xref: /freebsd/sys/kern/subr_turnstile.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. Berkeley Software Design Inc's name may not be used to endorse or
15  *    promote products derived from this software without specific prior
16  *    written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
31  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
32  */
33 
34 /*
35  * Implementation of turnstiles used to hold queue of threads blocked on
36  * non-sleepable locks.  Sleepable locks use condition variables to
37  * implement their queues.  Turnstiles differ from a sleep queue in that
38  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
39  * when one thread is enqueued onto a turnstile, it can lend its priority
40  * to the owning thread.
41  *
42  * We wish to avoid bloating locks with an embedded turnstile and we do not
43  * want to use back-pointers in the locks for the same reason.  Thus, we
44  * use a similar approach to that of Solaris 7 as described in Solaris
45  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
46  * in a hash table based on the address of the lock.  Each entry in the
47  * hash table is a linked-lists of turnstiles and is called a turnstile
48  * chain.  Each chain contains a spin mutex that protects all of the
49  * turnstiles in the chain.
50  *
51  * Each time a thread is created, a turnstile is allocated from a UMA zone
52  * and attached to that thread.  When a thread blocks on a lock, if it is the
53  * first thread to block, it lends its turnstile to the lock.  If the lock
54  * already has a turnstile, then it gives its turnstile to the lock's
55  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
56  * the free list if there are any other waiters.  If it is the only thread
57  * blocked on the lock, then it reclaims the turnstile associated with the lock
58  * and removes it from the hash table.
59  */
60 
61 #include <sys/cdefs.h>
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/queue.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/sysctl.h>
78 #include <sys/turnstile.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #include <sys/lockmgr.h>
85 #include <sys/sx.h>
86 #endif
87 
88 /*
89  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
90  * number chosen because the sleep queue's use the same value for the
91  * shift.  Basically, we ignore the lower 8 bits of the address.
92  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93  */
94 #define	TC_TABLESIZE	128			/* Must be power of 2. */
95 #define	TC_MASK		(TC_TABLESIZE - 1)
96 #define	TC_SHIFT	8
97 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
99 
100 /*
101  * There are three different lists of turnstiles as follows.  The list
102  * connected by ts_link entries is a per-thread list of all the turnstiles
103  * attached to locks that we own.  This is used to fixup our priority when
104  * a lock is released.  The other two lists use the ts_hash entries.  The
105  * first of these two is the turnstile chain list that a turnstile is on
106  * when it is attached to a lock.  The second list to use ts_hash is the
107  * free list hung off of a turnstile that is attached to a lock.
108  *
109  * Each turnstile contains three lists of threads.  The two ts_blocked lists
110  * are linked list of threads blocked on the turnstile's lock.  One list is
111  * for exclusive waiters, and the other is for shared waiters.  The
112  * ts_pending list is a linked list of threads previously awakened by
113  * turnstile_signal() or turnstile_wait() that are waiting to be put on
114  * the run queue.
115  *
116  * Locking key:
117  *  c - turnstile chain lock
118  *  q - td_contested lock
119  */
120 struct turnstile {
121 	struct mtx ts_lock;			/* Spin lock for self. */
122 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
123 	struct threadqueue ts_pending;		/* (c) Pending threads. */
124 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
125 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
126 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
127 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
128 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
129 };
130 
131 struct turnstile_chain {
132 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
133 	struct mtx tc_lock;			/* Spin lock for this chain. */
134 #ifdef TURNSTILE_PROFILING
135 	u_int	tc_depth;			/* Length of tc_queues. */
136 	u_int	tc_max_depth;			/* Max length of tc_queues. */
137 #endif
138 };
139 
140 #ifdef TURNSTILE_PROFILING
141 u_int turnstile_max_depth;
142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
143     "turnstile profiling");
144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains,
145     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
146     "turnstile chain stats");
147 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
148     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
149 #endif
150 static struct mtx td_contested_lock;
151 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
152 static uma_zone_t turnstile_zone;
153 
154 /*
155  * Prototypes for non-exported routines.
156  */
157 static void	init_turnstile0(void *dummy);
158 #ifdef TURNSTILE_PROFILING
159 static void	init_turnstile_profiling(void *arg);
160 #endif
161 static void	propagate_priority(struct thread *td);
162 static int	turnstile_adjust_thread(struct turnstile *ts,
163 		    struct thread *td);
164 static struct thread *turnstile_first_waiter(struct turnstile *ts);
165 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
166 #ifdef INVARIANTS
167 static void	turnstile_dtor(void *mem, int size, void *arg);
168 #endif
169 static int	turnstile_init(void *mem, int size, int flags);
170 static void	turnstile_fini(void *mem, int size);
171 
172 SDT_PROVIDER_DECLARE(sched);
173 SDT_PROBE_DEFINE(sched, , , sleep);
174 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
175     "struct proc *");
176 
177 static inline void
178 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts)
179 {
180 
181 	if (ts != top)
182 		mtx_unlock_spin(&ts->ts_lock);
183 }
184 
185 static inline void
186 propagate_unlock_td(struct turnstile *top, struct thread *td)
187 {
188 
189 	if (td->td_lock != &top->ts_lock)
190 		thread_unlock(td);
191 }
192 
193 /*
194  * Walks the chain of turnstiles and their owners to propagate the priority
195  * of the thread being blocked to all the threads holding locks that have to
196  * release their locks before this thread can run again.
