1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is allocated from a UMA zone 50 * and attached to that thread. When a thread blocks on a lock, if it is the 51 * first thread to block, it lends its turnstile to the lock. If the lock 52 * already has a turnstile, then it gives its turnstile to the lock's 53 * turnstile's free list. When a thread is woken up, it takes a turnstile from 54 * the free list if there are any other waiters. If it is the only thread 55 * blocked on the lock, then it reclaims the turnstile associated with the lock 56 * and removes it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_turnstile_profiling.h" 64 #include "opt_sched.h" 65 66 #include <sys/param.h> 67 #include <sys/systm.h> 68 #include <sys/kdb.h> 69 #include <sys/kernel.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/queue.h> 75 #include <sys/sched.h> 76 #include <sys/sdt.h> 77 #include <sys/sysctl.h> 78 #include <sys/turnstile.h> 79 80 #include <vm/uma.h> 81 82 #ifdef DDB 83 #include <ddb/ddb.h> 84 #include <sys/lockmgr.h> 85 #include <sys/sx.h> 86 #endif 87 88 /* 89 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 90 * number chosen because the sleep queue's use the same value for the 91 * shift. Basically, we ignore the lower 8 bits of the address. 92 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 93 */ 94 #define TC_TABLESIZE 128 /* Must be power of 2. */ 95 #define TC_MASK (TC_TABLESIZE - 1) 96 #define TC_SHIFT 8 97 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 98 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 99 100 /* 101 * There are three different lists of turnstiles as follows. The list 102 * connected by ts_link entries is a per-thread list of all the turnstiles 103 * attached to locks that we own. This is used to fixup our priority when 104 * a lock is released. The other two lists use the ts_hash entries. The 105 * first of these two is the turnstile chain list that a turnstile is on 106 * when it is attached to a lock. The second list to use ts_hash is the 107 * free list hung off of a turnstile that is attached to a lock. 108 * 109 * Each turnstile contains three lists of threads. The two ts_blocked lists 110 * are linked list of threads blocked on the turnstile's lock. One list is 111 * for exclusive waiters, and the other is for shared waiters. The 112 * ts_pending list is a linked list of threads previously awakened by 113 * turnstile_signal() or turnstile_wait() that are waiting to be put on 114 * the run queue. 115 * 116 * Locking key: 117 * c - turnstile chain lock 118 * q - td_contested lock 119 */ 120 struct turnstile { 121 struct mtx ts_lock; /* Spin lock for self. */ 122 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 123 struct threadqueue ts_pending; /* (c) Pending threads. */ 124 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 125 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 126 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 127 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 128 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 129 }; 130 131 struct turnstile_chain { 132 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 133 struct mtx tc_lock; /* Spin lock for this chain. */ 134 #ifdef TURNSTILE_PROFILING 135 u_int tc_depth; /* Length of tc_queues. */ 136 u_int tc_max_depth; /* Max length of tc_queues. */ 137 #endif 138 }; 139 140 #ifdef TURNSTILE_PROFILING 141 u_int turnstile_max_depth; 142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, 143 "turnstile profiling"); 144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 145 "turnstile chain stats"); 146 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 147 &turnstile_max_depth, 0, "maximum depth achieved of a single chain"); 148 #endif 149 static struct mtx td_contested_lock; 150 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 151 static uma_zone_t turnstile_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static void init_turnstile0(void *dummy); 157 #ifdef TURNSTILE_PROFILING 158 static void init_turnstile_profiling(void *arg); 159 #endif 160 #ifdef DDB 161 static void print_sleepchain(struct thread *td, const char *prefix); 162 #endif 163 static void propagate_priority(struct thread *td); 164 static int turnstile_adjust_thread(struct turnstile *ts, 165 struct thread *td); 166 static struct thread *turnstile_first_waiter(struct turnstile *ts); 167 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 168 #ifdef INVARIANTS 169 static void turnstile_dtor(void *mem, int size, void *arg); 170 #endif 171 static int turnstile_init(void *mem, int size, int flags); 172 static void turnstile_fini(void *mem, int size); 173 174 SDT_PROVIDER_DECLARE(sched); 175 SDT_PROBE_DEFINE(sched, , , sleep); 176 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *", 177 "struct proc *"); 178 179 /* 180 * Walks the chain of turnstiles and their owners to propagate the priority 181 * of the thread being blocked to all the threads holding locks that have to 182 * release their locks before this thread can run again. 