xref: /freebsd/sys/kern/subr_turnstile.c (revision 830940567b49bb0c08dfaed40418999e76616909)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is allocated from a UMA zone
50  * and attached to that thread.  When a thread blocks on a lock, if it is the
51  * first thread to block, it lends its turnstile to the lock.  If the lock
52  * already has a turnstile, then it gives its turnstile to the lock's
53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54  * the free list if there are any other waiters.  If it is the only thread
55  * blocked on the lock, then it reclaims the turnstile associated with the lock
56  * and removes it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/queue.h>
74 #include <sys/sched.h>
75 #include <sys/sysctl.h>
76 #include <sys/turnstile.h>
77 
78 #include <vm/uma.h>
79 
80 #ifdef DDB
81 #include <sys/kdb.h>
82 #include <ddb/ddb.h>
83 #include <sys/lockmgr.h>
84 #include <sys/sx.h>
85 #endif
86 
87 /*
88  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
89  * number chosen because the sleep queue's use the same value for the
90  * shift.  Basically, we ignore the lower 8 bits of the address.
91  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
92  */
93 #define	TC_TABLESIZE	128			/* Must be power of 2. */
94 #define	TC_MASK		(TC_TABLESIZE - 1)
95 #define	TC_SHIFT	8
96 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
97 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
98 
99 /*
100  * There are three different lists of turnstiles as follows.  The list
101  * connected by ts_link entries is a per-thread list of all the turnstiles
102  * attached to locks that we own.  This is used to fixup our priority when
103  * a lock is released.  The other two lists use the ts_hash entries.  The
104  * first of these two is the turnstile chain list that a turnstile is on
105  * when it is attached to a lock.  The second list to use ts_hash is the
106  * free list hung off of a turnstile that is attached to a lock.
107  *
108  * Each turnstile contains three lists of threads.  The two ts_blocked lists
109  * are linked list of threads blocked on the turnstile's lock.  One list is
110  * for exclusive waiters, and the other is for shared waiters.  The
111  * ts_pending list is a linked list of threads previously awakened by
112  * turnstile_signal() or turnstile_wait() that are waiting to be put on
113  * the run queue.
114  *
115  * Locking key:
116  *  c - turnstile chain lock
117  *  q - td_contested lock
118  */
119 struct turnstile {
120 	struct mtx ts_lock;			/* Spin lock for self. */
121 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
122 	struct threadqueue ts_pending;		/* (c) Pending threads. */
123 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
124 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
125 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
126 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
127 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
128 };
129 
130 struct turnstile_chain {
131 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
132 	struct mtx tc_lock;			/* Spin lock for this chain. */
133 #ifdef TURNSTILE_PROFILING
134 	u_int	tc_depth;			/* Length of tc_queues. */
135 	u_int	tc_max_depth;			/* Max length of tc_queues. */
136 #endif
137 };
138 
139 #ifdef TURNSTILE_PROFILING
140 u_int turnstile_max_depth;
141 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
142 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
143     "turnstile chain stats");
144 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
145     &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
146 #endif
147 static struct mtx td_contested_lock;
148 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
149 static uma_zone_t turnstile_zone;
150 
151 /*
152  * Prototypes for non-exported routines.
153  */
154 static void	init_turnstile0(void *dummy);
155 #ifdef TURNSTILE_PROFILING
156 static void	init_turnstile_profiling(void *arg);
157 #endif
158 static void	propagate_priority(struct thread *td);
159 static int	turnstile_adjust_thread(struct turnstile *ts,
160 		    struct thread *td);
161 static struct thread *turnstile_first_waiter(struct turnstile *ts);
162 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
163 #ifdef INVARIANTS
164 static void	turnstile_dtor(void *mem, int size, void *arg);
165 #endif
166 static int	turnstile_init(void *mem, int size, int flags);
167 static void	turnstile_fini(void *mem, int size);
168 
169 /*
170  * Walks the chain of turnstiles and their owners to propagate the priority
171  * of the thread being blocked to all the threads holding locks that have to
172  * release their locks before this thread can run again.
173  */
174 static void
175 propagate_priority(struct thread *td)
176 {
177 	struct turnstile *ts;
178 	int pri;
179 
180 	THREAD_LOCK_ASSERT(td, MA_OWNED);
181 	pri = td->td_priority;
182 	ts = td->td_blocked;
183 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
184 	/*
185 	 * Grab a recursive lock on this turnstile chain so it stays locked
186 	 * for the whole operation.  The caller expects us to return with
187 	 * the original lock held.  We only ever lock down the chain so
188 	 * the lock order is constant.
189 	 */
190 	mtx_lock_spin(&ts->ts_lock);
191 	for (;;) {
192 		td = ts->ts_owner;
193 
194 		if (td == NULL) {
195 			/*
196 			 * This might be a read lock with no owner.  There's
197 			 * not much we can do, so just bail.
