1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is allocated from a UMA zone 50 * and attached to that thread. When a thread blocks on a lock, if it is the 51 * first thread to block, it lends its turnstile to the lock. If the lock 52 * already has a turnstile, then it gives its turnstile to the lock's 53 * turnstile's free list. When a thread is woken up, it takes a turnstile from 54 * the free list if there are any other waiters. If it is the only thread 55 * blocked on the lock, then it reclaims the turnstile associated with the lock 56 * and removes it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_turnstile_profiling.h" 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/mutex.h> 71 #include <sys/proc.h> 72 #include <sys/queue.h> 73 #include <sys/sched.h> 74 #include <sys/sysctl.h> 75 #include <sys/turnstile.h> 76 77 #include <vm/uma.h> 78 79 #ifdef DDB 80 #include <sys/kdb.h> 81 #include <ddb/ddb.h> 82 #include <sys/lockmgr.h> 83 #include <sys/sx.h> 84 #endif 85 86 /* 87 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 88 * number chosen because the sleep queue's use the same value for the 89 * shift. Basically, we ignore the lower 8 bits of the address. 90 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 91 */ 92 #define TC_TABLESIZE 128 /* Must be power of 2. */ 93 #define TC_MASK (TC_TABLESIZE - 1) 94 #define TC_SHIFT 8 95 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 96 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 97 98 /* 99 * There are three different lists of turnstiles as follows. The list 100 * connected by ts_link entries is a per-thread list of all the turnstiles 101 * attached to locks that we own. This is used to fixup our priority when 102 * a lock is released. The other two lists use the ts_hash entries. The 103 * first of these two is the turnstile chain list that a turnstile is on 104 * when it is attached to a lock. The second list to use ts_hash is the 105 * free list hung off of a turnstile that is attached to a lock. 106 * 107 * Each turnstile contains three lists of threads. The two ts_blocked lists 108 * are linked list of threads blocked on the turnstile's lock. One list is 109 * for exclusive waiters, and the other is for shared waiters. The 110 * ts_pending list is a linked list of threads previously awakened by 111 * turnstile_signal() or turnstile_wait() that are waiting to be put on 112 * the run queue. 113 * 114 * Locking key: 115 * c - turnstile chain lock 116 * q - td_contested lock 117 */ 118 struct turnstile { 119 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 120 struct threadqueue ts_pending; /* (c) Pending threads. */ 121 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 122 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 123 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 124 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 125 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 126 }; 127 128 struct turnstile_chain { 129 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 130 struct mtx tc_lock; /* Spin lock for this chain. */ 131 #ifdef TURNSTILE_PROFILING 132 u_int tc_depth; /* Length of tc_queues. */ 133 u_int tc_max_depth; /* Max length of tc_queues. */ 134 #endif 135 }; 136 137 #ifdef TURNSTILE_PROFILING 138 u_int turnstile_max_depth; 139 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling"); 140 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 141 "turnstile chain stats"); 142 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 143 &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain"); 144 #endif 145 static struct mtx td_contested_lock; 146 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 147 static uma_zone_t turnstile_zone; 148 149 /* 150 * Prototypes for non-exported routines. 151 */ 152 static void init_turnstile0(void *dummy); 153 #ifdef TURNSTILE_PROFILING 154 static void init_turnstile_profiling(void *arg); 155 #endif 156 static void propagate_priority(struct thread *td); 157 static int turnstile_adjust_thread(struct turnstile *ts, 158 struct thread *td); 159 static struct thread *turnstile_first_waiter(struct turnstile *ts); 160 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 161 #ifdef INVARIANTS 162 static void turnstile_dtor(void *mem, int size, void *arg); 163 #endif 164 static int turnstile_init(void *mem, int size, int flags); 165 166 /* 167 * Walks the chain of turnstiles and their owners to propagate the priority 168 * of the thread being blocked to all the threads holding locks that have to 169 * release their locks before this thread can run again. 