xref: /freebsd/sys/kern/subr_turnstile.c (revision 6486b015fc84e96725fef22b0e3363351399ae83)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is allocated from a UMA zone
50  * and attached to that thread.  When a thread blocks on a lock, if it is the
51  * first thread to block, it lends its turnstile to the lock.  If the lock
52  * already has a turnstile, then it gives its turnstile to the lock's
53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54  * the free list if there are any other waiters.  If it is the only thread
55  * blocked on the lock, then it reclaims the turnstile associated with the lock
56  * and removes it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/queue.h>
75 #include <sys/sched.h>
76 #include <sys/sysctl.h>
77 #include <sys/turnstile.h>
78 
79 #include <vm/uma.h>
80 
81 #ifdef DDB
82 #include <ddb/ddb.h>
83 #include <sys/lockmgr.h>
84 #include <sys/sx.h>
85 #endif
86 
87 /*
88  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
89  * number chosen because the sleep queue's use the same value for the
90  * shift.  Basically, we ignore the lower 8 bits of the address.
91  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
92  */
93 #define	TC_TABLESIZE	128			/* Must be power of 2. */
94 #define	TC_MASK		(TC_TABLESIZE - 1)
95 #define	TC_SHIFT	8
96 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
97 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
98 
99 /*
100  * There are three different lists of turnstiles as follows.  The list
101  * connected by ts_link entries is a per-thread list of all the turnstiles
102  * attached to locks that we own.  This is used to fixup our priority when
103  * a lock is released.  The other two lists use the ts_hash entries.  The
104  * first of these two is the turnstile chain list that a turnstile is on
105  * when it is attached to a lock.  The second list to use ts_hash is the
106  * free list hung off of a turnstile that is attached to a lock.
107  *
108  * Each turnstile contains three lists of threads.  The two ts_blocked lists
109  * are linked list of threads blocked on the turnstile's lock.  One list is
110  * for exclusive waiters, and the other is for shared waiters.  The
111  * ts_pending list is a linked list of threads previously awakened by
112  * turnstile_signal() or turnstile_wait() that are waiting to be put on
113  * the run queue.
114  *
115  * Locking key:
116  *  c - turnstile chain lock
117  *  q - td_contested lock
118  */
119 struct turnstile {
120 	struct mtx ts_lock;			/* Spin lock for self. */
121 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
122 	struct threadqueue ts_pending;		/* (c) Pending threads. */
123 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
124 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
125 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
126 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
127 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
128 };
129 
130 struct turnstile_chain {
131 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
132 	struct mtx tc_lock;			/* Spin lock for this chain. */
133 #ifdef TURNSTILE_PROFILING
134 	u_int	tc_depth;			/* Length of tc_queues. */
135 	u_int	tc_max_depth;			/* Max length of tc_queues. */
136 #endif
137 };
138 
139 #ifdef TURNSTILE_PROFILING
140 u_int turnstile_max_depth;
141 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
142     "turnstile profiling");
143 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
144     "turnstile chain stats");
145 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
146     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
147 #endif
148 static struct mtx td_contested_lock;
149 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
150 static uma_zone_t turnstile_zone;
151 
152 /*
153  * Prototypes for non-exported routines.
154  */
155 static void	init_turnstile0(void *dummy);
156 #ifdef TURNSTILE_PROFILING
157 static void	init_turnstile_profiling(void *arg);
158 #endif
159 static void	propagate_priority(struct thread *td);
160 static int	turnstile_adjust_thread(struct turnstile *ts,
161 		    struct thread *td);
162 static struct thread *turnstile_first_waiter(struct turnstile *ts);
163 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
164 #ifdef INVARIANTS
165 static void	turnstile_dtor(void *mem, int size, void *arg);
166 #endif
167 static int	turnstile_init(void *mem, int size, int flags);
168 static void	turnstile_fini(void *mem, int size);
169 
170 /*
171  * Walks the chain of turnstiles and their owners to propagate the priority
172  * of the thread being blocked to all the threads holding locks that have to
173  * release their locks before this thread can run again.
174  */
175 static void
176 propagate_priority(struct thread *td)
177 {
178 	struct turnstile *ts;
179 	int pri;
180 
181 	THREAD_LOCK_ASSERT(td, MA_OWNED);
182 	pri = td->td_priority;
183 	ts = td->td_blocked;
184 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
185 	/*
186 	 * Grab a recursive lock on this turnstile chain so it stays locked
187 	 * for the whole operation.  The caller expects us to return with
188 	 * the original lock held.  We only ever lock down the chain so
189 	 * the lock order is constant.
190 	 */
191 	mtx_lock_spin(&ts->ts_lock);
192 	for (;;) {
193 		td = ts->ts_owner;
194 
195 		if (td == NULL) {
196 			/*
197 			 * This might be a read lock with no owner.  There's
198 			 * not much we can do, so just bail.