198 			 */
199 			mtx_unlock_spin(&ts->ts_lock);
200 			return;
201 		}
202 
203 		thread_lock_flags(td, MTX_DUPOK);
204 		mtx_unlock_spin(&ts->ts_lock);
205 		MPASS(td->td_proc != NULL);
206 		MPASS(td->td_proc->p_magic == P_MAGIC);
207 
208 		/*
209 		 * If the thread is asleep, then we are probably about
210 		 * to deadlock.  To make debugging this easier, just
211 		 * panic and tell the user which thread misbehaved so
212 		 * they can hopefully get a stack trace from the truly
213 		 * misbehaving thread.
214 		 */
215 		if (TD_IS_SLEEPING(td)) {
216 			printf(
217 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
218 			    td->td_tid, td->td_proc->p_pid);
219 #ifdef DDB
220 			db_trace_thread(td, -1);
221 #endif
222 			panic("sleeping thread");
223 		}
224 
225 		/*
226 		 * If this thread already has higher priority than the
227 		 * thread that is being blocked, we are finished.
228 		 */
229 		if (td->td_priority <= pri) {
230 			thread_unlock(td);
231 			return;
232 		}
233 
234 		/*
235 		 * Bump this thread's priority.
236 		 */
237 		sched_lend_prio(td, pri);
238 
239 		/*
240 		 * If lock holder is actually running or on the run queue
241 		 * then we are done.
242 		 */
243 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
244 			MPASS(td->td_blocked == NULL);
245 			thread_unlock(td);
246 			return;
247 		}
248 
249 #ifndef SMP
250 		/*
251 		 * For UP, we check to see if td is curthread (this shouldn't
252 		 * ever happen however as it would mean we are in a deadlock.)
253 		 */
254 		KASSERT(td != curthread, ("Deadlock detected"));
255 #endif
256 
257 		/*
258 		 * If we aren't blocked on a lock, we should be.
259 		 */
260 		KASSERT(TD_ON_LOCK(td), (
261 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
262 		    td->td_tid, td->td_name, td->td_state,
263 		    ts->ts_lockobj->lo_name));
264 
265 		/*
266 		 * Pick up the lock that td is blocked on.
267 		 */
268 		ts = td->td_blocked;
269 		MPASS(ts != NULL);
270 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
271 		/* Resort td on the list if needed. */
272 		if (!turnstile_adjust_thread(ts, td)) {
273 			mtx_unlock_spin(&ts->ts_lock);
274 			return;
275 		}
276 		/* The thread lock is released as ts lock above. */
277 	}
278 }
279 
280 /*
281  * Adjust the thread's position on a turnstile after its priority has been
282  * changed.
283  */
284 static int
285 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
286 {
287 	struct thread *td1, *td2;
288 	int queue;
289 
290 	THREAD_LOCK_ASSERT(td, MA_OWNED);
291 	MPASS(TD_ON_LOCK(td));
292 
293 	/*
294 	 * This thread may not be blocked on this turnstile anymore
295 	 * but instead might already be woken up on another CPU
296 	 * that is waiting on the thread lock in turnstile_unpend() to
297 	 * finish waking this thread up.  We can detect this case
298 	 * by checking to see if this thread has been given a
299 	 * turnstile by either turnstile_signal() or
300 	 * turnstile_broadcast().  In this case, treat the thread as
301 	 * if it was already running.
302 	 */
303 	if (td->td_turnstile != NULL)
304 		return (0);
305 
306 	/*
307 	 * Check if the thread needs to be moved on the blocked chain.
308 	 * It needs to be moved if either its priority is lower than
309 	 * the previous thread or higher than the next thread.
310 	 */
311 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
312 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
313 	td2 = TAILQ_NEXT(td, td_lockq);
314 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
315 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
316 
317 		/*
318 		 * Remove thread from blocked chain and determine where
319 		 * it should be moved to.
320 		 */
321 		queue = td->td_tsqueue;
322 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
323 		mtx_lock_spin(&td_contested_lock);
324 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
325 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
326 			MPASS(td1->td_proc->p_magic == P_MAGIC);
327 			if (td1->td_priority > td->td_priority)
328 				break;
329 		}
330 
331 		if (td1 == NULL)
332 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
333 		else
334 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
335 		mtx_unlock_spin(&td_contested_lock);
336 		if (td1 == NULL)
337 			CTR3(KTR_LOCK,
338 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
339 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
340 		else
341 			CTR4(KTR_LOCK,
342 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
343 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
344 			    ts->ts_lockobj->lo_name);
345 	}
346 	return (1);
347 }
348 
349 /*
350  * Early initialization of turnstiles.  This is not done via a SYSINIT()
351  * since this needs to be initialized very early when mutexes are first
352  * initialized.
