xref: /freebsd/sys/kern/subr_turnstile.c (revision 2b743a9e9ddc6736208dc8ca1ce06ce64ad20a19)
1 /*-
2  * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  * 3. Berkeley Software Design Inc's name may not be used to endorse or
13  *    promote products derived from this software without specific prior
14  *    written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $
29  *	and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $
30  */
31 
32 /*
33  * Implementation of turnstiles used to hold queue of threads blocked on
34  * non-sleepable locks.  Sleepable locks use condition variables to
35  * implement their queues.  Turnstiles differ from a sleep queue in that
36  * turnstile queue's are assigned to a lock held by an owning thread.  Thus,
37  * when one thread is enqueued onto a turnstile, it can lend its priority
38  * to the owning thread.
39  *
40  * We wish to avoid bloating locks with an embedded turnstile and we do not
41  * want to use back-pointers in the locks for the same reason.  Thus, we
42  * use a similar approach to that of Solaris 7 as described in Solaris
43  * Internals by Jim Mauro and Richard McDougall.  Turnstiles are looked up
44  * in a hash table based on the address of the lock.  Each entry in the
45  * hash table is a linked-lists of turnstiles and is called a turnstile
46  * chain.  Each chain contains a spin mutex that protects all of the
47  * turnstiles in the chain.
48  *
49  * Each time a thread is created, a turnstile is malloc'd and attached to
50  * that thread.  When a thread blocks on a lock, if it is the first thread
51  * to block, it lends its turnstile to the lock.  If the lock already has
52  * a turnstile, then it gives its turnstile to the lock's turnstile's free
53  * list.  When a thread is woken up, it takes a turnstile from the free list
54  * if there are any other waiters.  If it is the only thread blocked on the
55  * lock, then it reclaims the turnstile associated with the lock and removes
56  * it from the hash table.
57  */
58 
59 #include <sys/cdefs.h>
60 __FBSDID("$FreeBSD$");
61 
62 #include "opt_ddb.h"
63 #include "opt_turnstile_profiling.h"
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/kernel.h>
68 #include <sys/ktr.h>
69 #include <sys/lock.h>
70 #include <sys/malloc.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/queue.h>
74 #include <sys/sched.h>
75 #include <sys/sysctl.h>
76 #include <sys/turnstile.h>
77 
78 #ifdef DDB
79 #include <sys/kdb.h>
80 #include <ddb/ddb.h>
81 #include <sys/lockmgr.h>
82 #include <sys/sx.h>
83 #endif
84 
85 /*
86  * Constants for the hash table of turnstile chains.  TC_SHIFT is a magic
87  * number chosen because the sleep queue's use the same value for the
88  * shift.  Basically, we ignore the lower 8 bits of the address.
89  * TC_TABLESIZE must be a power of two for TC_MASK to work properly.
90  */
91 #define	TC_TABLESIZE	128			/* Must be power of 2. */
92 #define	TC_MASK		(TC_TABLESIZE - 1)
93 #define	TC_SHIFT	8
94 #define	TC_HASH(lock)	(((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK)
95 #define	TC_LOOKUP(lock)	&turnstile_chains[TC_HASH(lock)]
96 
97 /*
98  * There are three different lists of turnstiles as follows.  The list
99  * connected by ts_link entries is a per-thread list of all the turnstiles
100  * attached to locks that we own.  This is used to fixup our priority when
101  * a lock is released.  The other two lists use the ts_hash entries.  The
102  * first of these two is the turnstile chain list that a turnstile is on
103  * when it is attached to a lock.  The second list to use ts_hash is the
104  * free list hung off of a turnstile that is attached to a lock.
105  *
106  * Each turnstile contains three lists of threads.  The two ts_blocked lists
107  * are linked list of threads blocked on the turnstile's lock.  One list is
108  * for exclusive waiters, and the other is for shared waiters.  The
109  * ts_pending list is a linked list of threads previously awakened by
110  * turnstile_signal() or turnstile_wait() that are waiting to be put on
111  * the run queue.
