xref: /freebsd/sys/kern/subr_turnstile.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is allocated from a UMA zone
50  * and attached to that thread.  When a thread blocks on a lock, if it is the
51  * first thread to block, it lends its turnstile to the lock.  If the lock
52  * already has a turnstile, then it gives its turnstile to the lock's
53  * turnstile's free list.  When a thread is woken up, it takes a turnstile from
54  * the free list if there are any other waiters.  If it is the only thread
55  * blocked on the lock, then it reclaims the turnstile associated with the lock
56  * and removes it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 #include "opt_sched.h"
65 
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/kdb.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/queue.h>
75 #include <sys/sched.h>
76 #include <sys/sdt.h>
77 #include <sys/sysctl.h>
78 #include <sys/turnstile.h>
79 
80 #include <vm/uma.h>
81 
82 #ifdef DDB
83 #include <ddb/ddb.h>
84 #include <sys/lockmgr.h>
85 #include <sys/sx.h>
86 #endif
87 
88 /*
89  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
90  * number chosen because the sleep queue's use the same value for the
91  * shift.  Basically, we ignore the lower 8 bits of the address.
92  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
93  */
94 #define	TC_TABLESIZE	128			/* Must be power of 2. */
95 #define	TC_MASK		(TC_TABLESIZE - 1)
96 #define	TC_SHIFT	8
97 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
98 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
99 
100 /*
101  * There are three different lists of turnstiles as follows.  The list
102  * connected by ts_link entries is a per-thread list of all the turnstiles
103  * attached to locks that we own.  This is used to fixup our priority when
104  * a lock is released.  The other two lists use the ts_hash entries.  The
105  * first of these two is the turnstile chain list that a turnstile is on
106  * when it is attached to a lock.  The second list to use ts_hash is the
107  * free list hung off of a turnstile that is attached to a lock.
108  *
109  * Each turnstile contains three lists of threads.  The two ts_blocked lists
110  * are linked list of threads blocked on the turnstile's lock.  One list is
111  * for exclusive waiters, and the other is for shared waiters.  The
112  * ts_pending list is a linked list of threads previously awakened by
113  * turnstile_signal() or turnstile_wait() that are waiting to be put on
114  * the run queue.
115  *
116  * Locking key:
117  *  c - turnstile chain lock
118  *  q - td_contested lock
119  */
120 struct turnstile {
121 	struct mtx ts_lock;			/* Spin lock for self. */
122 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
123 	struct threadqueue ts_pending;		/* (c) Pending threads. */
124 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
125 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
126 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
127 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
128 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
129 };
130 
131 struct turnstile_chain {
132 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
133 	struct mtx tc_lock;			/* Spin lock for this chain. */
134 #ifdef TURNSTILE_PROFILING
135 	u_int	tc_depth;			/* Length of tc_queues. */
136 	u_int	tc_max_depth;			/* Max length of tc_queues. */
137 #endif
138 };
139 
140 #ifdef TURNSTILE_PROFILING
141 u_int turnstile_max_depth;
142 static SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0,
143     "turnstile profiling");
144 static SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
145     "turnstile chain stats");
146 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
147     &turnstile_max_depth, 0, "maximum depth achieved of a single chain");
148 #endif
149 static struct mtx td_contested_lock;
150 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
151 static uma_zone_t turnstile_zone;
152 
153 /*
154  * Prototypes for non-exported routines.
155  */
156 static void	init_turnstile0(void *dummy);
157 #ifdef TURNSTILE_PROFILING
158 static void	init_turnstile_profiling(void *arg);
159 #endif
160 static void	propagate_priority(struct thread *td);
161 static int	turnstile_adjust_thread(struct turnstile *ts,
162 		    struct thread *td);
163 static struct thread *turnstile_first_waiter(struct turnstile *ts);
164 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
165 #ifdef INVARIANTS
166 static void	turnstile_dtor(void *mem, int size, void *arg);
167 #endif
168 static int	turnstile_init(void *mem, int size, int flags);
169 static void	turnstile_fini(void *mem, int size);
170 
171 SDT_PROVIDER_DECLARE(sched);
172 SDT_PROBE_DEFINE(sched, , , sleep);
173 SDT_PROBE_DEFINE2(sched, , , wakeup, "struct thread *",
174     "struct proc *");
175 
176 /*
177  * Walks the chain of turnstiles and their owners to propagate the priority
178  * of the thread being blocked to all the threads holding locks that have to
179  * release their locks before this thread can run again.
180  */
181 static void
182 propagate_priority(struct thread *td)
183 {
184 	struct turnstile *ts;
185 	int pri;
186 
187 	THREAD_LOCK_ASSERT(td, MA_OWNED);
188 	pri = td->td_priority;
189 	ts = td->td_blocked;
190 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
191 	/*
192 	 * Grab a recursive lock on this turnstile chain so it stays locked
193 	 * for the whole operation.  The caller expects us to return with
194 	 * the original lock held.  We only ever lock down the chain so
195 	 * the lock order is constant.
