1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Berkeley Software Design Inc's name may not be used to endorse or 15 * promote products derived from this software without specific prior 16 * written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 31 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 32 */ 33 34 /* 35 * Implementation of turnstiles used to hold queue of threads blocked on 36 * non-sleepable locks. Sleepable locks use condition variables to 37 * implement their queues. Turnstiles differ from a sleep queue in that 38 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 39 * when one thread is enqueued onto a turnstile, it can lend its priority 40 * to the owning thread. 41 * 42 * We wish to avoid bloating locks with an embedded turnstile and we do not 43 * want to use back-pointers in the locks for the same reason. Thus, we 44 * use a similar approach to that of Solaris 7 as described in Solaris 45 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 46 * in a hash table based on the address of the lock. Each entry in the 47 * hash table is a linked-lists of turnstiles and is called a turnstile 48 * chain. Each chain contains a spin mutex that protects all of the 49 * turnstiles in the chain. 50 * 51 * Each time a thread is created, a turnstile is allocated from a UMA zone 52 * and attached to that thread. When a thread blocks on a lock, if it is the 53 * first thread to block, it lends its turnstile to the lock. If the lock 54 * already has a turnstile, then it gives its turnstile to the lock's 55 * turnstile's free list. When a thread is woken up, it takes a turnstile from 56 * the free list if there are any other waiters. If it is the only thread 57 * blocked on the lock, then it reclaims the turnstile associated with the lock 58 * and removes it from the hash table. 59 */ 60 61 #include <sys/cdefs.h> 62 __FBSDID("$FreeBSD$"); 63 64 #include "opt_ddb.h" 65 #include "opt_turnstile_profiling.h" 66 #include "opt_sched.h" 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kdb.h> 71 #include <sys/kernel.h> 72 #include <sys/ktr.h> 73 #include <sys/lock.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/queue.h> 77 #include <sys/sched.h> 78 #include <sys/sdt.h> 79 #include <sys/sysctl.h> 80 #include <sys/turnstile.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #include <sys/lockmgr.h> 87 #include <sys/sx.h> 88 #endif 89 90 /* 91 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 92 * number chosen because the sleep queue's use the same value for the 93 * shift. Basically, we ignore the lower 8 bits of the address. 94 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 95 */ 96 #define TC_TABLESIZE 128 /* Must be power of 2. */ 97 #define TC_MASK (TC_TABLESIZE - 1) 98 #define TC_SHIFT 8 99 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 100 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 101 102 /* 103 * There are three different lists of turnstiles as follows. The list 104 * connected by ts_link entries is a per-thread list of all the turnstiles 105 * attached to locks that we own. This is used to fixup our priority when 106 * a lock is released. The other two lists use the ts_hash entries. The 107 * first of these two is the turnstile chain list that a turnstile is on 108 * when it is attached to a lock. The second list to use ts_hash is the 109 * free list hung off of a turnstile that is attached to a lock. 110 * 111 * Each turnstile contains three lists of threads. The two ts_blocked lists 112 * are linked list of threads blocked on the turnstile's lock. One list is 113 * for exclusive waiters, and the other is for shared waiters. The 114 * ts_pending list is a linked list of threads previously awakened by 115 * turnstile_signal() or turnstile_wait() that are waiting to be put on 116 * the run queue. 117 * 118 * Locking key: 119 * c - turnstile chain lock 120 * q - td_contested lock 121 */ 122 struct turnstile { 123 struct mtx ts_lock; /* Spin lock for self. */ 124 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 125 struct threadqueue ts_pending; /* (c) Pending threads. */ 126 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 127 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 128 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 129 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 130 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 131 }; 132 133 struct turnstile_chain { 134 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 135 struct mtx tc_lock; /* Spin lock for this chain. */ 136 #ifdef TURNSTILE_PROFILING 137 u_int tc_depth; /* Length of tc_queues. */ 138 u_int tc_max_depth; /* Max length of tc_queues. */ 139 #endif 140 }; 141 142 #ifdef TURNSTILE_PROFILING 143 u_int turnstile_max_depth; 144 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 145 "turnstile profiling"); 146 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, 147 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 148 "turnstile chain stats"); 149 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 150 &turnstile_max_depth, 0, "maximum depth achieved of a single chain"); 151 #endif 152 static struct mtx td_contested_lock; 153 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 154 static uma_zone_t turnstile_zone; 155 156 /* 157 * Prototypes for non-exported routines. 