353  */
354 void
355 init_turnstiles(void)
356 {
357 	int i;
358 
359 	for (i = 0; i < TC_TABLESIZE; i++) {
360 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
361 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
362 		    NULL, MTX_SPIN);
363 	}
364 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
365 	LIST_INIT(&thread0.td_contested);
366 	thread0.td_turnstile = NULL;
367 }
368 
369 #ifdef TURNSTILE_PROFILING
370 static void
371 init_turnstile_profiling(void *arg)
372 {
373 	struct sysctl_oid *chain_oid;
374 	char chain_name[10];
375 	int i;
376 
377 	for (i = 0; i < TC_TABLESIZE; i++) {
378 		snprintf(chain_name, sizeof(chain_name), "%d", i);
379 		chain_oid = SYSCTL_ADD_NODE(NULL,
380 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
381 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
382 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
383 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
384 		    NULL);
385 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
386 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
387 		    0, NULL);
388 	}
389 }
390 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
391     init_turnstile_profiling, NULL);
392 #endif
393 
394 static void
395 init_turnstile0(void *dummy)
396 {
397 
398 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
399 	    NULL,
400 #ifdef INVARIANTS
401 	    turnstile_dtor,
402 #else
403 	    NULL,
404 #endif
405 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
406 	thread0.td_turnstile = turnstile_alloc();
407 }
408 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
409 
410 /*
411  * Update a thread on the turnstile list after it's priority has been changed.
412  * The old priority is passed in as an argument.
413  */
414 void
415 turnstile_adjust(struct thread *td, u_char oldpri)
416 {
417 	struct turnstile *ts;
418 
419 	MPASS(TD_ON_LOCK(td));
420 
421 	/*
422 	 * Pick up the lock that td is blocked on.
423 	 */
424 	ts = td->td_blocked;
425 	MPASS(ts != NULL);
426 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
427 	mtx_assert(&ts->ts_lock, MA_OWNED);
428 
429 	/* Resort the turnstile on the list. */
430 	if (!turnstile_adjust_thread(ts, td))
431 		return;
432 	/*
433 	 * If our priority was lowered and we are at the head of the
434 	 * turnstile, then propagate our new priority up the chain.
435 	 * Note that we currently don't try to revoke lent priorities
436 	 * when our priority goes up.
437 	 */
438 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
439 	    td->td_tsqueue == TS_SHARED_QUEUE);
440 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
441 	    td->td_priority < oldpri) {
442 		propagate_priority(td);
443 	}
444 }
445 
446 /*
447  * Set the owner of the lock this turnstile is attached to.
448  */
449 static void
450 turnstile_setowner(struct turnstile *ts, struct thread *owner)
451 {
452 
453 	mtx_assert(&td_contested_lock, MA_OWNED);
454 	MPASS(ts->ts_owner == NULL);
455 
456 	/* A shared lock might not have an owner. */
457 	if (owner == NULL)
458 		return;
459 
460 	MPASS(owner->td_proc->p_magic == P_MAGIC);
461 	ts->ts_owner = owner;
462 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
463 }
464 
465 #ifdef INVARIANTS
466 /*
467  * UMA zone item deallocator.
468  */
469 static void
470 turnstile_dtor(void *mem, int size, void *arg)
471 {
472 	struct turnstile *ts;
473 
474 	ts = mem;
475 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
476 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
477 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
478 }
479 #endif
480 
481 /*
482  * UMA zone item initializer.
483  */
484 static int
485 turnstile_init(void *mem, int size, int flags)
486 {
487 	struct turnstile *ts;
488 
489 	bzero(mem, size);
490 	ts = mem;
491 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
492 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
493 	TAILQ_INIT(&ts->ts_pending);
494 	LIST_INIT(&ts->ts_free);
495 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
496 	return (0);
497 }
498 
499 static void
500 turnstile_fini(void *mem, int size)
501 {
502 	struct turnstile *ts;
503 
504 	ts = mem;
505 	mtx_destroy(&ts->ts_lock);
506 }
507 
508 /*
509  * Get a turnstile for a new thread.
510  */
511 struct turnstile *
512 turnstile_alloc(void)
513 {
514 
515 	return (uma_zalloc(turnstile_zone, M_WAITOK));
516 }
517 
518 /*
519  * Free a turnstile when a thread is destroyed.
520  */
521 void
522 turnstile_free(struct turnstile *ts)
523 {
524 
525 	uma_zfree(turnstile_zone, ts);
526 }
527 
528 /*
529  * Lock the turnstile chain associated with the specified lock.