170 */ 171 static void 172 propagate_priority(struct thread *td) 173 { 174 struct turnstile_chain *tc; 175 struct turnstile *ts; 176 int pri; 177 178 mtx_assert(&sched_lock, MA_OWNED); 179 pri = td->td_priority; 180 ts = td->td_blocked; 181 for (;;) { 182 td = ts->ts_owner; 183 184 if (td == NULL) { 185 /* 186 * This might be a read lock with no owner. There's 187 * not much we can do, so just bail. 188 */ 189 return; 190 } 191 192 MPASS(td->td_proc != NULL); 193 MPASS(td->td_proc->p_magic == P_MAGIC); 194 195 /* 196 * If the thread is asleep, then we are probably about 197 * to deadlock. To make debugging this easier, just 198 * panic and tell the user which thread misbehaved so 199 * they can hopefully get a stack trace from the truly 200 * misbehaving thread. 201 */ 202 if (TD_IS_SLEEPING(td)) { 203 printf( 204 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 205 td->td_tid, td->td_proc->p_pid); 206 #ifdef DDB 207 db_trace_thread(td, -1); 208 #endif 209 panic("sleeping thread"); 210 } 211 212 /* 213 * If this thread already has higher priority than the 214 * thread that is being blocked, we are finished. 215 */ 216 if (td->td_priority <= pri) 217 return; 218 219 /* 220 * Bump this thread's priority. 221 */ 222 sched_lend_prio(td, pri); 223 224 /* 225 * If lock holder is actually running or on the run queue 226 * then we are done. 227 */ 228 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 229 MPASS(td->td_blocked == NULL); 230 return; 231 } 232 233 #ifndef SMP 234 /* 235 * For UP, we check to see if td is curthread (this shouldn't 236 * ever happen however as it would mean we are in a deadlock.) 237 */ 238 KASSERT(td != curthread, ("Deadlock detected")); 239 #endif 240 241 /* 242 * If we aren't blocked on a lock, we should be. 243 */ 244 KASSERT(TD_ON_LOCK(td), ( 245 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 246 td->td_tid, td->td_proc->p_comm, td->td_state, 247 ts->ts_lockobj->lo_name)); 248 249 /* 250 * Pick up the lock that td is blocked on. 251 */ 252 ts = td->td_blocked; 253 MPASS(ts != NULL); 254 tc = TC_LOOKUP(ts->ts_lockobj); 255 mtx_lock_spin(&tc->tc_lock); 256 257 /* Resort td on the list if needed. */ 258 if (!turnstile_adjust_thread(ts, td)) { 259 mtx_unlock_spin(&tc->tc_lock); 260 return; 261 } 262 mtx_unlock_spin(&tc->tc_lock); 263 } 264 } 265 266 /* 267 * Adjust the thread's position on a turnstile after its priority has been 268 * changed. 269 */ 270 static int 271 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 272 { 273 struct turnstile_chain *tc; 274 struct thread *td1, *td2; 275 int queue; 276 277 mtx_assert(&sched_lock, MA_OWNED); 278 MPASS(TD_ON_LOCK(td)); 279 280 /* 281 * This thread may not be blocked on this turnstile anymore 282 * but instead might already be woken up on another CPU 283 * that is waiting on sched_lock in turnstile_unpend() to 284 * finish waking this thread up. We can detect this case 285 * by checking to see if this thread has been given a 286 * turnstile by either turnstile_signal() or 287 * turnstile_broadcast(). In this case, treat the thread as 288 * if it was already running. 289 */ 290 if (td->td_turnstile != NULL) 291 return (0); 292 293 /* 294 * Check if the thread needs to be moved on the blocked chain. 295 * It needs to be moved if either its priority is lower than 296 * the previous thread or higher than the next thread. 297 */ 298 tc = TC_LOOKUP(ts->ts_lockobj); 299 mtx_assert(&tc->tc_lock, MA_OWNED); 300 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 301 td2 = TAILQ_NEXT(td, td_lockq); 302 if ((td1 != NULL && td->td_priority < td1->td_priority) || 303 (td2 != NULL && td->td_priority > td2->td_priority)) { 304 305 /* 306 * Remove thread from blocked chain and determine where 307 * it should be moved to. 308 */ 309 queue = td->td_tsqueue; 310 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 311 mtx_lock_spin(&td_contested_lock); 312 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 313 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 314 MPASS(td1->td_proc->p_magic == P_MAGIC); 315 if (td1->td_priority > td->td_priority) 316 break; 317 } 318 319 if (td1 == NULL) 320 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 321 else 322 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 323 mtx_unlock_spin(&td_contested_lock); 324 if (td1 == NULL) 325 CTR3(KTR_LOCK, 326 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 327 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 328 else 329 CTR4(KTR_LOCK, 330 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 331 td->td_tid, td1->td_tid, ts->ts_lockobj, 332 ts->ts_lockobj->lo_name); 333 } 334 return (1); 335 } 336 337 /* 338 * Early initialization of turnstiles. This is not done via a SYSINIT() 339 * since this needs to be initialized very early when mutexes are first 340 * initialized. 