197  */
198 static void
199 propagate_priority(struct thread *td)
200 {
201 	struct turnstile *ts, *top;
202 	int pri;
203 
204 	THREAD_LOCK_ASSERT(td, MA_OWNED);
205 	pri = td->td_priority;
206 	top = ts = td->td_blocked;
207 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
208 
209 	/*
210 	 * The original turnstile lock is held across the entire
211 	 * operation.  We only ever lock down the chain so the lock
212 	 * order is constant.
213 	 */
214 	for (;;) {
215 		td = ts->ts_owner;
216 
217 		if (td == NULL) {
218 			/*
219 			 * This might be a read lock with no owner.  There's
220 			 * not much we can do, so just bail.
221 			 */
222 			propagate_unlock_ts(top, ts);
223 			return;
224 		}
225 
226 		/*
227 		 * Wait for the thread lock to be stable and then only
228 		 * acquire if it is not the turnstile lock.
229 		 */
230 		thread_lock_block_wait(td);
231 		if (td->td_lock != &ts->ts_lock) {
232 			thread_lock_flags(td, MTX_DUPOK);
233 			propagate_unlock_ts(top, ts);
234 		}
235 		MPASS(td->td_proc != NULL);
236 		MPASS(td->td_proc->p_magic == P_MAGIC);
237 
238 		/*
239 		 * If the thread is asleep, then we are probably about
240 		 * to deadlock.  To make debugging this easier, show
241 		 * backtrace of misbehaving thread and panic to not
242 		 * leave the kernel deadlocked.
243 		 */
244 		if (TD_IS_SLEEPING(td)) {
245 			printf(
246 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
247 			    td->td_tid, td->td_proc->p_pid);
248 			kdb_backtrace_thread(td);
249 			panic("sleeping thread holds %s",
250 			    ts->ts_lockobj->lo_name);
251 		}
252 
253 		/*
254 		 * If this thread already has higher priority than the
255 		 * thread that is being blocked, we are finished.
256 		 */
257 		if (td->td_priority <= pri) {
258 			propagate_unlock_td(top, td);
259 			return;
260 		}
261 
262 		/*
263 		 * Bump this thread's priority.
264 		 */
265 		sched_lend_prio(td, pri);
266 
267 		/*
268 		 * If lock holder is actually running or on the run queue
269 		 * then we are done.
270 		 */
271 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
272 			MPASS(td->td_blocked == NULL);
273 			propagate_unlock_td(top, td);
274 			return;
275 		}
276 
277 #ifndef SMP
278 		/*
279 		 * For UP, we check to see if td is curthread (this shouldn't
280 		 * ever happen however as it would mean we are in a deadlock.)
281 		 */
282 		KASSERT(td != curthread, ("Deadlock detected"));
283 #endif
284 
285 		/*
286 		 * If we aren't blocked on a lock, we should be.
287 		 */
288 		KASSERT(TD_ON_LOCK(td), (
289 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
290 		    td->td_tid, td->td_name, TD_GET_STATE(td),
291 		    ts->ts_lockobj->lo_name));
292 
293 		/*
294 		 * Pick up the lock that td is blocked on.
295 		 */
296 		ts = td->td_blocked;
297 		MPASS(ts != NULL);
298 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
299 		/* Resort td on the list if needed. */
300 		if (!turnstile_adjust_thread(ts, td)) {
301 			propagate_unlock_ts(top, ts);
302 			return;
303 		}
304 		/* The thread lock is released as ts lock above. */
305 	}
306 }
307 
308 /*
309  * Adjust the thread's position on a turnstile after its priority has been
310  * changed.
311  */
312 static int
313 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
314 {
315 	struct thread *td1, *td2;
316 	int queue;
317 
318 	THREAD_LOCK_ASSERT(td, MA_OWNED);
319 	MPASS(TD_ON_LOCK(td));
320 
321 	/*
322 	 * This thread may not be blocked on this turnstile anymore
323 	 * but instead might already be woken up on another CPU
324 	 * that is waiting on the thread lock in turnstile_unpend() to
325 	 * finish waking this thread up.  We can detect this case
326 	 * by checking to see if this thread has been given a
327 	 * turnstile by either turnstile_signal() or
328 	 * turnstile_broadcast().  In this case, treat the thread as
329 	 * if it was already running.
330 	 */
331 	if (td->td_turnstile != NULL)
332 		return (0);
333 
334 	/*
335 	 * Check if the thread needs to be moved on the blocked chain.
336 	 * It needs to be moved if either its priority is lower than
337 	 * the previous thread or higher than the next thread.
338 	 */
339 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
340 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
341 	td2 = TAILQ_NEXT(td, td_lockq);
342 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
343 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
344 		/*
345 		 * Remove thread from blocked chain and determine where
346 		 * it should be moved to.