530  */
531 void
532 turnstile_chain_lock(struct lock_object *lock)
533 {
534 	struct turnstile_chain *tc;
535 
536 	tc = TC_LOOKUP(lock);
537 	mtx_lock_spin(&tc->tc_lock);
538 }
539 
540 struct turnstile *
541 turnstile_trywait(struct lock_object *lock)
542 {
543 	struct turnstile_chain *tc;
544 	struct turnstile *ts;
545 
546 	tc = TC_LOOKUP(lock);
547 	mtx_lock_spin(&tc->tc_lock);
548 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
549 		if (ts->ts_lockobj == lock) {
550 			mtx_lock_spin(&ts->ts_lock);
551 			return (ts);
552 		}
553 
554 	ts = curthread->td_turnstile;
555 	MPASS(ts != NULL);
556 	mtx_lock_spin(&ts->ts_lock);
557 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
558 	ts->ts_lockobj = lock;
559 
560 	return (ts);
561 }
562 
563 void
564 turnstile_cancel(struct turnstile *ts)
565 {
566 	struct turnstile_chain *tc;
567 	struct lock_object *lock;
568 
569 	mtx_assert(&ts->ts_lock, MA_OWNED);
570 
571 	mtx_unlock_spin(&ts->ts_lock);
572 	lock = ts->ts_lockobj;
573 	if (ts == curthread->td_turnstile)
574 		ts->ts_lockobj = NULL;
575 	tc = TC_LOOKUP(lock);
576 	mtx_unlock_spin(&tc->tc_lock);
577 }
578 
579 /*
580  * Look up the turnstile for a lock in the hash table locking the associated
581  * turnstile chain along the way.  If no turnstile is found in the hash
582  * table, NULL is returned.
583  */
584 struct turnstile *
585 turnstile_lookup(struct lock_object *lock)
586 {
587 	struct turnstile_chain *tc;
588 	struct turnstile *ts;
589 
590 	tc = TC_LOOKUP(lock);
591 	mtx_assert(&tc->tc_lock, MA_OWNED);
592 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
593 		if (ts->ts_lockobj == lock) {
594 			mtx_lock_spin(&ts->ts_lock);
595 			return (ts);
596 		}
597 	return (NULL);
598 }
599 
600 /*
601  * Unlock the turnstile chain associated with a given lock.
602  */
603 void
604 turnstile_chain_unlock(struct lock_object *lock)
605 {
606 	struct turnstile_chain *tc;
607 
608 	tc = TC_LOOKUP(lock);
609 	mtx_unlock_spin(&tc->tc_lock);
610 }
611 
612 /*
613  * Return a pointer to the thread waiting on this turnstile with the
614  * most important priority or NULL if the turnstile has no waiters.
615  */
616 static struct thread *
617 turnstile_first_waiter(struct turnstile *ts)
618 {
619 	struct thread *std, *xtd;
620 
621 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
622 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
623 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
624 		return (std);
625 	return (xtd);
626 }
627 
628 /*
629  * Take ownership of a turnstile and adjust the priority of the new
630  * owner appropriately.
631  */
632 void
633 turnstile_claim(struct turnstile *ts)
634 {
635 	struct thread *td, *owner;
636 	struct turnstile_chain *tc;
637 
638 	mtx_assert(&ts->ts_lock, MA_OWNED);
639 	MPASS(ts != curthread->td_turnstile);
640 
641 	owner = curthread;
642 	mtx_lock_spin(&td_contested_lock);
643 	turnstile_setowner(ts, owner);
644 	mtx_unlock_spin(&td_contested_lock);
645 
646 	td = turnstile_first_waiter(ts);
647 	MPASS(td != NULL);
648 	MPASS(td->td_proc->p_magic == P_MAGIC);
649 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
650 
651 	/*
652 	 * Update the priority of the new owner if needed.
653 	 */
654 	thread_lock(owner);
655 	if (td->td_priority < owner->td_priority)
656 		sched_lend_prio(owner, td->td_priority);
657 	thread_unlock(owner);
658 	tc = TC_LOOKUP(ts->ts_lockobj);
659 	mtx_unlock_spin(&ts->ts_lock);
660 	mtx_unlock_spin(&tc->tc_lock);
661 }
662 
663 /*
664  * Block the current thread on the turnstile assicated with 'lock'.  This
665  * function will context switch and not return until this thread has been
666  * woken back up.  This function must be called with the appropriate
667  * turnstile chain locked and will return with it unlocked.
668  */
669 void
670 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
671 {
672 	struct turnstile_chain *tc;
673 	struct thread *td, *td1;
674 	struct lock_object *lock;
675 
676 	td = curthread;
677 	mtx_assert(&ts->ts_lock, MA_OWNED);
678 	if (owner)
679 		MPASS(owner->td_proc->p_magic == P_MAGIC);
680 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
681 
682 	/*
683 	 * If the lock does not already have a turnstile, use this thread's
684 	 * turnstile.  Otherwise insert the current thread into the
685 	 * turnstile already in use by this lock.