183 */ 184 static void 185 propagate_priority(struct thread *td) 186 { 187 struct turnstile *ts; 188 int pri; 189 190 THREAD_LOCK_ASSERT(td, MA_OWNED); 191 pri = td->td_priority; 192 ts = td->td_blocked; 193 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 194 /* 195 * Grab a recursive lock on this turnstile chain so it stays locked 196 * for the whole operation. The caller expects us to return with 197 * the original lock held. We only ever lock down the chain so 198 * the lock order is constant. 199 */ 200 mtx_lock_spin(&ts->ts_lock); 201 for (;;) { 202 td = ts->ts_owner; 203 204 if (td == NULL) { 205 /* 206 * This might be a read lock with no owner. There's 207 * not much we can do, so just bail. 208 */ 209 mtx_unlock_spin(&ts->ts_lock); 210 return; 211 } 212 213 thread_lock_flags(td, MTX_DUPOK); 214 mtx_unlock_spin(&ts->ts_lock); 215 MPASS(td->td_proc != NULL); 216 MPASS(td->td_proc->p_magic == P_MAGIC); 217 218 /* 219 * If the thread is asleep, then we are probably about 220 * to deadlock. To make debugging this easier, show 221 * backtrace of misbehaving thread and panic to not 222 * leave the kernel deadlocked. 223 */ 224 if (TD_IS_SLEEPING(td)) { 225 printf( 226 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 227 td->td_tid, td->td_proc->p_pid); 228 kdb_backtrace_thread(td); 229 panic("sleeping thread"); 230 } 231 232 /* 233 * If this thread already has higher priority than the 234 * thread that is being blocked, we are finished. 235 */ 236 if (td->td_priority <= pri) { 237 thread_unlock(td); 238 return; 239 } 240 241 /* 242 * Bump this thread's priority. 243 */ 244 sched_lend_prio(td, pri); 245 246 /* 247 * If lock holder is actually running or on the run queue 248 * then we are done. 249 */ 250 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 251 MPASS(td->td_blocked == NULL); 252 thread_unlock(td); 253 return; 254 } 255 256 #ifndef SMP 257 /* 258 * For UP, we check to see if td is curthread (this shouldn't 259 * ever happen however as it would mean we are in a deadlock.) 260 */ 261 KASSERT(td != curthread, ("Deadlock detected")); 262 #endif 263 264 /* 265 * If we aren't blocked on a lock, we should be. 266 */ 267 KASSERT(TD_ON_LOCK(td), ( 268 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 269 td->td_tid, td->td_name, td->td_state, 270 ts->ts_lockobj->lo_name)); 271 272 /* 273 * Pick up the lock that td is blocked on. 274 */ 275 ts = td->td_blocked; 276 MPASS(ts != NULL); 277 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 278 /* Resort td on the list if needed. */ 279 if (!turnstile_adjust_thread(ts, td)) { 280 mtx_unlock_spin(&ts->ts_lock); 281 return; 282 } 283 /* The thread lock is released as ts lock above. */ 284 } 285 } 286 287 /* 288 * Adjust the thread's position on a turnstile after its priority has been 289 * changed. 290 */ 291 static int 292 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 293 { 294 struct thread *td1, *td2; 295 int queue; 296 297 THREAD_LOCK_ASSERT(td, MA_OWNED); 298 MPASS(TD_ON_LOCK(td)); 299 300 /* 301 * This thread may not be blocked on this turnstile anymore 302 * but instead might already be woken up on another CPU 303 * that is waiting on the thread lock in turnstile_unpend() to 304 * finish waking this thread up. We can detect this case 305 * by checking to see if this thread has been given a 306 * turnstile by either turnstile_signal() or 307 * turnstile_broadcast(). In this case, treat the thread as 308 * if it was already running. 309 */ 310 if (td->td_turnstile != NULL) 311 return (0); 312 313 /* 314 * Check if the thread needs to be moved on the blocked chain. 315 * It needs to be moved if either its priority is lower than 316 * the previous thread or higher than the next thread. 