstile *ts; 595 596 tc = TC_LOOKUP(lock); 597 mtx_assert(&tc->tc_lock, MA_OWNED); 598 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 599 if (ts->ts_lockobj == lock) { 600 mtx_lock_spin(&ts->ts_lock); 601 return (ts); 602 } 603 return (NULL); 604 } 605 606 /* 607 * Unlock the turnstile chain associated with a given lock. 608 */ 609 void 610 turnstile_chain_unlock(struct lock_object *lock) 611 { 612 struct turnstile_chain *tc; 613 614 tc = TC_LOOKUP(lock); 615 mtx_unlock_spin(&tc->tc_lock); 616 } 617 618 /* 619 * Return a pointer to the thread waiting on this turnstile with the 620 * most important priority or NULL if the turnstile has no waiters. 621 */ 622 static struct thread * 623 turnstile_first_waiter(struct turnstile *ts) 624 { 625 struct thread *std, *xtd; 626 627 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 628 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 629 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 630 return (std); 631 return (xtd); 632 } 633 634 /* 635 * Take ownership of a turnstile and adjust the priority of the new 636 * owner appropriately. 637 */ 638 void 639 turnstile_claim(struct turnstile *ts) 640 { 641 struct thread *td, *owner; 642 struct turnstile_chain *tc; 643 644 mtx_assert(&ts->ts_lock, MA_OWNED); 645 MPASS(ts != curthread->td_turnstile); 646 647 owner = curthread; 648 mtx_lock_spin(&td_contested_lock); 649 turnstile_setowner(ts, owner); 650 mtx_unlock_spin(&td_contested_lock); 651 652 td = turnstile_first_waiter(ts); 653 MPASS(td != NULL); 654 MPASS(td->td_proc->p_magic == P_MAGIC); 655 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 656 657 /* 658 * Update the priority of the new owner if needed. 659 */ 660 thread_lock(owner); 661 if (td->td_priority < owner->td_priority) 662 sched_lend_prio(owner, td->td_priority); 663 thread_unlock(owner); 664 tc = TC_LOOKUP(ts->ts_lockobj); 665 mtx_unlock_spin(&ts->ts_lock); 666 mtx_unlock_spin(&tc->tc_lock); 667 } 668 669 /* 670 * Block the current thread on the turnstile assicated with 'lock'. This 671 * function will context switch and not return until this thread has been 672 * woken back up. This function must be called with the appropriate 673 * turnstile chain locked and will return with it unlocked. 674 */ 675 void 676 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue) 677 { 678 struct turnstile_chain *tc; 679 struct thread *td, *td1; 680 struct lock_object *lock; 681 682 td = curthread; 683 mtx_assert(&ts->ts_lock, MA_OWNED); 684 if (owner) 685 MPASS(owner->td_proc->p_magic == P_MAGIC); 686 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 687 KASSERT(!TD_IS_IDLETHREAD(td), ("idle threads cannot block on locks")); 688 689 /* 690 * If the lock does not already have a turnstile, use this thread's 691 * turnstile. Otherwise insert the current thread into the 692 * turnstile already in use by this lock. 693 */ 694 tc = TC_LOOKUP(ts->ts_lockobj); 695 mtx_assert(&tc->tc_lock, MA_OWNED); 696 if (ts == td->td_turnstile) { 697 #ifdef TURNSTILE_PROFILING 698 tc->tc_depth++; 699 if (tc->tc_depth > tc->tc_max_depth) { 700 tc->tc_max_depth = tc->tc_depth; 701 if (tc->tc_max_depth > turnstile_max_depth) 702 turnstile_max_depth = tc->tc_max_depth; 703 } 704 #endif 705 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 706 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 707 ("thread's turnstile has pending threads")); 708 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 709 ("thread's turnstile has exclusive waiters")); 710 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 711 ("thread's turnstile has shared waiters")); 712 KASSERT(LIST_EMPTY(&ts->ts_free), 713 ("thread's turnstile has a non-empty free list")); 714 MPASS(ts->ts_lockobj != NULL); 715 mtx_lock_spin(&td_contested_lock); 716 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 717 turnstile_setowner(ts, owner); 718 mtx_unlock_spin(&td_contested_lock); 719 } else { 720 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 721 if (td1->td_priority > td->td_priority) 722 break; 723 mtx_lock_spin(&td_contested_lock); 724 if (td1 != NULL) 725 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 726 else 727 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 728 MPASS(owner == ts->ts_owner); 729 mtx_unlock_spin(&td_contested_lock); 730 MPASS(td->td_turnstile != NULL); 731 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 732 } 733 thread_lock(td); 734 thread_lock_set(td, &ts->ts_lock); 735 td->td_turnstile = NULL; 736 737 /* Save who we are blocked on and switch. */ 738 lock = ts->ts_lockobj; 739 td->td_tsqueue = queue; 740 td->td_blocked = ts; 741 td->td_lockname = lock->lo_name; 742 td->td_blktick = ticks; 743 TD_SET_LOCK(td); 744 mtx_unlock_spin(&tc->tc_lock); 745 propagate_priority(td); 746 747 if (LOCK_LOG_TEST(lock, 0)) 748 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 749 td->td_tid, lock, lock->lo_name); 750 751 SDT_PROBE0(sched, , , sleep); 752 753 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 754 mi_switch(SW_VOL | SWT_TURNSTILE, NULL); 755 756 if (LOCK_LOG_TEST(lock, 0)) 757 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 758 __func__, td->td_tid, lock, lock->lo_name); 759 thread_unlock(td); 760 } 761 762 /* 763 * Pick the highest priority thread on this turnstile and put it on the 764 * pending list. This must be called with the turnstile chain locked. 765 */ 766 int 767 turnstile_signal(struct turnstile *ts, int queue) 768 { 769 struct turnstile_chain *tc; 770 struct thread *td; 771 int empty; 772 773 MPASS(ts != NULL); 774 mtx_assert(&ts->ts_lock, MA_OWNED); 775 MPASS(curthread->td_proc->p_magic == P_MAGIC); 776 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 777 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 778 779 /* 780 * Pick the highest priority thread blocked on this lock and 781 * move it to the pending list. 782 */ 783 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 784 MPASS(td->td_proc->p_magic == P_MAGIC); 785 mtx_lock_spin(&td_contested_lock); 786 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 787 mtx_unlock_spin(&td_contested_lock); 788 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 789 790 /* 791 * If the turnstile is now empty, remove it from its chain and 792 * give it to the about-to-be-woken thread. Otherwise take a 793 * turnstile from the free list and give it to the thread. 794 */ 795 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 796 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 797 if (empty) { 798 tc = TC_LOOKUP(ts->ts_lockobj); 799 mtx_assert(&tc->tc_lock, MA_OWNED); 800 MPASS(LIST_EMPTY(&ts->ts_free)); 801 #ifdef TURNSTILE_PROFILING 802 tc->tc_depth--; 803 #endif 804 } else 805 ts = LIST_FIRST(&ts->ts_free); 806 MPASS(ts != NULL); 807 LIST_REMOVE(ts, ts_hash); 808 td->td_turnstile = ts; 809 810 return (empty); 811 } 812 813 /* 814 * Put all blocked threads on the pending list. This must be called with 815 * the turnstile chain locked. 816 */ 817 void 818 turnstile_broadcast(struct turnstile *ts, int queue) 819 { 820 struct turnstile_chain *tc; 821 struct turnstile *ts1; 822 struct thread *td; 823 824 MPASS(ts != NULL); 825 mtx_assert(&ts->ts_lock, MA_OWNED); 826 MPASS(curthread->td_proc->p_magic == P_MAGIC); 827 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 828 /* 829 * We must have the chain locked so that we can remove the empty 830 * turnstile from the hash queue. 831 */ 832 tc = TC_LOOKUP(ts->ts_lockobj); 833 mtx_assert(&tc->tc_lock, MA_OWNED); 834 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 835 836 /* 837 * Transfer the blocked list to the pending list. 838 */ 839 mtx_lock_spin(&td_contested_lock); 840 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 841 mtx_unlock_spin(&td_contested_lock); 842 843 /* 844 * Give a turnstile to each thread. The last thread gets 845 * this turnstile if the turnstile is empty. 846 */ 847 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 848 if (LIST_EMPTY(&ts->ts_free)) { 849 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 850 ts1 = ts; 851 #ifdef TURNSTILE_PROFILING 852 tc->tc_depth--; 853 #endif 854 } else 855 ts1 = LIST_FIRST(&ts->ts_free); 856 MPASS(ts1 != NULL); 857 LIST_REMOVE(ts1, ts_hash); 858 td->td_turnstile = ts1; 859 } 860 } 861 862 /* 863 * Wakeup all threads on the pending list and adjust the priority of the 864 * current thread appropriately. This must be called with the turnstile 865 * chain locked. 