196 	 */
197 	mtx_lock_spin(&ts->ts_lock);
198 	for (;;) {
199 		td = ts->ts_owner;
200 
201 		if (td == NULL) {
202 			/*
203 			 * This might be a read lock with no owner.  There's
204 			 * not much we can do, so just bail.
205 			 */
206 			mtx_unlock_spin(&ts->ts_lock);
207 			return;
208 		}
209 
210 		thread_lock_flags(td, MTX_DUPOK);
211 		mtx_unlock_spin(&ts->ts_lock);
212 		MPASS(td->td_proc != NULL);
213 		MPASS(td->td_proc->p_magic == P_MAGIC);
214 
215 		/*
216 		 * If the thread is asleep, then we are probably about
217 		 * to deadlock.  To make debugging this easier, show
218 		 * backtrace of misbehaving thread and panic to not
219 		 * leave the kernel deadlocked.
220 		 */
221 		if (TD_IS_SLEEPING(td)) {
222 			printf(
223 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
224 			    td->td_tid, td->td_proc->p_pid);
225 			kdb_backtrace_thread(td);
226 			panic("sleeping thread");
227 		}
228 
229 		/*
230 		 * If this thread already has higher priority than the
231 		 * thread that is being blocked, we are finished.
232 		 */
233 		if (td->td_priority <= pri) {
234 			thread_unlock(td);
235 			return;
236 		}
237 
238 		/*
239 		 * Bump this thread's priority.
240 		 */
241 		sched_lend_prio(td, pri);
242 
243 		/*
244 		 * If lock holder is actually running or on the run queue
245 		 * then we are done.
246 		 */
247 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
248 			MPASS(td->td_blocked == NULL);
249 			thread_unlock(td);
250 			return;
251 		}
252 
253 #ifndef SMP
254 		/*
255 		 * For UP, we check to see if td is curthread (this shouldn't
256 		 * ever happen however as it would mean we are in a deadlock.)
257 		 */
258 		KASSERT(td != curthread, ("Deadlock detected"));
259 #endif
260 
261 		/*
262 		 * If we aren't blocked on a lock, we should be.
263 		 */
264 		KASSERT(TD_ON_LOCK(td), (
265 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
266 		    td->td_tid, td->td_name, td->td_state,
267 		    ts->ts_lockobj->lo_name));
268 
269 		/*
270 		 * Pick up the lock that td is blocked on.
271 		 */
272 		ts = td->td_blocked;
273 		MPASS(ts != NULL);
274 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
275 		/* Resort td on the list if needed. */
276 		if (!turnstile_adjust_thread(ts, td)) {
277 			mtx_unlock_spin(&ts->ts_lock);
278 			return;
279 		}
280 		/* The thread lock is released as ts lock above. */
281 	}
282 }
283 
284 /*
285  * Adjust the thread's position on a turnstile after its priority has been
286  * changed.
287  */
288 static int
289 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
290 {
291 	struct thread *td1, *td2;
292 	int queue;
293 
294 	THREAD_LOCK_ASSERT(td, MA_OWNED);
295 	MPASS(TD_ON_LOCK(td));
296 
297 	/*
298 	 * This thread may not be blocked on this turnstile anymore
299 	 * but instead might already be woken up on another CPU
300 	 * that is waiting on the thread lock in turnstile_unpend() to
301 	 * finish waking this thread up.  We can detect this case
302 	 * by checking to see if this thread has been given a
303 	 * turnstile by either turnstile_signal() or
304 	 * turnstile_broadcast().  In this case, treat the thread as
305 	 * if it was already running.
306 	 */
307 	if (td->td_turnstile != NULL)
308 		return (0);
309 
310 	/*
311 	 * Check if the thread needs to be moved on the blocked chain.
312 	 * It needs to be moved if either its priority is lower than
313 	 * the previous thread or higher than the next thread.
314 	 */
315 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
316 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
317 	td2 = TAILQ_NEXT(td, td_lockq);
318 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
319 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
320 
321 		/*
322 		 * Remove thread from blocked chain and determine where
323 		 * it should be moved to.
324 		 */
325 		queue = td->td_tsqueue;
326 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
327 		mtx_lock_spin(&td_contested_lock);
328 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
329 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
330 			MPASS(td1->td_proc->p_magic == P_MAGIC);
331 			if (td1->td_priority > td->td_priority)
332 				break;
333 		}
334 
335 		if (td1 == NULL)
336 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
337 		else
338 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
339 		mtx_unlock_spin(&td_contested_lock);
340 		if (td1 == NULL)
341 			CTR3(KTR_LOCK,
342 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
343 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
344 		else
345 			CTR4(KTR_LOCK,
346 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
347 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
348 			    ts->ts_lockobj->lo_name);
349 	}
350 	return (1);
351 }
352 
353 /*
354  * Early initialization of turnstiles.  This is not done via a SYSINIT()
355  * since this needs to be initialized very early when mutexes are first
356  * initialized.