158 */ 159 static void init_turnstile0(void *dummy); 160 #ifdef TURNSTILE_PROFILING 161 static void init_turnstile_profiling(void *arg); 162 #endif 163 static void propagate_priority(struct thread *td); 164 static int turnstile_adjust_thread(struct turnstile *ts, 165 struct thread *td); 166 static struct thread *turnstile_first_waiter(struct turnstile *ts); 167 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 168 #ifdef INVARIANTS 169 static void turnstile_dtor(void *mem, int size, void *arg); 170 #endif 171 static int turnstile_init(void *mem, int size, int flags); 172 static void turnstile_fini(void *mem, int size); 173 174 SDT_PROVIDER_DECLARE(sched); 175 SDT_PROBE_DEFINE(sched, , , sleep); 176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *", 177 "struct proc *"); 178 179 static inline void 180 propagate_unlock_ts(struct turnstile *top, struct turnstile *ts) 181 { 182 183 if (ts != top) 184 mtx_unlock_spin(&ts->ts_lock); 185 } 186 187 static inline void 188 propagate_unlock_td(struct turnstile *top, struct thread *td) 189 { 190 191 if (td->td_lock != &top->ts_lock) 192 thread_unlock(td); 193 } 194 195 /* 196 * Walks the chain of turnstiles and their owners to propagate the priority 197 * of the thread being blocked to all the threads holding locks that have to 198 * release their locks before this thread can run again. 199 */ 200 static void 201 propagate_priority(struct thread *td) 202 { 203 struct turnstile *ts, *top; 204 int pri; 205 206 THREAD_LOCK_ASSERT(td, MA_OWNED); 207 pri = td->td_priority; 208 top = ts = td->td_blocked; 209 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 210 211 /* 212 * The original turnstile lock is held across the entire 213 * operation. We only ever lock down the chain so the lock 214 * order is constant. 215 */ 216 for (;;) { 217 td = ts->ts_owner; 218 219 if (td == NULL) { 220 /* 221 * This might be a read lock with no owner. There's 222 * not much we can do, so just bail. 223 */ 224 propagate_unlock_ts(top, ts); 225 return; 226 } 227 228 /* 229 * Wait for the thread lock to be stable and then only 230 * acquire if it is not the turnstile lock. 231 */ 232 thread_lock_block_wait(td); 233 if (td->td_lock != &ts->ts_lock) { 234 thread_lock_flags(td, MTX_DUPOK); 235 propagate_unlock_ts(top, ts); 236 } 237 MPASS(td->td_proc != NULL); 238 MPASS(td->td_proc->p_magic == P_MAGIC); 239 240 /* 241 * If the thread is asleep, then we are probably about 242 * to deadlock. To make debugging this easier, show 243 * backtrace of misbehaving thread and panic to not 244 * leave the kernel deadlocked. 245 */ 246 if (TD_IS_SLEEPING(td)) { 247 printf( 248 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 249 td->td_tid, td->td_proc->p_pid); 250 kdb_backtrace_thread(td); 251 panic("sleeping thread"); 252 } 253 254 /* 255 * If this thread already has higher priority than the 256 * thread that is being blocked, we are finished. 257 */ 258 if (td->td_priority <= pri) { 259 propagate_unlock_td(top, td); 260 return; 261 } 262 263 /* 264 * Bump this thread's priority. 265 */ 266 sched_lend_prio(td, pri); 267 268 /* 269 * If lock holder is actually running or on the run queue 270 * then we are done. 271 */ 272 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 273 MPASS(td->td_blocked == NULL); 274 propagate_unlock_td(top, td); 275 return; 276 } 277 278 #ifndef SMP 279 /* 280 * For UP, we check to see if td is curthread (this shouldn't 281 * ever happen however as it would mean we are in a deadlock.) 282 */ 283 KASSERT(td != curthread, ("Deadlock detected")); 284 #endif 285 286 /* 287 * If we aren't blocked on a lock, we should be. 288 */ 289 KASSERT(TD_ON_LOCK(td), ( 290 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 291 td->td_tid, td->td_name, TD_GET_STATE(td), 292 ts->ts_lockobj->lo_name)); 293 294 /* 295 * Pick up the lock that td is blocked on. 296 */ 297 ts = td->td_blocked; 298 MPASS(ts != NULL); 299 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 300 /* Resort td on the list if needed. */ 301 if (!turnstile_adjust_thread(ts, td)) { 302 propagate_unlock_ts(top, ts); 303 return; 304 } 305 /* The thread lock is released as ts lock above. */ 306 } 307 } 308 309 /* 310 * Adjust the thread's position on a turnstile after its priority has been 311 * changed. 