112  *
113  * Locking key:
114  *  c - turnstile chain lock
115  *  q - td_contested lock
116  */
117 struct turnstile {
118 	struct threadqueue ts_blocked[2];	/* (c + q) Blocked threads. */
119 	struct threadqueue ts_pending;		/* (c) Pending threads. */
120 	LIST_ENTRY(turnstile) ts_hash;		/* (c) Chain and free list. */
121 	LIST_ENTRY(turnstile) ts_link;		/* (q) Contested locks. */
122 	LIST_HEAD(, turnstile) ts_free;		/* (c) Free turnstiles. */
123 	struct lock_object *ts_lockobj;		/* (c) Lock we reference. */
124 	struct thread *ts_owner;		/* (c + q) Who owns the lock. */
125 };
126 
127 struct turnstile_chain {
128 	LIST_HEAD(, turnstile) tc_turnstiles;	/* List of turnstiles. */
129 	struct mtx tc_lock;			/* Spin lock for this chain. */
130 #ifdef TURNSTILE_PROFILING
131 	u_int	tc_depth;			/* Length of tc_queues. */
132 	u_int	tc_max_depth;			/* Max length of tc_queues. */
133 #endif
134 };
135 
136 #ifdef TURNSTILE_PROFILING
137 u_int turnstile_max_depth;
138 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling");
139 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0,
140     "turnstile chain stats");
141 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD,
142     &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain");
143 #endif
144 static struct mtx td_contested_lock;
145 static struct turnstile_chain turnstile_chains[TC_TABLESIZE];
146 
147 static MALLOC_DEFINE(M_TURNSTILE, "turnstiles", "turnstiles");
148 
149 /*
150  * Prototypes for non-exported routines.
151  */
152 static void	init_turnstile0(void *dummy);
153 #ifdef TURNSTILE_PROFILING
154 static void	init_turnstile_profiling(void *arg);
155 #endif
156 static void	propagate_priority(struct thread *td);
157 static int	turnstile_adjust_thread(struct turnstile *ts,
158 		    struct thread *td);
159 static struct thread *turnstile_first_waiter(struct turnstile *ts);
160 static void	turnstile_setowner(struct turnstile *ts, struct thread *owner);
161 
162 /*
163  * Walks the chain of turnstiles and their owners to propagate the priority
164  * of the thread being blocked to all the threads holding locks that have to
165  * release their locks before this thread can run again.
166  */
167 static void
168 propagate_priority(struct thread *td)
169 {
170 	struct turnstile_chain *tc;
171 	struct turnstile *ts;
172 	int pri;
173 
174 	mtx_assert(&sched_lock, MA_OWNED);
175 	pri = td->td_priority;
176 	ts = td->td_blocked;
177 	for (;;) {
178 		td = ts->ts_owner;
179 
180 		if (td == NULL) {
181 			/*
182 			 * This might be a read lock with no owner.  There's
183 			 * not much we can do, so just bail.
184 			 */
185 			return;
186 		}
187 
188 		MPASS(td->td_proc != NULL);
189 		MPASS(td->td_proc->p_magic == P_MAGIC);
190 
191 		/*
192 		 * If the thread is asleep, then we are probably about
193 		 * to deadlock.  To make debugging this easier, just
194 		 * panic and tell the user which thread misbehaved so
195 		 * they can hopefully get a stack trace from the truly
196 		 * misbehaving thread.
197 		 */
198 		if (TD_IS_SLEEPING(td)) {
199 			printf(
200 		"Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n",
201 			    td->td_tid, td->td_proc->p_pid);
202 #ifdef DDB
203 			db_trace_thread(td, -1);
204 #endif
205 			panic("sleeping thread");
206 		}
207 
208 		/*
209 		 * If this thread already has higher priority than the
210 		 * thread that is being blocked, we are finished.
211 		 */
212 		if (td->td_priority <= pri)
213 			return;
214 
215 		/*
216 		 * Bump this thread's priority.