866 */ 867 void 868 turnstile_unpend(struct turnstile *ts, int owner_type) 869 { 870 TAILQ_HEAD( ,thread) pending_threads; 871 struct turnstile *nts; 872 struct thread *td; 873 u_char cp, pri; 874 875 MPASS(ts != NULL); 876 mtx_assert(&ts->ts_lock, MA_OWNED); 877 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 878 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 879 880 /* 881 * Move the list of pending threads out of the turnstile and 882 * into a local variable. 883 */ 884 TAILQ_INIT(&pending_threads); 885 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 886 #ifdef INVARIANTS 887 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 888 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 889 ts->ts_lockobj = NULL; 890 #endif 891 /* 892 * Adjust the priority of curthread based on other contested 893 * locks it owns. Don't lower the priority below the base 894 * priority however. 895 */ 896 td = curthread; 897 pri = PRI_MAX; 898 thread_lock(td); 899 mtx_lock_spin(&td_contested_lock); 900 /* 901 * Remove the turnstile from this thread's list of contested locks 902 * since this thread doesn't own it anymore. New threads will 903 * not be blocking on the turnstile until it is claimed by a new 904 * owner. There might not be a current owner if this is a shared 905 * lock. 906 */ 907 if (ts->ts_owner != NULL) { 908 ts->ts_owner = NULL; 909 LIST_REMOVE(ts, ts_link); 910 } 911 LIST_FOREACH(nts, &td->td_contested, ts_link) { 912 cp = turnstile_first_waiter(nts)->td_priority; 913 if (cp < pri) 914 pri = cp; 915 } 916 mtx_unlock_spin(&td_contested_lock); 917 sched_unlend_prio(td, pri); 918 thread_unlock(td); 919 /* 920 * Wake up all the pending threads. If a thread is not blocked 921 * on a lock, then it is currently executing on another CPU in 922 * turnstile_wait() or sitting on a run queue waiting to resume 923 * in turnstile_wait(). Set a flag to force it to try to acquire 924 * the lock again instead of blocking. 925 */ 926 while (!TAILQ_EMPTY(&pending_threads)) { 927 td = TAILQ_FIRST(&pending_threads); 928 TAILQ_REMOVE(&pending_threads, td, td_lockq); 929 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 930 thread_lock(td); 931 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 932 MPASS(td->td_proc->p_magic == P_MAGIC); 933 MPASS(TD_ON_LOCK(td)); 934 TD_CLR_LOCK(td); 935 MPASS(TD_CAN_RUN(td)); 936 td->td_blocked = NULL; 937 td->td_lockname = NULL; 938 td->td_blktick = 0; 939 #ifdef INVARIANTS 940 td->td_tsqueue = 0xff; 941 #endif 942 sched_add(td, SRQ_BORING); 943 thread_unlock(td); 944 } 945 mtx_unlock_spin(&ts->ts_lock); 946 } 947 948 /* 949 * Give up ownership of a turnstile. This must be called with the 950 * turnstile chain locked. 951 */ 952 void 953 turnstile_disown(struct turnstile *ts) 954 { 955 struct thread *td; 956 u_char cp, pri; 957 958 MPASS(ts != NULL); 959 mtx_assert(&ts->ts_lock, MA_OWNED); 960 MPASS(ts->ts_owner == curthread); 961 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 962 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 963 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 964 965 /* 966 * Remove the turnstile from this thread's list of contested locks 967 * since this thread doesn't own it anymore. New threads will 968 * not be blocking on the turnstile until it is claimed by a new 969 * owner. 970 */ 971 mtx_lock_spin(&td_contested_lock); 972 ts->ts_owner = NULL; 973 LIST_REMOVE(ts, ts_link); 974 mtx_unlock_spin(&td_contested_lock); 975 976 /* 977 * Adjust the priority of curthread based on other contested 978 * locks it owns. Don't lower the priority below the base 979 * priority however. 