686 	 */
687 	tc = TC_LOOKUP(ts->ts_lockobj);
688 	if (ts == td->td_turnstile) {
689 	mtx_assert(&tc->tc_lock, MA_OWNED);
690 #ifdef TURNSTILE_PROFILING
691 		tc->tc_depth++;
692 		if (tc->tc_depth > tc->tc_max_depth) {
693 			tc->tc_max_depth = tc->tc_depth;
694 			if (tc->tc_max_depth > turnstile_max_depth)
695 				turnstile_max_depth = tc->tc_max_depth;
696 		}
697 #endif
698 		tc = TC_LOOKUP(ts->ts_lockobj);
699 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
700 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
701 		    ("thread's turnstile has pending threads"));
702 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
703 		    ("thread's turnstile has exclusive waiters"));
704 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
705 		    ("thread's turnstile has shared waiters"));
706 		KASSERT(LIST_EMPTY(&ts->ts_free),
707 		    ("thread's turnstile has a non-empty free list"));
708 		MPASS(ts->ts_lockobj != NULL);
709 		mtx_lock_spin(&td_contested_lock);
710 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
711 		turnstile_setowner(ts, owner);
712 		mtx_unlock_spin(&td_contested_lock);
713 	} else {
714 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
715 			if (td1->td_priority > td->td_priority)
716 				break;
717 		mtx_lock_spin(&td_contested_lock);
718 		if (td1 != NULL)
719 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
720 		else
721 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
722 		MPASS(owner == ts->ts_owner);
723 		mtx_unlock_spin(&td_contested_lock);
724 		MPASS(td->td_turnstile != NULL);
725 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
726 	}
727 	thread_lock(td);
728 	thread_lock_set(td, &ts->ts_lock);
729 	td->td_turnstile = NULL;
730 
731 	/* Save who we are blocked on and switch. */
732 	lock = ts->ts_lockobj;
733 	td->td_tsqueue = queue;
734 	td->td_blocked = ts;
735 	td->td_lockname = lock->lo_name;
736 	TD_SET_LOCK(td);
737 	mtx_unlock_spin(&tc->tc_lock);
738 	propagate_priority(td);
739 
740 	if (LOCK_LOG_TEST(lock, 0))
741 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
742 		    td->td_tid, lock, lock->lo_name);
743 
744 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
745 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
746 
747 	if (LOCK_LOG_TEST(lock, 0))
748 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
749 		    __func__, td->td_tid, lock, lock->lo_name);
750 	thread_unlock(td);
751 }
752 
753 /*
754  * Pick the highest priority thread on this turnstile and put it on the
755  * pending list.  This must be called with the turnstile chain locked.
756  */
757 int
758 turnstile_signal(struct turnstile *ts, int queue)
759 {
760 	struct turnstile_chain *tc;
761 	struct thread *td;
762 	int empty;
763 
764 	MPASS(ts != NULL);
765 	mtx_assert(&ts->ts_lock, MA_OWNED);
766 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
767 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
768 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
769 
770 	/*
771 	 * Pick the highest priority thread blocked on this lock and
772 	 * move it to the pending list.
773 	 */
774 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
775 	MPASS(td->td_proc->p_magic == P_MAGIC);
776 	mtx_lock_spin(&td_contested_lock);
777 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
778 	mtx_unlock_spin(&td_contested_lock);
779 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
780 
781 	/*
782 	 * If the turnstile is now empty, remove it from its chain and
783 	 * give it to the about-to-be-woken thread.  Otherwise take a
784 	 * turnstile from the free list and give it to the thread.
785 	 */
786 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
787 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
788 	if (empty) {
789 		tc = TC_LOOKUP(ts->ts_lockobj);
790 		mtx_assert(&tc->tc_lock, MA_OWNED);
791 		MPASS(LIST_EMPTY(&ts->ts_free));
792 #ifdef TURNSTILE_PROFILING
793 		tc->tc_depth--;
794 #endif
795 	} else
796 		ts = LIST_FIRST(&ts->ts_free);
797 	MPASS(ts != NULL);
798 	LIST_REMOVE(ts, ts_hash);
799 	td->td_turnstile = ts;
800 
801 	return (empty);
802 }
803 
804 /*
805  * Put all blocked threads on the pending list.  This must be called with
806  * the turnstile chain locked.
807  */
808 void
809 turnstile_broadcast(struct turnstile *ts, int queue)
810 {
811 	struct turnstile_chain *tc;
812 	struct turnstile *ts1;
813 	struct thread *td;
814 
815 	MPASS(ts != NULL);
816 	mtx_assert(&ts->ts_lock, MA_OWNED);
817 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
818 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
819 	/*
820 	 * We must have the chain locked so that we can remove the empty
821 	 * turnstile from the hash queue.
822 	 */
823 	tc = TC_LOOKUP(ts->ts_lockobj);
824 	mtx_assert(&tc->tc_lock, MA_OWNED);
825 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
826 
827 	/*
828 	 * Transfer the blocked list to the pending list.