312 */ 313 static int 314 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 315 { 316 struct thread *td1, *td2; 317 int queue; 318 319 THREAD_LOCK_ASSERT(td, MA_OWNED); 320 MPASS(TD_ON_LOCK(td)); 321 322 /* 323 * This thread may not be blocked on this turnstile anymore 324 * but instead might already be woken up on another CPU 325 * that is waiting on the thread lock in turnstile_unpend() to 326 * finish waking this thread up. We can detect this case 327 * by checking to see if this thread has been given a 328 * turnstile by either turnstile_signal() or 329 * turnstile_broadcast(). In this case, treat the thread as 330 * if it was already running. 331 */ 332 if (td->td_turnstile != NULL) 333 return (0); 334 335 /* 336 * Check if the thread needs to be moved on the blocked chain. 337 * It needs to be moved if either its priority is lower than 338 * the previous thread or higher than the next thread. 339 */ 340 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 341 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 342 td2 = TAILQ_NEXT(td, td_lockq); 343 if ((td1 != NULL && td->td_priority < td1->td_priority) || 344 (td2 != NULL && td->td_priority > td2->td_priority)) { 345 /* 346 * Remove thread from blocked chain and determine where 347 * it should be moved to. 348 */ 349 queue = td->td_tsqueue; 350 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 351 mtx_lock_spin(&td_contested_lock); 352 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 353 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 354 MPASS(td1->td_proc->p_magic == P_MAGIC); 355 if (td1->td_priority > td->td_priority) 356 break; 357 } 358 359 if (td1 == NULL) 360 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 361 else 362 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 363 mtx_unlock_spin(&td_contested_lock); 364 if (td1 == NULL) 365 CTR3(KTR_LOCK, 366 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 367 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 368 else 369 CTR4(KTR_LOCK, 370 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 371 td->td_tid, td1->td_tid, ts->ts_lockobj, 372 ts->ts_lockobj->lo_name); 373 } 374 return (1); 375 } 376 377 /* 378 * Early initialization of turnstiles. This is not done via a SYSINIT() 379 * since this needs to be initialized very early when mutexes are first 380 * initialized. 381 */ 382 void 383 init_turnstiles(void) 384 { 385 int i; 386 387 for (i = 0; i < TC_TABLESIZE; i++) { 388 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 389 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 390 NULL, MTX_SPIN); 391 } 392 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 393 LIST_INIT(&thread0.td_contested); 394 thread0.td_turnstile = NULL; 395 } 396 397 #ifdef TURNSTILE_PROFILING 398 static void 399 init_turnstile_profiling(void *arg) 400 { 401 struct sysctl_oid *chain_oid; 402 char chain_name[10]; 403 int i; 404 405 for (i = 0; i < TC_TABLESIZE; i++) { 406 snprintf(chain_name, sizeof(chain_name), "%d", i); 407 chain_oid = SYSCTL_ADD_NODE(NULL, 408 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 409 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 410 "turnstile chain stats"); 411 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 412 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 413 NULL); 414 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 415 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 416 0, NULL); 417 } 418 } 419 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 420 init_turnstile_profiling, NULL); 421 #endif 422 423 static void 424 init_turnstile0(void *dummy) 425 { 426 427 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 428 NULL, 429 #ifdef INVARIANTS 430 turnstile_dtor, 431 #else 432 NULL, 433 #endif 434 turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 435 thread0.td_turnstile = turnstile_alloc(); 436 } 437 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 438 439 /* 440 * Update a thread on the turnstile list after it's priority has been changed. 441 * The old priority is passed in as an argument. 442 */ 443 void 444 turnstile_adjust(struct thread *td, u_char oldpri) 445 { 446 struct turnstile *ts; 447 448 MPASS(TD_ON_LOCK(td)); 449 450 /* 451 * Pick up the lock that td is blocked on. 452 */ 453 ts = td->td_blocked; 454 MPASS(ts != NULL); 455 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 456 mtx_assert(&ts->ts_lock, MA_OWNED); 457 458 /* Resort the turnstile on the list. */ 459 if (!turnstile_adjust_thread(ts, td)) 460 return; 461 /* 462 * If our priority was lowered and we are at the head of the 463 * turnstile, then propagate our new priority up the chain. 