xref: /freebsd/sys/kern/subr_turnstile.c (revision 595e514d0df2bac5b813d35f83e32875dbf16a83)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is allocated from a UMA zone
50  * and attached to that thread.  When a thread blocks on a lock, if it is the
51  * first thread to block, it lends its turnstile to the lock.  If the lock
52  * already has a turnstile, then it gives its turnstile to the lock's
53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54  * the free list if there are any other waiters.  If it is the only thread
55  * blocked on the lock, then it reclaims the turnstile associated with the lock
56  * and removes it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_kdtrace.h"
64 #include "opt_turnstile_profiling.h"
65 #include "opt_sched.h"
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kdb.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/queue.h>
76 #include <sys/sched.h>
77 #include <sys/sdt.h>
78 #include <sys/sysctl.h>
79 #include <sys/turnstile.h>
80 
81 #include <vm/uma.h>
82 
83 #ifdef DDB
84 #include <ddb/ddb.h>
85 #include <sys/lockmgr.h>
86 #include <sys/sx.h>
87 #endif
88 
89 /*
90  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
91  * number chosen because the sleep queue's use the same value for the
92  * shift.  Basically, we ignore the lower 8 bits of the address.
93  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
94  */
95 #define	TC_TABLESIZE	128			/* Must be power of 2. */
96 #define	TC_MASK		(TC_TABLESIZE - 1)
97 #define	TC_SHIFT	8
98 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
99 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
100 
101 /*
102  * There are three different lists of turnstiles as follows.  The list
103  * connected by ts_link entries is a per-thread list of all the turnstiles
104  * attached to locks that we own.  This is used to fixup our priority when
105  * a lock is released.  The other two lists use the ts_hash entries.  The
106  * first of these two is the turnstile chain list that a turnstile is on
107  * when it is attached to a lock.  The second list to use ts_hash is the
108  * free list hung off of a turnstile that is attached to a lock.
109  *
110  * Each turnstile contains three lists of threads.  The two ts_blocked lists
111  * are linked list of threads blocked on the turnstile's lock.  One list is
112  * for exclusive waiters, and the other is for shared waiters.  The
113  * ts_pending list is a linked list of threads previously awakened by
114  * turnstile_signal() or turnstile_wait() that are waiting to be put on
115  * the run queue.
116  *
117  * Locking key:
118  *  c - turnstile chain lock
119  *  q - td_contested lock
120  */
121 struct turnstile {
122 	struct mtx ts_lock;			/* Spin lock for self. */
123 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
124 	struct threadqueue ts_pending;		/* (c) Pending threads. */
125 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
126 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
127 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
128 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
129 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
130 };
131 
132 struct turnstile_chain {
133 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
134 	struct mtx tc_lock;			/* Spin lock for this chain. */
135 #ifdef TURNSTILE_PROFILING
136 	u_int	tc_depth;			/* Length of tc_queues. */
137 	u_int	tc_max_depth;			/* Max length of tc_queues. */
138 #endif
139 };
140 
141 #ifdef TURNSTILE_PROFILING
142 u_int turnstile_max_depth;
143 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
144     "turnstile profiling");
145 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
146     "turnstile chain stats");
147 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
148     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
149 #endif
150 static struct mtx td_contested_lock;
151 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
152 static uma_zone_t turnstile_zone;
153 
154 /*
155  * Prototypes for non-exported routines.
156  */
157 static void	init_turnstile0(void *dummy);
158 #ifdef TURNSTILE_PROFILING
159 static void	init_turnstile_profiling(void *arg);
160 #endif
161 static void	propagate_priority(struct thread *td);
162 static int	turnstile_adjust_thread(struct turnstile *ts,
163 		    struct thread *td);
164 static struct thread *turnstile_first_waiter(struct turnstile *ts);
165 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
166 #ifdef INVARIANTS
167 static void	turnstile_dtor(void *mem, int size, void *arg);
168 #endif
169 static int	turnstile_init(void *mem, int size, int flags);
170 static void	turnstile_fini(void *mem, int size);
171 
172 SDT_PROVIDER_DECLARE(sched);
173 SDT_PROBE_DEFINE(sched, , , sleep, sleep);
174 SDT_PROBE_DEFINE2(sched, , , wakeup, wakeup, "struct thread *",
175     "struct proc *");
176 
177 /*
178  * Walks the chain of turnstiles and their owners to propagate the priority
179  * of the thread being blocked to all the threads holding locks that have to
180  * release their locks before this thread can run again.
181  */
182 static void
183 propagate_priority(struct thread *td)
184 {
185 	struct turnstile *ts;
186 	int pri;
187 
188 	THREAD_LOCK_ASSERT(td, MA_OWNED);
189 	pri = td->td_priority;
190 	ts = td->td_blocked;
191 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
192 	/*
193 	 * Grab a recursive lock on this turnstile chain so it stays locked
194 	 * for the whole operation.  The caller expects us to return with
195 	 * the original lock held.  We only ever lock down the chain so
196 	 * the lock order is constant.
