xref: /freebsd/sys/kern/subr_turnstile.c (revision ab00ac327a66a53edaac95b536b209db3ae2cd9f)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is allocated from a UMA zone
50  * and attached to that thread.  When a thread blocks on a lock, if it is the
51  * first thread to block, it lends its turnstile to the lock.  If the lock
52  * already has a turnstile, then it gives its turnstile to the lock's
53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54  * the free list if there are any other waiters.  If it is the only thread
55  * blocked on the lock, then it reclaims the turnstile associated with the lock
56  * and removes it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/queue.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/sysctl.h>
78 #include <sys/turnstile.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #include <sys/lockmgr.h>
85 #include <sys/sx.h>
86 #endif
87 
88 /*
89  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
90  * number chosen because the sleep queue's use the same value for the
91  * shift.  Basically, we ignore the lower 8 bits of the address.
92  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93  */
94 #define	TC_TABLESIZE	128			/* Must be power of 2. */
95 #define	TC_MASK		(TC_TABLESIZE - 1)
96 #define	TC_SHIFT	8
97 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
99 
100 /*
101  * There are three different lists of turnstiles as follows.  The list
102  * connected by ts_link entries is a per-thread list of all the turnstiles
103  * attached to locks that we own.  This is used to fixup our priority when
104  * a lock is released.  The other two lists use the ts_hash entries.  The
105  * first of these two is the turnstile chain list that a turnstile is on
106  * when it is attached to a lock.  The second list to use ts_hash is the
107  * free list hung off of a turnstile that is attached to a lock.
108  *
109  * Each turnstile contains three lists of threads.  The two ts_blocked lists
110  * are linked list of threads blocked on the turnstile's lock.  One list is
111  * for exclusive waiters, and the other is for shared waiters.  The
112  * ts_pending list is a linked list of threads previously awakened by
113  * turnstile_signal() or turnstile_wait() that are waiting to be put on
114  * the run queue.
115  *
116  * Locking key:
117  *  c - turnstile chain lock
118  *  q - td_contested lock
119  */
120 struct turnstile {
121 	struct mtx ts_lock;			/* Spin lock for self. */
122 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
123 	struct threadqueue ts_pending;		/* (c) Pending threads. */
124 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
125 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
126 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
127 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
128 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
129 };
130 
131 struct turnstile_chain {
132 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
133 	struct mtx tc_lock;			/* Spin lock for this chain. */
134 #ifdef TURNSTILE_PROFILING
135 	u_int	tc_depth;			/* Length of tc_queues. */
136 	u_int	tc_max_depth;			/* Max length of tc_queues. */
137 #endif
138 };
139 
140 #ifdef TURNSTILE_PROFILING
141 u_int turnstile_max_depth;
142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
143     "turnstile profiling");
144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
145     "turnstile chain stats");
146 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
147     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
148 #endif
149 static struct mtx td_contested_lock;
150 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
151 static uma_zone_t turnstile_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static void	init_turnstile0(void *dummy);
157 #ifdef TURNSTILE_PROFILING
158 static void	init_turnstile_profiling(void *arg);
159 #endif
160 #ifdef DDB
161 static void	print_sleepchain(struct thread *td, const char *prefix);
162 #endif
163 static void	propagate_priority(struct thread *td);
164 static int	turnstile_adjust_thread(struct turnstile *ts,
165 		    struct thread *td);
166 static struct thread *turnstile_first_waiter(struct turnstile *ts);
167 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
168 #ifdef INVARIANTS
169 static void	turnstile_dtor(void *mem, int size, void *arg);
170 #endif
171 static int	turnstile_init(void *mem, int size, int flags);
172 static void	turnstile_fini(void *mem, int size);
173 
174 SDT_PROVIDER_DECLARE(sched);
175 SDT_PROBE_DEFINE(sched, , , sleep);
176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
177     "struct proc *");
178 
179 /*
180  * Walks the chain of turnstiles and their owners to propagate the priority
181  * of the thread being blocked to all the threads holding locks that have to
182  * release their locks before this thread can run again.
183  */
184 static void
185 propagate_priority(struct thread *td)
186 {
187 	struct turnstile *ts;
188 	int pri;
189 
190 	THREAD_LOCK_ASSERT(td, MA_OWNED);
191 	pri = td->td_priority;
192 	ts = td->td_blocked;
193 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
194 	/*
195 	 * Grab a recursive lock on this turnstile chain so it stays locked
196 	 * for the whole operation.  The caller expects us to return with
197 	 * the original lock held.  We only ever lock down the chain so
198 	 * the lock order is constant.
199 	 */
200 	mtx_lock_spin(&ts->ts_lock);
201 	for (;;) {
202 		td = ts->ts_owner;
203 
204 		if (td == NULL) {
205 			/*
206 			 * This might be a read lock with no owner.  There's
207 			 * not much we can do, so just bail.