199 			 */
200 			mtx_unlock_spin(&ts->ts_lock);
201 			return;
202 		}
203 
204 		thread_lock_flags(td, MTX_DUPOK);
205 		mtx_unlock_spin(&ts->ts_lock);
206 		MPASS(td->td_proc != NULL);
207 		MPASS(td->td_proc->p_magic == P_MAGIC);
208 
209 		/*
210 		 * If the thread is asleep, then we are probably about
211 		 * to deadlock.  To make debugging this easier, just
212 		 * panic and tell the user which thread misbehaved so
213 		 * they can hopefully get a stack trace from the truly
214 		 * misbehaving thread.
215 		 */
216 		if (TD_IS_SLEEPING(td)) {
217 			printf(
218 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
219 			    td->td_tid, td->td_proc->p_pid);
220 			kdb_backtrace_thread(td);
221 			panic("sleeping thread");
222 		}
223 
224 		/*
225 		 * If this thread already has higher priority than the
226 		 * thread that is being blocked, we are finished.
227 		 */
228 		if (td->td_priority <= pri) {
229 			thread_unlock(td);
230 			return;
231 		}
232 
233 		/*
234 		 * Bump this thread's priority.
235 		 */
236 		sched_lend_prio(td, pri);
237 
238 		/*
239 		 * If lock holder is actually running or on the run queue
240 		 * then we are done.
241 		 */
242 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
243 			MPASS(td->td_blocked == NULL);
244 			thread_unlock(td);
245 			return;
246 		}
247 
248 #ifndef SMP
249 		/*
250 		 * For UP, we check to see if td is curthread (this shouldn't
251 		 * ever happen however as it would mean we are in a deadlock.)
252 		 */
253 		KASSERT(td != curthread, ("Deadlock detected"));
254 #endif
255 
256 		/*
257 		 * If we aren't blocked on a lock, we should be.
258 		 */
259 		KASSERT(TD_ON_LOCK(td), (
260 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
261 		    td->td_tid, td->td_name, td->td_state,
262 		    ts->ts_lockobj->lo_name));
263 
264 		/*
265 		 * Pick up the lock that td is blocked on.
266 		 */
267 		ts = td->td_blocked;
268 		MPASS(ts != NULL);
269 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
270 		/* Resort td on the list if needed. */
271 		if (!turnstile_adjust_thread(ts, td)) {
272 			mtx_unlock_spin(&ts->ts_lock);
273 			return;
274 		}
275 		/* The thread lock is released as ts lock above. */
276 	}
277 }
278 
279 /*
280  * Adjust the thread's position on a turnstile after its priority has been
281  * changed.
282  */
283 static int
284 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
285 {
286 	struct thread *td1, *td2;
287 	int queue;
288 
289 	THREAD_LOCK_ASSERT(td, MA_OWNED);
290 	MPASS(TD_ON_LOCK(td));
291 
292 	/*
293 	 * This thread may not be blocked on this turnstile anymore
294 	 * but instead might already be woken up on another CPU
295 	 * that is waiting on the thread lock in turnstile_unpend() to
296 	 * finish waking this thread up.  We can detect this case
297 	 * by checking to see if this thread has been given a
298 	 * turnstile by either turnstile_signal() or
299 	 * turnstile_broadcast().  In this case, treat the thread as
300 	 * if it was already running.
301 	 */
302 	if (td->td_turnstile != NULL)
303 		return (0);
304 
305 	/*
306 	 * Check if the thread needs to be moved on the blocked chain.
307 	 * It needs to be moved if either its priority is lower than
308 	 * the previous thread or higher than the next thread.
309 	 */
310 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
311 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
312 	td2 = TAILQ_NEXT(td, td_lockq);
313 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
314 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
315 
316 		/*
317 		 * Remove thread from blocked chain and determine where
318 		 * it should be moved to.
319 		 */
320 		queue = td->td_tsqueue;
321 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
322 		mtx_lock_spin(&td_contested_lock);
323 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
324 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
325 			MPASS(td1->td_proc->p_magic == P_MAGIC);
326 			if (td1->td_priority > td->td_priority)
327 				break;
328 		}
329 
330 		if (td1 == NULL)
331 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
332 		else
333 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
334 		mtx_unlock_spin(&td_contested_lock);
335 		if (td1 == NULL)
336 			CTR3(KTR_LOCK,
337 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
338 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
339 		else
340 			CTR4(KTR_LOCK,
341 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
342 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
343 			    ts->ts_lockobj->lo_name);
344 	}
345 	return (1);
346 }
347 
348 /*
349  * Early initialization of turnstiles.  This is not done via a SYSINIT()
350  * since this needs to be initialized very early when mutexes are first
351  * initialized.