197 	 */
198 	mtx_lock_spin(&ts->ts_lock);
199 	for (;;) {
200 		td = ts->ts_owner;
201 
202 		if (td == NULL) {
203 			/*
204 			 * This might be a read lock with no owner.  There's
205 			 * not much we can do, so just bail.
206 			 */
207 			mtx_unlock_spin(&ts->ts_lock);
208 			return;
209 		}
210 
211 		thread_lock_flags(td, MTX_DUPOK);
212 		mtx_unlock_spin(&ts->ts_lock);
213 		MPASS(td->td_proc != NULL);
214 		MPASS(td->td_proc->p_magic == P_MAGIC);
215 
216 		/*
217 		 * If the thread is asleep, then we are probably about
218 		 * to deadlock.  To make debugging this easier, show
219 		 * backtrace of misbehaving thread and panic to not
220 		 * leave the kernel deadlocked.
221 		 */
222 		if (TD_IS_SLEEPING(td)) {
223 			printf(
224 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
225 			    td->td_tid, td->td_proc->p_pid);
226 			kdb_backtrace_thread(td);
227 			panic("sleeping thread");
228 		}
229 
230 		/*
231 		 * If this thread already has higher priority than the
232 		 * thread that is being blocked, we are finished.
233 		 */
234 		if (td->td_priority <= pri) {
235 			thread_unlock(td);
236 			return;
237 		}
238 
239 		/*
240 		 * Bump this thread's priority.
241 		 */
242 		sched_lend_prio(td, pri);
243 
244 		/*
245 		 * If lock holder is actually running or on the run queue
246 		 * then we are done.
247 		 */
248 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
249 			MPASS(td->td_blocked == NULL);
250 			thread_unlock(td);
251 			return;
252 		}
253 
254 #ifndef SMP
255 		/*
256 		 * For UP, we check to see if td is curthread (this shouldn't
257 		 * ever happen however as it would mean we are in a deadlock.)
258 		 */
259 		KASSERT(td != curthread, ("Deadlock detected"));
260 #endif
261 
262 		/*
263 		 * If we aren't blocked on a lock, we should be.
264 		 */
265 		KASSERT(TD_ON_LOCK(td), (
266 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
267 		    td->td_tid, td->td_name, td->td_state,
268 		    ts->ts_lockobj->lo_name));
269 
270 		/*
271 		 * Pick up the lock that td is blocked on.
272 		 */
273 		ts = td->td_blocked;
274 		MPASS(ts != NULL);
275 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
276 		/* Resort td on the list if needed. */
277 		if (!turnstile_adjust_thread(ts, td)) {
278 			mtx_unlock_spin(&ts->ts_lock);
279 			return;
280 		}
281 		/* The thread lock is released as ts lock above. */
282 	}
283 }
284 
285 /*
286  * Adjust the thread's position on a turnstile after its priority has been
287  * changed.
288  */
289 static int
290 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
291 {
292 	struct thread *td1, *td2;
293 	int queue;
294 
295 	THREAD_LOCK_ASSERT(td, MA_OWNED);
296 	MPASS(TD_ON_LOCK(td));
297 
298 	/*
299 	 * This thread may not be blocked on this turnstile anymore
300 	 * but instead might already be woken up on another CPU
301 	 * that is waiting on the thread lock in turnstile_unpend() to
302 	 * finish waking this thread up.  We can detect this case
303 	 * by checking to see if this thread has been given a
304 	 * turnstile by either turnstile_signal() or
305 	 * turnstile_broadcast().  In this case, treat the thread as
306 	 * if it was already running.
307 	 */
308 	if (td->td_turnstile != NULL)
309 		return (0);
310 
311 	/*
312 	 * Check if the thread needs to be moved on the blocked chain.
313 	 * It needs to be moved if either its priority is lower than
314 	 * the previous thread or higher than the next thread.
315 	 */
316 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
317 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
318 	td2 = TAILQ_NEXT(td, td_lockq);
319 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
320 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
321 
322 		/*
323 		 * Remove thread from blocked chain and determine where
324 		 * it should be moved to.
325 		 */
326 		queue = td->td_tsqueue;
327 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
328 		mtx_lock_spin(&td_contested_lock);
329 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
330 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
331 			MPASS(td1->td_proc->p_magic == P_MAGIC);
332 			if (td1->td_priority > td->td_priority)
333 				break;
334 		}
335 
336 		if (td1 == NULL)
337 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
338 		else
339 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
340 		mtx_unlock_spin(&td_contested_lock);
341 		if (td1 == NULL)
342 			CTR3(KTR_LOCK,
343 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
344 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
345 		else
346 			CTR4(KTR_LOCK,
347 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
348 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
349 			    ts->ts_lockobj->lo_name);
350 	}
351 	return (1);
352 }
353 
354 /*
355  * Early initialization of turnstiles.  This is not done via a SYSINIT()
356  * since this needs to be initialized very early when mutexes are first
357  * initialized.