208 			 */
209 			mtx_unlock_spin(&ts->ts_lock);
210 			return;
211 		}
212 
213 		thread_lock_flags(td, MTX_DUPOK);
214 		mtx_unlock_spin(&ts->ts_lock);
215 		MPASS(td->td_proc != NULL);
216 		MPASS(td->td_proc->p_magic == P_MAGIC);
217 
218 		/*
219 		 * If the thread is asleep, then we are probably about
220 		 * to deadlock.  To make debugging this easier, show
221 		 * backtrace of misbehaving thread and panic to not
222 		 * leave the kernel deadlocked.
223 		 */
224 		if (TD_IS_SLEEPING(td)) {
225 			printf(
226 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
227 			    td->td_tid, td->td_proc->p_pid);
228 			kdb_backtrace_thread(td);
229 			panic("sleeping thread");
230 		}
231 
232 		/*
233 		 * If this thread already has higher priority than the
234 		 * thread that is being blocked, we are finished.
235 		 */
236 		if (td->td_priority <= pri) {
237 			thread_unlock(td);
238 			return;
239 		}
240 
241 		/*
242 		 * Bump this thread's priority.
243 		 */
244 		sched_lend_prio(td, pri);
245 
246 		/*
247 		 * If lock holder is actually running or on the run queue
248 		 * then we are done.
249 		 */
250 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
251 			MPASS(td->td_blocked == NULL);
252 			thread_unlock(td);
253 			return;
254 		}
255 
256 #ifndef SMP
257 		/*
258 		 * For UP, we check to see if td is curthread (this shouldn't
259 		 * ever happen however as it would mean we are in a deadlock.)
260 		 */
261 		KASSERT(td != curthread, ("Deadlock detected"));
262 #endif
263 
264 		/*
265 		 * If we aren't blocked on a lock, we should be.
266 		 */
267 		KASSERT(TD_ON_LOCK(td), (
268 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
269 		    td->td_tid, td->td_name, td->td_state,
270 		    ts->ts_lockobj->lo_name));
271 
272 		/*
273 		 * Pick up the lock that td is blocked on.
274 		 */
275 		ts = td->td_blocked;
276 		MPASS(ts != NULL);
277 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
278 		/* Resort td on the list if needed. */
279 		if (!turnstile_adjust_thread(ts, td)) {
280 			mtx_unlock_spin(&ts->ts_lock);
281 			return;
282 		}
283 		/* The thread lock is released as ts lock above. */
284 	}
285 }
286 
287 /*
288  * Adjust the thread's position on a turnstile after its priority has been
289  * changed.
290  */
291 static int
292 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
293 {
294 	struct thread *td1, *td2;
295 	int queue;
296 
297 	THREAD_LOCK_ASSERT(td, MA_OWNED);
298 	MPASS(TD_ON_LOCK(td));
299 
300 	/*
301 	 * This thread may not be blocked on this turnstile anymore
302 	 * but instead might already be woken up on another CPU
303 	 * that is waiting on the thread lock in turnstile_unpend() to
304 	 * finish waking this thread up.  We can detect this case
305 	 * by checking to see if this thread has been given a
306 	 * turnstile by either turnstile_signal() or
307 	 * turnstile_broadcast().  In this case, treat the thread as
308 	 * if it was already running.
309 	 */
310 	if (td->td_turnstile != NULL)
311 		return (0);
312 
313 	/*
314 	 * Check if the thread needs to be moved on the blocked chain.
315 	 * It needs to be moved if either its priority is lower than
316 	 * the previous thread or higher than the next thread.
317 	 */
318 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
319 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
320 	td2 = TAILQ_NEXT(td, td_lockq);
321 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
322 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
323 
324 		/*
325 		 * Remove thread from blocked chain and determine where
326 		 * it should be moved to.
327 		 */
328 		queue = td->td_tsqueue;
329 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
330 		mtx_lock_spin(&td_contested_lock);
331 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
332 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
333 			MPASS(td1->td_proc->p_magic == P_MAGIC);
334 			if (td1->td_priority > td->td_priority)
335 				break;
336 		}
337 
338 		if (td1 == NULL)
339 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
340 		else
341 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
342 		mtx_unlock_spin(&td_contested_lock);
343 		if (td1 == NULL)
344 			CTR3(KTR_LOCK,
345 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
346 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
347 		else
348 			CTR4(KTR_LOCK,
349 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
350 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
351 			    ts->ts_lockobj->lo_name);
352 	}
353 	return (1);
354 }
355 
356 /*
357  * Early initialization of turnstiles.  This is not done via a SYSINIT()
358  * since this needs to be initialized very early when mutexes are first
359  * initialized.