352  */
353 void
354 init_turnstiles(void)
355 {
356 	int i;
357 
358 	for (i = 0; i < TC_TABLESIZE; i++) {
359 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
360 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
361 		    NULL, MTX_SPIN);
362 	}
363 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
364 	LIST_INIT(&thread0.td_contested);
365 	thread0.td_turnstile = NULL;
366 }
367 
368 #ifdef TURNSTILE_PROFILING
369 static void
370 init_turnstile_profiling(void *arg)
371 {
372 	struct sysctl_oid *chain_oid;
373 	char chain_name[10];
374 	int i;
375 
376 	for (i = 0; i < TC_TABLESIZE; i++) {
377 		snprintf(chain_name, sizeof(chain_name), "%d", i);
378 		chain_oid = SYSCTL_ADD_NODE(NULL,
379 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
380 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
381 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
382 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
383 		    NULL);
384 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
385 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
386 		    0, NULL);
387 	}
388 }
389 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
390     init_turnstile_profiling, NULL);
391 #endif
392 
393 static void
394 init_turnstile0(void *dummy)
395 {
396 
397 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
398 	    NULL,
399 #ifdef INVARIANTS
400 	    turnstile_dtor,
401 #else
402 	    NULL,
403 #endif
404 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
405 	thread0.td_turnstile = turnstile_alloc();
406 }
407 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
408 
409 /*
410  * Update a thread on the turnstile list after it's priority has been changed.
411  * The old priority is passed in as an argument.
412  */
413 void
414 turnstile_adjust(struct thread *td, u_char oldpri)
415 {
416 	struct turnstile *ts;
417 
418 	MPASS(TD_ON_LOCK(td));
419 
420 	/*
421 	 * Pick up the lock that td is blocked on.
422 	 */
423 	ts = td->td_blocked;
424 	MPASS(ts != NULL);
425 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
426 	mtx_assert(&ts->ts_lock, MA_OWNED);
427 
428 	/* Resort the turnstile on the list. */
429 	if (!turnstile_adjust_thread(ts, td))
430 		return;
431 	/*
432 	 * If our priority was lowered and we are at the head of the
433 	 * turnstile, then propagate our new priority up the chain.
434 	 * Note that we currently don't try to revoke lent priorities
435 	 * when our priority goes up.
436 	 */
437 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
438 	    td->td_tsqueue == TS_SHARED_QUEUE);
439 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
440 	    td->td_priority < oldpri) {
441 		propagate_priority(td);
442 	}
443 }
444 
445 /*
446  * Set the owner of the lock this turnstile is attached to.
447  */
448 static void
449 turnstile_setowner(struct turnstile *ts, struct thread *owner)
450 {
451 
452 	mtx_assert(&td_contested_lock, MA_OWNED);
453 	MPASS(ts->ts_owner == NULL);
454 
455 	/* A shared lock might not have an owner. */
456 	if (owner == NULL)
457 		return;
458 
459 	MPASS(owner->td_proc->p_magic == P_MAGIC);
460 	ts->ts_owner = owner;
461 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
462 }
463 
464 #ifdef INVARIANTS
465 /*
466  * UMA zone item deallocator.
467  */
468 static void
469 turnstile_dtor(void *mem, int size, void *arg)
470 {
471 	struct turnstile *ts;
472 
473 	ts = mem;
474 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
475 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
476 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
477 }
478 #endif
479 
480 /*
481  * UMA zone item initializer.
482  */
483 static int
484 turnstile_init(void *mem, int size, int flags)
485 {
486 	struct turnstile *ts;
487 
488 	bzero(mem, size);
489 	ts = mem;
490 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
491 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
492 	TAILQ_INIT(&ts->ts_pending);
493 	LIST_INIT(&ts->ts_free);
494 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
495 	return (0);
496 }
497 
498 static void
499 turnstile_fini(void *mem, int size)
500 {
501 	struct turnstile *ts;
502 
503 	ts = mem;
504 	mtx_destroy(&ts->ts_lock);
505 }
506 
507 /*
508  * Get a turnstile for a new thread.
509  */
510 struct turnstile *
511 turnstile_alloc(void)
512 {
513 
514 	return (uma_zalloc(turnstile_zone, M_WAITOK));
515 }
516 
517 /*
518  * Free a turnstile when a thread is destroyed.
519  */
520 void
521 turnstile_free(struct turnstile *ts)
522 {
523 
524 	uma_zfree(turnstile_zone, ts);
525 }
526 
527 /*
528  * Lock the turnstile chain associated with the specified lock.