317 */ 318 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 319 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 320 td2 = TAILQ_NEXT(td, td_lockq); 321 if ((td1 != NULL && td->td_priority < td1->td_priority) || 322 (td2 != NULL && td->td_priority > td2->td_priority)) { 323 324 /* 325 * Remove thread from blocked chain and determine where 326 * it should be moved to. 327 */ 328 queue = td->td_tsqueue; 329 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 330 mtx_lock_spin(&td_contested_lock); 331 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 332 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 333 MPASS(td1->td_proc->p_magic == P_MAGIC); 334 if (td1->td_priority > td->td_priority) 335 break; 336 } 337 338 if (td1 == NULL) 339 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 340 else 341 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 342 mtx_unlock_spin(&td_contested_lock); 343 if (td1 == NULL) 344 CTR3(KTR_LOCK, 345 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 346 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 347 else 348 CTR4(KTR_LOCK, 349 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 350 td->td_tid, td1->td_tid, ts->ts_lockobj, 351 ts->ts_lockobj->lo_name); 352 } 353 return (1); 354 } 355 356 /* 357 * Early initialization of turnstiles. This is not done via a SYSINIT() 358 * since this needs to be initialized very early when mutexes are first 359 * initialized. 360 */ 361 void 362 init_turnstiles(void) 363 { 364 int i; 365 366 for (i = 0; i < TC_TABLESIZE; i++) { 367 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 368 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 369 NULL, MTX_SPIN); 370 } 371 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 372 LIST_INIT(&thread0.td_contested); 373 thread0.td_turnstile = NULL; 374 } 375 376 #ifdef TURNSTILE_PROFILING 377 static void 378 init_turnstile_profiling(void *arg) 379 { 380 struct sysctl_oid *chain_oid; 381 char chain_name[10]; 382 int i; 383 384 for (i = 0; i < TC_TABLESIZE; i++) { 385 snprintf(chain_name, sizeof(chain_name), "%d", i); 386 chain_oid = SYSCTL_ADD_NODE(NULL, 387 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 388 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 389 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 390 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 391 NULL); 392 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 393 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 394 0, NULL); 395 } 396 } 397 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 398 init_turnstile_profiling, NULL); 399 #endif 400 401 static void 402 init_turnstile0(void *dummy) 403 { 404 405 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 406 NULL, 407 #ifdef INVARIANTS 408 turnstile_dtor, 409 #else 410 NULL, 411 #endif 412 turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 413 thread0.td_turnstile = turnstile_alloc(); 414 } 415 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 416 417 /* 418 * Update a thread on the turnstile list after it's priority has been changed. 419 * The old priority is passed in as an argument. 420 */ 421 void 422 turnstile_adjust(struct thread *td, u_char oldpri) 423 { 424 struct turnstile *ts; 425 426 MPASS(TD_ON_LOCK(td)); 427 428 /* 429 * Pick up the lock that td is blocked on. 430 */ 431 ts = td->td_blocked; 432 MPASS(ts != NULL); 433 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 434 mtx_assert(&ts->ts_lock, MA_OWNED); 435 436 /* Resort the turnstile on the list. */ 437 if (!turnstile_adjust_thread(ts, td)) 438 return; 439 /* 440 * If our priority was lowered and we are at the head of the 441 * turnstile, then propagate our new priority up the chain. 442 * Note that we currently don't try to revoke lent priorities 443 * when our priority goes up. 444 */ 445 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 446 td->td_tsqueue == TS_SHARED_QUEUE); 447 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 448 td->td_priority < oldpri) { 449 propagate_priority(td); 450 } 451 } 452 453 /* 454 * Set the owner of the lock this turnstile is attached to. 455 */ 456 static void 457 turnstile_setowner(struct turnstile *ts, struct thread *owner) 458 { 459 460 mtx_assert(&td_contested_lock, MA_OWNED); 461 MPASS(ts->ts_owner == NULL); 462 463 /* A shared lock might not have an owner. */ 464 if (owner == NULL) 465 return; 466 467 MPASS(owner->td_proc->p_magic == P_MAGIC); 468 ts->ts_owner = owner; 469 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 470 } 471 472 #ifdef INVARIANTS 473 /* 474 * UMA zone item deallocator. 475 */ 476 static void 477 turnstile_dtor(void *mem, int size, void *arg) 478 { 479 struct turnstile *ts; 480 481 ts = mem; 482 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 483 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 484 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 485 } 486 #endif 487 488 /* 489 * UMA zone item initializer. 