347 		 */
348 		queue = td->td_tsqueue;
349 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
350 		mtx_lock_spin(&td_contested_lock);
351 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
352 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
353 			MPASS(td1->td_proc->p_magic == P_MAGIC);
354 			if (td1->td_priority > td->td_priority)
355 				break;
356 		}
357 
358 		if (td1 == NULL)
359 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
360 		else
361 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
362 		mtx_unlock_spin(&td_contested_lock);
363 		if (td1 == NULL)
364 			CTR3(KTR_LOCK,
365 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
366 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
367 		else
368 			CTR4(KTR_LOCK,
369 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
370 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
371 			    ts->ts_lockobj->lo_name);
372 	}
373 	return (1);
374 }
375 
376 /*
377  * Early initialization of turnstiles.  This is not done via a SYSINIT()
378  * since this needs to be initialized very early when mutexes are first
379  * initialized.
380  */
381 void
382 init_turnstiles(void)
383 {
384 	int i;
385 
386 	for (i = 0; i < TC_TABLESIZE; i++) {
387 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
388 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
389 		    NULL, MTX_SPIN);
390 	}
391 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
392 	LIST_INIT(&thread0.td_contested);
393 	thread0.td_turnstile = NULL;
394 }
395 
396 #ifdef TURNSTILE_PROFILING
397 static void
398 init_turnstile_profiling(void *arg)
399 {
400 	struct sysctl_oid *chain_oid;
401 	char chain_name[10];
402 	int i;
403 
404 	for (i = 0; i < TC_TABLESIZE; i++) {
405 		snprintf(chain_name, sizeof(chain_name), "%d", i);
406 		chain_oid = SYSCTL_ADD_NODE(NULL,
407 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
408 		    chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
409 		    "turnstile chain stats");
410 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
411 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
412 		    NULL);
413 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
414 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
415 		    0, NULL);
416 	}
417 }
418 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
419     init_turnstile_profiling, NULL);
420 #endif
421 
422 static void
423 init_turnstile0(void *dummy)
424 {
425 
426 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
427 	    NULL,
428 #ifdef INVARIANTS
429 	    turnstile_dtor,
430 #else
431 	    NULL,
432 #endif
433 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
434 	thread0.td_turnstile = turnstile_alloc();
435 }
436 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
437 
438 /*
439  * Update a thread on the turnstile list after it's priority has been changed.
440  * The old priority is passed in as an argument.
441  */
442 void
443 turnstile_adjust(struct thread *td, u_char oldpri)
444 {
445 	struct turnstile *ts;
446 
447 	MPASS(TD_ON_LOCK(td));
448 
449 	/*
450 	 * Pick up the lock that td is blocked on.
451 	 */
452 	ts = td->td_blocked;
453 	MPASS(ts != NULL);
454 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
455 	mtx_assert(&ts->ts_lock, MA_OWNED);
456 
457 	/* Resort the turnstile on the list. */
458 	if (!turnstile_adjust_thread(ts, td))
459 		return;
460 	/*
461 	 * If our priority was lowered and we are at the head of the
462 	 * turnstile, then propagate our new priority up the chain.
463 	 * Note that we currently don't try to revoke lent priorities
464 	 * when our priority goes up.
465 	 */
466 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
467 	    td->td_tsqueue == TS_SHARED_QUEUE);
468 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
469 	    td->td_priority < oldpri) {
470 		propagate_priority(td);
471 	}
472 }
473 
474 /*
475  * Set the owner of the lock this turnstile is attached to.
476  */
477 static void
478 turnstile_setowner(struct turnstile *ts, struct thread *owner)
479 {
480 
481 	mtx_assert(&td_contested_lock, MA_OWNED);
482 	MPASS(ts->ts_owner == NULL);
483 
484 	/* A shared lock might not have an owner. */
485 	if (owner == NULL)
486 		return;
487 
488 	MPASS(owner->td_proc->p_magic == P_MAGIC);
489 	ts->ts_owner = owner;
490 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
491 }
492 
493 #ifdef INVARIANTS
494 /*
495  * UMA zone item deallocator.
496  */
497 static void
498 turnstile_dtor(void *mem, int size, void *arg)
499 {
500 	struct turnstile *ts;
501 
502 	ts = mem;
503 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
504 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
505 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
506 }
507 #endif
508 
509 /*
510  * UMA zone item initializer.
511  */
512 static int
513 turnstile_init(void *mem, int size, int flags)
514 {
515 	struct turnstile *ts;
516 
517 	bzero(mem, size);
518 	ts = mem;
519 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
520 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
521 	TAILQ_INIT(&ts->ts_pending);
522 	LIST_INIT(&ts->ts_free);
523 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN);
524 	return (0);
525 }
526 
527 static void
528 turnstile_fini(void *mem, int size)
529 {
530 	struct turnstile *ts;
531 
532 	ts = mem;
533 	mtx_destroy(&ts->ts_lock);
534 }
535 
536 /*
537  * Get a turnstile for a new thread.
538  */
539 struct turnstile *
540 turnstile_alloc(void)
541 {
542 
543 	return (uma_zalloc(turnstile_zone, M_WAITOK));
544 }
545 
546 /*
547  * Free a turnstile when a thread is destroyed.