360  */
361 void
362 init_turnstiles(void)
363 {
364 	int i;
365 
366 	for (i = 0; i < TC_TABLESIZE; i++) {
367 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
368 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
369 		    NULL, MTX_SPIN);
370 	}
371 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
372 	LIST_INIT(&thread0.td_contested);
373 	thread0.td_turnstile = NULL;
374 }
375 
376 #ifdef TURNSTILE_PROFILING
377 static void
378 init_turnstile_profiling(void *arg)
379 {
380 	struct sysctl_oid *chain_oid;
381 	char chain_name[10];
382 	int i;
383 
384 	for (i = 0; i < TC_TABLESIZE; i++) {
385 		snprintf(chain_name, sizeof(chain_name), "%d", i);
386 		chain_oid = SYSCTL_ADD_NODE(NULL,
387 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
388 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
389 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
390 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
391 		    NULL);
392 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
393 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
394 		    0, NULL);
395 	}
396 }
397 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
398     init_turnstile_profiling, NULL);
399 #endif
400 
401 static void
402 init_turnstile0(void *dummy)
403 {
404 
405 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
406 	    NULL,
407 #ifdef INVARIANTS
408 	    turnstile_dtor,
409 #else
410 	    NULL,
411 #endif
412 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
413 	thread0.td_turnstile = turnstile_alloc();
414 }
415 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
416 
417 /*
418  * Update a thread on the turnstile list after it's priority has been changed.
419  * The old priority is passed in as an argument.
420  */
421 void
422 turnstile_adjust(struct thread *td, u_char oldpri)
423 {
424 	struct turnstile *ts;
425 
426 	MPASS(TD_ON_LOCK(td));
427 
428 	/*
429 	 * Pick up the lock that td is blocked on.
430 	 */
431 	ts = td->td_blocked;
432 	MPASS(ts != NULL);
433 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
434 	mtx_assert(&ts->ts_lock, MA_OWNED);
435 
436 	/* Resort the turnstile on the list. */
437 	if (!turnstile_adjust_thread(ts, td))
438 		return;
439 	/*
440 	 * If our priority was lowered and we are at the head of the
441 	 * turnstile, then propagate our new priority up the chain.
442 	 * Note that we currently don't try to revoke lent priorities
443 	 * when our priority goes up.
444 	 */
445 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
446 	    td->td_tsqueue == TS_SHARED_QUEUE);
447 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
448 	    td->td_priority < oldpri) {
449 		propagate_priority(td);
450 	}
451 }
452 
453 /*
454  * Set the owner of the lock this turnstile is attached to.
455  */
456 static void
457 turnstile_setowner(struct turnstile *ts, struct thread *owner)
458 {
459 
460 	mtx_assert(&td_contested_lock, MA_OWNED);
461 	MPASS(ts->ts_owner == NULL);
462 
463 	/* A shared lock might not have an owner. */
464 	if (owner == NULL)
465 		return;
466 
467 	MPASS(owner->td_proc->p_magic == P_MAGIC);
468 	ts->ts_owner = owner;
469 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
470 }
471 
472 #ifdef INVARIANTS
473 /*
474  * UMA zone item deallocator.
475  */
476 static void
477 turnstile_dtor(void *mem, int size, void *arg)
478 {
479 	struct turnstile *ts;
480 
481 	ts = mem;
482 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
483 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
484 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
485 }
486 #endif
487 
488 /*
489  * UMA zone item initializer.
490  */
491 static int
492 turnstile_init(void *mem, int size, int flags)
493 {
494 	struct turnstile *ts;
495 
496 	bzero(mem, size);
497 	ts = mem;
498 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
499 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
500 	TAILQ_INIT(&ts->ts_pending);
501 	LIST_INIT(&ts->ts_free);
502 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
503 	return (0);
504 }
505 
506 static void
507 turnstile_fini(void *mem, int size)
508 {
509 	struct turnstile *ts;
510 
511 	ts = mem;
512 	mtx_destroy(&ts->ts_lock);
513 }
514 
515 /*
516  * Get a turnstile for a new thread.
517  */
518 struct turnstile *
519 turnstile_alloc(void)
520 {
521 
522 	return (uma_zalloc(turnstile_zone, M_WAITOK));
523 }
524 
525 /*
526  * Free a turnstile when a thread is destroyed.
527  */
528 void
529 turnstile_free(struct turnstile *ts)
530 {
531 
532 	uma_zfree(turnstile_zone, ts);
533 }
534 
535 /*
536  * Lock the turnstile chain associated with the specified lock.