358  */
359 void
360 init_turnstiles(void)
361 {
362 	int i;
363 
364 	for (i = 0; i < TC_TABLESIZE; i++) {
365 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
366 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
367 		    NULL, MTX_SPIN);
368 	}
369 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
370 	LIST_INIT(&thread0.td_contested);
371 	thread0.td_turnstile = NULL;
372 }
373 
374 #ifdef TURNSTILE_PROFILING
375 static void
376 init_turnstile_profiling(void *arg)
377 {
378 	struct sysctl_oid *chain_oid;
379 	char chain_name[10];
380 	int i;
381 
382 	for (i = 0; i < TC_TABLESIZE; i++) {
383 		snprintf(chain_name, sizeof(chain_name), "%d", i);
384 		chain_oid = SYSCTL_ADD_NODE(NULL,
385 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
386 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
387 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
388 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
389 		    NULL);
390 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
391 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
392 		    0, NULL);
393 	}
394 }
395 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
396     init_turnstile_profiling, NULL);
397 #endif
398 
399 static void
400 init_turnstile0(void *dummy)
401 {
402 
403 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
404 	    NULL,
405 #ifdef INVARIANTS
406 	    turnstile_dtor,
407 #else
408 	    NULL,
409 #endif
410 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
411 	thread0.td_turnstile = turnstile_alloc();
412 }
413 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
414 
415 /*
416  * Update a thread on the turnstile list after it's priority has been changed.
417  * The old priority is passed in as an argument.
418  */
419 void
420 turnstile_adjust(struct thread *td, u_char oldpri)
421 {
422 	struct turnstile *ts;
423 
424 	MPASS(TD_ON_LOCK(td));
425 
426 	/*
427 	 * Pick up the lock that td is blocked on.
428 	 */
429 	ts = td->td_blocked;
430 	MPASS(ts != NULL);
431 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
432 	mtx_assert(&ts->ts_lock, MA_OWNED);
433 
434 	/* Resort the turnstile on the list. */
435 	if (!turnstile_adjust_thread(ts, td))
436 		return;
437 	/*
438 	 * If our priority was lowered and we are at the head of the
439 	 * turnstile, then propagate our new priority up the chain.
440 	 * Note that we currently don't try to revoke lent priorities
441 	 * when our priority goes up.
442 	 */
443 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
444 	    td->td_tsqueue == TS_SHARED_QUEUE);
445 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
446 	    td->td_priority < oldpri) {
447 		propagate_priority(td);
448 	}
449 }
450 
451 /*
452  * Set the owner of the lock this turnstile is attached to.
453  */
454 static void
455 turnstile_setowner(struct turnstile *ts, struct thread *owner)
456 {
457 
458 	mtx_assert(&td_contested_lock, MA_OWNED);
459 	MPASS(ts->ts_owner == NULL);
460 
461 	/* A shared lock might not have an owner. */
462 	if (owner == NULL)
463 		return;
464 
465 	MPASS(owner->td_proc->p_magic == P_MAGIC);
466 	ts->ts_owner = owner;
467 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
468 }
469 
470 #ifdef INVARIANTS
471 /*
472  * UMA zone item deallocator.
473  */
474 static void
475 turnstile_dtor(void *mem, int size, void *arg)
476 {
477 	struct turnstile *ts;
478 
479 	ts = mem;
480 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
481 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
482 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
483 }
484 #endif
485 
486 /*
487  * UMA zone item initializer.
488  */
489 static int
490 turnstile_init(void *mem, int size, int flags)
491 {
492 	struct turnstile *ts;
493 
494 	bzero(mem, size);
495 	ts = mem;
496 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
497 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
498 	TAILQ_INIT(&ts->ts_pending);
499 	LIST_INIT(&ts->ts_free);
500 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
501 	return (0);
502 }
503 
504 static void
505 turnstile_fini(void *mem, int size)
506 {
507 	struct turnstile *ts;
508 
509 	ts = mem;
510 	mtx_destroy(&ts->ts_lock);
511 }
512 
513 /*
514  * Get a turnstile for a new thread.
515  */
516 struct turnstile *
517 turnstile_alloc(void)
518 {
519 
520 	return (uma_zalloc(turnstile_zone, M_WAITOK));
521 }
522 
523 /*
524  * Free a turnstile when a thread is destroyed.
525  */
526 void
527 turnstile_free(struct turnstile *ts)
528 {
529 
530 	uma_zfree(turnstile_zone, ts);
531 }
532 
533 /*
534  * Lock the turnstile chain associated with the specified lock.