548  */
549 void
550 turnstile_free(struct turnstile *ts)
551 {
552 
553 	uma_zfree(turnstile_zone, ts);
554 }
555 
556 /*
557  * Lock the turnstile chain associated with the specified lock.
558  */
559 void
560 turnstile_chain_lock(struct lock_object *lock)
561 {
562 	struct turnstile_chain *tc;
563 
564 	tc = TC_LOOKUP(lock);
565 	mtx_lock_spin(&tc->tc_lock);
566 }
567 
568 struct turnstile *
569 turnstile_trywait(struct lock_object *lock)
570 {
571 	struct turnstile_chain *tc;
572 	struct turnstile *ts;
573 
574 	tc = TC_LOOKUP(lock);
575 	mtx_lock_spin(&tc->tc_lock);
576 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
577 		if (ts->ts_lockobj == lock) {
578 			mtx_lock_spin(&ts->ts_lock);
579 			return (ts);
580 		}
581 
582 	ts = curthread->td_turnstile;
583 	MPASS(ts != NULL);
584 	mtx_lock_spin(&ts->ts_lock);
585 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
586 	ts->ts_lockobj = lock;
587 
588 	return (ts);
589 }
590 
591 bool
592 turnstile_lock(struct turnstile *ts, struct lock_object **lockp,
593     struct thread **tdp)
594 {
595 	struct turnstile_chain *tc;
596 	struct lock_object *lock;
597 
598 	if ((lock = ts->ts_lockobj) == NULL)
599 		return (false);
600 	tc = TC_LOOKUP(lock);
601 	mtx_lock_spin(&tc->tc_lock);
602 	mtx_lock_spin(&ts->ts_lock);
603 	if (__predict_false(lock != ts->ts_lockobj)) {
604 		mtx_unlock_spin(&tc->tc_lock);
605 		mtx_unlock_spin(&ts->ts_lock);
606 		return (false);
607 	}
608 	*lockp = lock;
609 	*tdp = ts->ts_owner;
610 	return (true);
611 }
612 
613 void
614 turnstile_unlock(struct turnstile *ts, struct lock_object *lock)
615 {
616 	struct turnstile_chain *tc;
617 
618 	mtx_assert(&ts->ts_lock, MA_OWNED);
619 	mtx_unlock_spin(&ts->ts_lock);
620 	if (ts == curthread->td_turnstile)
621 		ts->ts_lockobj = NULL;
622 	tc = TC_LOOKUP(lock);
623 	mtx_unlock_spin(&tc->tc_lock);
624 }
625 
626 void
627 turnstile_assert(struct turnstile *ts)
628 {
629 	MPASS(ts->ts_lockobj == NULL);
630 }
631 
632 void
633 turnstile_cancel(struct turnstile *ts)
634 {
635 	struct turnstile_chain *tc;
636 	struct lock_object *lock;
637 
638 	mtx_assert(&ts->ts_lock, MA_OWNED);
639 
640 	mtx_unlock_spin(&ts->ts_lock);
641 	lock = ts->ts_lockobj;
642 	if (ts == curthread->td_turnstile)
643 		ts->ts_lockobj = NULL;
644 	tc = TC_LOOKUP(lock);
645 	mtx_unlock_spin(&tc->tc_lock);
646 }
647 
648 /*
649  * Look up the turnstile for a lock in the hash table locking the associated
650  * turnstile chain along the way.  If no turnstile is found in the hash
651  * table, NULL is returned.
652  */
653 struct turnstile *
654 turnstile_lookup(struct lock_object *lock)
655 {
656 	struct turnstile_chain *tc;
657 	struct turnstile *ts;
658 
659 	tc = TC_LOOKUP(lock);
660 	mtx_assert(&tc->tc_lock, MA_OWNED);
661 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
662 		if (ts->ts_lockobj == lock) {
663 			mtx_lock_spin(&ts->ts_lock);
664 			return (ts);
665 		}
666 	return (NULL);
667 }
668 
669 /*
670  * Unlock the turnstile chain associated with a given lock.
671  */
672 void
673 turnstile_chain_unlock(struct lock_object *lock)
674 {
675 	struct turnstile_chain *tc;
676 
677 	tc = TC_LOOKUP(lock);
678 	mtx_unlock_spin(&tc->tc_lock);
679 }
680 
681 /*
682  * Return a pointer to the thread waiting on this turnstile with the
683  * most important priority or NULL if the turnstile has no waiters.
684  */
685 static struct thread *
686 turnstile_first_waiter(struct turnstile *ts)
687 {
688 	struct thread *std, *xtd;
689 
690 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
691 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
692 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
693 		return (std);
694 	return (xtd);
695 }
696 
697 /*
698  * Take ownership of a turnstile and adjust the priority of the new
699  * owner appropriately.
700  */
701 void
702 turnstile_claim(struct turnstile *ts)
703 {
704 	struct thread *td, *owner;
705 	struct turnstile_chain *tc;
706 
707 	mtx_assert(&ts->ts_lock, MA_OWNED);
708 	MPASS(ts != curthread->td_turnstile);
709 
710 	owner = curthread;
711 	mtx_lock_spin(&td_contested_lock);
712 	turnstile_setowner(ts, owner);
713 	mtx_unlock_spin(&td_contested_lock);
714 
715 	td = turnstile_first_waiter(ts);
716 	MPASS(td != NULL);
717 	MPASS(td->td_proc->p_magic == P_MAGIC);
718 	THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock);
719 
720 	/*
721 	 * Update the priority of the new owner if needed.