537  */
538 void
539 turnstile_chain_lock(struct lock_object *lock)
540 {
541 	struct turnstile_chain *tc;
542 
543 	tc = TC_LOOKUP(lock);
544 	mtx_lock_spin(&tc->tc_lock);
545 }
546 
547 struct turnstile *
548 turnstile_trywait(struct lock_object *lock)
549 {
550 	struct turnstile_chain *tc;
551 	struct turnstile *ts;
552 
553 	tc = TC_LOOKUP(lock);
554 	mtx_lock_spin(&tc->tc_lock);
555 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
556 		if (ts->ts_lockobj == lock) {
557 			mtx_lock_spin(&ts->ts_lock);
558 			return (ts);
559 		}
560 
561 	ts = curthread->td_turnstile;
562 	MPASS(ts != NULL);
563 	mtx_lock_spin(&ts->ts_lock);
564 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
565 	ts->ts_lockobj = lock;
566 
567 	return (ts);
568 }
569 
570 void
571 turnstile_cancel(struct turnstile *ts)
572 {
573 	struct turnstile_chain *tc;
574 	struct lock_object *lock;
575 
576 	mtx_assert(&ts->ts_lock, MA_OWNED);
577 
578 	mtx_unlock_spin(&ts->ts_lock);
579 	lock = ts->ts_lockobj;
580 	if (ts == curthread->td_turnstile)
581 		ts->ts_lockobj = NULL;
582 	tc = TC_LOOKUP(lock);
583 	mtx_unlock_spin(&tc->tc_lock);
584 }
585 
586 /*
587  * Look up the turnstile for a lock in the hash table locking the associated
588  * turnstile chain along the way.  If no turnstile is found in the hash
589  * table, NULL is returned.
590  */
591 struct turnstile *
592 turnstile_lookup(struct lock_object *lock)
593 {
594 	struct turnstile_chain *tc;
595 	struct turnstile *ts;
596 
597 	tc = TC_LOOKUP(lock);
598 	mtx_assert(&tc->tc_lock, MA_OWNED);
599 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
600 		if (ts->ts_lockobj == lock) {
601 			mtx_lock_spin(&ts->ts_lock);
602 			return (ts);
603 		}
604 	return (NULL);
605 }
606 
607 /*
608  * Unlock the turnstile chain associated with a given lock.
609  */
610 void
611 turnstile_chain_unlock(struct lock_object *lock)
612 {
613 	struct turnstile_chain *tc;
614 
615 	tc = TC_LOOKUP(lock);
616 	mtx_unlock_spin(&tc->tc_lock);
617 }
618 
619 /*
620  * Return a pointer to the thread waiting on this turnstile with the
621  * most important priority or NULL if the turnstile has no waiters.
622  */
623 static struct thread *
624 turnstile_first_waiter(struct turnstile *ts)
625 {
626 	struct thread *std, *xtd;
627 
628 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
629 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
630 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
631 		return (std);
632 	return (xtd);
633 }
634 
635 /*
636  * Take ownership of a turnstile and adjust the priority of the new
637  * owner appropriately.
638  */
639 void
640 turnstile_claim(struct turnstile *ts)
641 {
642 	struct thread *td, *owner;
643 	struct turnstile_chain *tc;
644 
645 	mtx_assert(&ts->ts_lock, MA_OWNED);
646 	MPASS(ts != curthread->td_turnstile);
647 
648 	owner = curthread;
649 	mtx_lock_spin(&td_contested_lock);
650 	turnstile_setowner(ts, owner);
651 	mtx_unlock_spin(&td_contested_lock);
652 
653 	td = turnstile_first_waiter(ts);
654 	MPASS(td != NULL);
655 	MPASS(td->td_proc->p_magic == P_MAGIC);
656 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
657 
658 	/*
659 	 * Update the priority of the new owner if needed.
660 	 */
661 	thread_lock(owner);
662 	if (td->td_priority < owner->td_priority)
663 		sched_lend_prio(owner, td->td_priority);
664 	thread_unlock(owner);
665 	tc = TC_LOOKUP(ts->ts_lockobj);
666 	mtx_unlock_spin(&ts->ts_lock);
667 	mtx_unlock_spin(&tc->tc_lock);
668 }
669 
670 /*
671  * Block the current thread on the turnstile assicated with 'lock'.  This
672  * function will context switch and not return until this thread has been
673  * woken back up.  This function must be called with the appropriate
674  * turnstile chain locked and will return with it unlocked.
675  */
676 void
677 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
678 {
679 	struct turnstile_chain *tc;
680 	struct thread *td, *td1;
681 	struct lock_object *lock;
682 
683 	td = curthread;
684 	mtx_assert(&ts->ts_lock, MA_OWNED);
685 	if (owner)
686 		MPASS(owner->td_proc->p_magic == P_MAGIC);
687 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
688 
689 	/*
690 	 * If the lock does not already have a turnstile, use this thread's
691 	 * turnstile.  Otherwise insert the current thread into the
692 	 * turnstile already in use by this lock.