341 */ 342 void 343 init_turnstiles(void) 344 { 345 int i; 346 347 for (i = 0; i < TC_TABLESIZE; i++) { 348 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 349 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 350 NULL, MTX_SPIN); 351 } 352 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 353 LIST_INIT(&thread0.td_contested); 354 thread0.td_turnstile = NULL; 355 } 356 357 #ifdef TURNSTILE_PROFILING 358 static void 359 init_turnstile_profiling(void *arg) 360 { 361 struct sysctl_oid *chain_oid; 362 char chain_name[10]; 363 int i; 364 365 for (i = 0; i < TC_TABLESIZE; i++) { 366 snprintf(chain_name, sizeof(chain_name), "%d", i); 367 chain_oid = SYSCTL_ADD_NODE(NULL, 368 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 369 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 370 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 371 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 372 NULL); 373 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 374 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 375 0, NULL); 376 } 377 } 378 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 379 init_turnstile_profiling, NULL); 380 #endif 381 382 static void 383 init_turnstile0(void *dummy) 384 { 385 386 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 387 #ifdef INVARIANTS 388 NULL, turnstile_dtor, turnstile_init, NULL, UMA_ALIGN_CACHE, 0); 389 #else 390 NULL, NULL, turnstile_init, NULL, UMA_ALIGN_CACHE, 0); 391 #endif 392 thread0.td_turnstile = turnstile_alloc(); 393 } 394 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 395 396 /* 397 * Update a thread on the turnstile list after it's priority has been changed. 398 * The old priority is passed in as an argument. 399 */ 400 void 401 turnstile_adjust(struct thread *td, u_char oldpri) 402 { 403 struct turnstile_chain *tc; 404 struct turnstile *ts; 405 406 mtx_assert(&sched_lock, MA_OWNED); 407 MPASS(TD_ON_LOCK(td)); 408 409 /* 410 * Pick up the lock that td is blocked on. 411 */ 412 ts = td->td_blocked; 413 MPASS(ts != NULL); 414 tc = TC_LOOKUP(ts->ts_lockobj); 415 mtx_lock_spin(&tc->tc_lock); 416 417 /* Resort the turnstile on the list. */ 418 if (!turnstile_adjust_thread(ts, td)) { 419 mtx_unlock_spin(&tc->tc_lock); 420 return; 421 } 422 423 /* 424 * If our priority was lowered and we are at the head of the 425 * turnstile, then propagate our new priority up the chain. 426 * Note that we currently don't try to revoke lent priorities 427 * when our priority goes up. 428 */ 429 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 430 td->td_tsqueue == TS_SHARED_QUEUE); 431 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 432 td->td_priority < oldpri) { 433 mtx_unlock_spin(&tc->tc_lock); 434 critical_enter(); 435 propagate_priority(td); 436 critical_exit(); 437 } else 438 mtx_unlock_spin(&tc->tc_lock); 439 } 440 441 /* 442 * Set the owner of the lock this turnstile is attached to. 443 */ 444 static void 445 turnstile_setowner(struct turnstile *ts, struct thread *owner) 446 { 447 448 mtx_assert(&td_contested_lock, MA_OWNED); 449 MPASS(ts->ts_owner == NULL); 450 451 /* A shared lock might not have an owner. */ 452 if (owner == NULL) 453 return; 454 455 MPASS(owner->td_proc->p_magic == P_MAGIC); 456 ts->ts_owner = owner; 457 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 458 } 459 460 #ifdef INVARIANTS 461 /* 462 * UMA zone item deallocator. 463 */ 464 static void 465 turnstile_dtor(void *mem, int size, void *arg) 466 { 467 struct turnstile *ts; 468 469 ts = mem; 470 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 471 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 472 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 473 } 474 #endif 475 476 /* 477 * UMA zone item initializer. 478 */ 479 static int 480 turnstile_init(void *mem, int size, int flags) 481 { 482 struct turnstile *ts; 483 484 bzero(mem, size); 485 ts = mem; 486 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 487 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 488 TAILQ_INIT(&ts->ts_pending); 489 LIST_INIT(&ts->ts_free); 490 return (0); 491 } 492 493 /* 494 * Get a turnstile for a new thread. 