529  */
530 void
531 turnstile_chain_lock(struct lock_object *lock)
532 {
533 	struct turnstile_chain *tc;
534 
535 	tc = TC_LOOKUP(lock);
536 	mtx_lock_spin(&tc->tc_lock);
537 }
538 
539 struct turnstile *
540 turnstile_trywait(struct lock_object *lock)
541 {
542 	struct turnstile_chain *tc;
543 	struct turnstile *ts;
544 
545 	tc = TC_LOOKUP(lock);
546 	mtx_lock_spin(&tc->tc_lock);
547 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
548 		if (ts->ts_lockobj == lock) {
549 			mtx_lock_spin(&ts->ts_lock);
550 			return (ts);
551 		}
552 
553 	ts = curthread->td_turnstile;
554 	MPASS(ts != NULL);
555 	mtx_lock_spin(&ts->ts_lock);
556 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
557 	ts->ts_lockobj = lock;
558 
559 	return (ts);
560 }
561 
562 void
563 turnstile_cancel(struct turnstile *ts)
564 {
565 	struct turnstile_chain *tc;
566 	struct lock_object *lock;
567 
568 	mtx_assert(&ts->ts_lock, MA_OWNED);
569 
570 	mtx_unlock_spin(&ts->ts_lock);
571 	lock = ts->ts_lockobj;
572 	if (ts == curthread->td_turnstile)
573 		ts->ts_lockobj = NULL;
574 	tc = TC_LOOKUP(lock);
575 	mtx_unlock_spin(&tc->tc_lock);
576 }
577 
578 /*
579  * Look up the turnstile for a lock in the hash table locking the associated
580  * turnstile chain along the way.  If no turnstile is found in the hash
581  * table, NULL is returned.
582  */
583 struct turnstile *
584 turnstile_lookup(struct lock_object *lock)
585 {
586 	struct turnstile_chain *tc;
587 	struct turnstile *ts;
588 
589 	tc = TC_LOOKUP(lock);
590 	mtx_assert(&tc->tc_lock, MA_OWNED);
591 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
592 		if (ts->ts_lockobj == lock) {
593 			mtx_lock_spin(&ts->ts_lock);
594 			return (ts);
595 		}
596 	return (NULL);
597 }
598 
599 /*
600  * Unlock the turnstile chain associated with a given lock.
601  */
602 void
603 turnstile_chain_unlock(struct lock_object *lock)
604 {
605 	struct turnstile_chain *tc;
606 
607 	tc = TC_LOOKUP(lock);
608 	mtx_unlock_spin(&tc->tc_lock);
609 }
610 
611 /*
612  * Return a pointer to the thread waiting on this turnstile with the
613  * most important priority or NULL if the turnstile has no waiters.
614  */
615 static struct thread *
616 turnstile_first_waiter(struct turnstile *ts)
617 {
618 	struct thread *std, *xtd;
619 
620 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
621 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
622 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
623 		return (std);
624 	return (xtd);
625 }
626 
627 /*
628  * Take ownership of a turnstile and adjust the priority of the new
629  * owner appropriately.
630  */
631 void
632 turnstile_claim(struct turnstile *ts)
633 {
634 	struct thread *td, *owner;
635 	struct turnstile_chain *tc;
636 
637 	mtx_assert(&ts->ts_lock, MA_OWNED);
638 	MPASS(ts != curthread->td_turnstile);
639 
640 	owner = curthread;
641 	mtx_lock_spin(&td_contested_lock);
642 	turnstile_setowner(ts, owner);
643 	mtx_unlock_spin(&td_contested_lock);
644 
645 	td = turnstile_first_waiter(ts);
646 	MPASS(td != NULL);
647 	MPASS(td->td_proc->p_magic == P_MAGIC);
648 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
649 
650 	/*
651 	 * Update the priority of the new owner if needed.
652 	 */
653 	thread_lock(owner);
654 	if (td->td_priority < owner->td_priority)
655 		sched_lend_prio(owner, td->td_priority);
656 	thread_unlock(owner);
657 	tc = TC_LOOKUP(ts->ts_lockobj);
658 	mtx_unlock_spin(&ts->ts_lock);
659 	mtx_unlock_spin(&tc->tc_lock);
660 }
661 
662 /*
663  * Block the current thread on the turnstile assicated with 'lock'.  This
664  * function will context switch and not return until this thread has been
665  * woken back up.  This function must be called with the appropriate
666  * turnstile chain locked and will return with it unlocked.
667  */
668 void
669 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
670 {
671 	struct turnstile_chain *tc;
672 	struct thread *td, *td1;
673 	struct lock_object *lock;
674 
675 	td = curthread;
676 	mtx_assert(&ts->ts_lock, MA_OWNED);
677 	if (owner)
678 		MPASS(owner->td_proc->p_magic == P_MAGIC);
679 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
680 
681 	/*
682 	 * If the lock does not already have a turnstile, use this thread's
683 	 * turnstile.  Otherwise insert the current thread into the
684 	 * turnstile already in use by this lock.