722 	 */
723 	thread_lock(owner);
724 	if (td->td_priority < owner->td_priority)
725 		sched_lend_prio(owner, td->td_priority);
726 	thread_unlock(owner);
727 	tc = TC_LOOKUP(ts->ts_lockobj);
728 	mtx_unlock_spin(&ts->ts_lock);
729 	mtx_unlock_spin(&tc->tc_lock);
730 }
731 
732 /*
733  * Block the current thread on the turnstile assicated with 'lock'.  This
734  * function will context switch and not return until this thread has been
735  * woken back up.  This function must be called with the appropriate
736  * turnstile chain locked and will return with it unlocked.
737  */
738 void
739 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
740 {
741 	struct turnstile_chain *tc;
742 	struct thread *td, *td1;
743 	struct lock_object *lock;
744 
745 	td = curthread;
746 	mtx_assert(&ts->ts_lock, MA_OWNED);
747 	if (owner)
748 		MPASS(owner->td_proc->p_magic == P_MAGIC);
749 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
750 
751 	/*
752 	 * If the lock does not already have a turnstile, use this thread's
753 	 * turnstile.  Otherwise insert the current thread into the
754 	 * turnstile already in use by this lock.
755 	 */
756 	tc = TC_LOOKUP(ts->ts_lockobj);
757 	mtx_assert(&tc->tc_lock, MA_OWNED);
758 	if (ts == td->td_turnstile) {
759 #ifdef TURNSTILE_PROFILING
760 		tc->tc_depth++;
761 		if (tc->tc_depth > tc->tc_max_depth) {
762 			tc->tc_max_depth = tc->tc_depth;
763 			if (tc->tc_max_depth > turnstile_max_depth)
764 				turnstile_max_depth = tc->tc_max_depth;
765 		}
766 #endif
767 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
768 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
769 		    ("thread's turnstile has pending threads"));
770 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
771 		    ("thread's turnstile has exclusive waiters"));
772 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
773 		    ("thread's turnstile has shared waiters"));
774 		KASSERT(LIST_EMPTY(&ts->ts_free),
775 		    ("thread's turnstile has a non-empty free list"));
776 		MPASS(ts->ts_lockobj != NULL);
777 		mtx_lock_spin(&td_contested_lock);
778 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
779 		turnstile_setowner(ts, owner);
780 		mtx_unlock_spin(&td_contested_lock);
781 	} else {
782 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
783 			if (td1->td_priority > td->td_priority)
784 				break;
785 		mtx_lock_spin(&td_contested_lock);
786 		if (td1 != NULL)
787 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
788 		else
789 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
790 		MPASS(owner == ts->ts_owner);
791 		mtx_unlock_spin(&td_contested_lock);
792 		MPASS(td->td_turnstile != NULL);
793 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
794 	}
795 	thread_lock(td);
796 	thread_lock_set(td, &ts->ts_lock);
797 	td->td_turnstile = NULL;
798 
799 	/* Save who we are blocked on and switch. */
800 	lock = ts->ts_lockobj;
801 	td->td_tsqueue = queue;
802 	td->td_blocked = ts;
803 	td->td_lockname = lock->lo_name;
804 	td->td_blktick = ticks;
805 	TD_SET_LOCK(td);
806 	mtx_unlock_spin(&tc->tc_lock);
807 	propagate_priority(td);
808 
809 	if (LOCK_LOG_TEST(lock, 0))
810 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
811 		    td->td_tid, lock, lock->lo_name);
812 
813 	SDT_PROBE0(sched, , , sleep);
814 
815 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
816 	mi_switch(SW_VOL | SWT_TURNSTILE);
817 
818 	if (LOCK_LOG_TEST(lock, 0))
819 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
820 		    __func__, td->td_tid, lock, lock->lo_name);
821 }
822 
823 /*
824  * Pick the highest priority thread on this turnstile and put it on the
825  * pending list.  This must be called with the turnstile chain locked.
826  */
827 int
828 turnstile_signal(struct turnstile *ts, int queue)
829 {
830 	struct turnstile_chain *tc __unused;
831 	struct thread *td;
832 	int empty;
833 
834 	MPASS(ts != NULL);
835 	mtx_assert(&ts->ts_lock, MA_OWNED);
836 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
837 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
838 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
839 
840 	/*
841 	 * Pick the highest priority thread blocked on this lock and
842 	 * move it to the pending list.
843 	 */
844 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
845 	MPASS(td->td_proc->p_magic == P_MAGIC);
846 	mtx_lock_spin(&td_contested_lock);
847 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
848 	mtx_unlock_spin(&td_contested_lock);
849 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
850 
851 	/*
852 	 * If the turnstile is now empty, remove it from its chain and
853 	 * give it to the about-to-be-woken thread.  Otherwise take a
854 	 * turnstile from the free list and give it to the thread.