535  */
536 void
537 turnstile_chain_lock(struct lock_object *lock)
538 {
539 	struct turnstile_chain *tc;
540 
541 	tc = TC_LOOKUP(lock);
542 	mtx_lock_spin(&tc->tc_lock);
543 }
544 
545 struct turnstile *
546 turnstile_trywait(struct lock_object *lock)
547 {
548 	struct turnstile_chain *tc;
549 	struct turnstile *ts;
550 
551 	tc = TC_LOOKUP(lock);
552 	mtx_lock_spin(&tc->tc_lock);
553 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
554 		if (ts->ts_lockobj == lock) {
555 			mtx_lock_spin(&ts->ts_lock);
556 			return (ts);
557 		}
558 
559 	ts = curthread->td_turnstile;
560 	MPASS(ts != NULL);
561 	mtx_lock_spin(&ts->ts_lock);
562 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
563 	ts->ts_lockobj = lock;
564 
565 	return (ts);
566 }
567 
568 void
569 turnstile_cancel(struct turnstile *ts)
570 {
571 	struct turnstile_chain *tc;
572 	struct lock_object *lock;
573 
574 	mtx_assert(&ts->ts_lock, MA_OWNED);
575 
576 	mtx_unlock_spin(&ts->ts_lock);
577 	lock = ts->ts_lockobj;
578 	if (ts == curthread->td_turnstile)
579 		ts->ts_lockobj = NULL;
580 	tc = TC_LOOKUP(lock);
581 	mtx_unlock_spin(&tc->tc_lock);
582 }
583 
584 /*
585  * Look up the turnstile for a lock in the hash table locking the associated
586  * turnstile chain along the way.  If no turnstile is found in the hash
587  * table, NULL is returned.
588  */
589 struct turnstile *
590 turnstile_lookup(struct lock_object *lock)
591 {
592 	struct turnstile_chain *tc;
593 	struct turnstile *ts;
594 
595 	tc = TC_LOOKUP(lock);
596 	mtx_assert(&tc->tc_lock, MA_OWNED);
597 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
598 		if (ts->ts_lockobj == lock) {
599 			mtx_lock_spin(&ts->ts_lock);
600 			return (ts);
601 		}
602 	return (NULL);
603 }
604 
605 /*
606  * Unlock the turnstile chain associated with a given lock.
607  */
608 void
609 turnstile_chain_unlock(struct lock_object *lock)
610 {
611 	struct turnstile_chain *tc;
612 
613 	tc = TC_LOOKUP(lock);
614 	mtx_unlock_spin(&tc->tc_lock);
615 }
616 
617 /*
618  * Return a pointer to the thread waiting on this turnstile with the
619  * most important priority or NULL if the turnstile has no waiters.
620  */
621 static struct thread *
622 turnstile_first_waiter(struct turnstile *ts)
623 {
624 	struct thread *std, *xtd;
625 
626 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
627 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
628 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
629 		return (std);
630 	return (xtd);
631 }
632 
633 /*
634  * Take ownership of a turnstile and adjust the priority of the new
635  * owner appropriately.
636  */
637 void
638 turnstile_claim(struct turnstile *ts)
639 {
640 	struct thread *td, *owner;
641 	struct turnstile_chain *tc;
642 
643 	mtx_assert(&ts->ts_lock, MA_OWNED);
644 	MPASS(ts != curthread->td_turnstile);
645 
646 	owner = curthread;
647 	mtx_lock_spin(&td_contested_lock);
648 	turnstile_setowner(ts, owner);
649 	mtx_unlock_spin(&td_contested_lock);
650 
651 	td = turnstile_first_waiter(ts);
652 	MPASS(td != NULL);
653 	MPASS(td->td_proc->p_magic == P_MAGIC);
654 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
655 
656 	/*
657 	 * Update the priority of the new owner if needed.
658 	 */
659 	thread_lock(owner);
660 	if (td->td_priority < owner->td_priority)
661 		sched_lend_prio(owner, td->td_priority);
662 	thread_unlock(owner);
663 	tc = TC_LOOKUP(ts->ts_lockobj);
664 	mtx_unlock_spin(&ts->ts_lock);
665 	mtx_unlock_spin(&tc->tc_lock);
666 }
667 
668 /*
669  * Block the current thread on the turnstile assicated with 'lock'.  This
670  * function will context switch and not return until this thread has been
671  * woken back up.  This function must be called with the appropriate
672  * turnstile chain locked and will return with it unlocked.
673  */
674 void
675 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
676 {
677 	struct turnstile_chain *tc;
678 	struct thread *td, *td1;
679 	struct lock_object *lock;
680 
681 	td = curthread;
682 	mtx_assert(&ts->ts_lock, MA_OWNED);
683 	if (owner)
684 		MPASS(owner->td_proc->p_magic == P_MAGIC);
685 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
686 
687 	/*
688 	 * If the lock does not already have a turnstile, use this thread's
689 	 * turnstile.  Otherwise insert the current thread into the
690 	 * turnstile already in use by this lock.