217 		 */
218 		sched_lend_prio(td, pri);
219 
220 		/*
221 		 * If lock holder is actually running or on the run queue
222 		 * then we are done.
223 		 */
224 		if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) {
225 			MPASS(td->td_blocked == NULL);
226 			return;
227 		}
228 
229 #ifndef SMP
230 		/*
231 		 * For UP, we check to see if td is curthread (this shouldn't
232 		 * ever happen however as it would mean we are in a deadlock.)
233 		 */
234 		KASSERT(td != curthread, ("Deadlock detected"));
235 #endif
236 
237 		/*
238 		 * If we aren't blocked on a lock, we should be.
239 		 */
240 		KASSERT(TD_ON_LOCK(td), (
241 		    "thread %d(%s):%d holds %s but isn't blocked on a lock\n",
242 		    td->td_tid, td->td_proc->p_comm, td->td_state,
243 		    ts->ts_lockobj->lo_name));
244 
245 		/*
246 		 * Pick up the lock that td is blocked on.
247 		 */
248 		ts = td->td_blocked;
249 		MPASS(ts != NULL);
250 		tc = TC_LOOKUP(ts->ts_lockobj);
251 		mtx_lock_spin(&tc->tc_lock);
252 
253 		/* Resort td on the list if needed. */
254 		if (!turnstile_adjust_thread(ts, td)) {
255 			mtx_unlock_spin(&tc->tc_lock);
256 			return;
257 		}
258 		mtx_unlock_spin(&tc->tc_lock);
259 	}
260 }
261 
262 /*
263  * Adjust the thread's position on a turnstile after its priority has been
264  * changed.
265  */
266 static int
267 turnstile_adjust_thread(struct turnstile *ts, struct thread *td)
268 {
269 	struct turnstile_chain *tc;
270 	struct thread *td1, *td2;
271 	int queue;
272 
273 	mtx_assert(&sched_lock, MA_OWNED);
274 	MPASS(TD_ON_LOCK(td));
275 
276 	/*
277 	 * This thread may not be blocked on this turnstile anymore
278 	 * but instead might already be woken up on another CPU
279 	 * that is waiting on sched_lock in turnstile_unpend() to
280 	 * finish waking this thread up.  We can detect this case
281 	 * by checking to see if this thread has been given a
282 	 * turnstile by either turnstile_signal() or
283 	 * turnstile_broadcast().  In this case, treat the thread as
284 	 * if it was already running.
285 	 */
286 	if (td->td_turnstile != NULL)
287 		return (0);
288 
289 	/*
290 	 * Check if the thread needs to be moved on the blocked chain.
291 	 * It needs to be moved if either its priority is lower than
292 	 * the previous thread or higher than the next thread.
293 	 */
294 	tc = TC_LOOKUP(ts->ts_lockobj);
295 	mtx_assert(&tc->tc_lock, MA_OWNED);
296 	td1 = TAILQ_PREV(td, threadqueue, td_lockq);
297 	td2 = TAILQ_NEXT(td, td_lockq);
298 	if ((td1 != NULL && td->td_priority < td1->td_priority) ||
299 	    (td2 != NULL && td->td_priority > td2->td_priority)) {
300 
301 		/*
302 		 * Remove thread from blocked chain and determine where
303 		 * it should be moved to.
304 		 */
305 		queue = td->td_tsqueue;
306 		MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE);
307 		mtx_lock_spin(&td_contested_lock);
308 		TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
309 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) {
310 			MPASS(td1->td_proc->p_magic == P_MAGIC);
311 			if (td1->td_priority > td->td_priority)
312 				break;
313 		}
314 
315 		if (td1 == NULL)
316 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
317 		else
318 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
319 		mtx_unlock_spin(&td_contested_lock);
320 		if (td1 == NULL)
321 			CTR3(KTR_LOCK,
322 		    "turnstile_adjust_thread: td %d put at tail on [%p] %s",
323 			    td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name);
324 		else
325 			CTR4(KTR_LOCK,
326 		    "turnstile_adjust_thread: td %d moved before %d on [%p] %s",
327 			    td->td_tid, td1->td_tid, ts->ts_lockobj,
328 			    ts->ts_lockobj->lo_name);
329 	}
330 	return (1);
331 }
332 
333 /*
334  * Early initialization of turnstiles.  This is not done via a SYSINIT()
335  * since this needs to be initialized very early when mutexes are first
336  * initialized.