829 	 */
830 	mtx_lock_spin(&td_contested_lock);
831 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
832 	mtx_unlock_spin(&td_contested_lock);
833 
834 	/*
835 	 * Give a turnstile to each thread.  The last thread gets
836 	 * this turnstile if the turnstile is empty.
837 	 */
838 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
839 		if (LIST_EMPTY(&ts->ts_free)) {
840 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
841 			ts1 = ts;
842 #ifdef TURNSTILE_PROFILING
843 			tc->tc_depth--;
844 #endif
845 		} else
846 			ts1 = LIST_FIRST(&ts->ts_free);
847 		MPASS(ts1 != NULL);
848 		LIST_REMOVE(ts1, ts_hash);
849 		td->td_turnstile = ts1;
850 	}
851 }
852 
853 /*
854  * Wakeup all threads on the pending list and adjust the priority of the
855  * current thread appropriately.  This must be called with the turnstile
856  * chain locked.
857  */
858 void
859 turnstile_unpend(struct turnstile *ts, int owner_type)
860 {
861 	TAILQ_HEAD( ,thread) pending_threads;
862 	struct turnstile *nts;
863 	struct thread *td;
864 	u_char cp, pri;
865 
866 	MPASS(ts != NULL);
867 	mtx_assert(&ts->ts_lock, MA_OWNED);
868 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
869 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
870 
871 	/*
872 	 * Move the list of pending threads out of the turnstile and
873 	 * into a local variable.
874 	 */
875 	TAILQ_INIT(&pending_threads);
876 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
877 #ifdef INVARIANTS
878 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
879 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
880 		ts->ts_lockobj = NULL;
881 #endif
882 	/*
883 	 * Adjust the priority of curthread based on other contested
884 	 * locks it owns.  Don't lower the priority below the base
885 	 * priority however.
886 	 */
887 	td = curthread;
888 	pri = PRI_MAX;
889 	thread_lock(td);
890 	mtx_lock_spin(&td_contested_lock);
891 	/*
892 	 * Remove the turnstile from this thread's list of contested locks
893 	 * since this thread doesn't own it anymore.  New threads will
894 	 * not be blocking on the turnstile until it is claimed by a new
895 	 * owner.  There might not be a current owner if this is a shared
896 	 * lock.
897 	 */
898 	if (ts->ts_owner != NULL) {
899 		ts->ts_owner = NULL;
900 		LIST_REMOVE(ts, ts_link);
901 	}
902 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
903 		cp = turnstile_first_waiter(nts)->td_priority;
904 		if (cp < pri)
905 			pri = cp;
906 	}
907 	mtx_unlock_spin(&td_contested_lock);
908 	sched_unlend_prio(td, pri);
909 	thread_unlock(td);
910 	/*
911 	 * Wake up all the pending threads.  If a thread is not blocked
912 	 * on a lock, then it is currently executing on another CPU in
913 	 * turnstile_wait() or sitting on a run queue waiting to resume
914 	 * in turnstile_wait().  Set a flag to force it to try to acquire
915 	 * the lock again instead of blocking.
916 	 */
917 	while (!TAILQ_EMPTY(&pending_threads)) {
918 		td = TAILQ_FIRST(&pending_threads);
919 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
920 		thread_lock(td);
921 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
922 		MPASS(td->td_proc->p_magic == P_MAGIC);
923 		MPASS(TD_ON_LOCK(td));
924 		TD_CLR_LOCK(td);
925 		MPASS(TD_CAN_RUN(td));
926 		td->td_blocked = NULL;
927 		td->td_lockname = NULL;
928 #ifdef INVARIANTS
929 		td->td_tsqueue = 0xff;
930 #endif
931 		sched_add(td, SRQ_BORING);
932 		thread_unlock(td);
933 	}
934 	mtx_unlock_spin(&ts->ts_lock);
935 }
936 
937 /*
938  * Give up ownership of a turnstile.  This must be called with the
939  * turnstile chain locked.
940  */
941 void
942 turnstile_disown(struct turnstile *ts)
943 {
944 	struct thread *td;
945 	u_char cp, pri;
946 
947 	MPASS(ts != NULL);
948 	mtx_assert(&ts->ts_lock, MA_OWNED);
949 	MPASS(ts->ts_owner == curthread);
950 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
951 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
952 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
953 
954 	/*
955 	 * Remove the turnstile from this thread's list of contested locks
956 	 * since this thread doesn't own it anymore.  New threads will
957 	 * not be blocking on the turnstile until it is claimed by a new
958 	 * owner.
959 	 */
960 	mtx_lock_spin(&td_contested_lock);
961 	ts->ts_owner = NULL;
962 	LIST_REMOVE(ts, ts_link);
963 	mtx_unlock_spin(&td_contested_lock);
964 
965 	/*
966 	 * Adjust the priority of curthread based on other contested
967 	 * locks it owns.  Don't lower the priority below the base
968 	 * priority however.