495 */ 496 struct turnstile * 497 turnstile_alloc(void) 498 { 499 500 return (uma_zalloc(turnstile_zone, M_WAITOK)); 501 } 502 503 /* 504 * Free a turnstile when a thread is destroyed. 505 */ 506 void 507 turnstile_free(struct turnstile *ts) 508 { 509 510 uma_zfree(turnstile_zone, ts); 511 } 512 513 /* 514 * Lock the turnstile chain associated with the specified lock. 515 */ 516 void 517 turnstile_lock(struct lock_object *lock) 518 { 519 struct turnstile_chain *tc; 520 521 tc = TC_LOOKUP(lock); 522 mtx_lock_spin(&tc->tc_lock); 523 } 524 525 /* 526 * Look up the turnstile for a lock in the hash table locking the associated 527 * turnstile chain along the way. If no turnstile is found in the hash 528 * table, NULL is returned. 529 */ 530 struct turnstile * 531 turnstile_lookup(struct lock_object *lock) 532 { 533 struct turnstile_chain *tc; 534 struct turnstile *ts; 535 536 tc = TC_LOOKUP(lock); 537 mtx_assert(&tc->tc_lock, MA_OWNED); 538 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 539 if (ts->ts_lockobj == lock) 540 return (ts); 541 return (NULL); 542 } 543 544 /* 545 * Unlock the turnstile chain associated with a given lock. 546 */ 547 void 548 turnstile_release(struct lock_object *lock) 549 { 550 struct turnstile_chain *tc; 551 552 tc = TC_LOOKUP(lock); 553 mtx_unlock_spin(&tc->tc_lock); 554 } 555 556 /* 557 * Return a pointer to the thread waiting on this turnstile with the 558 * most important priority or NULL if the turnstile has no waiters. 559 */ 560 static struct thread * 561 turnstile_first_waiter(struct turnstile *ts) 562 { 563 struct thread *std, *xtd; 564 565 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 566 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 567 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 568 return (std); 569 return (xtd); 570 } 571 572 /* 573 * Take ownership of a turnstile and adjust the priority of the new 574 * owner appropriately. 575 */ 576 void 577 turnstile_claim(struct lock_object *lock) 578 { 579 struct turnstile_chain *tc; 580 struct turnstile *ts; 581 struct thread *td, *owner; 582 583 tc = TC_LOOKUP(lock); 584 mtx_assert(&tc->tc_lock, MA_OWNED); 585 ts = turnstile_lookup(lock); 586 MPASS(ts != NULL); 587 588 owner = curthread; 589 mtx_lock_spin(&td_contested_lock); 590 turnstile_setowner(ts, owner); 591 mtx_unlock_spin(&td_contested_lock); 592 593 td = turnstile_first_waiter(ts); 594 MPASS(td != NULL); 595 MPASS(td->td_proc->p_magic == P_MAGIC); 596 mtx_unlock_spin(&tc->tc_lock); 597 598 /* 599 * Update the priority of the new owner if needed. 600 */ 601 mtx_lock_spin(&sched_lock); 602 if (td->td_priority < owner->td_priority) 603 sched_lend_prio(owner, td->td_priority); 604 mtx_unlock_spin(&sched_lock); 605 } 606 607 /* 608 * Block the current thread on the turnstile assicated with 'lock'. This 609 * function will context switch and not return until this thread has been 610 * woken back up. This function must be called with the appropriate 611 * turnstile chain locked and will return with it unlocked. 612 */ 613 void 614 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue) 615 { 616 struct turnstile_chain *tc; 617 struct turnstile *ts; 618 struct thread *td, *td1; 619 620 td = curthread; 621 tc = TC_LOOKUP(lock); 622 mtx_assert(&tc->tc_lock, MA_OWNED); 623 MPASS(td->td_turnstile != NULL); 624 if (queue == TS_SHARED_QUEUE) 625 MPASS(owner != NULL); 626 if (owner) 627 MPASS(owner->td_proc->p_magic == P_MAGIC); 628 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 629 630 /* Look up the turnstile associated with the lock 'lock'. */ 631 ts = turnstile_lookup(lock); 632 633 /* 634 * If the lock does not already have a turnstile, use this thread's 635 * turnstile. Otherwise insert the current thread into the 636 * turnstile already in use by this lock. 637 */ 638 if (ts == NULL) { 639 #ifdef TURNSTILE_PROFILING 640 tc->tc_depth++; 641 if (tc->tc_depth > tc->tc_max_depth) { 642 tc->tc_max_depth = tc->tc_depth; 643 if (tc->tc_max_depth > turnstile_max_depth) 644 turnstile_max_depth = tc->tc_max_depth; 645 } 646 #endif 647 ts = td->td_turnstile; 648 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 649 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 650 ("thread's turnstile has pending threads")); 651 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 