691 	 */
692 	tc = TC_LOOKUP(ts->ts_lockobj);
693 	mtx_assert(&tc->tc_lock, MA_OWNED);
694 	if (ts == td->td_turnstile) {
695 #ifdef TURNSTILE_PROFILING
696 		tc->tc_depth++;
697 		if (tc->tc_depth > tc->tc_max_depth) {
698 			tc->tc_max_depth = tc->tc_depth;
699 			if (tc->tc_max_depth > turnstile_max_depth)
700 				turnstile_max_depth = tc->tc_max_depth;
701 		}
702 #endif
703 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
704 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
705 		    ("thread's turnstile has pending threads"));
706 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
707 		    ("thread's turnstile has exclusive waiters"));
708 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
709 		    ("thread's turnstile has shared waiters"));
710 		KASSERT(LIST_EMPTY(&ts->ts_free),
711 		    ("thread's turnstile has a non-empty free list"));
712 		MPASS(ts->ts_lockobj != NULL);
713 		mtx_lock_spin(&td_contested_lock);
714 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
715 		turnstile_setowner(ts, owner);
716 		mtx_unlock_spin(&td_contested_lock);
717 	} else {
718 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
719 			if (td1->td_priority > td->td_priority)
720 				break;
721 		mtx_lock_spin(&td_contested_lock);
722 		if (td1 != NULL)
723 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
724 		else
725 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
726 		MPASS(owner == ts->ts_owner);
727 		mtx_unlock_spin(&td_contested_lock);
728 		MPASS(td->td_turnstile != NULL);
729 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
730 	}
731 	thread_lock(td);
732 	thread_lock_set(td, &ts->ts_lock);
733 	td->td_turnstile = NULL;
734 
735 	/* Save who we are blocked on and switch. */
736 	lock = ts->ts_lockobj;
737 	td->td_tsqueue = queue;
738 	td->td_blocked = ts;
739 	td->td_lockname = lock->lo_name;
740 	td->td_blktick = ticks;
741 	TD_SET_LOCK(td);
742 	mtx_unlock_spin(&tc->tc_lock);
743 	propagate_priority(td);
744 
745 	if (LOCK_LOG_TEST(lock, 0))
746 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
747 		    td->td_tid, lock, lock->lo_name);
748 
749 	SDT_PROBE0(sched, , , sleep);
750 
751 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
752 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
753 
754 	if (LOCK_LOG_TEST(lock, 0))
755 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
756 		    __func__, td->td_tid, lock, lock->lo_name);
757 	thread_unlock(td);
758 }
759 
760 /*
761  * Pick the highest priority thread on this turnstile and put it on the
762  * pending list.  This must be called with the turnstile chain locked.
763  */
764 int
765 turnstile_signal(struct turnstile *ts, int queue)
766 {
767 	struct turnstile_chain *tc;
768 	struct thread *td;
769 	int empty;
770 
771 	MPASS(ts != NULL);
772 	mtx_assert(&ts->ts_lock, MA_OWNED);
773 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
774 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
775 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
776 
777 	/*
778 	 * Pick the highest priority thread blocked on this lock and
779 	 * move it to the pending list.
780 	 */
781 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
782 	MPASS(td->td_proc->p_magic == P_MAGIC);
783 	mtx_lock_spin(&td_contested_lock);
784 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
785 	mtx_unlock_spin(&td_contested_lock);
786 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
787 
788 	/*
789 	 * If the turnstile is now empty, remove it from its chain and
790 	 * give it to the about-to-be-woken thread.  Otherwise take a
791 	 * turnstile from the free list and give it to the thread.
792 	 */
793 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
794 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
795 	if (empty) {
796 		tc = TC_LOOKUP(ts->ts_lockobj);
797 		mtx_assert(&tc->tc_lock, MA_OWNED);
798 		MPASS(LIST_EMPTY(&ts->ts_free));
799 #ifdef TURNSTILE_PROFILING
800 		tc->tc_depth--;
801 #endif
802 	} else
803 		ts = LIST_FIRST(&ts->ts_free);
804 	MPASS(ts != NULL);
805 	LIST_REMOVE(ts, ts_hash);
806 	td->td_turnstile = ts;
807 
808 	return (empty);
809 }
810 
811 /*
812  * Put all blocked threads on the pending list.  This must be called with
813  * the turnstile chain locked.
814  */
815 void
816 turnstile_broadcast(struct turnstile *ts, int queue)
817 {
818 	struct turnstile_chain *tc;
819 	struct turnstile *ts1;
820 	struct thread *td;
821 
822 	MPASS(ts != NULL);
823 	mtx_assert(&ts->ts_lock, MA_OWNED);
824 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
825 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
826 	/*
827 	 * We must have the chain locked so that we can remove the empty
828 	 * turnstile from the hash queue.
829 	 */
830 	tc = TC_LOOKUP(ts->ts_lockobj);
831 	mtx_assert(&tc->tc_lock, MA_OWNED);
832 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
833 
834 	/*
835 	 * Transfer the blocked list to the pending list.