980 */ 981 td = curthread; 982 pri = PRI_MAX; 983 thread_lock(td); 984 mtx_unlock_spin(&ts->ts_lock); 985 mtx_lock_spin(&td_contested_lock); 986 LIST_FOREACH(ts, &td->td_contested, ts_link) { 987 cp = turnstile_first_waiter(ts)->td_priority; 988 if (cp < pri) 989 pri = cp; 990 } 991 mtx_unlock_spin(&td_contested_lock); 992 sched_unlend_prio(td, pri); 993 thread_unlock(td); 994 } 995 996 /* 997 * Return the first thread in a turnstile. 998 */ 999 struct thread * 1000 turnstile_head(struct turnstile *ts, int queue) 1001 { 1002 #ifdef INVARIANTS 1003 1004 MPASS(ts != NULL); 1005 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1006 mtx_assert(&ts->ts_lock, MA_OWNED); 1007 #endif 1008 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 1009 } 1010 1011 /* 1012 * Returns true if a sub-queue of a turnstile is empty. 1013 */ 1014 int 1015 turnstile_empty(struct turnstile *ts, int queue) 1016 { 1017 #ifdef INVARIANTS 1018 1019 MPASS(ts != NULL); 1020 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1021 mtx_assert(&ts->ts_lock, MA_OWNED); 1022 #endif 1023 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1024 } 1025 1026 #ifdef DDB 1027 static void 1028 print_thread(struct thread *td, const char *prefix) 1029 { 1030 1031 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1032 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1033 td->td_name); 1034 } 1035 1036 static void 1037 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1038 { 1039 struct thread *td; 1040 1041 db_printf("%s:\n", header); 1042 if (TAILQ_EMPTY(queue)) { 1043 db_printf("%sempty\n", prefix); 1044 return; 1045 } 1046 TAILQ_FOREACH(td, queue, td_lockq) { 1047 print_thread(td, prefix); 1048 } 1049 } 1050 1051 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1052 { 1053 struct turnstile_chain *tc; 1054 struct turnstile *ts; 1055 struct lock_object *lock; 1056 int i; 1057 1058 if (!have_addr) 1059 return; 1060 1061 /* 1062 * First, see if there is an active turnstile for the lock indicated 1063 * by the address. 1064 */ 1065 lock = (struct lock_object *)addr; 1066 tc = TC_LOOKUP(lock); 1067 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1068 if (ts->ts_lockobj == lock) 1069 goto found; 1070 1071 /* 1072 * Second, see if there is an active turnstile at the address 1073 * indicated. 1074 */ 1075 for (i = 0; i < TC_TABLESIZE; i++) 1076 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1077 if (ts == (struct turnstile *)addr) 1078 goto found; 1079 } 1080 1081 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1082 return; 1083 found: 1084 lock = ts->ts_lockobj; 1085 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1086 lock->lo_name); 1087 if (ts->ts_owner) 1088 print_thread(ts->ts_owner, "Lock Owner: "); 1089 else 1090 db_printf("Lock Owner: none\n"); 1091 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1092 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1093 "\t"); 1094 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1095 1096 } 1097 1098 /* 1099 * Show all the threads a particular thread is waiting on based on 1100 * non-sleepable and non-spin locks. 1101 */ 1102 static void 1103 print_lockchain(struct thread *td, const char *prefix) 1104 { 1105 struct lock_object *lock; 1106 struct lock_class *class; 1107 struct turnstile *ts; 1108 1109 /* 1110 * Follow the chain. We keep walking as long as the thread is 1111 * blocked on a turnstile that has an owner. 1112 */ 1113 while (!db_pager_quit) { 1114 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1115 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1116 td->td_name); 1117 switch (td->td_state) { 1118 case TDS_INACTIVE: 1119 db_printf("is inactive\n"); 1120 return; 1121 case TDS_CAN_RUN: 1122 db_printf("can run\n"); 1123 return; 1124 case TDS_RUNQ: 1125 db_printf("is on a run queue\n"); 1126 return; 1127 case TDS_RUNNING: 1128 db_printf("running on CPU %d\n", td->td_oncpu); 1129 return; 1130 case TDS_INHIBITED: 1131 if (TD_ON_LOCK(td)) { 1132 ts = td->td_blocked; 1133 lock = ts->ts_lockobj; 1134 class = LOCK_CLASS(lock); 1135 db_printf("blocked on lock %p (%s) \"%s\"\n", 1136 lock, class->lc_name, lock->lo_name); 1137 if (ts->ts_owner == NULL) 1138 return; 1139 td = ts->ts_owner; 1140 break; 1141 } 1142 db_printf("inhibited\n"); 