693 	 */
694 	tc = TC_LOOKUP(ts->ts_lockobj);
695 	mtx_assert(&tc->tc_lock, MA_OWNED);
696 	if (ts == td->td_turnstile) {
697 #ifdef TURNSTILE_PROFILING
698 		tc->tc_depth++;
699 		if (tc->tc_depth > tc->tc_max_depth) {
700 			tc->tc_max_depth = tc->tc_depth;
701 			if (tc->tc_max_depth > turnstile_max_depth)
702 				turnstile_max_depth = tc->tc_max_depth;
703 		}
704 #endif
705 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
706 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
707 		    ("thread's turnstile has pending threads"));
708 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
709 		    ("thread's turnstile has exclusive waiters"));
710 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
711 		    ("thread's turnstile has shared waiters"));
712 		KASSERT(LIST_EMPTY(&ts->ts_free),
713 		    ("thread's turnstile has a non-empty free list"));
714 		MPASS(ts->ts_lockobj != NULL);
715 		mtx_lock_spin(&td_contested_lock);
716 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
717 		turnstile_setowner(ts, owner);
718 		mtx_unlock_spin(&td_contested_lock);
719 	} else {
720 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
721 			if (td1->td_priority > td->td_priority)
722 				break;
723 		mtx_lock_spin(&td_contested_lock);
724 		if (td1 != NULL)
725 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
726 		else
727 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
728 		MPASS(owner == ts->ts_owner);
729 		mtx_unlock_spin(&td_contested_lock);
730 		MPASS(td->td_turnstile != NULL);
731 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
732 	}
733 	thread_lock(td);
734 	thread_lock_set(td, &ts->ts_lock);
735 	td->td_turnstile = NULL;
736 
737 	/* Save who we are blocked on and switch. */
738 	lock = ts->ts_lockobj;
739 	td->td_tsqueue = queue;
740 	td->td_blocked = ts;
741 	td->td_lockname = lock->lo_name;
742 	td->td_blktick = ticks;
743 	TD_SET_LOCK(td);
744 	mtx_unlock_spin(&tc->tc_lock);
745 	propagate_priority(td);
746 
747 	if (LOCK_LOG_TEST(lock, 0))
748 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
749 		    td->td_tid, lock, lock->lo_name);
750 
751 	SDT_PROBE0(sched, , , sleep);
752 
753 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
754 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
755 
756 	if (LOCK_LOG_TEST(lock, 0))
757 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
758 		    __func__, td->td_tid, lock, lock->lo_name);
759 	thread_unlock(td);
760 }
761 
762 /*
763  * Pick the highest priority thread on this turnstile and put it on the
764  * pending list.  This must be called with the turnstile chain locked.
765  */
766 int
767 turnstile_signal(struct turnstile *ts, int queue)
768 {
769 	struct turnstile_chain *tc;
770 	struct thread *td;
771 	int empty;
772 
773 	MPASS(ts != NULL);
774 	mtx_assert(&ts->ts_lock, MA_OWNED);
775 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
776 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
777 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
778 
779 	/*
780 	 * Pick the highest priority thread blocked on this lock and
781 	 * move it to the pending list.
782 	 */
783 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
784 	MPASS(td->td_proc->p_magic == P_MAGIC);
785 	mtx_lock_spin(&td_contested_lock);
786 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
787 	mtx_unlock_spin(&td_contested_lock);
788 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
789 
790 	/*
791 	 * If the turnstile is now empty, remove it from its chain and
792 	 * give it to the about-to-be-woken thread.  Otherwise take a
793 	 * turnstile from the free list and give it to the thread.
794 	 */
795 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
796 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
797 	if (empty) {
798 		tc = TC_LOOKUP(ts->ts_lockobj);
799 		mtx_assert(&tc->tc_lock, MA_OWNED);
800 		MPASS(LIST_EMPTY(&ts->ts_free));
801 #ifdef TURNSTILE_PROFILING
802 		tc->tc_depth--;
803 #endif
804 	} else
805 		ts = LIST_FIRST(&ts->ts_free);
806 	MPASS(ts != NULL);
807 	LIST_REMOVE(ts, ts_hash);
808 	td->td_turnstile = ts;
809 
810 	return (empty);
811 }
812 
813 /*
814  * Put all blocked threads on the pending list.  This must be called with
815  * the turnstile chain locked.
816  */
817 void
818 turnstile_broadcast(struct turnstile *ts, int queue)
819 {
820 	struct turnstile_chain *tc;
821 	struct turnstile *ts1;
822 	struct thread *td;
823 
824 	MPASS(ts != NULL);
825 	mtx_assert(&ts->ts_lock, MA_OWNED);
826 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
827 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
828 	/*
829 	 * We must have the chain locked so that we can remove the empty
830 	 * turnstile from the hash queue.
831 	 */
832 	tc = TC_LOOKUP(ts->ts_lockobj);
833 	mtx_assert(&tc->tc_lock, MA_OWNED);
834 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
835 
836 	/*
837 	 * Transfer the blocked list to the pending list.
838 	 */
839 	mtx_lock_spin(&td_contested_lock);
840 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
841 	mtx_unlock_spin(&td_contested_lock);
842 
843 	/*
844 	 * Give a turnstile to each thread.  The last thread gets
845 	 * this turnstile if the turnstile is empty.