357  */
358 void
359 init_turnstiles(void)
360 {
361 	int i;
362 
363 	for (i = 0; i < TC_TABLESIZE; i++) {
364 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
365 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
366 		    NULL, MTX_SPIN);
367 	}
368 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
369 	LIST_INIT(&thread0.td_contested);
370 	thread0.td_turnstile = NULL;
371 }
372 
373 #ifdef TURNSTILE_PROFILING
374 static void
375 init_turnstile_profiling(void *arg)
376 {
377 	struct sysctl_oid *chain_oid;
378 	char chain_name[10];
379 	int i;
380 
381 	for (i = 0; i < TC_TABLESIZE; i++) {
382 		snprintf(chain_name, sizeof(chain_name), "%d", i);
383 		chain_oid = SYSCTL_ADD_NODE(NULL,
384 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
385 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
386 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
387 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
388 		    NULL);
389 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
390 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
391 		    0, NULL);
392 	}
393 }
394 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
395     init_turnstile_profiling, NULL);
396 #endif
397 
398 static void
399 init_turnstile0(void *dummy)
400 {
401 
402 	turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile),
403 	    NULL,
404 #ifdef INVARIANTS
405 	    turnstile_dtor,
406 #else
407 	    NULL,
408 #endif
409 	    turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, UMA_ZONE_NOFREE);
410 	thread0.td_turnstile = turnstile_alloc();
411 }
412 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
413 
414 /*
415  * Update a thread on the turnstile list after it's priority has been changed.
416  * The old priority is passed in as an argument.
417  */
418 void
419 turnstile_adjust(struct thread *td, u_char oldpri)
420 {
421 	struct turnstile *ts;
422 
423 	MPASS(TD_ON_LOCK(td));
424 
425 	/*
426 	 * Pick up the lock that td is blocked on.
427 	 */
428 	ts = td->td_blocked;
429 	MPASS(ts != NULL);
430 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
431 	mtx_assert(&ts->ts_lock, MA_OWNED);
432 
433 	/* Resort the turnstile on the list. */
434 	if (!turnstile_adjust_thread(ts, td))
435 		return;
436 	/*
437 	 * If our priority was lowered and we are at the head of the
438 	 * turnstile, then propagate our new priority up the chain.
439 	 * Note that we currently don't try to revoke lent priorities
440 	 * when our priority goes up.
441 	 */
442 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
443 	    td->td_tsqueue == TS_SHARED_QUEUE);
444 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
445 	    td->td_priority < oldpri) {
446 		propagate_priority(td);
447 	}
448 }
449 
450 /*
451  * Set the owner of the lock this turnstile is attached to.
452  */
453 static void
454 turnstile_setowner(struct turnstile *ts, struct thread *owner)
455 {
456 
457 	mtx_assert(&td_contested_lock, MA_OWNED);
458 	MPASS(ts->ts_owner == NULL);
459 
460 	/* A shared lock might not have an owner. */
461 	if (owner == NULL)
462 		return;
463 
464 	MPASS(owner->td_proc->p_magic == P_MAGIC);
465 	ts->ts_owner = owner;
466 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
467 }
468 
469 #ifdef INVARIANTS
470 /*
471  * UMA zone item deallocator.
472  */
473 static void
474 turnstile_dtor(void *mem, int size, void *arg)
475 {
476 	struct turnstile *ts;
477 
478 	ts = mem;
479 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
480 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
481 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
482 }
483 #endif
484 
485 /*
486  * UMA zone item initializer.
487  */
488 static int
489 turnstile_init(void *mem, int size, int flags)
490 {
491 	struct turnstile *ts;
492 
493 	bzero(mem, size);
494 	ts = mem;
495 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
496 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
497 	TAILQ_INIT(&ts->ts_pending);
498 	LIST_INIT(&ts->ts_free);
499 	mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE);
500 	return (0);
501 }
502 
503 static void
504 turnstile_fini(void *mem, int size)
505 {
506 	struct turnstile *ts;
507 
508 	ts = mem;
509 	mtx_destroy(&ts->ts_lock);
510 }
511 
512 /*
513  * Get a turnstile for a new thread.
514  */
515 struct turnstile *
516 turnstile_alloc(void)
517 {
518 
519 	return (uma_zalloc(turnstile_zone, M_WAITOK));
520 }
521 
522 /*
523  * Free a turnstile when a thread is destroyed.
524  */
525 void
526 turnstile_free(struct turnstile *ts)
527 {
528 
529 	uma_zfree(turnstile_zone, ts);
530 }
531 
532 /*
533  * Lock the turnstile chain associated with the specified lock.