969 	 */
970 	td = curthread;
971 	pri = PRI_MAX;
972 	thread_lock(td);
973 	mtx_unlock_spin(&ts->ts_lock);
974 	mtx_lock_spin(&td_contested_lock);
975 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
976 		cp = turnstile_first_waiter(ts)->td_priority;
977 		if (cp < pri)
978 			pri = cp;
979 	}
980 	mtx_unlock_spin(&td_contested_lock);
981 	sched_unlend_prio(td, pri);
982 	thread_unlock(td);
983 }
984 
985 /*
986  * Return the first thread in a turnstile.
987  */
988 struct thread *
989 turnstile_head(struct turnstile *ts, int queue)
990 {
991 #ifdef INVARIANTS
992 
993 	MPASS(ts != NULL);
994 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
995 	mtx_assert(&ts->ts_lock, MA_OWNED);
996 #endif
997 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
998 }
999 
1000 /*
1001  * Returns true if a sub-queue of a turnstile is empty.
1002  */
1003 int
1004 turnstile_empty(struct turnstile *ts, int queue)
1005 {
1006 #ifdef INVARIANTS
1007 
1008 	MPASS(ts != NULL);
1009 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1010 	mtx_assert(&ts->ts_lock, MA_OWNED);
1011 #endif
1012 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1013 }
1014 
1015 #ifdef DDB
1016 static void
1017 print_thread(struct thread *td, const char *prefix)
1018 {
1019 
1020 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1021 	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1022 	    td->td_name);
1023 }
1024 
1025 static void
1026 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1027 {
1028 	struct thread *td;
1029 
1030 	db_printf("%s:\n", header);
1031 	if (TAILQ_EMPTY(queue)) {
1032 		db_printf("%sempty\n", prefix);
1033 		return;
1034 	}
1035 	TAILQ_FOREACH(td, queue, td_lockq) {
1036 		print_thread(td, prefix);
1037 	}
1038 }
1039 
1040 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1041 {
1042 	struct turnstile_chain *tc;
1043 	struct turnstile *ts;
1044 	struct lock_object *lock;
1045 	int i;
1046 
1047 	if (!have_addr)
1048 		return;
1049 
1050 	/*
1051 	 * First, see if there is an active turnstile for the lock indicated
1052 	 * by the address.
1053 	 */
1054 	lock = (struct lock_object *)addr;
1055 	tc = TC_LOOKUP(lock);
1056 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1057 		if (ts->ts_lockobj == lock)
1058 			goto found;
1059 
1060 	/*
1061 	 * Second, see if there is an active turnstile at the address
1062 	 * indicated.
1063 	 */
1064 	for (i = 0; i < TC_TABLESIZE; i++)
1065 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1066 			if (ts == (struct turnstile *)addr)
1067 				goto found;
1068 		}
1069 
1070 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1071 	return;
1072 found:
1073 	lock = ts->ts_lockobj;
1074 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1075 	    lock->lo_name);
1076 	if (ts->ts_owner)
1077 		print_thread(ts->ts_owner, "Lock Owner: ");
1078 	else
1079 		db_printf("Lock Owner: none\n");
1080 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1081 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1082 	    "\t");
1083 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1084 
1085 }
1086 
1087 /*
1088  * Show all the threads a particular thread is waiting on based on
1089  * non-sleepable and non-spin locks.
1090  */
1091 static void
1092 print_lockchain(struct thread *td, const char *prefix)
1093 {
1094 	struct lock_object *lock;
1095 	struct lock_class *class;
1096 	struct turnstile *ts;
1097 
1098 	/*
1099 	 * Follow the chain.  We keep walking as long as the thread is
1100 	 * blocked on a turnstile that has an owner.
1101 	 */
1102 	while (!db_pager_quit) {
1103 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1104 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1105 		    td->td_name);
1106 		switch (td->td_state) {
1107 		case TDS_INACTIVE:
1108 			db_printf("is inactive\n");
1109 			return;
1110 		case TDS_CAN_RUN:
1111 			db_printf("can run\n");
1112 			return;
1113 		case TDS_RUNQ:
1114 			db_printf("is on a run queue\n");
1115 			return;
1116 		case TDS_RUNNING:
1117 			db_printf("running on CPU %d\n", td->td_oncpu);
1118 			return;
1119 		case TDS_INHIBITED:
1120 			if (TD_ON_LOCK(td)) {
1121 				ts = td->td_blocked;
1122 				lock = ts->ts_lockobj;
1123 				class = LOCK_CLASS(lock);
1124 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1125 				    lock, class->lc_name, lock->lo_name);
1126 				if (ts->ts_owner == NULL)
1127 					return;
1128 				td = ts->ts_owner;
1129 				break;
1130 			}
1131 			db_printf("inhibited\n");
1132 			return;
1133 		default:
1134 			db_printf("??? (%#x)\n", td->td_state);
1135 			return;
1136 		}
1137 	}
1138 }
1139 
1140 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1141 {
1142 	struct thread *td;
1143 
1144 	/* Figure out which thread to start with. */
1145 	if (have_addr)
1146 		td = db_lookup_thread(addr, TRUE);
1147 	else
1148 		td = kdb_thread;
1149 
1150 	print_lockchain(td, "");
1151 }
1152 
1153 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1154 {
1155 	struct thread *td;
1156 	struct proc *p;
1157 	int i;
1158 
1159 	i = 1;
1160 	FOREACH_PROC_IN_SYSTEM(p) {
1161 		FOREACH_THREAD_IN_PROC(p, td) {
1162 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1163 				db_printf("chain %d:\n", i++);
1164 				print_lockchain(td, " ");
1165 			}
1166 			if (db_pager_quit)
1167 				return;
1168 		}
1169 	}
1170 }
1171 DB_SHOW_ALIAS(allchains, db_show_allchains)
1172 
1173 /*
1174  * Show all the threads a particular thread is waiting on based on
1175  * sleepable locks.