846 	 */
847 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
848 		if (LIST_EMPTY(&ts->ts_free)) {
849 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
850 			ts1 = ts;
851 #ifdef TURNSTILE_PROFILING
852 			tc->tc_depth--;
853 #endif
854 		} else
855 			ts1 = LIST_FIRST(&ts->ts_free);
856 		MPASS(ts1 != NULL);
857 		LIST_REMOVE(ts1, ts_hash);
858 		td->td_turnstile = ts1;
859 	}
860 }
861 
862 /*
863  * Wakeup all threads on the pending list and adjust the priority of the
864  * current thread appropriately.  This must be called with the turnstile
865  * chain locked.
866  */
867 void
868 turnstile_unpend(struct turnstile *ts, int owner_type)
869 {
870 	TAILQ_HEAD( ,thread) pending_threads;
871 	struct turnstile *nts;
872 	struct thread *td;
873 	u_char cp, pri;
874 
875 	MPASS(ts != NULL);
876 	mtx_assert(&ts->ts_lock, MA_OWNED);
877 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
878 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
879 
880 	/*
881 	 * Move the list of pending threads out of the turnstile and
882 	 * into a local variable.
883 	 */
884 	TAILQ_INIT(&pending_threads);
885 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
886 #ifdef INVARIANTS
887 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
888 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
889 		ts->ts_lockobj = NULL;
890 #endif
891 	/*
892 	 * Adjust the priority of curthread based on other contested
893 	 * locks it owns.  Don't lower the priority below the base
894 	 * priority however.
895 	 */
896 	td = curthread;
897 	pri = PRI_MAX;
898 	thread_lock(td);
899 	mtx_lock_spin(&td_contested_lock);
900 	/*
901 	 * Remove the turnstile from this thread's list of contested locks
902 	 * since this thread doesn't own it anymore.  New threads will
903 	 * not be blocking on the turnstile until it is claimed by a new
904 	 * owner.  There might not be a current owner if this is a shared
905 	 * lock.
906 	 */
907 	if (ts->ts_owner != NULL) {
908 		ts->ts_owner = NULL;
909 		LIST_REMOVE(ts, ts_link);
910 	}
911 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
912 		cp = turnstile_first_waiter(nts)->td_priority;
913 		if (cp < pri)
914 			pri = cp;
915 	}
916 	mtx_unlock_spin(&td_contested_lock);
917 	sched_unlend_prio(td, pri);
918 	thread_unlock(td);
919 	/*
920 	 * Wake up all the pending threads.  If a thread is not blocked
921 	 * on a lock, then it is currently executing on another CPU in
922 	 * turnstile_wait() or sitting on a run queue waiting to resume
923 	 * in turnstile_wait().  Set a flag to force it to try to acquire
924 	 * the lock again instead of blocking.
925 	 */
926 	while (!TAILQ_EMPTY(&pending_threads)) {
927 		td = TAILQ_FIRST(&pending_threads);
928 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
929 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
930 		thread_lock(td);
931 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
932 		MPASS(td->td_proc->p_magic == P_MAGIC);
933 		MPASS(TD_ON_LOCK(td));
934 		TD_CLR_LOCK(td);
935 		MPASS(TD_CAN_RUN(td));
936 		td->td_blocked = NULL;
937 		td->td_lockname = NULL;
938 		td->td_blktick = 0;
939 #ifdef INVARIANTS
940 		td->td_tsqueue = 0xff;
941 #endif
942 		sched_add(td, SRQ_BORING);
943 		thread_unlock(td);
944 	}
945 	mtx_unlock_spin(&ts->ts_lock);
946 }
947 
948 /*
949  * Give up ownership of a turnstile.  This must be called with the
950  * turnstile chain locked.
951  */
952 void
953 turnstile_disown(struct turnstile *ts)
954 {
955 	struct thread *td;
956 	u_char cp, pri;
957 
958 	MPASS(ts != NULL);
959 	mtx_assert(&ts->ts_lock, MA_OWNED);
960 	MPASS(ts->ts_owner == curthread);
961 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
962 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
963 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
964 
965 	/*
966 	 * Remove the turnstile from this thread's list of contested locks
967 	 * since this thread doesn't own it anymore.  New threads will
968 	 * not be blocking on the turnstile until it is claimed by a new
969 	 * owner.
970 	 */
971 	mtx_lock_spin(&td_contested_lock);
972 	ts->ts_owner = NULL;
973 	LIST_REMOVE(ts, ts_link);
974 	mtx_unlock_spin(&td_contested_lock);
975 
976 	/*
977 	 * Adjust the priority of curthread based on other contested
978 	 * locks it owns.  Don't lower the priority below the base
979 	 * priority however.