534  */
535 void
536 turnstile_chain_lock(struct lock_object *lock)
537 {
538 	struct turnstile_chain *tc;
539 
540 	tc = TC_LOOKUP(lock);
541 	mtx_lock_spin(&tc->tc_lock);
542 }
543 
544 struct turnstile *
545 turnstile_trywait(struct lock_object *lock)
546 {
547 	struct turnstile_chain *tc;
548 	struct turnstile *ts;
549 
550 	tc = TC_LOOKUP(lock);
551 	mtx_lock_spin(&tc->tc_lock);
552 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
553 		if (ts->ts_lockobj == lock) {
554 			mtx_lock_spin(&ts->ts_lock);
555 			return (ts);
556 		}
557 
558 	ts = curthread->td_turnstile;
559 	MPASS(ts != NULL);
560 	mtx_lock_spin(&ts->ts_lock);
561 	KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
562 	ts->ts_lockobj = lock;
563 
564 	return (ts);
565 }
566 
567 void
568 turnstile_cancel(struct turnstile *ts)
569 {
570 	struct turnstile_chain *tc;
571 	struct lock_object *lock;
572 
573 	mtx_assert(&ts->ts_lock, MA_OWNED);
574 
575 	mtx_unlock_spin(&ts->ts_lock);
576 	lock = ts->ts_lockobj;
577 	if (ts == curthread->td_turnstile)
578 		ts->ts_lockobj = NULL;
579 	tc = TC_LOOKUP(lock);
580 	mtx_unlock_spin(&tc->tc_lock);
581 }
582 
583 /*
584  * Look up the turnstile for a lock in the hash table locking the associated
585  * turnstile chain along the way.  If no turnstile is found in the hash
586  * table, NULL is returned.
587  */
588 struct turnstile *
589 turnstile_lookup(struct lock_object *lock)
590 {
591 	struct turnstile_chain *tc;
592 	struct turnstile *ts;
593 
594 	tc = TC_LOOKUP(lock);
595 	mtx_assert(&tc->tc_lock, MA_OWNED);
596 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
597 		if (ts->ts_lockobj == lock) {
598 			mtx_lock_spin(&ts->ts_lock);
599 			return (ts);
600 		}
601 	return (NULL);
602 }
603 
604 /*
605  * Unlock the turnstile chain associated with a given lock.
606  */
607 void
608 turnstile_chain_unlock(struct lock_object *lock)
609 {
610 	struct turnstile_chain *tc;
611 
612 	tc = TC_LOOKUP(lock);
613 	mtx_unlock_spin(&tc->tc_lock);
614 }
615 
616 /*
617  * Return a pointer to the thread waiting on this turnstile with the
618  * most important priority or NULL if the turnstile has no waiters.
619  */
620 static struct thread *
621 turnstile_first_waiter(struct turnstile *ts)
622 {
623 	struct thread *std, *xtd;
624 
625 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
626 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
627 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
628 		return (std);
629 	return (xtd);
630 }
631 
632 /*
633  * Take ownership of a turnstile and adjust the priority of the new
634  * owner appropriately.
635  */
636 void
637 turnstile_claim(struct turnstile *ts)
638 {
639 	struct thread *td, *owner;
640 	struct turnstile_chain *tc;
641 
642 	mtx_assert(&ts->ts_lock, MA_OWNED);
643 	MPASS(ts != curthread->td_turnstile);
644 
645 	owner = curthread;
646 	mtx_lock_spin(&td_contested_lock);
647 	turnstile_setowner(ts, owner);
648 	mtx_unlock_spin(&td_contested_lock);
649 
650 	td = turnstile_first_waiter(ts);
651 	MPASS(td != NULL);
652 	MPASS(td->td_proc->p_magic == P_MAGIC);
653 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
654 
655 	/*
656 	 * Update the priority of the new owner if needed.
657 	 */
658 	thread_lock(owner);
659 	if (td->td_priority < owner->td_priority)
660 		sched_lend_prio(owner, td->td_priority);
661 	thread_unlock(owner);
662 	tc = TC_LOOKUP(ts->ts_lockobj);
663 	mtx_unlock_spin(&ts->ts_lock);
664 	mtx_unlock_spin(&tc->tc_lock);
665 }
666 
667 /*
668  * Block the current thread on the turnstile assicated with 'lock'.  This
669  * function will context switch and not return until this thread has been
670  * woken back up.  This function must be called with the appropriate
671  * turnstile chain locked and will return with it unlocked.
672  */
673 void
674 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue)
675 {
676 	struct turnstile_chain *tc;
677 	struct thread *td, *td1;
678 	struct lock_object *lock;
679 
680 	td = curthread;
681 	mtx_assert(&ts->ts_lock, MA_OWNED);
682 	if (owner)
683 		MPASS(owner->td_proc->p_magic == P_MAGIC);
684 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
685 
686 	/*
687 	 * If the lock does not already have a turnstile, use this thread's
688 	 * turnstile.  Otherwise insert the current thread into the
689 	 * turnstile already in use by this lock.