337  */
338 void
339 init_turnstiles(void)
340 {
341 	int i;
342 
343 	for (i = 0; i < TC_TABLESIZE; i++) {
344 		LIST_INIT(&turnstile_chains[i].tc_turnstiles);
345 		mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain",
346 		    NULL, MTX_SPIN);
347 	}
348 	mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN);
349 	LIST_INIT(&thread0.td_contested);
350 	thread0.td_turnstile = NULL;
351 }
352 
353 #ifdef TURNSTILE_PROFILING
354 static void
355 init_turnstile_profiling(void *arg)
356 {
357 	struct sysctl_oid *chain_oid;
358 	char chain_name[10];
359 	int i;
360 
361 	for (i = 0; i < TC_TABLESIZE; i++) {
362 		snprintf(chain_name, sizeof(chain_name), "%d", i);
363 		chain_oid = SYSCTL_ADD_NODE(NULL,
364 		    SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO,
365 		    chain_name, CTLFLAG_RD, NULL, "turnstile chain stats");
366 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
367 		    "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0,
368 		    NULL);
369 		SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
370 		    "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth,
371 		    0, NULL);
372 	}
373 }
374 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY,
375     init_turnstile_profiling, NULL);
376 #endif
377 
378 static void
379 init_turnstile0(void *dummy)
380 {
381 
382 	thread0.td_turnstile = turnstile_alloc();
383 }
384 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL);
385 
386 /*
387  * Update a thread on the turnstile list after it's priority has been changed.
388  * The old priority is passed in as an argument.
389  */
390 void
391 turnstile_adjust(struct thread *td, u_char oldpri)
392 {
393 	struct turnstile_chain *tc;
394 	struct turnstile *ts;
395 
396 	mtx_assert(&sched_lock, MA_OWNED);
397 	MPASS(TD_ON_LOCK(td));
398 
399 	/*
400 	 * Pick up the lock that td is blocked on.
401 	 */
402 	ts = td->td_blocked;
403 	MPASS(ts != NULL);
404 	tc = TC_LOOKUP(ts->ts_lockobj);
405 	mtx_lock_spin(&tc->tc_lock);
406 
407 	/* Resort the turnstile on the list. */
408 	if (!turnstile_adjust_thread(ts, td)) {
409 		mtx_unlock_spin(&tc->tc_lock);
410 		return;
411 	}
412 
413 	/*
414 	 * If our priority was lowered and we are at the head of the
415 	 * turnstile, then propagate our new priority up the chain.
416 	 * Note that we currently don't try to revoke lent priorities
417 	 * when our priority goes up.
418 	 */
419 	MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE ||
420 	    td->td_tsqueue == TS_SHARED_QUEUE);
421 	if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) &&
422 	    td->td_priority < oldpri) {
423 		mtx_unlock_spin(&tc->tc_lock);
424 		critical_enter();
425 		propagate_priority(td);
426 		critical_exit();
427 	} else
428 		mtx_unlock_spin(&tc->tc_lock);
429 }
430 
431 /*
432  * Set the owner of the lock this turnstile is attached to.
433  */
434 static void
435 turnstile_setowner(struct turnstile *ts, struct thread *owner)
436 {
437 
438 	mtx_assert(&td_contested_lock, MA_OWNED);
439 	MPASS(ts->ts_owner == NULL);
440 
441 	/* A shared lock might not have an owner. */
442 	if (owner == NULL)
443 		return;
444 
445 	MPASS(owner->td_proc->p_magic == P_MAGIC);
446 	ts->ts_owner = owner;
447 	LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link);
448 }
449 
450 /*
451  * Malloc a turnstile for a new thread, initialize it and return it.