685 	 */
686 	tc = TC_LOOKUP(ts->ts_lockobj);
687 	mtx_assert(&tc->tc_lock, MA_OWNED);
688 	if (ts == td->td_turnstile) {
689 #ifdef TURNSTILE_PROFILING
690 		tc->tc_depth++;
691 		if (tc->tc_depth > tc->tc_max_depth) {
692 			tc->tc_max_depth = tc->tc_depth;
693 			if (tc->tc_max_depth > turnstile_max_depth)
694 				turnstile_max_depth = tc->tc_max_depth;
695 		}
696 #endif
697 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
698 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
699 		    ("thread's turnstile has pending threads"));
700 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
701 		    ("thread's turnstile has exclusive waiters"));
702 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
703 		    ("thread's turnstile has shared waiters"));
704 		KASSERT(LIST_EMPTY(&ts->ts_free),
705 		    ("thread's turnstile has a non-empty free list"));
706 		MPASS(ts->ts_lockobj != NULL);
707 		mtx_lock_spin(&td_contested_lock);
708 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
709 		turnstile_setowner(ts, owner);
710 		mtx_unlock_spin(&td_contested_lock);
711 	} else {
712 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
713 			if (td1->td_priority > td->td_priority)
714 				break;
715 		mtx_lock_spin(&td_contested_lock);
716 		if (td1 != NULL)
717 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
718 		else
719 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
720 		MPASS(owner == ts->ts_owner);
721 		mtx_unlock_spin(&td_contested_lock);
722 		MPASS(td->td_turnstile != NULL);
723 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
724 	}
725 	thread_lock(td);
726 	thread_lock_set(td, &ts->ts_lock);
727 	td->td_turnstile = NULL;
728 
729 	/* Save who we are blocked on and switch. */
730 	lock = ts->ts_lockobj;
731 	td->td_tsqueue = queue;
732 	td->td_blocked = ts;
733 	td->td_lockname = lock->lo_name;
734 	td->td_blktick = ticks;
735 	TD_SET_LOCK(td);
736 	mtx_unlock_spin(&tc->tc_lock);
737 	propagate_priority(td);
738 
739 	if (LOCK_LOG_TEST(lock, 0))
740 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
741 		    td->td_tid, lock, lock->lo_name);
742 
743 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
744 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
745 
746 	if (LOCK_LOG_TEST(lock, 0))
747 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
748 		    __func__, td->td_tid, lock, lock->lo_name);
749 	thread_unlock(td);
750 }
751 
752 /*
753  * Pick the highest priority thread on this turnstile and put it on the
754  * pending list.  This must be called with the turnstile chain locked.
755  */
756 int
757 turnstile_signal(struct turnstile *ts, int queue)
758 {
759 	struct turnstile_chain *tc;
760 	struct thread *td;
761 	int empty;
762 
763 	MPASS(ts != NULL);
764 	mtx_assert(&ts->ts_lock, MA_OWNED);
765 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
766 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
767 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
768 
769 	/*
770 	 * Pick the highest priority thread blocked on this lock and
771 	 * move it to the pending list.
772 	 */
773 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
774 	MPASS(td->td_proc->p_magic == P_MAGIC);
775 	mtx_lock_spin(&td_contested_lock);
776 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
777 	mtx_unlock_spin(&td_contested_lock);
778 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
779 
780 	/*
781 	 * If the turnstile is now empty, remove it from its chain and
782 	 * give it to the about-to-be-woken thread.  Otherwise take a
783 	 * turnstile from the free list and give it to the thread.
784 	 */
785 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
786 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
787 	if (empty) {
788 		tc = TC_LOOKUP(ts->ts_lockobj);
789 		mtx_assert(&tc->tc_lock, MA_OWNED);
790 		MPASS(LIST_EMPTY(&ts->ts_free));
791 #ifdef TURNSTILE_PROFILING
792 		tc->tc_depth--;
793 #endif
794 	} else
795 		ts = LIST_FIRST(&ts->ts_free);
796 	MPASS(ts != NULL);
797 	LIST_REMOVE(ts, ts_hash);
798 	td->td_turnstile = ts;
799 
800 	return (empty);
801 }
802 
803 /*
804  * Put all blocked threads on the pending list.  This must be called with
805  * the turnstile chain locked.
806  */
807 void
808 turnstile_broadcast(struct turnstile *ts, int queue)
809 {
810 	struct turnstile_chain *tc;
811 	struct turnstile *ts1;
812 	struct thread *td;
813 
814 	MPASS(ts != NULL);
815 	mtx_assert(&ts->ts_lock, MA_OWNED);
816 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
817 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
818 	/*
819 	 * We must have the chain locked so that we can remove the empty
820 	 * turnstile from the hash queue.
821 	 */
822 	tc = TC_LOOKUP(ts->ts_lockobj);
823 	mtx_assert(&tc->tc_lock, MA_OWNED);
824 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
825 
826 	/*
827 	 * Transfer the blocked list to the pending list.