980 	 */
981 	td = curthread;
982 	pri = PRI_MAX;
983 	thread_lock(td);
984 	mtx_unlock_spin(&ts->ts_lock);
985 	mtx_lock_spin(&td_contested_lock);
986 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
987 		cp = turnstile_first_waiter(ts)->td_priority;
988 		if (cp < pri)
989 			pri = cp;
990 	}
991 	mtx_unlock_spin(&td_contested_lock);
992 	sched_unlend_prio(td, pri);
993 	thread_unlock(td);
994 }
995 
996 /*
997  * Return the first thread in a turnstile.
998  */
999 struct thread *
1000 turnstile_head(struct turnstile *ts, int queue)
1001 {
1002 #ifdef INVARIANTS
1003 
1004 	MPASS(ts != NULL);
1005 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1006 	mtx_assert(&ts->ts_lock, MA_OWNED);
1007 #endif
1008 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1009 }
1010 
1011 /*
1012  * Returns true if a sub-queue of a turnstile is empty.
1013  */
1014 int
1015 turnstile_empty(struct turnstile *ts, int queue)
1016 {
1017 #ifdef INVARIANTS
1018 
1019 	MPASS(ts != NULL);
1020 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1021 	mtx_assert(&ts->ts_lock, MA_OWNED);
1022 #endif
1023 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1024 }
1025 
1026 #ifdef DDB
1027 static void
1028 print_thread(struct thread *td, const char *prefix)
1029 {
1030 
1031 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1032 	    td->td_proc->p_pid, td->td_name);
1033 }
1034 
1035 static void
1036 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1037 {
1038 	struct thread *td;
1039 
1040 	db_printf("%s:\n", header);
1041 	if (TAILQ_EMPTY(queue)) {
1042 		db_printf("%sempty\n", prefix);
1043 		return;
1044 	}
1045 	TAILQ_FOREACH(td, queue, td_lockq) {
1046 		print_thread(td, prefix);
1047 	}
1048 }
1049 
1050 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1051 {
1052 	struct turnstile_chain *tc;
1053 	struct turnstile *ts;
1054 	struct lock_object *lock;
1055 	int i;
1056 
1057 	if (!have_addr)
1058 		return;
1059 
1060 	/*
1061 	 * First, see if there is an active turnstile for the lock indicated
1062 	 * by the address.
1063 	 */
1064 	lock = (struct lock_object *)addr;
1065 	tc = TC_LOOKUP(lock);
1066 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1067 		if (ts->ts_lockobj == lock)
1068 			goto found;
1069 
1070 	/*
1071 	 * Second, see if there is an active turnstile at the address
1072 	 * indicated.
1073 	 */
1074 	for (i = 0; i < TC_TABLESIZE; i++)
1075 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1076 			if (ts == (struct turnstile *)addr)
1077 				goto found;
1078 		}
1079 
1080 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1081 	return;
1082 found:
1083 	lock = ts->ts_lockobj;
1084 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1085 	    lock->lo_name);
1086 	if (ts->ts_owner)
1087 		print_thread(ts->ts_owner, "Lock Owner: ");
1088 	else
1089 		db_printf("Lock Owner: none\n");
1090 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1091 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1092 	    "\t");
1093 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1094 
1095 }
1096 
1097 /*
1098  * Show all the threads a particular thread is waiting on based on
1099  * non-sleepable and non-spin locks.
1100  */
1101 static void
1102 print_lockchain(struct thread *td, const char *prefix)
1103 {
1104 	struct lock_object *lock;
1105 	struct lock_class *class;
1106 	struct turnstile *ts;
1107 
1108 	/*
1109 	 * Follow the chain.  We keep walking as long as the thread is
1110 	 * blocked on a turnstile that has an owner.
1111 	 */
1112 	while (!db_pager_quit) {
1113 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1114 		    td->td_proc->p_pid, td->td_name);
1115 		switch (td->td_state) {
1116 		case TDS_INACTIVE:
1117 			db_printf("is inactive\n");
1118 			return;
1119 		case TDS_CAN_RUN:
1120 			db_printf("can run\n");
1121 			return;
1122 		case TDS_RUNQ:
1123 			db_printf("is on a run queue\n");
1124 			return;
1125 		case TDS_RUNNING:
1126 			db_printf("running on CPU %d\n", td->td_oncpu);
1127 			return;
1128 		case TDS_INHIBITED:
1129 			if (TD_ON_LOCK(td)) {
1130 				ts = td->td_blocked;
1131 				lock = ts->ts_lockobj;
1132 				class = LOCK_CLASS(lock);
1133 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1134 				    lock, class->lc_name, lock->lo_name);
1135 				if (ts->ts_owner == NULL)
1136 					return;
1137 				td = ts->ts_owner;
1138 				break;
1139 			}
1140 			db_printf("inhibited\n");
1141 			return;
1142 		default:
1143 			db_printf("??? (%#x)\n", td->td_state);
1144 			return;
1145 		}
1146 	}
1147 }
1148 
1149 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1150 {
1151 	struct thread *td;
1152 
1153 	/* Figure out which thread to start with. */
1154 	if (have_addr)
1155 		td = db_lookup_thread(addr, true);
1156 	else
1157 		td = kdb_thread;
1158 
1159 	print_lockchain(td, "");
1160 }
1161 
1162 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1163 {
1164 	struct thread *td;
1165 	struct proc *p;
1166 	int i;
1167 
1168 	i = 1;
1169 	FOREACH_PROC_IN_SYSTEM(p) {
1170 		FOREACH_THREAD_IN_PROC(p, td) {
1171 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1172 				db_printf("chain %d:\n", i++);
1173 				print_lockchain(td, " ");
1174 			}
1175 			if (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td)) {
1176 				db_printf("chain %d:\n", i++);
1177 				print_sleepchain(td, " ");
1178 			}
1179 			if (db_pager_quit)
1180 				return;
1181 		}
1182 	}
1183 }
1184 DB_SHOW_ALIAS(allchains, db_show_allchains)
1185 
1186 /*
1187  * Show all the threads a particular thread is waiting on based on
1188  * sleepable locks.