452  */
453 struct turnstile *
454 turnstile_alloc(void)
455 {
456 	struct turnstile *ts;
457 
458 	ts = malloc(sizeof(struct turnstile), M_TURNSTILE, M_WAITOK | M_ZERO);
459 	TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
460 	TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]);
461 	TAILQ_INIT(&ts->ts_pending);
462 	LIST_INIT(&ts->ts_free);
463 	return (ts);
464 }
465 
466 /*
467  * Free a turnstile when a thread is destroyed.
468  */
469 void
470 turnstile_free(struct turnstile *ts)
471 {
472 
473 	MPASS(ts != NULL);
474 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]));
475 	MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
476 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
477 	free(ts, M_TURNSTILE);
478 }
479 
480 /*
481  * Lock the turnstile chain associated with the specified lock.
482  */
483 void
484 turnstile_lock(struct lock_object *lock)
485 {
486 	struct turnstile_chain *tc;
487 
488 	tc = TC_LOOKUP(lock);
489 	mtx_lock_spin(&tc->tc_lock);
490 }
491 
492 /*
493  * Look up the turnstile for a lock in the hash table locking the associated
494  * turnstile chain along the way.  If no turnstile is found in the hash
495  * table, NULL is returned.
496  */
497 struct turnstile *
498 turnstile_lookup(struct lock_object *lock)
499 {
500 	struct turnstile_chain *tc;
501 	struct turnstile *ts;
502 
503 	tc = TC_LOOKUP(lock);
504 	mtx_assert(&tc->tc_lock, MA_OWNED);
505 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
506 		if (ts->ts_lockobj == lock)
507 			return (ts);
508 	return (NULL);
509 }
510 
511 /*
512  * Unlock the turnstile chain associated with a given lock.
513  */
514 void
515 turnstile_release(struct lock_object *lock)
516 {
517 	struct turnstile_chain *tc;
518 
519 	tc = TC_LOOKUP(lock);
520 	mtx_unlock_spin(&tc->tc_lock);
521 }
522 
523 /*
524  * Return a pointer to the thread waiting on this turnstile with the
525  * most important priority or NULL if the turnstile has no waiters.
526  */
527 static struct thread *
528 turnstile_first_waiter(struct turnstile *ts)
529 {
530 	struct thread *std, *xtd;
531 
532 	std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]);
533 	xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]);
534 	if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority))
535 		return (std);
536 	return (xtd);
537 }
538 
539 /*
540  * Take ownership of a turnstile and adjust the priority of the new
541  * owner appropriately.
542  */
543 void
544 turnstile_claim(struct lock_object *lock)
545 {
546 	struct turnstile_chain *tc;
547 	struct turnstile *ts;
548 	struct thread *td, *owner;
549 
550 	tc = TC_LOOKUP(lock);
551 	mtx_assert(&tc->tc_lock, MA_OWNED);
552 	ts = turnstile_lookup(lock);
553 	MPASS(ts != NULL);
554 
555 	owner = curthread;
556 	mtx_lock_spin(&td_contested_lock);
557 	turnstile_setowner(ts, owner);
558 	mtx_unlock_spin(&td_contested_lock);
559 
560 	td = turnstile_first_waiter(ts);
561 	MPASS(td != NULL);
562 	MPASS(td->td_proc->p_magic == P_MAGIC);
563 	mtx_unlock_spin(&tc->tc_lock);
564 
565 	/*
566 	 * Update the priority of the new owner if needed.
567 	 */
568 	mtx_lock_spin(&sched_lock);
569 	if (td->td_priority < owner->td_priority)
570 		sched_lend_prio(owner, td->td_priority);
571 	mtx_unlock_spin(&sched_lock);
572 }
573 
574 /*
575  * Block the current thread on the turnstile assicated with 'lock'.  This
576  * function will context switch and not return until this thread has been
577  * woken back up.  This function must be called with the appropriate
578  * turnstile chain locked and will return with it unlocked.