652 ("thread's turnstile has exclusive waiters")); 653 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 654 ("thread's turnstile has shared waiters")); 655 KASSERT(LIST_EMPTY(&ts->ts_free), 656 ("thread's turnstile has a non-empty free list")); 657 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 658 ts->ts_lockobj = lock; 659 mtx_lock_spin(&td_contested_lock); 660 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 661 turnstile_setowner(ts, owner); 662 mtx_unlock_spin(&td_contested_lock); 663 } else { 664 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 665 if (td1->td_priority > td->td_priority) 666 break; 667 mtx_lock_spin(&td_contested_lock); 668 if (td1 != NULL) 669 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 670 else 671 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 672 MPASS(owner == ts->ts_owner); 673 mtx_unlock_spin(&td_contested_lock); 674 MPASS(td->td_turnstile != NULL); 675 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 676 } 677 td->td_turnstile = NULL; 678 mtx_unlock_spin(&tc->tc_lock); 679 680 mtx_lock_spin(&sched_lock); 681 /* 682 * Handle race condition where a thread on another CPU that owns 683 * lock 'lock' could have woken us in between us dropping the 684 * turnstile chain lock and acquiring the sched_lock. 685 */ 686 if (td->td_flags & TDF_TSNOBLOCK) { 687 td->td_flags &= ~TDF_TSNOBLOCK; 688 mtx_unlock_spin(&sched_lock); 689 return; 690 } 691 692 #ifdef notyet 693 /* 694 * If we're borrowing an interrupted thread's VM context, we 695 * must clean up before going to sleep. 696 */ 697 if (td->td_ithd != NULL) { 698 struct ithd *it = td->td_ithd; 699 700 if (it->it_interrupted) { 701 if (LOCK_LOG_TEST(lock, 0)) 702 CTR3(KTR_LOCK, "%s: %p interrupted %p", 703 __func__, it, it->it_interrupted); 704 intr_thd_fixup(it); 705 } 706 } 707 #endif 708 709 /* Save who we are blocked on and switch. */ 710 td->td_tsqueue = queue; 711 td->td_blocked = ts; 712 td->td_lockname = lock->lo_name; 713 TD_SET_LOCK(td); 714 critical_enter(); 715 propagate_priority(td); 716 critical_exit(); 717 718 if (LOCK_LOG_TEST(lock, 0)) 719 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 720 td->td_tid, lock, lock->lo_name); 721 722 mi_switch(SW_VOL, NULL); 723 724 if (LOCK_LOG_TEST(lock, 0)) 725 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 726 __func__, td->td_tid, lock, lock->lo_name); 727 728 mtx_unlock_spin(&sched_lock); 729 } 730 731 /* 732 * Pick the highest priority thread on this turnstile and put it on the 733 * pending list. This must be called with the turnstile chain locked. 734 */ 735 int 736 turnstile_signal(struct turnstile *ts, int queue) 737 { 738 struct turnstile_chain *tc; 739 struct thread *td; 740 int empty; 741 742 MPASS(ts != NULL); 743 MPASS(curthread->td_proc->p_magic == P_MAGIC); 744 MPASS(ts->ts_owner == curthread || 745 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 746 tc = TC_LOOKUP(ts->ts_lockobj); 747 mtx_assert(&tc->tc_lock, MA_OWNED); 748 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 749 750 /* 751 * Pick the highest priority thread blocked on this lock and 752 * move it to the pending list. 753 */ 754 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 755 MPASS(td->td_proc->p_magic == P_MAGIC); 756 mtx_lock_spin(&td_contested_lock); 757 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 758 mtx_unlock_spin(&td_contested_lock); 759 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 760 761 /* 762 * If the turnstile is now empty, remove it from its chain and 763 * give it to the about-to-be-woken thread. Otherwise take a 764 * turnstile from the free list and give it to the thread. 765 */ 766 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 767 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 768 if (empty) { 769 MPASS(LIST_EMPTY(&ts->ts_free)); 770 #ifdef TURNSTILE_PROFILING 771 tc->tc_depth--; 772 #endif 773 } else 774 ts = LIST_FIRST(&ts->ts_free); 775 MPASS(ts != NULL); 776 LIST_REMOVE(ts, ts_hash); 777 td->td_turnstile = ts; 778 779 return (empty); 780 } 781 782 /* 783 * Put all blocked threads on the pending list. This must be called with 784 * the turnstile chain locked. 