828 	 */
829 	mtx_lock_spin(&td_contested_lock);
830 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
831 	mtx_unlock_spin(&td_contested_lock);
832 
833 	/*
834 	 * Give a turnstile to each thread.  The last thread gets
835 	 * this turnstile if the turnstile is empty.
836 	 */
837 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
838 		if (LIST_EMPTY(&ts->ts_free)) {
839 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
840 			ts1 = ts;
841 #ifdef TURNSTILE_PROFILING
842 			tc->tc_depth--;
843 #endif
844 		} else
845 			ts1 = LIST_FIRST(&ts->ts_free);
846 		MPASS(ts1 != NULL);
847 		LIST_REMOVE(ts1, ts_hash);
848 		td->td_turnstile = ts1;
849 	}
850 }
851 
852 /*
853  * Wakeup all threads on the pending list and adjust the priority of the
854  * current thread appropriately.  This must be called with the turnstile
855  * chain locked.
856  */
857 void
858 turnstile_unpend(struct turnstile *ts, int owner_type)
859 {
860 	TAILQ_HEAD( ,thread) pending_threads;
861 	struct turnstile *nts;
862 	struct thread *td;
863 	u_char cp, pri;
864 
865 	MPASS(ts != NULL);
866 	mtx_assert(&ts->ts_lock, MA_OWNED);
867 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
868 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
869 
870 	/*
871 	 * Move the list of pending threads out of the turnstile and
872 	 * into a local variable.
873 	 */
874 	TAILQ_INIT(&pending_threads);
875 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
876 #ifdef INVARIANTS
877 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
878 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
879 		ts->ts_lockobj = NULL;
880 #endif
881 	/*
882 	 * Adjust the priority of curthread based on other contested
883 	 * locks it owns.  Don't lower the priority below the base
884 	 * priority however.
885 	 */
886 	td = curthread;
887 	pri = PRI_MAX;
888 	thread_lock(td);
889 	mtx_lock_spin(&td_contested_lock);
890 	/*
891 	 * Remove the turnstile from this thread's list of contested locks
892 	 * since this thread doesn't own it anymore.  New threads will
893 	 * not be blocking on the turnstile until it is claimed by a new
894 	 * owner.  There might not be a current owner if this is a shared
895 	 * lock.
896 	 */
897 	if (ts->ts_owner != NULL) {
898 		ts->ts_owner = NULL;
899 		LIST_REMOVE(ts, ts_link);
900 	}
901 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
902 		cp = turnstile_first_waiter(nts)->td_priority;
903 		if (cp < pri)
904 			pri = cp;
905 	}
906 	mtx_unlock_spin(&td_contested_lock);
907 	sched_unlend_prio(td, pri);
908 	thread_unlock(td);
909 	/*
910 	 * Wake up all the pending threads.  If a thread is not blocked
911 	 * on a lock, then it is currently executing on another CPU in
912 	 * turnstile_wait() or sitting on a run queue waiting to resume
913 	 * in turnstile_wait().  Set a flag to force it to try to acquire
914 	 * the lock again instead of blocking.
915 	 */
916 	while (!TAILQ_EMPTY(&pending_threads)) {
917 		td = TAILQ_FIRST(&pending_threads);
918 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
919 		thread_lock(td);
920 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
921 		MPASS(td->td_proc->p_magic == P_MAGIC);
922 		MPASS(TD_ON_LOCK(td));
923 		TD_CLR_LOCK(td);
924 		MPASS(TD_CAN_RUN(td));
925 		td->td_blocked = NULL;
926 		td->td_lockname = NULL;
927 		td->td_blktick = 0;
928 #ifdef INVARIANTS
929 		td->td_tsqueue = 0xff;
930 #endif
931 		sched_add(td, SRQ_BORING);
932 		thread_unlock(td);
933 	}
934 	mtx_unlock_spin(&ts->ts_lock);
935 }
936 
937 /*
938  * Give up ownership of a turnstile.  This must be called with the
939  * turnstile chain locked.
940  */
941 void
942 turnstile_disown(struct turnstile *ts)
943 {
944 	struct thread *td;
945 	u_char cp, pri;
946 
947 	MPASS(ts != NULL);
948 	mtx_assert(&ts->ts_lock, MA_OWNED);
949 	MPASS(ts->ts_owner == curthread);
950 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
951 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
952 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
953 
954 	/*
955 	 * Remove the turnstile from this thread's list of contested locks
956 	 * since this thread doesn't own it anymore.  New threads will
957 	 * not be blocking on the turnstile until it is claimed by a new
958 	 * owner.
959 	 */
960 	mtx_lock_spin(&td_contested_lock);
961 	ts->ts_owner = NULL;
962 	LIST_REMOVE(ts, ts_link);
963 	mtx_unlock_spin(&td_contested_lock);
964 
965 	/*
966 	 * Adjust the priority of curthread based on other contested
967 	 * locks it owns.  Don't lower the priority below the base
968 	 * priority however.