464 * Note that we currently don't try to revoke lent priorities 465 * when our priority goes up. 466 */ 467 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 468 td->td_tsqueue == TS_SHARED_QUEUE); 469 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 470 td->td_priority < oldpri) { 471 propagate_priority(td); 472 } 473 } 474 475 /* 476 * Set the owner of the lock this turnstile is attached to. 477 */ 478 static void 479 turnstile_setowner(struct turnstile *ts, struct thread *owner) 480 { 481 482 mtx_assert(&td_contested_lock, MA_OWNED); 483 MPASS(ts->ts_owner == NULL); 484 485 /* A shared lock might not have an owner. */ 486 if (owner == NULL) 487 return; 488 489 MPASS(owner->td_proc->p_magic == P_MAGIC); 490 ts->ts_owner = owner; 491 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 492 } 493 494 #ifdef INVARIANTS 495 /* 496 * UMA zone item deallocator. 497 */ 498 static void 499 turnstile_dtor(void *mem, int size, void *arg) 500 { 501 struct turnstile *ts; 502 503 ts = mem; 504 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 505 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 506 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 507 } 508 #endif 509 510 /* 511 * UMA zone item initializer. 512 */ 513 static int 514 turnstile_init(void *mem, int size, int flags) 515 { 516 struct turnstile *ts; 517 518 bzero(mem, size); 519 ts = mem; 520 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 521 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 522 TAILQ_INIT(&ts->ts_pending); 523 LIST_INIT(&ts->ts_free); 524 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN); 525 return (0); 526 } 527 528 static void 529 turnstile_fini(void *mem, int size) 530 { 531 struct turnstile *ts; 532 533 ts = mem; 534 mtx_destroy(&ts->ts_lock); 535 } 536 537 /* 538 * Get a turnstile for a new thread. 539 */ 540 struct turnstile * 541 turnstile_alloc(void) 542 { 543 544 return (uma_zalloc(turnstile_zone, M_WAITOK)); 545 } 546 547 /* 548 * Free a turnstile when a thread is destroyed. 549 */ 550 void 551 turnstile_free(struct turnstile *ts) 552 { 553 554 uma_zfree(turnstile_zone, ts); 555 } 556 557 /* 558 * Lock the turnstile chain associated with the specified lock. 559 */ 560 void 561 turnstile_chain_lock(struct lock_object *lock) 562 { 563 struct turnstile_chain *tc; 564 565 tc = TC_LOOKUP(lock); 566 mtx_lock_spin(&tc->tc_lock); 567 } 568 569 struct turnstile * 570 turnstile_trywait(struct lock_object *lock) 571 { 572 struct turnstile_chain *tc; 573 struct turnstile *ts; 574 575 tc = TC_LOOKUP(lock); 576 mtx_lock_spin(&tc->tc_lock); 577 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 578 if (ts->ts_lockobj == lock) { 579 mtx_lock_spin(&ts->ts_lock); 580 return (ts); 581 } 582 583 ts = curthread->td_turnstile; 584 MPASS(ts != NULL); 585 mtx_lock_spin(&ts->ts_lock); 586 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 587 ts->ts_lockobj = lock; 588 589 return (ts); 590 } 591 592 bool 593 turnstile_lock(struct turnstile *ts, struct lock_object **lockp, 594 struct thread **tdp) 595 { 596 struct turnstile_chain *tc; 597 struct lock_object *lock; 598 599 if ((lock = ts->ts_lockobj) == NULL) 600 return (false); 601 tc = TC_LOOKUP(lock); 602 mtx_lock_spin(&tc->tc_lock); 603 mtx_lock_spin(&ts->ts_lock); 604 if (__predict_false(lock != ts->ts_lockobj)) { 605 mtx_unlock_spin(&tc->tc_lock); 606 mtx_unlock_spin(&ts->ts_lock); 607 return (false); 608 } 609 *lockp = lock; 610 *tdp = ts->ts_owner; 611 return (true); 612 } 613 614 void 615 turnstile_unlock(struct turnstile *ts, struct lock_object *lock) 616 { 617 struct turnstile_chain *tc; 618 619 mtx_assert(&ts->ts_lock, MA_OWNED); 620 mtx_unlock_spin(&ts->ts_lock); 621 if (ts == curthread->td_turnstile) 622 ts->ts_lockobj = NULL; 623 tc = TC_LOOKUP(lock); 624 mtx_unlock_spin(&tc->tc_lock); 625 } 626 627 void 628 turnstile_assert(struct turnstile *ts) 629 { 630 MPASS(ts->ts_lockobj == NULL); 631 } 632 633 void 634 turnstile_cancel(struct turnstile *ts) 635 { 636 struct turnstile_chain *tc; 637 struct lock_object *lock; 638 639 mtx_assert(&ts->ts_lock, MA_OWNED); 640 641 mtx_unlock_spin(&ts->ts_lock); 642 lock = ts->ts_lockobj; 643 if (ts == curthread->td_turnstile) 644 ts->ts_lockobj = NULL; 645 tc = TC_LOOKUP(lock); 646 mtx_unlock_spin(&tc->tc_lock); 647 } 648 649 /* 650 * Look up the turnstile for a lock in the hash table locking the associated 651 * turnstile chain along the way. If no turnstile is found in the hash 652 * table, NULL is returned. 653 */ 654 struct turnstile * 655 turnstile_lookup(struct lock_object *lock) 656 { 657 struct turnstile_chain *tc; 658 struct turnstile *ts; 659 660 tc = TC_LOOKUP(lock); 661 mtx_assert(&tc->tc_lock, MA_OWNED); 662 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 663 if (ts->ts_lockobj == lock) { 664 mtx_lock_spin(&ts->ts_lock); 665 return (ts); 666 } 667 return (NULL); 668 } 669 670 /* 671 * Unlock the turnstile chain associated with a given lock. 672 */ 673 void 674 turnstile_chain_unlock(struct lock_object *lock) 675 { 676 struct turnstile_chain *tc; 677 678 tc = TC_LOOKUP(lock); 679 mtx_unlock_spin(&tc->tc_lock); 680 } 681 682 /* 683 * Return a pointer to the thread waiting on this turnstile with the 684 * most important priority or NULL if the turnstile has no waiters. 