690 	 */
691 	tc = TC_LOOKUP(ts->ts_lockobj);
692 	mtx_assert(&tc->tc_lock, MA_OWNED);
693 	if (ts == td->td_turnstile) {
694 #ifdef TURNSTILE_PROFILING
695 		tc->tc_depth++;
696 		if (tc->tc_depth > tc->tc_max_depth) {
697 			tc->tc_max_depth = tc->tc_depth;
698 			if (tc->tc_max_depth > turnstile_max_depth)
699 				turnstile_max_depth = tc->tc_max_depth;
700 		}
701 #endif
702 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
703 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
704 		    ("thread's turnstile has pending threads"));
705 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
706 		    ("thread's turnstile has exclusive waiters"));
707 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
708 		    ("thread's turnstile has shared waiters"));
709 		KASSERT(LIST_EMPTY(&ts->ts_free),
710 		    ("thread's turnstile has a non-empty free list"));
711 		MPASS(ts->ts_lockobj != NULL);
712 		mtx_lock_spin(&td_contested_lock);
713 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
714 		turnstile_setowner(ts, owner);
715 		mtx_unlock_spin(&td_contested_lock);
716 	} else {
717 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
718 			if (td1->td_priority > td->td_priority)
719 				break;
720 		mtx_lock_spin(&td_contested_lock);
721 		if (td1 != NULL)
722 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
723 		else
724 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
725 		MPASS(owner == ts->ts_owner);
726 		mtx_unlock_spin(&td_contested_lock);
727 		MPASS(td->td_turnstile != NULL);
728 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
729 	}
730 	thread_lock(td);
731 	thread_lock_set(td, &ts->ts_lock);
732 	td->td_turnstile = NULL;
733 
734 	/* Save who we are blocked on and switch. */
735 	lock = ts->ts_lockobj;
736 	td->td_tsqueue = queue;
737 	td->td_blocked = ts;
738 	td->td_lockname = lock->lo_name;
739 	td->td_blktick = ticks;
740 	TD_SET_LOCK(td);
741 	mtx_unlock_spin(&tc->tc_lock);
742 	propagate_priority(td);
743 
744 	if (LOCK_LOG_TEST(lock, 0))
745 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
746 		    td->td_tid, lock, lock->lo_name);
747 
748 	SDT_PROBE0(sched, , , sleep);
749 
750 	THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
751 	mi_switch(SW_VOL | SWT_TURNSTILE, NULL);
752 
753 	if (LOCK_LOG_TEST(lock, 0))
754 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
755 		    __func__, td->td_tid, lock, lock->lo_name);
756 	thread_unlock(td);
757 }
758 
759 /*
760  * Pick the highest priority thread on this turnstile and put it on the
761  * pending list.  This must be called with the turnstile chain locked.
762  */
763 int
764 turnstile_signal(struct turnstile *ts, int queue)
765 {
766 	struct turnstile_chain *tc;
767 	struct thread *td;
768 	int empty;
769 
770 	MPASS(ts != NULL);
771 	mtx_assert(&ts->ts_lock, MA_OWNED);
772 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
773 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
774 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
775 
776 	/*
777 	 * Pick the highest priority thread blocked on this lock and
778 	 * move it to the pending list.
779 	 */
780 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
781 	MPASS(td->td_proc->p_magic == P_MAGIC);
782 	mtx_lock_spin(&td_contested_lock);
783 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
784 	mtx_unlock_spin(&td_contested_lock);
785 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
786 
787 	/*
788 	 * If the turnstile is now empty, remove it from its chain and
789 	 * give it to the about-to-be-woken thread.  Otherwise take a
790 	 * turnstile from the free list and give it to the thread.
791 	 */
792 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
793 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
794 	if (empty) {
795 		tc = TC_LOOKUP(ts->ts_lockobj);
796 		mtx_assert(&tc->tc_lock, MA_OWNED);
797 		MPASS(LIST_EMPTY(&ts->ts_free));
798 #ifdef TURNSTILE_PROFILING
799 		tc->tc_depth--;
800 #endif
801 	} else
802 		ts = LIST_FIRST(&ts->ts_free);
803 	MPASS(ts != NULL);
804 	LIST_REMOVE(ts, ts_hash);
805 	td->td_turnstile = ts;
806 
807 	return (empty);
808 }
809 
810 /*
811  * Put all blocked threads on the pending list.  This must be called with
812  * the turnstile chain locked.
813  */
814 void
815 turnstile_broadcast(struct turnstile *ts, int queue)
816 {
817 	struct turnstile_chain *tc;
818 	struct turnstile *ts1;
819 	struct thread *td;
820 
821 	MPASS(ts != NULL);
822 	mtx_assert(&ts->ts_lock, MA_OWNED);
823 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
824 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
825 	/*
826 	 * We must have the chain locked so that we can remove the empty
827 	 * turnstile from the hash queue.
828 	 */
829 	tc = TC_LOOKUP(ts->ts_lockobj);
830 	mtx_assert(&tc->tc_lock, MA_OWNED);
831 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
832 
833 	/*
834 	 * Transfer the blocked list to the pending list.
835 	 */
836 	mtx_lock_spin(&td_contested_lock);
837 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
838 	mtx_unlock_spin(&td_contested_lock);
839 
840 	/*
841 	 * Give a turnstile to each thread.  The last thread gets
842 	 * this turnstile if the turnstile is empty.