969 	 */
970 	td = curthread;
971 	pri = PRI_MAX;
972 	thread_lock(td);
973 	mtx_unlock_spin(&ts->ts_lock);
974 	mtx_lock_spin(&td_contested_lock);
975 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
976 		cp = turnstile_first_waiter(ts)->td_priority;
977 		if (cp < pri)
978 			pri = cp;
979 	}
980 	mtx_unlock_spin(&td_contested_lock);
981 	sched_unlend_prio(td, pri);
982 	thread_unlock(td);
983 }
984 
985 /*
986  * Return the first thread in a turnstile.
987  */
988 struct thread *
989 turnstile_head(struct turnstile *ts, int queue)
990 {
991 #ifdef INVARIANTS
992 
993 	MPASS(ts != NULL);
994 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
995 	mtx_assert(&ts->ts_lock, MA_OWNED);
996 #endif
997 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
998 }
999 
1000 /*
1001  * Returns true if a sub-queue of a turnstile is empty.
1002  */
1003 int
1004 turnstile_empty(struct turnstile *ts, int queue)
1005 {
1006 #ifdef INVARIANTS
1007 
1008 	MPASS(ts != NULL);
1009 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1010 	mtx_assert(&ts->ts_lock, MA_OWNED);
1011 #endif
1012 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1013 }
1014 
1015 #ifdef DDB
1016 static void
1017 print_thread(struct thread *td, const char *prefix)
1018 {
1019 
1020 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1021 	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1022 	    td->td_name);
1023 }
1024 
1025 static void
1026 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1027 {
1028 	struct thread *td;
1029 
1030 	db_printf("%s:\n", header);
1031 	if (TAILQ_EMPTY(queue)) {
1032 		db_printf("%sempty\n", prefix);
1033 		return;
1034 	}
1035 	TAILQ_FOREACH(td, queue, td_lockq) {
1036 		print_thread(td, prefix);
1037 	}
1038 }
1039 
1040 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1041 {
1042 	struct turnstile_chain *tc;
1043 	struct turnstile *ts;
1044 	struct lock_object *lock;
1045 	int i;
1046 
1047 	if (!have_addr)
1048 		return;
1049 
1050 	/*
1051 	 * First, see if there is an active turnstile for the lock indicated
1052 	 * by the address.
1053 	 */
1054 	lock = (struct lock_object *)addr;
1055 	tc = TC_LOOKUP(lock);
1056 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1057 		if (ts->ts_lockobj == lock)
1058 			goto found;
1059 
1060 	/*
1061 	 * Second, see if there is an active turnstile at the address
1062 	 * indicated.
1063 	 */
1064 	for (i = 0; i < TC_TABLESIZE; i++)
1065 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1066 			if (ts == (struct turnstile *)addr)
1067 				goto found;
1068 		}
1069 
1070 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1071 	return;
1072 found:
1073 	lock = ts->ts_lockobj;
1074 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1075 	    lock->lo_name);
1076 	if (ts->ts_owner)
1077 		print_thread(ts->ts_owner, "Lock Owner: ");
1078 	else
1079 		db_printf("Lock Owner: none\n");
1080 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1081 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1082 	    "\t");
1083 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1084 
1085 }
1086 
1087 /*
1088  * Show all the threads a particular thread is waiting on based on
1089  * non-sleepable and non-spin locks.
1090  */
1091 static void
1092 print_lockchain(struct thread *td, const char *prefix)
1093 {
1094 	struct lock_object *lock;
1095 	struct lock_class *class;
1096 	struct turnstile *ts;
1097 
1098 	/*
1099 	 * Follow the chain.  We keep walking as long as the thread is
1100 	 * blocked on a turnstile that has an owner.
1101 	 */
1102 	while (!db_pager_quit) {
1103 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1104 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1105 		    td->td_name);
1106 		switch (td->td_state) {
1107 		case TDS_INACTIVE:
1108 			db_printf("is inactive\n");
1109 			return;
1110 		case TDS_CAN_RUN:
1111 			db_printf("can run\n");
1112 			return;
1113 		case TDS_RUNQ:
1114 			db_printf("is on a run queue\n");
1115 			return;
1116 		case TDS_RUNNING:
1117 			db_printf("running on CPU %d\n", td->td_oncpu);
1118 			return;
1119 		case TDS_INHIBITED:
1120 			if (TD_ON_LOCK(td)) {
1121 				ts = td->td_blocked;
1122 				lock = ts->ts_lockobj;
1123 				class = LOCK_CLASS(lock);
1124 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1125 				    lock, class->lc_name, lock->lo_name);
1126 				if (ts->ts_owner == NULL)
1127 					return;
1128 				td = ts->ts_owner;
1129 				break;
1130 			}
1131 			db_printf("inhibited\n");
1132 			return;
1133 		default:
1134 			db_printf("??? (%#x)\n", td->td_state);
1135 			return;
1136 		}
1137 	}
1138 }
1139 
1140 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1141 {
1142 	struct thread *td;
1143 
1144 	/* Figure out which thread to start with. */
1145 	if (have_addr)
1146 		td = db_lookup_thread(addr, TRUE);
1147 	else
1148 		td = kdb_thread;
1149 
1150 	print_lockchain(td, "");
1151 }
1152 
1153 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1154 {
1155 	struct thread *td;
1156 	struct proc *p;
1157 	int i;
1158 
1159 	i = 1;
1160 	FOREACH_PROC_IN_SYSTEM(p) {
1161 		FOREACH_THREAD_IN_PROC(p, td) {
1162 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1163 				db_printf("chain %d:\n", i++);
1164 				print_lockchain(td, " ");
1165 			}
1166 			if (db_pager_quit)
1167 				return;
1168 		}
1169 	}
1170 }
1171 DB_SHOW_ALIAS(allchains, db_show_allchains)
1172 
1173 /*
1174  * Show all the threads a particular thread is waiting on based on
1175  * sleepable locks.