1176  */
1177 static void
1178 print_sleepchain(struct thread *td, const char *prefix)
1179 {
1180 	struct thread *owner;
1181 
1182 	/*
1183 	 * Follow the chain.  We keep walking as long as the thread is
1184 	 * blocked on a sleep lock that has an owner.
1185 	 */
1186 	while (!db_pager_quit) {
1187 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1188 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1189 		    td->td_name);
1190 		switch (td->td_state) {
1191 		case TDS_INACTIVE:
1192 			db_printf("is inactive\n");
1193 			return;
1194 		case TDS_CAN_RUN:
1195 			db_printf("can run\n");
1196 			return;
1197 		case TDS_RUNQ:
1198 			db_printf("is on a run queue\n");
1199 			return;
1200 		case TDS_RUNNING:
1201 			db_printf("running on CPU %d\n", td->td_oncpu);
1202 			return;
1203 		case TDS_INHIBITED:
1204 			if (TD_ON_SLEEPQ(td)) {
1205 				if (lockmgr_chain(td, &owner) ||
1206 				    sx_chain(td, &owner)) {
1207 					if (owner == NULL)
1208 						return;
1209 					td = owner;
1210 					break;
1211 				}
1212 				db_printf("sleeping on %p \"%s\"\n",
1213 				    td->td_wchan, td->td_wmesg);
1214 				return;
1215 			}
1216 			db_printf("inhibited\n");
1217 			return;
1218 		default:
1219 			db_printf("??? (%#x)\n", td->td_state);
1220 			return;
1221 		}
1222 	}
1223 }
1224 
1225 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1226 {
1227 	struct thread *td;
1228 
1229 	/* Figure out which thread to start with. */
1230 	if (have_addr)
1231 		td = db_lookup_thread(addr, TRUE);
1232 	else
1233 		td = kdb_thread;
1234 
1235 	print_sleepchain(td, "");
1236 }
1237 
1238 static void	print_waiters(struct turnstile *ts, int indent);
1239 
1240 static void
1241 print_waiter(struct thread *td, int indent)
1242 {
1243 	struct turnstile *ts;
1244 	int i;
1245 
1246 	if (db_pager_quit)
1247 		return;
1248 	for (i = 0; i < indent; i++)
1249 		db_printf(" ");
1250 	print_thread(td, "thread ");
1251 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1252 		print_waiters(ts, indent + 1);
1253 }
1254 
1255 static void
1256 print_waiters(struct turnstile *ts, int indent)
1257 {
1258 	struct lock_object *lock;
1259 	struct lock_class *class;
1260 	struct thread *td;
1261 	int i;
1262 
1263 	if (db_pager_quit)
1264 		return;
1265 	lock = ts->ts_lockobj;
1266 	class = LOCK_CLASS(lock);
1267 	for (i = 0; i < indent; i++)
1268 		db_printf(" ");
1269 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1270 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1271 		print_waiter(td, indent + 1);
1272 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1273 		print_waiter(td, indent + 1);
1274 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1275 		print_waiter(td, indent + 1);
1276 }
1277 
1278 DB_SHOW_COMMAND(locktree, db_show_locktree)
1279 {
1280 	struct lock_object *lock;
1281 	struct lock_class *class;
1282 	struct turnstile_chain *tc;
1283 	struct turnstile *ts;
1284 
1285 	if (!have_addr)
1286 		return;
1287 	lock = (struct lock_object *)addr;
1288 	tc = TC_LOOKUP(lock);
1289 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1290 		if (ts->ts_lockobj == lock)
1291 			break;
1292 	if (ts == NULL) {
1293 		class = LOCK_CLASS(lock);
1294 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1295 		    lock->lo_name);
1296 	} else
1297 		print_waiters(ts, 0);
1298 }
1299 #endif
1300