685 */ 686 static struct thread * 687 turnstile_first_waiter(struct turnstile *ts) 688 { 689 struct thread *std, *xtd; 690 691 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 692 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 693 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 694 return (std); 695 return (xtd); 696 } 697 698 /* 699 * Take ownership of a turnstile and adjust the priority of the new 700 * owner appropriately. 701 */ 702 void 703 turnstile_claim(struct turnstile *ts) 704 { 705 struct thread *td, *owner; 706 struct turnstile_chain *tc; 707 708 mtx_assert(&ts->ts_lock, MA_OWNED); 709 MPASS(ts != curthread->td_turnstile); 710 711 owner = curthread; 712 mtx_lock_spin(&td_contested_lock); 713 turnstile_setowner(ts, owner); 714 mtx_unlock_spin(&td_contested_lock); 715 716 td = turnstile_first_waiter(ts); 717 MPASS(td != NULL); 718 MPASS(td->td_proc->p_magic == P_MAGIC); 719 THREAD_LOCKPTR_BLOCKED_ASSERT(td, &ts->ts_lock); 720 721 /* 722 * Update the priority of the new owner if needed. 723 */ 724 thread_lock(owner); 725 if (td->td_priority < owner->td_priority) 726 sched_lend_prio(owner, td->td_priority); 727 thread_unlock(owner); 728 tc = TC_LOOKUP(ts->ts_lockobj); 729 mtx_unlock_spin(&ts->ts_lock); 730 mtx_unlock_spin(&tc->tc_lock); 731 } 732 733 /* 734 * Block the current thread on the turnstile assicated with 'lock'. This 735 * function will context switch and not return until this thread has been 736 * woken back up. This function must be called with the appropriate 737 * turnstile chain locked and will return with it unlocked. 738 */ 739 void 740 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue) 741 { 742 struct turnstile_chain *tc; 743 struct thread *td, *td1; 744 struct lock_object *lock; 745 746 td = curthread; 747 mtx_assert(&ts->ts_lock, MA_OWNED); 748 if (owner) 749 MPASS(owner->td_proc->p_magic == P_MAGIC); 750 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 751 752 /* 753 * If the lock does not already have a turnstile, use this thread's 754 * turnstile. Otherwise insert the current thread into the 755 * turnstile already in use by this lock. 756 */ 757 tc = TC_LOOKUP(ts->ts_lockobj); 758 mtx_assert(&tc->tc_lock, MA_OWNED); 759 if (ts == td->td_turnstile) { 760 #ifdef TURNSTILE_PROFILING 761 tc->tc_depth++; 762 if (tc->tc_depth > tc->tc_max_depth) { 763 tc->tc_max_depth = tc->tc_depth; 764 if (tc->tc_max_depth > turnstile_max_depth) 765 turnstile_max_depth = tc->tc_max_depth; 766 } 767 #endif 768 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 769 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 770 ("thread's turnstile has pending threads")); 771 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 772 ("thread's turnstile has exclusive waiters")); 773 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 774 ("thread's turnstile has shared waiters")); 775 KASSERT(LIST_EMPTY(&ts->ts_free), 776 ("thread's turnstile has a non-empty free list")); 777 MPASS(ts->ts_lockobj != NULL); 778 mtx_lock_spin(&td_contested_lock); 779 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 780 turnstile_setowner(ts, owner); 781 mtx_unlock_spin(&td_contested_lock); 782 } else { 783 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 784 if (td1->td_priority > td->td_priority) 785 break; 786 mtx_lock_spin(&td_contested_lock); 787 if (td1 != NULL) 788 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 789 else 790 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 791 MPASS(owner == ts->ts_owner); 792 mtx_unlock_spin(&td_contested_lock); 793 MPASS(td->td_turnstile != NULL); 794 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 795 } 796 thread_lock(td); 797 thread_lock_set(td, &ts->ts_lock); 798 td->td_turnstile = NULL; 799 800 /* Save who we are blocked on and switch. */ 801 lock = ts->ts_lockobj; 802 td->td_tsqueue = queue; 803 td->td_blocked = ts; 804 td->td_lockname = lock->lo_name; 805 td->td_blktick = ticks; 806 TD_SET_LOCK(td); 807 mtx_unlock_spin(&tc->tc_lock); 808 propagate_priority(td); 809 810 if (LOCK_LOG_TEST(lock, 0)) 811 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 812 td->td_tid, lock, lock->lo_name); 813 814 SDT_PROBE0(sched, , , sleep); 815 816 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 817 mi_switch(SW_VOL | SWT_TURNSTILE); 818 819 if (LOCK_LOG_TEST(lock, 0)) 820 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 821 __func__, td->td_tid, lock, lock->lo_name); 822 } 823 824 /* 825 * Pick the highest priority thread on this turnstile and put it on the 826 * pending list. This must be called with the turnstile chain locked. 