855 	 */
856 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
857 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
858 	if (empty) {
859 		tc = TC_LOOKUP(ts->ts_lockobj);
860 		mtx_assert(&tc->tc_lock, MA_OWNED);
861 		MPASS(LIST_EMPTY(&ts->ts_free));
862 #ifdef TURNSTILE_PROFILING
863 		tc->tc_depth--;
864 #endif
865 	} else
866 		ts = LIST_FIRST(&ts->ts_free);
867 	MPASS(ts != NULL);
868 	LIST_REMOVE(ts, ts_hash);
869 	td->td_turnstile = ts;
870 
871 	return (empty);
872 }
873 
874 /*
875  * Put all blocked threads on the pending list.  This must be called with
876  * the turnstile chain locked.
877  */
878 void
879 turnstile_broadcast(struct turnstile *ts, int queue)
880 {
881 	struct turnstile_chain *tc __unused;
882 	struct turnstile *ts1;
883 	struct thread *td;
884 
885 	MPASS(ts != NULL);
886 	mtx_assert(&ts->ts_lock, MA_OWNED);
887 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
888 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
889 	/*
890 	 * We must have the chain locked so that we can remove the empty
891 	 * turnstile from the hash queue.
892 	 */
893 	tc = TC_LOOKUP(ts->ts_lockobj);
894 	mtx_assert(&tc->tc_lock, MA_OWNED);
895 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
896 
897 	/*
898 	 * Transfer the blocked list to the pending list.
899 	 */
900 	mtx_lock_spin(&td_contested_lock);
901 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
902 	mtx_unlock_spin(&td_contested_lock);
903 
904 	/*
905 	 * Give a turnstile to each thread.  The last thread gets
906 	 * this turnstile if the turnstile is empty.
907 	 */
908 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
909 		if (LIST_EMPTY(&ts->ts_free)) {
910 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
911 			ts1 = ts;
912 #ifdef TURNSTILE_PROFILING
913 			tc->tc_depth--;
914 #endif
915 		} else
916 			ts1 = LIST_FIRST(&ts->ts_free);
917 		MPASS(ts1 != NULL);
918 		LIST_REMOVE(ts1, ts_hash);
919 		td->td_turnstile = ts1;
920 	}
921 }
922 
923 static u_char
924 turnstile_calc_unlend_prio_locked(struct thread *td)
925 {
926 	struct turnstile *nts;
927 	u_char cp, pri;
928 
929 	THREAD_LOCK_ASSERT(td, MA_OWNED);
930 	mtx_assert(&td_contested_lock, MA_OWNED);
931 
932 	pri = PRI_MAX;
933 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
934 		cp = turnstile_first_waiter(nts)->td_priority;
935 		if (cp < pri)
936 			pri = cp;
937 	}
938 	return (pri);
939 }
940 
941 /*
942  * Wakeup all threads on the pending list and adjust the priority of the
943  * current thread appropriately.  This must be called with the turnstile
944  * chain locked.
945  */
946 void
947 turnstile_unpend(struct turnstile *ts)
948 {
949 	TAILQ_HEAD( ,thread) pending_threads;
950 	struct thread *td;
951 	u_char pri;
952 
953 	MPASS(ts != NULL);
954 	mtx_assert(&ts->ts_lock, MA_OWNED);
955 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
956 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
957 
958 	/*
959 	 * Move the list of pending threads out of the turnstile and
960 	 * into a local variable.
961 	 */
962 	TAILQ_INIT(&pending_threads);
963 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
964 #ifdef INVARIANTS
965 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
966 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
967 		ts->ts_lockobj = NULL;
968 #endif
969 	/*
970 	 * Adjust the priority of curthread based on other contested
971 	 * locks it owns.  Don't lower the priority below the base
972 	 * priority however.
973 	 */
974 	td = curthread;
975 	thread_lock(td);
976 	mtx_lock_spin(&td_contested_lock);
977 	/*
978 	 * Remove the turnstile from this thread's list of contested locks
979 	 * since this thread doesn't own it anymore.  New threads will
980 	 * not be blocking on the turnstile until it is claimed by a new
981 	 * owner.  There might not be a current owner if this is a shared
982 	 * lock.
983 	 */
984 	if (ts->ts_owner != NULL) {
985 		ts->ts_owner = NULL;
986 		LIST_REMOVE(ts, ts_link);
987 	}
988 	pri = turnstile_calc_unlend_prio_locked(td);
989 	mtx_unlock_spin(&td_contested_lock);
990 	sched_unlend_prio(td, pri);
991 	thread_unlock(td);
992 	/*
993 	 * Wake up all the pending threads.  If a thread is not blocked
994 	 * on a lock, then it is currently executing on another CPU in
995 	 * turnstile_wait() or sitting on a run queue waiting to resume
996 	 * in turnstile_wait().  Set a flag to force it to try to acquire
997 	 * the lock again instead of blocking.