490 */ 491 static int 492 turnstile_init(void *mem, int size, int flags) 493 { 494 struct turnstile *ts; 495 496 bzero(mem, size); 497 ts = mem; 498 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 499 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 500 TAILQ_INIT(&ts->ts_pending); 501 LIST_INIT(&ts->ts_free); 502 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE); 503 return (0); 504 } 505 506 static void 507 turnstile_fini(void *mem, int size) 508 { 509 struct turnstile *ts; 510 511 ts = mem; 512 mtx_destroy(&ts->ts_lock); 513 } 514 515 /* 516 * Get a turnstile for a new thread. 517 */ 518 struct turnstile * 519 turnstile_alloc(void) 520 { 521 522 return (uma_zalloc(turnstile_zone, M_WAITOK)); 523 } 524 525 /* 526 * Free a turnstile when a thread is destroyed. 527 */ 528 void 529 turnstile_free(struct turnstile *ts) 530 { 531 532 uma_zfree(turnstile_zone, ts); 533 } 534 535 /* 536 * Lock the turnstile chain associated with the specified lock. 537 */ 538 void 539 turnstile_chain_lock(struct lock_object *lock) 540 { 541 struct turnstile_chain *tc; 542 543 tc = TC_LOOKUP(lock); 544 mtx_lock_spin(&tc->tc_lock); 545 } 546 547 struct turnstile * 548 turnstile_trywait(struct lock_object *lock) 549 { 550 struct turnstile_chain *tc; 551 struct turnstile *ts; 552 553 tc = TC_LOOKUP(lock); 554 mtx_lock_spin(&tc->tc_lock); 555 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 556 if (ts->ts_lockobj == lock) { 557 mtx_lock_spin(&ts->ts_lock); 558 return (ts); 559 } 560 561 ts = curthread->td_turnstile; 562 MPASS(ts != NULL); 563 mtx_lock_spin(&ts->ts_lock); 564 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 565 ts->ts_lockobj = lock; 566 567 return (ts); 568 } 569 570 void 571 turnstile_cancel(struct turnstile *ts) 572 { 573 struct turnstile_chain *tc; 574 struct lock_object *lock; 575 576 mtx_assert(&ts->ts_lock, MA_OWNED); 577 578 mtx_unlock_spin(&ts->ts_lock); 579 lock = ts->ts_lockobj; 580 if (ts == curthread->td_turnstile) 581 ts->ts_lockobj = NULL; 582 tc = TC_LOOKUP(lock); 583 mtx_unlock_spin(&tc->tc_lock); 584 } 585 586 /* 587 * Look up the turnstile for a lock in the hash table locking the associated 588 * turnstile chain along the way. If no turnstile is found in the hash 589 * table, NULL is returned. 590 */ 591 struct turnstile * 592 turnstile_lookup(struct lock_object *lock) 593 { 594 struct turnstile_chain *tc; 595 struct turnstile *ts; 596 597 tc = TC_LOOKUP(lock); 598 mtx_assert(&tc->tc_lock, MA_OWNED); 599 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 600 if (ts->ts_lockobj == lock) { 601 mtx_lock_spin(&ts->ts_lock); 602 return (ts); 603 } 604 return (NULL); 605 } 606 607 /* 608 * Unlock the turnstile chain associated with a given lock. 609 */ 610 void 611 turnstile_chain_unlock(struct lock_object *lock) 612 { 613 struct turnstile_chain *tc; 614 615 tc = TC_LOOKUP(lock); 616 mtx_unlock_spin(&tc->tc_lock); 617 } 618 619 /* 620 * Return a pointer to the thread waiting on this turnstile with the 621 * most important priority or NULL if the turnstile has no waiters. 622 */ 623 static struct thread * 624 turnstile_first_waiter(struct turnstile *ts) 625 { 626 struct thread *std, *xtd; 627 628 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 629 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 630 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 631 return (std); 632 return (xtd); 633 } 634 635 /* 636 * Take ownership of a turnstile and adjust the priority of the new 637 * owner appropriately. 638 */ 639 void 640 turnstile_claim(struct turnstile *ts) 641 { 642 struct thread *td, *owner; 643 struct turnstile_chain *tc; 644 645 mtx_assert(&ts->ts_lock, MA_OWNED); 646 MPASS(ts != curthread->td_turnstile); 647 648 owner = curthread; 649 mtx_lock_spin(&td_contested_lock); 650 turnstile_setowner(ts, owner); 651 mtx_unlock_spin(&td_contested_lock); 652 653 td = turnstile_first_waiter(ts); 654 MPASS(td != NULL); 655 MPASS(td->td_proc->p_magic == P_MAGIC); 656 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 657 658 /* 659 * Update the priority of the new owner if needed. 660 */ 661 thread_lock(owner); 662 if (td->td_priority < owner->td_priority) 663 sched_lend_prio(owner, td->td_priority); 664 thread_unlock(owner); 665 tc = TC_LOOKUP(ts->ts_lockobj); 666 mtx_unlock_spin(&ts->ts_lock); 667 mtx_unlock_spin(&tc->tc_lock); 668 } 669 670 /* 671 * Block the current thread on the turnstile assicated with 'lock'. This 672 * function will context switch and not return until this thread has been 673 * woken back up. This function must be called with the appropriate 674 * turnstile chain locked and will return with it unlocked. 