843 	 */
844 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
845 		if (LIST_EMPTY(&ts->ts_free)) {
846 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
847 			ts1 = ts;
848 #ifdef TURNSTILE_PROFILING
849 			tc->tc_depth--;
850 #endif
851 		} else
852 			ts1 = LIST_FIRST(&ts->ts_free);
853 		MPASS(ts1 != NULL);
854 		LIST_REMOVE(ts1, ts_hash);
855 		td->td_turnstile = ts1;
856 	}
857 }
858 
859 /*
860  * Wakeup all threads on the pending list and adjust the priority of the
861  * current thread appropriately.  This must be called with the turnstile
862  * chain locked.
863  */
864 void
865 turnstile_unpend(struct turnstile *ts, int owner_type)
866 {
867 	TAILQ_HEAD( ,thread) pending_threads;
868 	struct turnstile *nts;
869 	struct thread *td;
870 	u_char cp, pri;
871 
872 	MPASS(ts != NULL);
873 	mtx_assert(&ts->ts_lock, MA_OWNED);
874 	MPASS(ts->ts_owner == curthread || ts->ts_owner == NULL);
875 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
876 
877 	/*
878 	 * Move the list of pending threads out of the turnstile and
879 	 * into a local variable.
880 	 */
881 	TAILQ_INIT(&pending_threads);
882 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
883 #ifdef INVARIANTS
884 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
885 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
886 		ts->ts_lockobj = NULL;
887 #endif
888 	/*
889 	 * Adjust the priority of curthread based on other contested
890 	 * locks it owns.  Don't lower the priority below the base
891 	 * priority however.
892 	 */
893 	td = curthread;
894 	pri = PRI_MAX;
895 	thread_lock(td);
896 	mtx_lock_spin(&td_contested_lock);
897 	/*
898 	 * Remove the turnstile from this thread's list of contested locks
899 	 * since this thread doesn't own it anymore.  New threads will
900 	 * not be blocking on the turnstile until it is claimed by a new
901 	 * owner.  There might not be a current owner if this is a shared
902 	 * lock.
903 	 */
904 	if (ts->ts_owner != NULL) {
905 		ts->ts_owner = NULL;
906 		LIST_REMOVE(ts, ts_link);
907 	}
908 	LIST_FOREACH(nts, &td->td_contested, ts_link) {
909 		cp = turnstile_first_waiter(nts)->td_priority;
910 		if (cp < pri)
911 			pri = cp;
912 	}
913 	mtx_unlock_spin(&td_contested_lock);
914 	sched_unlend_prio(td, pri);
915 	thread_unlock(td);
916 	/*
917 	 * Wake up all the pending threads.  If a thread is not blocked
918 	 * on a lock, then it is currently executing on another CPU in
919 	 * turnstile_wait() or sitting on a run queue waiting to resume
920 	 * in turnstile_wait().  Set a flag to force it to try to acquire
921 	 * the lock again instead of blocking.
922 	 */
923 	while (!TAILQ_EMPTY(&pending_threads)) {
924 		td = TAILQ_FIRST(&pending_threads);
925 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
926 		SDT_PROBE2(sched, , , wakeup, td, td->td_proc);
927 		thread_lock(td);
928 		THREAD_LOCKPTR_ASSERT(td, &ts->ts_lock);
929 		MPASS(td->td_proc->p_magic == P_MAGIC);
930 		MPASS(TD_ON_LOCK(td));
931 		TD_CLR_LOCK(td);
932 		MPASS(TD_CAN_RUN(td));
933 		td->td_blocked = NULL;
934 		td->td_lockname = NULL;
935 		td->td_blktick = 0;
936 #ifdef INVARIANTS
937 		td->td_tsqueue = 0xff;
938 #endif
939 		sched_add(td, SRQ_BORING);
940 		thread_unlock(td);
941 	}
942 	mtx_unlock_spin(&ts->ts_lock);
943 }
944 
945 /*
946  * Give up ownership of a turnstile.  This must be called with the
947  * turnstile chain locked.
948  */
949 void
950 turnstile_disown(struct turnstile *ts)
951 {
952 	struct thread *td;
953 	u_char cp, pri;
954 
955 	MPASS(ts != NULL);
956 	mtx_assert(&ts->ts_lock, MA_OWNED);
957 	MPASS(ts->ts_owner == curthread);
958 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
959 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
960 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
961 
962 	/*
963 	 * Remove the turnstile from this thread's list of contested locks
964 	 * since this thread doesn't own it anymore.  New threads will
965 	 * not be blocking on the turnstile until it is claimed by a new
966 	 * owner.
967 	 */
968 	mtx_lock_spin(&td_contested_lock);
969 	ts->ts_owner = NULL;
970 	LIST_REMOVE(ts, ts_link);
971 	mtx_unlock_spin(&td_contested_lock);
972 
973 	/*
974 	 * Adjust the priority of curthread based on other contested
975 	 * locks it owns.  Don't lower the priority below the base
976 	 * priority however.