827 */ 828 int 829 turnstile_signal(struct turnstile *ts, int queue) 830 { 831 struct turnstile_chain *tc __unused; 832 struct thread *td; 833 int empty; 834 835 MPASS(ts != NULL); 836 mtx_assert(&ts->ts_lock, MA_OWNED); 837 MPASS(curthread->td_proc->p_magic == P_MAGIC); 838 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 839 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 840 841 /* 842 * Pick the highest priority thread blocked on this lock and 843 * move it to the pending list. 844 */ 845 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 846 MPASS(td->td_proc->p_magic == P_MAGIC); 847 mtx_lock_spin(&td_contested_lock); 848 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 849 mtx_unlock_spin(&td_contested_lock); 850 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 851 852 /* 853 * If the turnstile is now empty, remove it from its chain and 854 * give it to the about-to-be-woken thread. Otherwise take a 855 * turnstile from the free list and give it to the thread. 856 */ 857 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 858 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 859 if (empty) { 860 tc = TC_LOOKUP(ts->ts_lockobj); 861 mtx_assert(&tc->tc_lock, MA_OWNED); 862 MPASS(LIST_EMPTY(&ts->ts_free)); 863 #ifdef TURNSTILE_PROFILING 864 tc->tc_depth--; 865 #endif 866 } else 867 ts = LIST_FIRST(&ts->ts_free); 868 MPASS(ts != NULL); 869 LIST_REMOVE(ts, ts_hash); 870 td->td_turnstile = ts; 871 872 return (empty); 873 } 874 875 /* 876 * Put all blocked threads on the pending list. This must be called with 877 * the turnstile chain locked. 878 */ 879 void 880 turnstile_broadcast(struct turnstile *ts, int queue) 881 { 882 struct turnstile_chain *tc __unused; 883 struct turnstile *ts1; 884 struct thread *td; 885 886 MPASS(ts != NULL); 887 mtx_assert(&ts->ts_lock, MA_OWNED); 888 MPASS(curthread->td_proc->p_magic == P_MAGIC); 889 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 890 /* 891 * We must have the chain locked so that we can remove the empty 892 * turnstile from the hash queue. 893 */ 894 tc = TC_LOOKUP(ts->ts_lockobj); 895 mtx_assert(&tc->tc_lock, MA_OWNED); 896 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 897 898 /* 899 * Transfer the blocked list to the pending list. 900 */ 901 mtx_lock_spin(&td_contested_lock); 902 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 903 mtx_unlock_spin(&td_contested_lock); 904 905 /* 906 * Give a turnstile to each thread. The last thread gets 907 * this turnstile if the turnstile is empty. 908 */ 909 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 910 if (LIST_EMPTY(&ts->ts_free)) { 911 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 912 ts1 = ts; 913 #ifdef TURNSTILE_PROFILING 914 tc->tc_depth--; 915 #endif 916 } else 917 ts1 = LIST_FIRST(&ts->ts_free); 918 MPASS(ts1 != NULL); 919 LIST_REMOVE(ts1, ts_hash); 920 td->td_turnstile = ts1; 921 } 922 } 923 924 static u_char 925 turnstile_calc_unlend_prio_locked(struct thread *td) 926 { 927 struct turnstile *nts; 928 u_char cp, pri; 929 930 THREAD_LOCK_ASSERT(td, MA_OWNED); 931 mtx_assert(&td_contested_lock, MA_OWNED); 932 933 pri = PRI_MAX; 934 LIST_FOREACH(nts, &td->td_contested, ts_link) { 935 cp = turnstile_first_waiter(nts)->td_priority; 936 if (cp < pri) 937 pri = cp; 938 } 939 return (pri); 940 } 941 942 /* 943 * Wakeup all threads on the pending list and adjust the priority of the 944 * current thread appropriately. This must be called with the turnstile 945 * chain locked. 946 */ 947 void 948 turnstile_unpend(struct turnstile *ts) 949 { 950 TAILQ_HEAD( ,thread) pending_threads; 951 struct thread *td; 952 u_char pri; 953 954 MPASS(ts != NULL); 955 mtx_assert(&ts->ts_lock, MA_OWNED); 956 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 957 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 958 959 /* 960 * Move the list of pending threads out of the turnstile and 961 * into a local variable. 962 */ 963 TAILQ_INIT(&pending_threads); 964 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 965 #ifdef INVARIANTS 966 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 967 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 968 ts->ts_lockobj = NULL; 969 #endif 970 /* 971 * Adjust the priority of curthread based on other contested 972 * locks it owns. Don't lower the priority below the base 973 * priority however. 