1176  */
1177 static void
1178 print_sleepchain(struct thread *td, const char *prefix)
1179 {
1180 	struct thread *owner;
1181 
1182 	/*
1183 	 * Follow the chain.  We keep walking as long as the thread is
1184 	 * blocked on a sleep lock that has an owner.
1185 	 */
1186 	while (!db_pager_quit) {
1187 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1188 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1189 		    td->td_name);
1190 		switch (td->td_state) {
1191 		case TDS_INACTIVE:
1192 			db_printf("is inactive\n");
1193 			return;
1194 		case TDS_CAN_RUN:
1195 			db_printf("can run\n");
1196 			return;
1197 		case TDS_RUNQ:
1198 			db_printf("is on a run queue\n");
1199 			return;
1200 		case TDS_RUNNING:
1201 			db_printf("running on CPU %d\n", td->td_oncpu);
1202 			return;
1203 		case TDS_INHIBITED:
1204 			if (TD_ON_SLEEPQ(td)) {
1205 				if (lockmgr_chain(td, &owner) ||
1206 				    sx_chain(td, &owner)) {
1207 					if (owner == NULL)
1208 						return;
1209 					td = owner;
1210 					break;
1211 				}
1212 				db_printf("sleeping on %p \"%s\"\n",
1213 				    td->td_wchan, td->td_wmesg);
1214 				return;
1215 			}
1216 			db_printf("inhibited\n");
1217 			return;
1218 		default:
1219 			db_printf("??? (%#x)\n", td->td_state);
1220 			return;
1221 		}
1222 	}
1223 }
1224 
1225 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1226 {
1227 	struct thread *td;
1228 
1229 	/* Figure out which thread to start with. */
1230 	if (have_addr)
1231 		td = db_lookup_thread(addr, TRUE);
1232 	else
1233 		td = kdb_thread;
1234 
1235 	print_sleepchain(td, "");
1236 }
1237 
1238 static void	print_waiters(struct turnstile *ts, int indent);
1239 
1240 static void
1241 print_waiter(struct thread *td, int indent)
1242 {
1243 	struct turnstile *ts;
1244 	int i;
1245 
1246 	if (db_pager_quit)
1247 		return;
1248 	for (i = 0; i < indent; i++)
1249 		db_printf(" ");
1250 	print_thread(td, "thread ");
1251 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1252 		print_waiters(ts, indent + 1);
1253 }
1254 
1255 static void
1256 print_waiters(struct turnstile *ts, int indent)
1257 {
1258 	struct lock_object *lock;
1259 	struct lock_class *class;
1260 	struct thread *td;
1261 	int i;
1262 
1263 	if (db_pager_quit)
1264 		return;
1265 	lock = ts->ts_lockobj;
1266 	class = LOCK_CLASS(lock);
1267 	for (i = 0; i < indent; i++)
1268 		db_printf(" ");
1269 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1270 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1271 		print_waiter(td, indent + 1);
1272 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1273 		print_waiter(td, indent + 1);
1274 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1275 		print_waiter(td, indent + 1);
1276 }
1277 
1278 DB_SHOW_COMMAND(locktree, db_show_locktree)
1279 {
1280 	struct lock_object *lock;
1281 	struct lock_class *class;
1282 	struct turnstile_chain *tc;
1283 	struct turnstile *ts;
1284 
1285 	if (!have_addr)
1286 		return;
1287 	lock = (struct lock_object *)addr;
1288 	tc = TC_LOOKUP(lock);
1289 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1290 		if (ts->ts_lockobj == lock)
1291 			break;
1292 	if (ts == NULL) {
1293 		class = LOCK_CLASS(lock);
1294 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1295 		    lock->lo_name);
1296 	} else
1297 		print_waiters(ts, 0);
1298 }
1299 #endif
1300