1143 return; 1144 default: 1145 db_printf("??? (%#x)\n", td->td_state); 1146 return; 1147 } 1148 } 1149 } 1150 1151 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1152 { 1153 struct thread *td; 1154 1155 /* Figure out which thread to start with. */ 1156 if (have_addr) 1157 td = db_lookup_thread(addr, TRUE); 1158 else 1159 td = kdb_thread; 1160 1161 print_lockchain(td, ""); 1162 } 1163 1164 DB_SHOW_ALL_COMMAND(chains, db_show_allchains) 1165 { 1166 struct thread *td; 1167 struct proc *p; 1168 int i; 1169 1170 i = 1; 1171 FOREACH_PROC_IN_SYSTEM(p) { 1172 FOREACH_THREAD_IN_PROC(p, td) { 1173 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1174 db_printf("chain %d:\n", i++); 1175 print_lockchain(td, " "); 1176 } 1177 if (db_pager_quit) 1178 return; 1179 } 1180 } 1181 } 1182 DB_SHOW_ALIAS(allchains, db_show_allchains) 1183 1184 /* 1185 * Show all the threads a particular thread is waiting on based on 1186 * sleepable locks. 1187 */ 1188 static void 1189 print_sleepchain(struct thread *td, const char *prefix) 1190 { 1191 struct thread *owner; 1192 1193 /* 1194 * Follow the chain. We keep walking as long as the thread is 1195 * blocked on a sleep lock that has an owner. 1196 */ 1197 while (!db_pager_quit) { 1198 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1199 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1200 td->td_name); 1201 switch (td->td_state) { 1202 case TDS_INACTIVE: 1203 db_printf("is inactive\n"); 1204 return; 1205 case TDS_CAN_RUN: 1206 db_printf("can run\n"); 1207 return; 1208 case TDS_RUNQ: 1209 db_printf("is on a run queue\n"); 1210 return; 1211 case TDS_RUNNING: 1212 db_printf("running on CPU %d\n", td->td_oncpu); 1213 return; 1214 case TDS_INHIBITED: 1215 if (TD_ON_SLEEPQ(td)) { 1216 if (lockmgr_chain(td, &owner) || 1217 sx_chain(td, &owner)) { 1218 if (owner == NULL) 1219 return; 1220 td = owner; 1221 break; 1222 } 1223 db_printf("sleeping on %p \"%s\"\n", 1224 td->td_wchan, td->td_wmesg); 1225 return; 1226 } 1227 db_printf("inhibited\n"); 1228 return; 1229 default: 1230 db_printf("??? (%#x)\n", td->td_state); 1231 return; 1232 } 1233 } 1234 } 1235 1236 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain) 1237 { 1238 struct thread *td; 1239 1240 /* Figure out which thread to start with. */ 1241 if (have_addr) 1242 td = db_lookup_thread(addr, TRUE); 1243 else 1244 td = kdb_thread; 1245 1246 print_sleepchain(td, ""); 1247 } 1248 1249 static void print_waiters(struct turnstile *ts, int indent); 1250 1251 static void 1252 print_waiter(struct thread *td, int indent) 1253 { 1254 struct turnstile *ts; 1255 int i; 1256 1257 if (db_pager_quit) 1258 return; 1259 for (i = 0; i < indent; i++) 1260 db_printf(" "); 1261 print_thread(td, "thread "); 1262 LIST_FOREACH(ts, &td->td_contested, ts_link) 1263 print_waiters(ts, indent + 1); 1264 } 1265 1266 static void 1267 print_waiters(struct turnstile *ts, int indent) 1268 { 1269 struct lock_object *lock; 1270 struct lock_class *class; 1271 struct thread *td; 1272 int i; 1273 1274 if (db_pager_quit) 1275 return; 1276 lock = ts->ts_lockobj; 1277 class = LOCK_CLASS(lock); 1278 for (i = 0; i < indent; i++) 1279 db_printf(" "); 1280 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1281 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1282 print_waiter(td, indent + 1); 1283 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1284 print_waiter(td, indent + 1); 1285 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1286 print_waiter(td, indent + 1); 1287 } 1288 1289 DB_SHOW_COMMAND(locktree, db_show_locktree) 1290 { 1291 struct lock_object *lock; 1292 struct lock_class *class; 1293 struct turnstile_chain *tc; 1294 struct turnstile *ts; 1295 1296 if (!have_addr) 1297 return; 1298 lock = (struct lock_object *)addr; 1299 tc = TC_LOOKUP(lock); 1300 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1301 if (ts->ts_lockobj == lock) 1302 break; 1303 if (ts == NULL) { 1304 class = LOCK_CLASS(lock); 1305 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1306 lock->lo_name); 1307 } else 1308 print_waiters(ts, 0); 1309 } 1310 #endif 1311