785 */ 786 void 787 turnstile_broadcast(struct turnstile *ts, int queue) 788 { 789 struct turnstile_chain *tc; 790 struct turnstile *ts1; 791 struct thread *td; 792 793 MPASS(ts != NULL); 794 MPASS(curthread->td_proc->p_magic == P_MAGIC); 795 MPASS(ts->ts_owner == curthread || 796 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 797 tc = TC_LOOKUP(ts->ts_lockobj); 798 mtx_assert(&tc->tc_lock, MA_OWNED); 799 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 800 801 /* 802 * Transfer the blocked list to the pending list. 803 */ 804 mtx_lock_spin(&td_contested_lock); 805 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 806 mtx_unlock_spin(&td_contested_lock); 807 808 /* 809 * Give a turnstile to each thread. The last thread gets 810 * this turnstile if the turnstile is empty. 811 */ 812 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 813 if (LIST_EMPTY(&ts->ts_free)) { 814 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 815 ts1 = ts; 816 #ifdef TURNSTILE_PROFILING 817 tc->tc_depth--; 818 #endif 819 } else 820 ts1 = LIST_FIRST(&ts->ts_free); 821 MPASS(ts1 != NULL); 822 LIST_REMOVE(ts1, ts_hash); 823 td->td_turnstile = ts1; 824 } 825 } 826 827 /* 828 * Wakeup all threads on the pending list and adjust the priority of the 829 * current thread appropriately. This must be called with the turnstile 830 * chain locked. 831 */ 832 void 833 turnstile_unpend(struct turnstile *ts, int owner_type) 834 { 835 TAILQ_HEAD( ,thread) pending_threads; 836 struct turnstile_chain *tc; 837 struct thread *td; 838 u_char cp, pri; 839 840 MPASS(ts != NULL); 841 MPASS(ts->ts_owner == curthread || 842 (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL)); 843 tc = TC_LOOKUP(ts->ts_lockobj); 844 mtx_assert(&tc->tc_lock, MA_OWNED); 845 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 846 847 /* 848 * Move the list of pending threads out of the turnstile and 849 * into a local variable. 850 */ 851 TAILQ_INIT(&pending_threads); 852 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 853 #ifdef INVARIANTS 854 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 855 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 856 ts->ts_lockobj = NULL; 857 #endif 858 859 /* 860 * Remove the turnstile from this thread's list of contested locks 861 * since this thread doesn't own it anymore. New threads will 862 * not be blocking on the turnstile until it is claimed by a new 863 * owner. There might not be a current owner if this is a shared 864 * lock. 865 */ 866 if (ts->ts_owner != NULL) { 867 mtx_lock_spin(&td_contested_lock); 868 ts->ts_owner = NULL; 869 LIST_REMOVE(ts, ts_link); 870 mtx_unlock_spin(&td_contested_lock); 871 } 872 critical_enter(); 873 mtx_unlock_spin(&tc->tc_lock); 874 875 /* 876 * Adjust the priority of curthread based on other contested 877 * locks it owns. Don't lower the priority below the base 878 * priority however. 879 */ 880 td = curthread; 881 pri = PRI_MAX; 882 mtx_lock_spin(&sched_lock); 883 mtx_lock_spin(&td_contested_lock); 884 LIST_FOREACH(ts, &td->td_contested, ts_link) { 885 cp = turnstile_first_waiter(ts)->td_priority; 886 if (cp < pri) 887 pri = cp; 888 } 889 mtx_unlock_spin(&td_contested_lock); 890 sched_unlend_prio(td, pri); 891 892 /* 893 * Wake up all the pending threads. If a thread is not blocked 894 * on a lock, then it is currently executing on another CPU in 895 * turnstile_wait() or sitting on a run queue waiting to resume 896 * in turnstile_wait(). Set a flag to force it to try to acquire 897 * the lock again instead of blocking. 898 */ 899 while (!TAILQ_EMPTY(&pending_threads)) { 900 td = TAILQ_FIRST(&pending_threads); 901 TAILQ_REMOVE(&pending_threads, td, td_lockq); 902 MPASS(td->td_proc->p_magic == P_MAGIC); 903 if (TD_ON_LOCK(td)) { 904 td->td_blocked = NULL; 905 td->td_lockname = NULL; 906 #ifdef INVARIANTS 907 td->td_tsqueue = 0xff; 908 #endif 909 TD_CLR_LOCK(td); 910 MPASS(TD_CAN_RUN(td)); 911 sched_add(td, SRQ_BORING); 912 } else { 913 td->td_flags |= TDF_TSNOBLOCK; 914 MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td)); 915 } 916 } 917 critical_exit(); 918 mtx_unlock_spin(&sched_lock); 919 } 920 921 /* 922 * Give up ownership of a turnstile. This must be called with the 923 * turnstile chain locked. 924 */ 925 void 926 turnstile_disown(struct turnstile *ts) 927 { 928 struct turnstile_chain *tc; 929 struct thread *td; 930 u_char cp, pri; 931 932 MPASS(ts != NULL); 933 MPASS(ts->ts_owner == curthread); 934 tc = TC_LOOKUP(ts->ts_lockobj); 935 mtx_assert(&tc->tc_lock, MA_OWNED); 936 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 937 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 938 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 939 940 /* 941 * Remove the turnstile from this thread's list of contested locks 942 * since this thread doesn't own it anymore. New threads will 943 * not be blocking on the turnstile until it is claimed by a new 944 * owner. 