998 	 */
999 	while (!TAILQ_EMPTY(&pending_threads)) {
1000 		td = TAILQ_FIRST(&pending_threads);
1001 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
1002 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
1003 		thread_lock_block_wait(td);
1004 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
1005 		MPASS(td->td_proc->p_magic == P_MAGIC);
1006 		MPASS(TD_ON_LOCK(td));
1007 		TD_CLR_LOCK(td);
1008 		MPASS(TD_CAN_RUN(td));
1009 		td->td_blocked = NULL;
1010 		td->td_lockname = NULL;
1011 		td->td_blktick = 0;
1012 #ifdef INVARIANTS
1013 		td->td_tsqueue = 0xff;
1014 #endif
1015 		sched_add(td, SRQ_HOLD | SRQ_BORING);
1016 	}
1017 	mtx_unlock_spin(&ts->ts_lock);
1018 }
1019 
1020 /*
1021  * Give up ownership of a turnstile.  This must be called with the
1022  * turnstile chain locked.
1023  */
1024 void
1025 turnstile_disown(struct turnstile *ts)
1026 {
1027 	struct thread *td;
1028 	u_char pri;
1029 
1030 	MPASS(ts != NULL);
1031 	mtx_assert(&ts->ts_lock, MA_OWNED);
1032 	MPASS(ts->ts_owner == curthread);
1033 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
1034 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
1035 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
1036 
1037 	/*
1038 	 * Remove the turnstile from this thread's list of contested locks
1039 	 * since this thread doesn't own it anymore.  New threads will
1040 	 * not be blocking on the turnstile until it is claimed by a new
1041 	 * owner.
1042 	 */
1043 	mtx_lock_spin(&td_contested_lock);
1044 	ts->ts_owner = NULL;
1045 	LIST_REMOVE(ts, ts_link);
1046 	mtx_unlock_spin(&td_contested_lock);
1047 
1048 	/*
1049 	 * Adjust the priority of curthread based on other contested
1050 	 * locks it owns.  Don't lower the priority below the base
1051 	 * priority however.
1052 	 */
1053 	td = curthread;
1054 	thread_lock(td);
1055 	mtx_unlock_spin(&ts->ts_lock);
1056 	mtx_lock_spin(&td_contested_lock);
1057 	pri = turnstile_calc_unlend_prio_locked(td);
1058 	mtx_unlock_spin(&td_contested_lock);
1059 	sched_unlend_prio(td, pri);
1060 	thread_unlock(td);
1061 }
1062 
1063 /*
1064  * Return the first thread in a turnstile.
1065  */
1066 struct thread *
1067 turnstile_head(struct turnstile *ts, int queue)
1068 {
1069 #ifdef INVARIANTS
1070 
1071 	MPASS(ts != NULL);
1072 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1073 	mtx_assert(&ts->ts_lock, MA_OWNED);
1074 #endif
1075 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1076 }
1077 
1078 /*
1079  * Returns true if a sub-queue of a turnstile is empty.
1080  */
1081 int
1082 turnstile_empty(struct turnstile *ts, int queue)
1083 {
1084 #ifdef INVARIANTS
1085 
1086 	MPASS(ts != NULL);
1087 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1088 	mtx_assert(&ts->ts_lock, MA_OWNED);
1089 #endif
1090 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1091 }
1092 
1093 #ifdef DDB
1094 static void
1095 print_thread(struct thread *td, const char *prefix)
1096 {
1097 
1098 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1099 	    td->td_proc->p_pid, td->td_name);
1100 }
1101 
1102 static void
1103 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1104 {
1105 	struct thread *td;
1106 
1107 	db_printf("%s:\n", header);
1108 	if (TAILQ_EMPTY(queue)) {
1109 		db_printf("%sempty\n", prefix);
1110 		return;
1111 	}
1112 	TAILQ_FOREACH(td, queue, td_lockq) {
1113 		print_thread(td, prefix);
1114 	}
1115 }
1116 
1117 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1118 {
1119 	struct turnstile_chain *tc;
1120 	struct turnstile *ts;
1121 	struct lock_object *lock;
1122 	int i;
1123 
1124 	if (!have_addr)
1125 		return;
1126 
1127 	/*
1128 	 * First, see if there is an active turnstile for the lock indicated
1129 	 * by the address.
1130 	 */
1131 	lock = (struct lock_object *)addr;
1132 	tc = TC_LOOKUP(lock);
1133 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1134 		if (ts->ts_lockobj == lock)
1135 			goto found;
1136 
1137 	/*
1138 	 * Second, see if there is an active turnstile at the address
1139 	 * indicated.
1140 	 */
1141 	for (i = 0; i < TC_TABLESIZE; i++)
1142 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1143 			if (ts == (struct turnstile *)addr)
1144 				goto found;
1145 		}
1146 
1147 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1148 	return;
1149 found:
1150 	lock = ts->ts_lockobj;
1151 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1152 	    lock->lo_name);
1153 	if (ts->ts_owner)
1154 		print_thread(ts->ts_owner, "Lock Owner: ");
1155 	else
1156 		db_printf("Lock Owner: none\n");
1157 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1158 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1159 	    "\t");
1160 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1161 
1162 }
1163 
1164 /*
1165  * Show all the threads a particular thread is waiting on based on
1166  * non-spin locks.