836 	 */
837 	mtx_lock_spin(&td_contested_lock);
838 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
839 	mtx_unlock_spin(&td_contested_lock);
840 
841 	/*
842 	 * Give a turnstile to each thread.  The last thread gets
843 	 * this turnstile if the turnstile is empty.
844 	 */
845 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
846 		if (LIST_EMPTY(&ts->ts_free)) {
847 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
848 			ts1 = ts;
849 #ifdef TURNSTILE_PROFILING
850 			tc->tc_depth--;
851 #endif
852 		} else
853 			ts1 = LIST_FIRST(&ts->ts_free);
854 		MPASS(ts1 != NULL);
855 		LIST_REMOVE(ts1, ts_hash);
856 		td->td_turnstile = ts1;
857 	}
858 }
859 
860 /*
861  * Wakeup all threads on the pending list and adjust the priority of the
862  * current thread appropriately.  This must be called with the turnstile
863  * chain locked.
864  */
865 void
866 turnstile_unpend(struct turnstile *ts, int owner_type)
867 {
868 	TAILQ_HEAD( ,thread) pending_threads;
869 	struct turnstile *nts;
870 	struct thread *td;
871 	u_char cp, pri;
872 
873 	MPASS(ts != NULL);
874 	mtx_assert(&ts->ts_lock, MA_OWNED);
875 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
876 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
877 
878 	/*
879 	 * Move the list of pending threads out of the turnstile and
880 	 * into a local variable.
881 	 */
882 	TAILQ_INIT(&pending_threads);
883 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
884 #ifdef INVARIANTS
885 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
886 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
887 		ts->ts_lockobj = NULL;
888 #endif
889 	/*
890 	 * Adjust the priority of curthread based on other contested
891 	 * locks it owns.  Don't lower the priority below the base
892 	 * priority however.
893 	 */
894 	td = curthread;
895 	pri = PRI_MAX;
896 	thread_lock(td);
897 	mtx_lock_spin(&td_contested_lock);
898 	/*
899 	 * Remove the turnstile from this thread's list of contested locks
900 	 * since this thread doesn't own it anymore.  New threads will
901 	 * not be blocking on the turnstile until it is claimed by a new
902 	 * owner.  There might not be a current owner if this is a shared
903 	 * lock.
904 	 */
905 	if (ts->ts_owner != NULL) {
906 		ts->ts_owner = NULL;
907 		LIST_REMOVE(ts, ts_link);
908 	}
909 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
910 		cp = turnstile_first_waiter(nts)->td_priority;
911 		if (cp < pri)
912 			pri = cp;
913 	}
914 	mtx_unlock_spin(&td_contested_lock);
915 	sched_unlend_prio(td, pri);
916 	thread_unlock(td);
917 	/*
918 	 * Wake up all the pending threads.  If a thread is not blocked
919 	 * on a lock, then it is currently executing on another CPU in
920 	 * turnstile_wait() or sitting on a run queue waiting to resume
921 	 * in turnstile_wait().  Set a flag to force it to try to acquire
922 	 * the lock again instead of blocking.
923 	 */
924 	while (!TAILQ_EMPTY(&pending_threads)) {
925 		td = TAILQ_FIRST(&pending_threads);
926 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
927 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
928 		thread_lock(td);
929 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
930 		MPASS(td->td_proc->p_magic == P_MAGIC);
931 		MPASS(TD_ON_LOCK(td));
932 		TD_CLR_LOCK(td);
933 		MPASS(TD_CAN_RUN(td));
934 		td->td_blocked = NULL;
935 		td->td_lockname = NULL;
936 		td->td_blktick = 0;
937 #ifdef INVARIANTS
938 		td->td_tsqueue = 0xff;
939 #endif
940 		sched_add(td, SRQ_BORING);
941 		thread_unlock(td);
942 	}
943 	mtx_unlock_spin(&ts->ts_lock);
944 }
945 
946 /*
947  * Give up ownership of a turnstile.  This must be called with the
948  * turnstile chain locked.
949  */
950 void
951 turnstile_disown(struct turnstile *ts)
952 {
953 	struct thread *td;
954 	u_char cp, pri;
955 
956 	MPASS(ts != NULL);
957 	mtx_assert(&ts->ts_lock, MA_OWNED);
958 	MPASS(ts->ts_owner == curthread);
959 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
960 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
961 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
962 
963 	/*
964 	 * Remove the turnstile from this thread's list of contested locks
965 	 * since this thread doesn't own it anymore.  New threads will
966 	 * not be blocking on the turnstile until it is claimed by a new
967 	 * owner.
968 	 */
969 	mtx_lock_spin(&td_contested_lock);
970 	ts->ts_owner = NULL;
971 	LIST_REMOVE(ts, ts_link);
972 	mtx_unlock_spin(&td_contested_lock);
973 
974 	/*
975 	 * Adjust the priority of curthread based on other contested
976 	 * locks it owns.  Don't lower the priority below the base
977 	 * priority however.