945 */ 946 mtx_lock_spin(&td_contested_lock); 947 ts->ts_owner = NULL; 948 LIST_REMOVE(ts, ts_link); 949 mtx_unlock_spin(&td_contested_lock); 950 mtx_unlock_spin(&tc->tc_lock); 951 952 /* 953 * Adjust the priority of curthread based on other contested 954 * locks it owns. Don't lower the priority below the base 955 * priority however. 956 */ 957 td = curthread; 958 pri = PRI_MAX; 959 mtx_lock_spin(&sched_lock); 960 mtx_lock_spin(&td_contested_lock); 961 LIST_FOREACH(ts, &td->td_contested, ts_link) { 962 cp = turnstile_first_waiter(ts)->td_priority; 963 if (cp < pri) 964 pri = cp; 965 } 966 mtx_unlock_spin(&td_contested_lock); 967 sched_unlend_prio(td, pri); 968 mtx_unlock_spin(&sched_lock); 969 } 970 971 /* 972 * Return the first thread in a turnstile. 973 */ 974 struct thread * 975 turnstile_head(struct turnstile *ts, int queue) 976 { 977 #ifdef INVARIANTS 978 struct turnstile_chain *tc; 979 980 MPASS(ts != NULL); 981 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 982 tc = TC_LOOKUP(ts->ts_lockobj); 983 mtx_assert(&tc->tc_lock, MA_OWNED); 984 #endif 985 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 986 } 987 988 /* 989 * Returns true if a sub-queue of a turnstile is empty. 990 */ 991 int 992 turnstile_empty(struct turnstile *ts, int queue) 993 { 994 #ifdef INVARIANTS 995 struct turnstile_chain *tc; 996 997 MPASS(ts != NULL); 998 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 999 tc = TC_LOOKUP(ts->ts_lockobj); 1000 mtx_assert(&tc->tc_lock, MA_OWNED); 1001 #endif 1002 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1003 } 1004 1005 #ifdef DDB 1006 static void 1007 print_thread(struct thread *td, const char *prefix) 1008 { 1009 1010 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1011 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1012 td->td_proc->p_comm); 1013 } 1014 1015 static void 1016 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1017 { 1018 struct thread *td; 1019 1020 db_printf("%s:\n", header); 1021 if (TAILQ_EMPTY(queue)) { 1022 db_printf("%sempty\n", prefix); 1023 return; 1024 } 1025 TAILQ_FOREACH(td, queue, td_lockq) { 1026 print_thread(td, prefix); 1027 } 1028 } 1029 1030 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1031 { 1032 struct turnstile_chain *tc; 1033 struct turnstile *ts; 1034 struct lock_object *lock; 1035 int i; 1036 1037 if (!have_addr) 1038 return; 1039 1040 /* 1041 * First, see if there is an active turnstile for the lock indicated 1042 * by the address. 1043 */ 1044 lock = (struct lock_object *)addr; 1045 tc = TC_LOOKUP(lock); 1046 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1047 if (ts->ts_lockobj == lock) 1048 goto found; 1049 1050 /* 1051 * Second, see if there is an active turnstile at the address 1052 * indicated. 1053 */ 1054 for (i = 0; i < TC_TABLESIZE; i++) 1055 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1056 if (ts == (struct turnstile *)addr) 1057 goto found; 1058 } 1059 1060 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1061 return; 1062 found: 1063 lock = ts->ts_lockobj; 1064 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1065 lock->lo_name); 1066 if (ts->ts_owner) 1067 print_thread(ts->ts_owner, "Lock Owner: "); 1068 else 1069 db_printf("Lock Owner: none\n"); 1070 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1071 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1072 "\t"); 1073 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1074 1075 } 1076 1077 /* 1078 * Show all the threads a particular thread is waiting on based on 1079 * non-sleepable and non-spin locks. 1080 */ 1081 static void 1082 print_lockchain(struct thread *td, const char *prefix) 1083 { 1084 struct lock_object *lock; 1085 struct lock_class *class; 1086 struct turnstile *ts; 1087 1088 /* 1089 * Follow the chain. We keep walking as long as the thread is 1090 * blocked on a turnstile that has an owner. 