977 	 */
978 	td = curthread;
979 	pri = PRI_MAX;
980 	thread_lock(td);
981 	mtx_unlock_spin(&ts->ts_lock);
982 	mtx_lock_spin(&td_contested_lock);
983 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
984 		cp = turnstile_first_waiter(ts)->td_priority;
985 		if (cp < pri)
986 			pri = cp;
987 	}
988 	mtx_unlock_spin(&td_contested_lock);
989 	sched_unlend_prio(td, pri);
990 	thread_unlock(td);
991 }
992 
993 /*
994  * Return the first thread in a turnstile.
995  */
996 struct thread *
997 turnstile_head(struct turnstile *ts, int queue)
998 {
999 #ifdef INVARIANTS
1000 
1001 	MPASS(ts != NULL);
1002 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1003 	mtx_assert(&ts->ts_lock, MA_OWNED);
1004 #endif
1005 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
1006 }
1007 
1008 /*
1009  * Returns true if a sub-queue of a turnstile is empty.
1010  */
1011 int
1012 turnstile_empty(struct turnstile *ts, int queue)
1013 {
1014 #ifdef INVARIANTS
1015 
1016 	MPASS(ts != NULL);
1017 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
1018 	mtx_assert(&ts->ts_lock, MA_OWNED);
1019 #endif
1020 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
1021 }
1022 
1023 #ifdef DDB
1024 static void
1025 print_thread(struct thread *td, const char *prefix)
1026 {
1027 
1028 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
1029 	    td->td_proc->p_pid, td->td_name);
1030 }
1031 
1032 static void
1033 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
1034 {
1035 	struct thread *td;
1036 
1037 	db_printf("%s:\n", header);
1038 	if (TAILQ_EMPTY(queue)) {
1039 		db_printf("%sempty\n", prefix);
1040 		return;
1041 	}
1042 	TAILQ_FOREACH(td, queue, td_lockq) {
1043 		print_thread(td, prefix);
1044 	}
1045 }
1046 
1047 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
1048 {
1049 	struct turnstile_chain *tc;
1050 	struct turnstile *ts;
1051 	struct lock_object *lock;
1052 	int i;
1053 
1054 	if (!have_addr)
1055 		return;
1056 
1057 	/*
1058 	 * First, see if there is an active turnstile for the lock indicated
1059 	 * by the address.
1060 	 */
1061 	lock = (struct lock_object *)addr;
1062 	tc = TC_LOOKUP(lock);
1063 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1064 		if (ts->ts_lockobj == lock)
1065 			goto found;
1066 
1067 	/*
1068 	 * Second, see if there is an active turnstile at the address
1069 	 * indicated.
1070 	 */
1071 	for (i = 0; i < TC_TABLESIZE; i++)
1072 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1073 			if (ts == (struct turnstile *)addr)
1074 				goto found;
1075 		}
1076 
1077 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1078 	return;
1079 found:
1080 	lock = ts->ts_lockobj;
1081 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1082 	    lock->lo_name);
1083 	if (ts->ts_owner)
1084 		print_thread(ts->ts_owner, "Lock Owner: ");
1085 	else
1086 		db_printf("Lock Owner: none\n");
1087 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1088 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1089 	    "\t");
1090 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1091 
1092 }
1093 
1094 /*
1095  * Show all the threads a particular thread is waiting on based on
1096  * non-sleepable and non-spin locks.
1097  */
1098 static void
1099 print_lockchain(struct thread *td, const char *prefix)
1100 {
1101 	struct lock_object *lock;
1102 	struct lock_class *class;
1103 	struct turnstile *ts;
1104 
1105 	/*
1106 	 * Follow the chain.  We keep walking as long as the thread is
1107 	 * blocked on a turnstile that has an owner.