1167  */
1168 static void
1169 print_lockchain(struct thread *td, const char *prefix)
1170 {
1171 	struct lock_object *lock;
1172 	struct lock_class *class;
1173 	struct turnstile *ts;
1174 	struct thread *owner;
1175 
1176 	/*
1177 	 * Follow the chain.  We keep walking as long as the thread is
1178 	 * blocked on a lock that has an owner.
1179 	 */
1180 	while (!db_pager_quit) {
1181 		if (td == (void *)LK_KERNPROC) {
1182 			db_printf("%sdisowned (LK_KERNPROC)\n", prefix);
1183 			return;
1184 		}
1185 		db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid,
1186 		    td->td_proc->p_pid, td->td_name);
1187 		switch (TD_GET_STATE(td)) {
1188 		case TDS_INACTIVE:
1189 			db_printf("inactive\n");
1190 			return;
1191 		case TDS_CAN_RUN:
1192 			db_printf("runnable\n");
1193 			return;
1194 		case TDS_RUNQ:
1195 			db_printf("on a run queue\n");
1196 			return;
1197 		case TDS_RUNNING:
1198 			db_printf("running on CPU %d\n", td->td_oncpu);
1199 			return;
1200 		case TDS_INHIBITED:
1201 			if (TD_ON_LOCK(td)) {
1202 				ts = td->td_blocked;
1203 				lock = ts->ts_lockobj;
1204 				class = LOCK_CLASS(lock);
1205 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1206 				    lock, class->lc_name, lock->lo_name);
1207 				if (ts->ts_owner == NULL)
1208 					return;
1209 				td = ts->ts_owner;
1210 				break;
1211 			} else if (TD_ON_SLEEPQ(td)) {
1212 				if (!lockmgr_chain(td, &owner) &&
1213 				    !sx_chain(td, &owner)) {
1214 					db_printf("sleeping on %p \"%s\"\n",
1215 					    td->td_wchan, td->td_wmesg);
1216 					return;
1217 				}
1218 				if (owner == NULL)
1219 					return;
1220 				td = owner;
1221 				break;
1222 			}
1223 			db_printf("inhibited: %s\n", KTDSTATE(td));
1224 			return;
1225 		default:
1226 			db_printf("??? (%#x)\n", TD_GET_STATE(td));
1227 			return;
1228 		}
1229 	}
1230 }
1231 
1232 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1233 {
1234 	struct thread *td;
1235 
1236 	/* Figure out which thread to start with. */
1237 	if (have_addr)
1238 		td = db_lookup_thread(addr, true);
1239 	else
1240 		td = kdb_thread;
1241 
1242 	print_lockchain(td, "");
1243 }
1244 DB_SHOW_ALIAS(sleepchain, db_show_lockchain);
1245 
1246 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1247 {
1248 	struct thread *td;
1249 	struct proc *p;
1250 	int i;
1251 
1252 	i = 1;
1253 	FOREACH_PROC_IN_SYSTEM(p) {
1254 		FOREACH_THREAD_IN_PROC(p, td) {
1255 			if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested))
1256 			    || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) {
1257 				db_printf("chain %d:\n", i++);
1258 				print_lockchain(td, " ");
1259 			}
1260 			if (db_pager_quit)
1261 				return;
1262 		}
1263 	}
1264 }
1265 DB_SHOW_ALIAS_FLAGS(allchains, db_show_allchains, DB_CMD_MEMSAFE);
1266 
1267 static void	print_waiters(struct turnstile *ts, int indent);
1268 
1269 static void
1270 print_waiter(struct thread *td, int indent)
1271 {
1272 	struct turnstile *ts;
1273 	int i;
1274 
1275 	if (db_pager_quit)
1276 		return;
1277 	for (i = 0; i < indent; i++)
1278 		db_printf(" ");
1279 	print_thread(td, "thread ");
1280 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1281 		print_waiters(ts, indent + 1);
1282 }
1283 
1284 static void
1285 print_waiters(struct turnstile *ts, int indent)
1286 {
1287 	struct lock_object *lock;
1288 	struct lock_class *class;
1289 	struct thread *td;
1290 	int i;
1291 
1292 	if (db_pager_quit)
1293 		return;
1294 	lock = ts->ts_lockobj;
1295 	class = LOCK_CLASS(lock);
1296 	for (i = 0; i < indent; i++)
1297 		db_printf(" ");
1298 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1299 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1300 		print_waiter(td, indent + 1);
1301 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1302 		print_waiter(td, indent + 1);
1303 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1304 		print_waiter(td, indent + 1);
1305 }
1306 
1307 DB_SHOW_COMMAND(locktree, db_show_locktree)
1308 {
1309 	struct lock_object *lock;
1310 	struct lock_class *class;
1311 	struct turnstile_chain *tc;
1312 	struct turnstile *ts;
1313 
1314 	if (!have_addr)
1315 		return;
1316 	lock = (struct lock_object *)addr;
1317 	tc = TC_LOOKUP(lock);
1318 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1319 		if (ts->ts_lockobj == lock)
1320 			break;
1321 	if (ts == NULL) {
1322 		class = LOCK_CLASS(lock);
1323 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1324 		    lock->lo_name);
1325 	} else
1326 		print_waiters(ts, 0);
1327 }
1328 #endif
1329