1091 */ 1092 while (!db_pager_quit) { 1093 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1094 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1095 td->td_proc->p_comm); 1096 switch (td->td_state) { 1097 case TDS_INACTIVE: 1098 db_printf("is inactive\n"); 1099 return; 1100 case TDS_CAN_RUN: 1101 db_printf("can run\n"); 1102 return; 1103 case TDS_RUNQ: 1104 db_printf("is on a run queue\n"); 1105 return; 1106 case TDS_RUNNING: 1107 db_printf("running on CPU %d\n", td->td_oncpu); 1108 return; 1109 case TDS_INHIBITED: 1110 if (TD_ON_LOCK(td)) { 1111 ts = td->td_blocked; 1112 lock = ts->ts_lockobj; 1113 class = LOCK_CLASS(lock); 1114 db_printf("blocked on lock %p (%s) \"%s\"\n", 1115 lock, class->lc_name, lock->lo_name); 1116 if (ts->ts_owner == NULL) 1117 return; 1118 td = ts->ts_owner; 1119 break; 1120 } 1121 db_printf("inhibited\n"); 1122 return; 1123 default: 1124 db_printf("??? (%#x)\n", td->td_state); 1125 return; 1126 } 1127 } 1128 } 1129 1130 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1131 { 1132 struct thread *td; 1133 1134 /* Figure out which thread to start with. */ 1135 if (have_addr) 1136 td = db_lookup_thread(addr, TRUE); 1137 else 1138 td = kdb_thread; 1139 1140 print_lockchain(td, ""); 1141 } 1142 1143 DB_SHOW_COMMAND(allchains, db_show_allchains) 1144 { 1145 struct thread *td; 1146 struct proc *p; 1147 int i; 1148 1149 i = 1; 1150 FOREACH_PROC_IN_SYSTEM(p) { 1151 FOREACH_THREAD_IN_PROC(p, td) { 1152 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1153 db_printf("chain %d:\n", i++); 1154 print_lockchain(td, " "); 1155 } 1156 if (db_pager_quit) 1157 return; 1158 } 1159 } 1160 } 1161 1162 /* 1163 * Show all the threads a particular thread is waiting on based on 1164 * sleepable locks. 1165 */ 1166 static void 1167 print_sleepchain(struct thread *td, const char *prefix) 1168 { 1169 struct thread *owner; 1170 1171 /* 1172 * Follow the chain. We keep walking as long as the thread is 1173 * blocked on a sleep lock that has an owner. 1174 */ 1175 while (!db_pager_quit) { 1176 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1177 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1178 td->td_proc->p_comm); 1179 switch (td->td_state) { 1180 case TDS_INACTIVE: 1181 db_printf("is inactive\n"); 1182 return; 1183 case TDS_CAN_RUN: 1184 db_printf("can run\n"); 1185 return; 1186 case TDS_RUNQ: 1187 db_printf("is on a run queue\n"); 1188 return; 1189 case TDS_RUNNING: 1190 db_printf("running on CPU %d\n", td->td_oncpu); 1191 return; 1192 case TDS_INHIBITED: 1193 if (TD_ON_SLEEPQ(td)) { 1194 if (lockmgr_chain(td, &owner) || 1195 sx_chain(td, &owner)) { 1196 if (owner == NULL) 1197 return; 1198 td = owner; 1199 break; 1200 } 1201 db_printf("sleeping on %p \"%s\"\n", 1202 td->td_wchan, td->td_wmesg); 1203 return; 1204 } 1205 db_printf("inhibited\n"); 1206 return; 1207 default: 1208 db_printf("??? (%#x)\n", td->td_state); 1209 return; 1210 } 1211 } 1212 } 1213 1214 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain) 1215 { 1216 struct thread *td; 1217 1218 /* Figure out which thread to start with. */ 1219 if (have_addr) 1220 td = db_lookup_thread(addr, TRUE); 1221 else 1222 td = kdb_thread; 1223 1224 print_sleepchain(td, ""); 1225 } 1226 1227 static void print_waiters(struct turnstile *ts, int indent); 1228 1229 static void 1230 print_waiter(struct thread *td, int indent) 1231 { 1232 struct turnstile *ts; 1233 int i; 1234 1235 if (db_pager_quit) 1236 return; 1237 for (i = 0; i < indent; i++) 1238 db_printf(" "); 1239 print_thread(td, "thread "); 1240 LIST_FOREACH(ts, &td->td_contested, ts_link) 1241 print_waiters(ts, indent + 1); 1242 } 1243 1244 static void 1245 print_waiters(struct turnstile *ts, int indent) 1246 { 1247 struct lock_object *lock; 1248 struct lock_class *class; 1249 struct thread *td; 1250 int i; 1251 1252 if (db_pager_quit) 1253 return; 1254 lock = ts->ts_lockobj; 1255 class = LOCK_CLASS(lock); 1256 for (i = 0; i < indent; i++) 1257 db_printf(" "); 1258 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1259 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1260 print_waiter(td, indent + 1); 1261 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1262 print_waiter(td, indent + 1); 1263 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1264 print_waiter(td, indent + 1); 1265 } 1266 1267 DB_SHOW_COMMAND(locktree, db_show_locktree) 1268 { 1269 struct lock_object *lock; 1270 struct lock_class *class; 1271 struct turnstile_chain *tc; 1272 struct turnstile *ts; 1273 1274 if (!have_addr) 1275 return; 1276 lock = (struct lock_object *)addr; 1277 tc = TC_LOOKUP(lock); 1278 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1279 if (ts->ts_lockobj == lock) 1280 break; 1281 if (ts == NULL) { 1282 class = LOCK_CLASS(lock); 1283 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1284 lock->lo_name); 1285 } else 1286 print_waiters(ts, 0); 1287 } 1288 #endif 1289