1108 	 */
1109 	while (!db_pager_quit) {
1110 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1111 		    td->td_proc->p_pid, td->td_name);
1112 		switch (td->td_state) {
1113 		case TDS_INACTIVE:
1114 			db_printf("is inactive\n");
1115 			return;
1116 		case TDS_CAN_RUN:
1117 			db_printf("can run\n");
1118 			return;
1119 		case TDS_RUNQ:
1120 			db_printf("is on a run queue\n");
1121 			return;
1122 		case TDS_RUNNING:
1123 			db_printf("running on CPU %d\n", td->td_oncpu);
1124 			return;
1125 		case TDS_INHIBITED:
1126 			if (TD_ON_LOCK(td)) {
1127 				ts = td->td_blocked;
1128 				lock = ts->ts_lockobj;
1129 				class = LOCK_CLASS(lock);
1130 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1131 				    lock, class->lc_name, lock->lo_name);
1132 				if (ts->ts_owner == NULL)
1133 					return;
1134 				td = ts->ts_owner;
1135 				break;
1136 			}
1137 			db_printf("inhibited\n");
1138 			return;
1139 		default:
1140 			db_printf("??? (%#x)\n", td->td_state);
1141 			return;
1142 		}
1143 	}
1144 }
1145 
1146 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1147 {
1148 	struct thread *td;
1149 
1150 	/* Figure out which thread to start with. */
1151 	if (have_addr)
1152 		td = db_lookup_thread(addr, true);
1153 	else
1154 		td = kdb_thread;
1155 
1156 	print_lockchain(td, "");
1157 }
1158 
1159 DB_SHOW_ALL_COMMAND(chains, db_show_allchains)
1160 {
1161 	struct thread *td;
1162 	struct proc *p;
1163 	int i;
1164 
1165 	i = 1;
1166 	FOREACH_PROC_IN_SYSTEM(p) {
1167 		FOREACH_THREAD_IN_PROC(p, td) {
1168 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1169 				db_printf("chain %d:\n", i++);
1170 				print_lockchain(td, " ");
1171 			}
1172 			if (db_pager_quit)
1173 				return;
1174 		}
1175 	}
1176 }
1177 DB_SHOW_ALIAS(allchains, db_show_allchains)
1178 
1179 /*
1180  * Show all the threads a particular thread is waiting on based on
1181  * sleepable locks.
1182  */
1183 static void
1184 print_sleepchain(struct thread *td, const char *prefix)
1185 {
1186 	struct thread *owner;
1187 
1188 	/*
1189 	 * Follow the chain.  We keep walking as long as the thread is
1190 	 * blocked on a sleep lock that has an owner.
1191 	 */
1192 	while (!db_pager_quit) {
1193 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1194 		    td->td_proc->p_pid, td->td_name);
1195 		switch (td->td_state) {
1196 		case TDS_INACTIVE:
1197 			db_printf("is inactive\n");
1198 			return;
1199 		case TDS_CAN_RUN:
1200 			db_printf("can run\n");
1201 			return;
1202 		case TDS_RUNQ:
1203 			db_printf("is on a run queue\n");
1204 			return;
1205 		case TDS_RUNNING:
1206 			db_printf("running on CPU %d\n", td->td_oncpu);
1207 			return;
1208 		case TDS_INHIBITED:
1209 			if (TD_ON_SLEEPQ(td)) {
1210 				if (lockmgr_chain(td, &owner) ||
1211 				    sx_chain(td, &owner)) {
1212 					if (owner == NULL)
1213 						return;
1214 					td = owner;
1215 					break;
1216 				}
1217 				db_printf("sleeping on %p \"%s\"\n",
1218 				    td->td_wchan, td->td_wmesg);
1219 				return;
1220 			}
1221 			db_printf("inhibited\n");
1222 			return;
1223 		default:
1224 			db_printf("??? (%#x)\n", td->td_state);
1225 			return;
1226 		}
1227 	}
1228 }
1229 
1230 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1231 {
1232 	struct thread *td;
1233 
1234 	/* Figure out which thread to start with. */
1235 	if (have_addr)
1236 		td = db_lookup_thread(addr, true);
1237 	else
1238 		td = kdb_thread;
1239 
1240 	print_sleepchain(td, "");
1241 }
1242 
1243 static void	print_waiters(struct turnstile *ts, int indent);
1244 
1245 static void
1246 print_waiter(struct thread *td, int indent)
1247 {
1248 	struct turnstile *ts;
1249 	int i;
1250 
1251 	if (db_pager_quit)
1252 		return;
1253 	for (i = 0; i < indent; i++)
1254 		db_printf(" ");
1255 	print_thread(td, "thread ");
1256 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1257 		print_waiters(ts, indent + 1);
1258 }
1259 
1260 static void
1261 print_waiters(struct turnstile *ts, int indent)
1262 {
1263 	struct lock_object *lock;
1264 	struct lock_class *class;
1265 	struct thread *td;
1266 	int i;
1267 
1268 	if (db_pager_quit)
1269 		return;
1270 	lock = ts->ts_lockobj;
1271 	class = LOCK_CLASS(lock);
1272 	for (i = 0; i < indent; i++)
1273 		db_printf(" ");
1274 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1275 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1276 		print_waiter(td, indent + 1);
1277 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1278 		print_waiter(td, indent + 1);
1279 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1280 		print_waiter(td, indent + 1);
1281 }
1282 
1283 DB_SHOW_COMMAND(locktree, db_show_locktree)
1284 {
1285 	struct lock_object *lock;
1286 	struct lock_class *class;
1287 	struct turnstile_chain *tc;
1288 	struct turnstile *ts;
1289 
1290 	if (!have_addr)
1291 		return;
1292 	lock = (struct lock_object *)addr;
1293 	tc = TC_LOOKUP(lock);
1294 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1295 		if (ts->ts_lockobj == lock)
1296 			break;
1297 	if (ts == NULL) {
1298 		class = LOCK_CLASS(lock);
1299 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1300 		    lock->lo_name);
1301 	} else
1302 		print_waiters(ts, 0);
1303 }
1304 #endif
1305