978 	 */
979 	td = curthread;
980 	pri = PRI_MAX;
981 	thread_lock(td);
982 	mtx_unlock_spin(&ts->ts_lock);
983 	mtx_lock_spin(&td_contested_lock);
984 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
985 		cp = turnstile_first_waiter(ts)->td_priority;
986 		if (cp < pri)
987 			pri = cp;
988 	}
989 	mtx_unlock_spin(&td_contested_lock);
990 	sched_unlend_prio(td, pri);
991 	thread_unlock(td);
992 }
993 
994 /*
995  * Return the first thread in a turnstile.
996  */
997 struct thread *
998 turnstile_head(struct turnstile *ts, int queue)
999 {
1000 #ifdef INVARIANTS
1001 
1002 	MPASS(ts != NULL);
1003 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1004 	mtx_assert(&ts->ts_lock, MA_OWNED);
1005 #endif
1006 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1007 }
1008 
1009 /*
1010  * Returns true if a sub-queue of a turnstile is empty.
1011  */
1012 int
1013 turnstile_empty(struct turnstile *ts, int queue)
1014 {
1015 #ifdef INVARIANTS
1016 
1017 	MPASS(ts != NULL);
1018 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1019 	mtx_assert(&ts->ts_lock, MA_OWNED);
1020 #endif
1021 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1022 }
1023 
1024 #ifdef DDB
1025 static void
1026 print_thread(struct thread *td, const char *prefix)
1027 {
1028 
1029 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1030 	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1031 	    td->td_name);
1032 }
1033 
1034 static void
1035 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1036 {
1037 	struct thread *td;
1038 
1039 	db_printf("%s:\n", header);
1040 	if (TAILQ_EMPTY(queue)) {
1041 		db_printf("%sempty\n", prefix);
1042 		return;
1043 	}
1044 	TAILQ_FOREACH(td, queue, td_lockq) {
1045 		print_thread(td, prefix);
1046 	}
1047 }
1048 
1049 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1050 {
1051 	struct turnstile_chain *tc;
1052 	struct turnstile *ts;
1053 	struct lock_object *lock;
1054 	int i;
1055 
1056 	if (!have_addr)
1057 		return;
1058 
1059 	/*
1060 	 * First, see if there is an active turnstile for the lock indicated
1061 	 * by the address.
1062 	 */
1063 	lock = (struct lock_object *)addr;
1064 	tc = TC_LOOKUP(lock);
1065 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1066 		if (ts->ts_lockobj == lock)
1067 			goto found;
1068 
1069 	/*
1070 	 * Second, see if there is an active turnstile at the address
1071 	 * indicated.
1072 	 */
1073 	for (i = 0; i < TC_TABLESIZE; i++)
1074 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1075 			if (ts == (struct turnstile *)addr)
1076 				goto found;
1077 		}
1078 
1079 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1080 	return;
1081 found:
1082 	lock = ts->ts_lockobj;
1083 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1084 	    lock->lo_name);
1085 	if (ts->ts_owner)
1086 		print_thread(ts->ts_owner, "Lock Owner: ");
1087 	else
1088 		db_printf("Lock Owner: none\n");
1089 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1090 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1091 	    "\t");
1092 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1093 
1094 }
1095 
1096 /*
1097  * Show all the threads a particular thread is waiting on based on
1098  * non-sleepable and non-spin locks.
1099  */
1100 static void
1101 print_lockchain(struct thread *td, const char *prefix)
1102 {
1103 	struct lock_object *lock;
1104 	struct lock_class *class;
1105 	struct turnstile *ts;
1106 
1107 	/*
1108 	 * Follow the chain.  We keep walking as long as the thread is
1109 	 * blocked on a turnstile that has an owner.