974 */ 975 td = curthread; 976 thread_lock(td); 977 mtx_lock_spin(&td_contested_lock); 978 /* 979 * Remove the turnstile from this thread's list of contested locks 980 * since this thread doesn't own it anymore. New threads will 981 * not be blocking on the turnstile until it is claimed by a new 982 * owner. There might not be a current owner if this is a shared 983 * lock. 984 */ 985 if (ts->ts_owner != NULL) { 986 ts->ts_owner = NULL; 987 LIST_REMOVE(ts, ts_link); 988 } 989 pri = turnstile_calc_unlend_prio_locked(td); 990 mtx_unlock_spin(&td_contested_lock); 991 sched_unlend_prio(td, pri); 992 thread_unlock(td); 993 /* 994 * Wake up all the pending threads. If a thread is not blocked 995 * on a lock, then it is currently executing on another CPU in 996 * turnstile_wait() or sitting on a run queue waiting to resume 997 * in turnstile_wait(). Set a flag to force it to try to acquire 998 * the lock again instead of blocking. 999 */ 1000 while (!TAILQ_EMPTY(&pending_threads)) { 1001 td = TAILQ_FIRST(&pending_threads); 1002 TAILQ_REMOVE(&pending_threads, td, td_lockq); 1003 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 1004 thread_lock_block_wait(td); 1005 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 1006 MPASS(td->td_proc->p_magic == P_MAGIC); 1007 MPASS(TD_ON_LOCK(td)); 1008 TD_CLR_LOCK(td); 1009 MPASS(TD_CAN_RUN(td)); 1010 td->td_blocked = NULL; 1011 td->td_lockname = NULL; 1012 td->td_blktick = 0; 1013 #ifdef INVARIANTS 1014 td->td_tsqueue = 0xff; 1015 #endif 1016 sched_add(td, SRQ_HOLD | SRQ_BORING); 1017 } 1018 mtx_unlock_spin(&ts->ts_lock); 1019 } 1020 1021 /* 1022 * Give up ownership of a turnstile. This must be called with the 1023 * turnstile chain locked. 1024 */ 1025 void 1026 turnstile_disown(struct turnstile *ts) 1027 { 1028 struct thread *td; 1029 u_char pri; 1030 1031 MPASS(ts != NULL); 1032 mtx_assert(&ts->ts_lock, MA_OWNED); 1033 MPASS(ts->ts_owner == curthread); 1034 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 1035 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 1036 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 1037 1038 /* 1039 * Remove the turnstile from this thread's list of contested locks 1040 * since this thread doesn't own it anymore. New threads will 1041 * not be blocking on the turnstile until it is claimed by a new 1042 * owner. 1043 */ 1044 mtx_lock_spin(&td_contested_lock); 1045 ts->ts_owner = NULL; 1046 LIST_REMOVE(ts, ts_link); 1047 mtx_unlock_spin(&td_contested_lock); 1048 1049 /* 1050 * Adjust the priority of curthread based on other contested 1051 * locks it owns. Don't lower the priority below the base 1052 * priority however. 1053 */ 1054 td = curthread; 1055 thread_lock(td); 1056 mtx_unlock_spin(&ts->ts_lock); 1057 mtx_lock_spin(&td_contested_lock); 1058 pri = turnstile_calc_unlend_prio_locked(td); 1059 mtx_unlock_spin(&td_contested_lock); 1060 sched_unlend_prio(td, pri); 1061 thread_unlock(td); 1062 } 1063 1064 /* 1065 * Return the first thread in a turnstile. 1066 */ 1067 struct thread * 1068 turnstile_head(struct turnstile *ts, int queue) 1069 { 1070 #ifdef INVARIANTS 1071 1072 MPASS(ts != NULL); 1073 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1074 mtx_assert(&ts->ts_lock, MA_OWNED); 1075 #endif 1076 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 1077 } 1078 1079 /* 1080 * Returns true if a sub-queue of a turnstile is empty. 1081 */ 1082 int 1083 turnstile_empty(struct turnstile *ts, int queue) 1084 { 1085 #ifdef INVARIANTS 1086 1087 MPASS(ts != NULL); 1088 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1089 mtx_assert(&ts->ts_lock, MA_OWNED); 1090 #endif 1091 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1092 } 1093 1094 #ifdef DDB 1095 static void 1096 print_thread(struct thread *td, const char *prefix) 1097 { 1098 1099 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1100 td->td_proc->p_pid, td->td_name); 1101 } 1102 1103 static void 1104 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1105 { 1106 struct thread *td; 1107 1108 db_printf("%s:\n", header); 1109 if (TAILQ_EMPTY(queue)) { 1110 db_printf("%sempty\n", prefix); 1111 return; 1112 } 1113 TAILQ_FOREACH(td, queue, td_lockq) { 1114 print_thread(td, prefix); 1115 } 1116 } 1117 1118 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1119 { 1120 struct turnstile_chain *tc; 1121 struct turnstile *ts; 1122 struct lock_object *lock; 1123 int i; 1124 1125 if (!have_addr) 1126 return; 1127 1128 /* 1129 * First, see if there is an active turnstile for the lock indicated 1130 * by the address. 1131 */ 1132 lock = (struct lock_object *)addr; 1133 tc = TC_LOOKUP(lock); 1134 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1135 if (ts->ts_lockobj == lock) 1136 goto found; 1137 1138 /* 1139 * Second, see if there is an active turnstile at the address 1140 * indicated. 