1189  */
1190 static void
1191 print_sleepchain(struct thread *td, const char *prefix)
1192 {
1193 	struct thread *owner;
1194 
1195 	/*
1196 	 * Follow the chain.  We keep walking as long as the thread is
1197 	 * blocked on a sleep lock that has an owner.
1198 	 */
1199 	while (!db_pager_quit) {
1200 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1201 		    td->td_proc->p_pid, td->td_name);
1202 		switch (td->td_state) {
1203 		case TDS_INACTIVE:
1204 			db_printf("is inactive\n");
1205 			return;
1206 		case TDS_CAN_RUN:
1207 			db_printf("can run\n");
1208 			return;
1209 		case TDS_RUNQ:
1210 			db_printf("is on a run queue\n");
1211 			return;
1212 		case TDS_RUNNING:
1213 			db_printf("running on CPU %d\n", td->td_oncpu);
1214 			return;
1215 		case TDS_INHIBITED:
1216 			if (TD_ON_SLEEPQ(td)) {
1217 				if (lockmgr_chain(td, &owner) ||
1218 				    sx_chain(td, &owner)) {
1219 					if (owner == NULL)
1220 						return;
1221 					td = owner;
1222 					break;
1223 				}
1224 				db_printf("sleeping on %p \"%s\"\n",
1225 				    td->td_wchan, td->td_wmesg);
1226 				return;
1227 			}
1228 			db_printf("inhibited\n");
1229 			return;
1230 		default:
1231 			db_printf("??? (%#x)\n", td->td_state);
1232 			return;
1233 		}
1234 	}
1235 }
1236 
1237 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1238 {
1239 	struct thread *td;
1240 
1241 	/* Figure out which thread to start with. */
1242 	if (have_addr)
1243 		td = db_lookup_thread(addr, true);
1244 	else
1245 		td = kdb_thread;
1246 
1247 	print_sleepchain(td, "");
1248 }
1249 
1250 static void	print_waiters(struct turnstile *ts, int indent);
1251 
1252 static void
1253 print_waiter(struct thread *td, int indent)
1254 {
1255 	struct turnstile *ts;
1256 	int i;
1257 
1258 	if (db_pager_quit)
1259 		return;
1260 	for (i = 0; i < indent; i++)
1261 		db_printf(" ");
1262 	print_thread(td, "thread ");
1263 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1264 		print_waiters(ts, indent + 1);
1265 }
1266 
1267 static void
1268 print_waiters(struct turnstile *ts, int indent)
1269 {
1270 	struct lock_object *lock;
1271 	struct lock_class *class;
1272 	struct thread *td;
1273 	int i;
1274 
1275 	if (db_pager_quit)
1276 		return;
1277 	lock = ts->ts_lockobj;
1278 	class = LOCK_CLASS(lock);
1279 	for (i = 0; i < indent; i++)
1280 		db_printf(" ");
1281 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1282 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1283 		print_waiter(td, indent + 1);
1284 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1285 		print_waiter(td, indent + 1);
1286 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1287 		print_waiter(td, indent + 1);
1288 }
1289 
1290 DB_SHOW_COMMAND(locktree, db_show_locktree)
1291 {
1292 	struct lock_object *lock;
1293 	struct lock_class *class;
1294 	struct turnstile_chain *tc;
1295 	struct turnstile *ts;
1296 
1297 	if (!have_addr)
1298 		return;
1299 	lock = (struct lock_object *)addr;
1300 	tc = TC_LOOKUP(lock);
1301 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1302 		if (ts->ts_lockobj == lock)
1303 			break;
1304 	if (ts == NULL) {
1305 		class = LOCK_CLASS(lock);
1306 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1307 		    lock->lo_name);
1308 	} else
1309 		print_waiters(ts, 0);
1310 }
1311 #endif
1312