675 */ 676 void 677 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue) 678 { 679 struct turnstile_chain *tc; 680 struct thread *td, *td1; 681 struct lock_object *lock; 682 683 td = curthread; 684 mtx_assert(&ts->ts_lock, MA_OWNED); 685 if (owner) 686 MPASS(owner->td_proc->p_magic == P_MAGIC); 687 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 688 689 /* 690 * If the lock does not already have a turnstile, use this thread's 691 * turnstile. Otherwise insert the current thread into the 692 * turnstile already in use by this lock. 693 */ 694 tc = TC_LOOKUP(ts->ts_lockobj); 695 mtx_assert(&tc->tc_lock, MA_OWNED); 696 if (ts == td->td_turnstile) { 697 #ifdef TURNSTILE_PROFILING 698 tc->tc_depth++; 699 if (tc->tc_depth > tc->tc_max_depth) { 700 tc->tc_max_depth = tc->tc_depth; 701 if (tc->tc_max_depth > turnstile_max_depth) 702 turnstile_max_depth = tc->tc_max_depth; 703 } 704 #endif 705 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 706 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 707 ("thread's turnstile has pending threads")); 708 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 709 ("thread's turnstile has exclusive waiters")); 710 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 711 ("thread's turnstile has shared waiters")); 712 KASSERT(LIST_EMPTY(&ts->ts_free), 713 ("thread's turnstile has a non-empty free list")); 714 MPASS(ts->ts_lockobj != NULL); 715 mtx_lock_spin(&td_contested_lock); 716 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 717 turnstile_setowner(ts, owner); 718 mtx_unlock_spin(&td_contested_lock); 719 } else { 720 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 721 if (td1->td_priority > td->td_priority) 722 break; 723 mtx_lock_spin(&td_contested_lock); 724 if (td1 != NULL) 725 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 726 else 727 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 728 MPASS(owner == ts->ts_owner); 729 mtx_unlock_spin(&td_contested_lock); 730 MPASS(td->td_turnstile != NULL); 731 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 732 } 733 thread_lock(td); 734 thread_lock_set(td, &ts->ts_lock); 735 td->td_turnstile = NULL; 736 737 /* Save who we are blocked on and switch. */ 738 lock = ts->ts_lockobj; 739 td->td_tsqueue = queue; 740 td->td_blocked = ts; 741 td->td_lockname = lock->lo_name; 742 td->td_blktick = ticks; 743 TD_SET_LOCK(td); 744 mtx_unlock_spin(&tc->tc_lock); 745 propagate_priority(td); 746 747 if (LOCK_LOG_TEST(lock, 0)) 748 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 749 td->td_tid, lock, lock->lo_name); 750 751 SDT_PROBE0(sched, , , sleep); 752 753 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 754 mi_switch(SW_VOL | SWT_TURNSTILE, NULL); 755 756 if (LOCK_LOG_TEST(lock, 0)) 757 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 758 __func__, td->td_tid, lock, lock->lo_name); 759 thread_unlock(td); 760 } 761 762 /* 763 * Pick the highest priority thread on this turnstile and put it on the 764 * pending list. This must be called with the turnstile chain locked. 765 */ 766 int 767 turnstile_signal(struct turnstile *ts, int queue) 768 { 769 struct turnstile_chain *tc; 770 struct thread *td; 771 int empty; 772 773 MPASS(ts != NULL); 774 mtx_assert(&ts->ts_lock, MA_OWNED); 775 MPASS(curthread->td_proc->p_magic == P_MAGIC); 776 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 777 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 778 779 /* 780 * Pick the highest priority thread blocked on this lock and 781 * move it to the pending list. 782 */ 783 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 784 MPASS(td->td_proc->p_magic == P_MAGIC); 785 mtx_lock_spin(&td_contested_lock); 786 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 787 mtx_unlock_spin(&td_contested_lock); 788 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 789 790 /* 791 * If the turnstile is now empty, remove it from its chain and 792 * give it to the about-to-be-woken thread. Otherwise take a 793 * turnstile from the free list and give it to the thread. 794 */ 795 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 796 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 797 if (empty) { 798 tc = TC_LOOKUP(ts->ts_lockobj); 799 mtx_assert(&tc->tc_lock, MA_OWNED); 800 MPASS(LIST_EMPTY(&ts->ts_free)); 801 #ifdef TURNSTILE_PROFILING 802 tc->tc_depth--; 803 #endif 804 } else 805 ts = LIST_FIRST(&ts->ts_free); 806 MPASS(ts != NULL); 807 LIST_REMOVE(ts, ts_hash); 808 td->td_turnstile = ts; 809 810 return (empty); 811 } 812 813 /* 814 * Put all blocked threads on the pending list. This must be called with 815 * the turnstile chain locked. 