1141 */ 1142 for (i = 0; i < TC_TABLESIZE; i++) 1143 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1144 if (ts == (struct turnstile *)addr) 1145 goto found; 1146 } 1147 1148 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1149 return; 1150 found: 1151 lock = ts->ts_lockobj; 1152 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1153 lock->lo_name); 1154 if (ts->ts_owner) 1155 print_thread(ts->ts_owner, "Lock Owner: "); 1156 else 1157 db_printf("Lock Owner: none\n"); 1158 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1159 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1160 "\t"); 1161 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1162 1163 } 1164 1165 /* 1166 * Show all the threads a particular thread is waiting on based on 1167 * non-spin locks. 1168 */ 1169 static void 1170 print_lockchain(struct thread *td, const char *prefix) 1171 { 1172 struct lock_object *lock; 1173 struct lock_class *class; 1174 struct turnstile *ts; 1175 struct thread *owner; 1176 1177 /* 1178 * Follow the chain. We keep walking as long as the thread is 1179 * blocked on a lock that has an owner. 1180 */ 1181 while (!db_pager_quit) { 1182 if (td == (void *)LK_KERNPROC) { 1183 db_printf("%sdisowned (LK_KERNPROC)\n", prefix); 1184 return; 1185 } 1186 db_printf("%sthread %d (pid %d, %s) is ", prefix, td->td_tid, 1187 td->td_proc->p_pid, td->td_name); 1188 switch (TD_GET_STATE(td)) { 1189 case TDS_INACTIVE: 1190 db_printf("inactive\n"); 1191 return; 1192 case TDS_CAN_RUN: 1193 db_printf("runnable\n"); 1194 return; 1195 case TDS_RUNQ: 1196 db_printf("on a run queue\n"); 1197 return; 1198 case TDS_RUNNING: 1199 db_printf("running on CPU %d\n", td->td_oncpu); 1200 return; 1201 case TDS_INHIBITED: 1202 if (TD_ON_LOCK(td)) { 1203 ts = td->td_blocked; 1204 lock = ts->ts_lockobj; 1205 class = LOCK_CLASS(lock); 1206 db_printf("blocked on lock %p (%s) \"%s\"\n", 1207 lock, class->lc_name, lock->lo_name); 1208 if (ts->ts_owner == NULL) 1209 return; 1210 td = ts->ts_owner; 1211 break; 1212 } else if (TD_ON_SLEEPQ(td)) { 1213 if (!lockmgr_chain(td, &owner) && 1214 !sx_chain(td, &owner)) { 1215 db_printf("sleeping on %p \"%s\"\n", 1216 td->td_wchan, td->td_wmesg); 1217 return; 1218 } 1219 if (owner == NULL) 1220 return; 1221 td = owner; 1222 break; 1223 } 1224 db_printf("inhibited: %s\n", KTDSTATE(td)); 1225 return; 1226 default: 1227 db_printf("??? (%#x)\n", TD_GET_STATE(td)); 1228 return; 1229 } 1230 } 1231 } 1232 1233 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1234 { 1235 struct thread *td; 1236 1237 /* Figure out which thread to start with. */ 1238 if (have_addr) 1239 td = db_lookup_thread(addr, true); 1240 else 1241 td = kdb_thread; 1242 1243 print_lockchain(td, ""); 1244 } 1245 DB_SHOW_ALIAS(sleepchain, db_show_lockchain); 1246 1247 DB_SHOW_ALL_COMMAND(chains, db_show_allchains) 1248 { 1249 struct thread *td; 1250 struct proc *p; 1251 int i; 1252 1253 i = 1; 1254 FOREACH_PROC_IN_SYSTEM(p) { 1255 FOREACH_THREAD_IN_PROC(p, td) { 1256 if ((TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) 1257 || (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td))) { 1258 db_printf("chain %d:\n", i++); 1259 print_lockchain(td, " "); 1260 } 1261 if (db_pager_quit) 1262 return; 1263 } 1264 } 1265 } 1266 DB_SHOW_ALIAS_FLAGS(allchains, db_show_allchains, DB_CMD_MEMSAFE); 1267 1268 static void print_waiters(struct turnstile *ts, int indent); 1269 1270 static void 1271 print_waiter(struct thread *td, int indent) 1272 { 1273 struct turnstile *ts; 1274 int i; 1275 1276 if (db_pager_quit) 1277 return; 1278 for (i = 0; i < indent; i++) 1279 db_printf(" "); 1280 print_thread(td, "thread "); 1281 LIST_FOREACH(ts, &td->td_contested, ts_link) 1282 print_waiters(ts, indent + 1); 1283 } 1284 1285 static void 1286 print_waiters(struct turnstile *ts, int indent) 1287 { 1288 struct lock_object *lock; 1289 struct lock_class *class; 1290 struct thread *td; 1291 int i; 1292 1293 if (db_pager_quit) 1294 return; 1295 lock = ts->ts_lockobj; 1296 class = LOCK_CLASS(lock); 1297 for (i = 0; i < indent; i++) 1298 db_printf(" "); 1299 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1300 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1301 print_waiter(td, indent + 1); 1302 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1303 print_waiter(td, indent + 1); 1304 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1305 print_waiter(td, indent + 1); 1306 } 1307 1308 DB_SHOW_COMMAND(locktree, db_show_locktree) 1309 { 1310 struct lock_object *lock; 1311 struct lock_class *class; 1312 struct turnstile_chain *tc; 1313 struct turnstile *ts; 1314 1315 if (!have_addr) 1316 return; 1317 lock = (struct lock_object *)addr; 1318 tc = TC_LOOKUP(lock); 1319 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1320 if (ts->ts_lockobj == lock) 1321 break; 1322 if (ts == NULL) { 1323 class = LOCK_CLASS(lock); 1324 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1325 lock->lo_name); 1326 } else 1327 print_waiters(ts, 0); 1328 } 1329 #endif 1330