1110 	 */
1111 	while (!db_pager_quit) {
1112 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1113 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1114 		    td->td_name);
1115 		switch (td->td_state) {
1116 		case TDS_INACTIVE:
1117 			db_printf("is inactive\n");
1118 			return;
1119 		case TDS_CAN_RUN:
1120 			db_printf("can run\n");
1121 			return;
1122 		case TDS_RUNQ:
1123 			db_printf("is on a run queue\n");
1124 			return;
1125 		case TDS_RUNNING:
1126 			db_printf("running on CPU %d\n", td->td_oncpu);
1127 			return;
1128 		case TDS_INHIBITED:
1129 			if (TD_ON_LOCK(td)) {
1130 				ts = td->td_blocked;
1131 				lock = ts->ts_lockobj;
1132 				class = LOCK_CLASS(lock);
1133 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1134 				    lock, class->lc_name, lock->lo_name);
1135 				if (ts->ts_owner == NULL)
1136 					return;
1137 				td = ts->ts_owner;
1138 				break;
1139 			}
1140 			db_printf("inhibited\n");
1141 			return;
1142 		default:
1143 			db_printf("??? (%#x)\n", td->td_state);
1144 			return;
1145 		}
1146 	}
1147 }
1148 
1149 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1150 {
1151 	struct thread *td;
1152 
1153 	/* Figure out which thread to start with. */
1154 	if (have_addr)
1155 		td = db_lookup_thread(addr, TRUE);
1156 	else
1157 		td = kdb_thread;
1158 
1159 	print_lockchain(td, "");
1160 }
1161 
1162 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1163 {
1164 	struct thread *td;
1165 	struct proc *p;
1166 	int i;
1167 
1168 	i = 1;
1169 	FOREACH_PROC_IN_SYSTEM(p) {
1170 		FOREACH_THREAD_IN_PROC(p, td) {
1171 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1172 				db_printf("chain %d:\n", i++);
1173 				print_lockchain(td, " ");
1174 			}
1175 			if (db_pager_quit)
1176 				return;
1177 		}
1178 	}
1179 }
1180 DB_SHOW_ALIAS(allchains, db_show_allchains)
1181 
1182 /*
1183  * Show all the threads a particular thread is waiting on based on
1184  * sleepable locks.
1185  */
1186 static void
1187 print_sleepchain(struct thread *td, const char *prefix)
1188 {
1189 	struct thread *owner;
1190 
1191 	/*
1192 	 * Follow the chain.  We keep walking as long as the thread is
1193 	 * blocked on a sleep lock that has an owner.
1194 	 */
1195 	while (!db_pager_quit) {
1196 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1197 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1198 		    td->td_name);
1199 		switch (td->td_state) {
1200 		case TDS_INACTIVE:
1201 			db_printf("is inactive\n");
1202 			return;
1203 		case TDS_CAN_RUN:
1204 			db_printf("can run\n");
1205 			return;
1206 		case TDS_RUNQ:
1207 			db_printf("is on a run queue\n");
1208 			return;
1209 		case TDS_RUNNING:
1210 			db_printf("running on CPU %d\n", td->td_oncpu);
1211 			return;
1212 		case TDS_INHIBITED:
1213 			if (TD_ON_SLEEPQ(td)) {
1214 				if (lockmgr_chain(td, &owner) ||
1215 				    sx_chain(td, &owner)) {
1216 					if (owner == NULL)
1217 						return;
1218 					td = owner;
1219 					break;
1220 				}
1221 				db_printf("sleeping on %p \"%s\"\n",
1222 				    td->td_wchan, td->td_wmesg);
1223 				return;
1224 			}
1225 			db_printf("inhibited\n");
1226 			return;
1227 		default:
1228 			db_printf("??? (%#x)\n", td->td_state);
1229 			return;
1230 		}
1231 	}
1232 }
1233 
1234 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1235 {
1236 	struct thread *td;
1237 
1238 	/* Figure out which thread to start with. */
1239 	if (have_addr)
1240 		td = db_lookup_thread(addr, TRUE);
1241 	else
1242 		td = kdb_thread;
1243 
1244 	print_sleepchain(td, "");
1245 }
1246 
1247 static void	print_waiters(struct turnstile *ts, int indent);
1248 
1249 static void
1250 print_waiter(struct thread *td, int indent)
1251 {
1252 	struct turnstile *ts;
1253 	int i;
1254 
1255 	if (db_pager_quit)
1256 		return;
1257 	for (i = 0; i < indent; i++)
1258 		db_printf(" ");
1259 	print_thread(td, "thread ");
1260 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1261 		print_waiters(ts, indent + 1);
1262 }
1263 
1264 static void
1265 print_waiters(struct turnstile *ts, int indent)
1266 {
1267 	struct lock_object *lock;
1268 	struct lock_class *class;
1269 	struct thread *td;
1270 	int i;
1271 
1272 	if (db_pager_quit)
1273 		return;
1274 	lock = ts->ts_lockobj;
1275 	class = LOCK_CLASS(lock);
1276 	for (i = 0; i < indent; i++)
1277 		db_printf(" ");
1278 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1279 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1280 		print_waiter(td, indent + 1);
1281 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1282 		print_waiter(td, indent + 1);
1283 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1284 		print_waiter(td, indent + 1);
1285 }
1286 
1287 DB_SHOW_COMMAND(locktree, db_show_locktree)
1288 {
1289 	struct lock_object *lock;
1290 	struct lock_class *class;
1291 	struct turnstile_chain *tc;
1292 	struct turnstile *ts;
1293 
1294 	if (!have_addr)
1295 		return;
1296 	lock = (struct lock_object *)addr;
1297 	tc = TC_LOOKUP(lock);
1298 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1299 		if (ts->ts_lockobj == lock)
1300 			break;
1301 	if (ts == NULL) {
1302 		class = LOCK_CLASS(lock);
1303 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1304 		    lock->lo_name);
1305 	} else
1306 		print_waiters(ts, 0);
1307 }
1308 #endif
1309