816 */ 817 void 818 turnstile_broadcast(struct turnstile *ts, int queue) 819 { 820 struct turnstile_chain *tc; 821 struct turnstile *ts1; 822 struct thread *td; 823 824 MPASS(ts != NULL); 825 mtx_assert(&ts->ts_lock, MA_OWNED); 826 MPASS(curthread->td_proc->p_magic == P_MAGIC); 827 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 828 /* 829 * We must have the chain locked so that we can remove the empty 830 * turnstile from the hash queue. 831 */ 832 tc = TC_LOOKUP(ts->ts_lockobj); 833 mtx_assert(&tc->tc_lock, MA_OWNED); 834 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 835 836 /* 837 * Transfer the blocked list to the pending list. 838 */ 839 mtx_lock_spin(&td_contested_lock); 840 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 841 mtx_unlock_spin(&td_contested_lock); 842 843 /* 844 * Give a turnstile to each thread. The last thread gets 845 * this turnstile if the turnstile is empty. 846 */ 847 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 848 if (LIST_EMPTY(&ts->ts_free)) { 849 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 850 ts1 = ts; 851 #ifdef TURNSTILE_PROFILING 852 tc->tc_depth--; 853 #endif 854 } else 855 ts1 = LIST_FIRST(&ts->ts_free); 856 MPASS(ts1 != NULL); 857 LIST_REMOVE(ts1, ts_hash); 858 td->td_turnstile = ts1; 859 } 860 } 861 862 /* 863 * Wakeup all threads on the pending list and adjust the priority of the 864 * current thread appropriately. This must be called with the turnstile 865 * chain locked. 866 */ 867 void 868 turnstile_unpend(struct turnstile *ts, int owner_type) 869 { 870 TAILQ_HEAD( ,thread) pending_threads; 871 struct turnstile *nts; 872 struct thread *td; 873 u_char cp, pri; 874 875 MPASS(ts != NULL); 876 mtx_assert(&ts->ts_lock, MA_OWNED); 877 MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL); 878 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 879 880 /* 881 * Move the list of pending threads out of the turnstile and 882 * into a local variable. 883 */ 884 TAILQ_INIT(&pending_threads); 885 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 886 #ifdef INVARIANTS 887 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 888 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 889 ts->ts_lockobj = NULL; 890 #endif 891 /* 892 * Adjust the priority of curthread based on other contested 893 * locks it owns. Don't lower the priority below the base 894 * priority however. 895 */ 896 td = curthread; 897 pri = PRI_MAX; 898 thread_lock(td); 899 mtx_lock_spin(&td_contested_lock); 900 /* 901 * Remove the turnstile from this thread's list of contested locks 902 * since this thread doesn't own it anymore. New threads will 903 * not be blocking on the turnstile until it is claimed by a new 904 * owner. There might not be a current owner if this is a shared 905 * lock. 906 */ 907 if (ts->ts_owner != NULL) { 908 ts->ts_owner = NULL; 909 LIST_REMOVE(ts, ts_link); 910 } 911 LIST_FOREACH(nts, &td->td_contested, ts_link) { 912 cp = turnstile_first_waiter(nts)->td_priority; 913 if (cp < pri) 914 pri = cp; 915 } 916 mtx_unlock_spin(&td_contested_lock); 917 sched_unlend_prio(td, pri); 918 thread_unlock(td); 919 /* 920 * Wake up all the pending threads. If a thread is not blocked 921 * on a lock, then it is currently executing on another CPU in 922 * turnstile_wait() or sitting on a run queue waiting to resume 923 * in turnstile_wait(). Set a flag to force it to try to acquire 924 * the lock again instead of blocking. 925 */ 926 while (!TAILQ_EMPTY(&pending_threads)) { 927 td = TAILQ_FIRST(&pending_threads); 928 TAILQ_REMOVE(&pending_threads, td, td_lockq); 929 SDT_PROBE2(sched, , , wakeup, td, td->td_proc); 930 thread_lock(td); 931 THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock); 932 MPASS(td->td_proc->p_magic == P_MAGIC); 933 MPASS(TD_ON_LOCK(td)); 934 TD_CLR_LOCK(td); 935 MPASS(TD_CAN_RUN(td)); 936 td->td_blocked = NULL; 937 td->td_lockname = NULL; 938 td->td_blktick = 0; 939 #ifdef INVARIANTS 940 td->td_tsqueue = 0xff; 941 #endif 942 sched_add(td, SRQ_BORING); 943 thread_unlock(td); 944 } 945 mtx_unlock_spin(&ts->ts_lock); 946 } 947 948 /* 949 * Give up ownership of a turnstile. This must be called with the 950 * turnstile chain locked. 951 */ 952 void 953 turnstile_disown(struct turnstile *ts) 954 { 955 struct thread *td; 956 u_char cp, pri; 957 958 MPASS(ts != NULL); 959 mtx_assert(&ts->ts_lock, MA_OWNED); 960 MPASS(ts->ts_owner == curthread); 961 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 962 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 963 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 964 965 /* 966 * Remove the turnstile from this thread's list of contested locks 967 * since this thread doesn't own it anymore. New threads will 968 * not be blocking on the turnstile until it is claimed by a new 969 * owner. 970 */ 971 mtx_lock_spin(&td_contested_lock); 972 ts->ts_owner = NULL; 973 LIST_REMOVE(ts, ts_link); 974 mtx_unlock_spin(&td_contested_lock); 975 976 /* 977 * Adjust the priority of curthread based on other contested 978 * locks it owns. Don't lower the priority below the base 979 * priority however. 980 */ 981 td = curthread; 982 pri = PRI_MAX; 983 thread_lock(td); 984 mtx_unlock_spin(&ts->ts_lock); 985 mtx_lock_spin(&td_contested_lock); 986 LIST_FOREACH(ts, &td->td_contested, ts_link) { 987 cp = turnstile_first_waiter(ts)->td_priority; 988 if (cp < pri) 989 pri = cp; 990 } 991 mtx_unlock_spin(&td_contested_lock); 992 sched_unlend_prio(td, pri); 993 thread_unlock(td); 994 } 995 996 /* 997 * Return the first thread in a turnstile. 998 */ 999 struct thread * 1000 turnstile_head(struct turnstile *ts, int queue) 1001 { 1002 #ifdef INVARIANTS 1003 1004 MPASS(ts != NULL); 1005 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1006 mtx_assert(&ts->ts_lock, MA_OWNED); 1007 #endif 1008 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 1009 } 1010 1011 /* 1012 * Returns true if a sub-queue of a turnstile is empty. 1013 */ 1014 int 1015 turnstile_empty(struct turnstile *ts, int queue) 1016 { 1017 #ifdef INVARIANTS 1018 1019 MPASS(ts != NULL); 1020 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1021 mtx_assert(&ts->ts_lock, MA_OWNED); 1022 #endif 1023 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1024 } 1025 1026 #ifdef DDB 1027 static void 1028 print_thread(struct thread *td, const char *prefix) 1029 { 1030 1031 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1032 td->td_proc->p_pid, td->td_name); 1033 } 1034 1035 static void 1036 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1037 { 1038 struct thread *td; 1039 1040 db_printf("%s:\n", header); 1041 if (TAILQ_EMPTY(queue)) { 1042 db_printf("%sempty\n", prefix); 1043 return; 1044 } 1045 TAILQ_FOREACH(td, queue, td_lockq) { 1046 print_thread(td, prefix); 1047 } 1048 } 1049 1050 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1051 { 1052 struct turnstile_chain *tc; 1053 struct turnstile *ts; 1054 struct lock_object *lock; 1055 int i; 1056 1057 if (!have_addr) 1058 return; 1059 1060 /* 1061 * First, see if there is an active turnstile for the lock indicated 1062 * by the address. 1063 */ 1064 lock = (struct lock_object *)addr; 1065 tc = TC_LOOKUP(lock); 1066 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1067 if (ts->ts_lockobj == lock) 1068 goto found; 1069 1070 /* 1071 * Second, see if there is an active turnstile at the address 1072 * indicated. 1073 */ 1074 for (i = 0; i < TC_TABLESIZE; i++) 1075 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1076 if (ts == (struct turnstile *)addr) 1077 goto found; 1078 } 1079 1080 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1081 return; 1082 found: 1083 lock = ts->ts_lockobj; 1084 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1085 lock->lo_name); 1086 if (ts->ts_owner) 1087 print_thread(ts->ts_owner, "Lock Owner: "); 1088 else 1089 db_printf("Lock Owner: none\n"); 1090 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1091 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1092 "\t"); 1093 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1094 1095 } 1096 1097 /* 1098 * Show all the threads a particular thread is waiting on based on 1099 * non-sleepable and non-spin locks. 1100 */ 1101 static void 1102 print_lockchain(struct thread *td, const char *prefix) 1103 { 1104 struct lock_object *lock; 1105 struct lock_class *class; 1106 struct turnstile *ts; 1107 1108 /* 1109 * Follow the chain. We keep walking as long as the thread is 1110 * blocked on a turnstile that has an owner. 1111 */ 1112 while (!db_pager_quit) { 1113 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1114 td->td_proc->p_pid, td->td_name); 1115 switch (td->td_state) { 1116 case TDS_INACTIVE: 1117 db_printf("is inactive\n"); 1118 return; 1119 case TDS_CAN_RUN: 1120 db_printf("can run\n"); 1121 return; 1122 case TDS_RUNQ: 1123 db_printf("is on a run queue\n"); 1124 return; 1125 case TDS_RUNNING: 1126 db_printf("running on CPU %d\n", td->td_oncpu); 1127 return; 1128 case TDS_INHIBITED: 1129 if (TD_ON_LOCK(td)) { 1130 ts = td->td_blocked; 1131 lock = ts->ts_lockobj; 1132 class = LOCK_CLASS(lock); 1133 db_printf("blocked on lock %p (%s) \"%s\"\n", 1134 lock, class->lc_name, lock->lo_name); 1135 if (ts->ts_owner == NULL) 1136 return; 1137 td = ts->ts_owner; 1138 break; 1139 } 1140 db_printf("inhibited\n"); 1141 return; 1142 default: 1143 db_printf("??? (%#x)\n", td->td_state); 1144 return; 1145 } 1146 } 1147 } 1148 1149 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1150 { 1151 struct thread *td; 1152 1153 /* Figure out which thread to start with. */ 1154 if (have_addr) 1155 td = db_lookup_thread(addr, true); 1156 else 1157 td = kdb_thread; 1158 1159 print_lockchain(td, ""); 1160 } 1161 1162 DB_SHOW_ALL_COMMAND(chains, db_show_allchains) 1163 { 1164 struct thread *td; 1165 struct proc *p; 1166 int i; 1167 1168 i = 1; 1169 FOREACH_PROC_IN_SYSTEM(p) { 1170 FOREACH_THREAD_IN_PROC(p, td) { 1171 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1172 db_printf("chain %d:\n", i++); 1173 print_lockchain(td, " "); 1174 } 1175 if (TD_IS_INHIBITED(td) && TD_ON_SLEEPQ(td)) { 1176 db_printf("chain %d:\n", i++); 1177 print_sleepchain(td, " "); 1178 } 1179 if (db_pager_quit) 1180 return; 1181 } 1182 } 1183 } 1184 DB_SHOW_ALIAS(allchains, db_show_allchains) 1185 1186 /* 1187 * Show all the threads a particular thread is waiting on based on 1188 * sleepable locks. 1189 */ 1190 static void 1191 print_sleepchain(struct thread *td, const char *prefix) 1192 { 1193 struct thread *owner; 1194 1195 /* 1196 * Follow the chain. We keep walking as long as the thread is 1197 * blocked on a sleep lock that has an owner. 1198 */ 1199 while (!db_pager_quit) { 1200 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1201 td->td_proc->p_pid, td->td_name); 1202 switch (td->td_state) { 1203 case TDS_INACTIVE: 1204 db_printf("is inactive\n"); 1205 return; 1206 case TDS_CAN_RUN: 1207 db_printf("can run\n"); 1208 return; 1209 case TDS_RUNQ: 1210 db_printf("is on a run queue\n"); 1211 return; 1212 case TDS_RUNNING: 1213 db_printf("running on CPU %d\n", td->td_oncpu); 1214 return; 1215 case TDS_INHIBITED: 1216 if (TD_ON_SLEEPQ(td)) { 1217 if (lockmgr_chain(td, &owner) || 1218 sx_chain(td, &owner)) { 1219 if (owner == NULL) 1220 return; 1221 td = owner; 1222 break; 1223 } 1224 db_printf("sleeping on %p \"%s\"\n", 1225 td->td_wchan, td->td_wmesg); 1226 return; 1227 } 1228 db_printf("inhibited\n"); 1229 return; 1230 default: 1231 db_printf("??? (%#x)\n", td->td_state); 1232 return; 1233 } 1234 } 1235 } 1236 1237 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain) 1238 { 1239 struct thread *td; 1240 1241 /* Figure out which thread to start with. */ 1242 if (have_addr) 1243 td = db_lookup_thread(addr, true); 1244 else 1245 td = kdb_thread; 1246 1247 print_sleepchain(td, ""); 1248 } 1249 1250 static void print_waiters(struct turnstile *ts, int indent); 1251 1252 static void 1253 print_waiter(struct thread *td, int indent) 1254 { 1255 struct turnstile *ts; 1256 int i; 1257 1258 if (db_pager_quit) 1259 return; 1260 for (i = 0; i < indent; i++) 1261 db_printf(" "); 1262 print_thread(td, "thread "); 1263 LIST_FOREACH(ts, &td->td_contested, ts_link) 1264 print_waiters(ts, indent + 1); 1265 } 1266 1267 static void 1268 print_waiters(struct turnstile *ts, int indent) 1269 { 1270 struct lock_object *lock; 1271 struct lock_class *class; 1272 struct thread *td; 1273 int i; 1274 1275 if (db_pager_quit) 1276 return; 1277 lock = ts->ts_lockobj; 1278 class = LOCK_CLASS(lock); 1279 for (i = 0; i < indent; i++) 1280 db_printf(" "); 1281 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1282 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1283 print_waiter(td, indent + 1); 1284 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1285 print_waiter(td, indent + 1); 1286 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1287 print_waiter(td, indent + 1); 1288 } 1289 1290 DB_SHOW_COMMAND(locktree, db_show_locktree) 1291 { 1292 struct lock_object *lock; 1293 struct lock_class *class; 1294 struct turnstile_chain *tc; 1295 struct turnstile *ts; 1296 1297 if (!have_addr) 1298 return; 1299 lock = (struct lock_object *)addr; 1300 tc = TC_LOOKUP(lock); 1301 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1302 if (ts->ts_lockobj == lock) 1303 break; 1304 if (ts == NULL) { 1305 class = LOCK_CLASS(lock); 1306 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1307 lock->lo_name); 1308 } else 1309 print_waiters(ts, 0); 1310 } 1311 #endif 1312