579  */
580 void
581 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue)
582 {
583 	struct turnstile_chain *tc;
584 	struct turnstile *ts;
585 	struct thread *td, *td1;
586 
587 	td = curthread;
588 	tc = TC_LOOKUP(lock);
589 	mtx_assert(&tc->tc_lock, MA_OWNED);
590 	MPASS(td->td_turnstile != NULL);
591 	if (queue == TS_SHARED_QUEUE)
592 		MPASS(owner != NULL);
593 	if (owner)
594 		MPASS(owner->td_proc->p_magic == P_MAGIC);
595 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
596 
597 	/* Look up the turnstile associated with the lock 'lock'. */
598 	ts = turnstile_lookup(lock);
599 
600 	/*
601 	 * If the lock does not already have a turnstile, use this thread's
602 	 * turnstile.  Otherwise insert the current thread into the
603 	 * turnstile already in use by this lock.
604 	 */
605 	if (ts == NULL) {
606 #ifdef TURNSTILE_PROFILING
607 		tc->tc_depth++;
608 		if (tc->tc_depth > tc->tc_max_depth) {
609 			tc->tc_max_depth = tc->tc_depth;
610 			if (tc->tc_max_depth > turnstile_max_depth)
611 				turnstile_max_depth = tc->tc_max_depth;
612 		}
613 #endif
614 		ts = td->td_turnstile;
615 		LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash);
616 		KASSERT(TAILQ_EMPTY(&ts->ts_pending),
617 		    ("thread's turnstile has pending threads"));
618 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]),
619 		    ("thread's turnstile has exclusive waiters"));
620 		KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]),
621 		    ("thread's turnstile has shared waiters"));
622 		KASSERT(LIST_EMPTY(&ts->ts_free),
623 		    ("thread's turnstile has a non-empty free list"));
624 		KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer"));
625 		ts->ts_lockobj = lock;
626 		mtx_lock_spin(&td_contested_lock);
627 		TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
628 		turnstile_setowner(ts, owner);
629 		mtx_unlock_spin(&td_contested_lock);
630 	} else {
631 		TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq)
632 			if (td1->td_priority > td->td_priority)
633 				break;
634 		mtx_lock_spin(&td_contested_lock);
635 		if (td1 != NULL)
636 			TAILQ_INSERT_BEFORE(td1, td, td_lockq);
637 		else
638 			TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq);
639 		MPASS(owner == ts->ts_owner);
640 		mtx_unlock_spin(&td_contested_lock);
641 		MPASS(td->td_turnstile != NULL);
642 		LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash);
643 	}
644 	td->td_turnstile = NULL;
645 	mtx_unlock_spin(&tc->tc_lock);
646 
647 	mtx_lock_spin(&sched_lock);
648 	/*
649 	 * Handle race condition where a thread on another CPU that owns
650 	 * lock 'lock' could have woken us in between us dropping the
651 	 * turnstile chain lock and acquiring the sched_lock.
652 	 */
653 	if (td->td_flags & TDF_TSNOBLOCK) {
654 		td->td_flags &= ~TDF_TSNOBLOCK;
655 		mtx_unlock_spin(&sched_lock);
656 		return;
657 	}
658 
659 #ifdef notyet
660 	/*
661 	 * If we're borrowing an interrupted thread's VM context, we
662 	 * must clean up before going to sleep.
663 	 */
664 	if (td->td_ithd != NULL) {
665 		struct ithd *it = td->td_ithd;
666 
667 		if (it->it_interrupted) {
668 			if (LOCK_LOG_TEST(lock, 0))
669 				CTR3(KTR_LOCK, "%s: %p interrupted %p",
670 				    __func__, it, it->it_interrupted);
671 			intr_thd_fixup(it);
672 		}
673 	}
674 #endif
675 
676 	/* Save who we are blocked on and switch. */
677 	td->td_tsqueue = queue;
678 	td->td_blocked = ts;
679 	td->td_lockname = lock->lo_name;
680 	TD_SET_LOCK(td);
681 	critical_enter();
682 	propagate_priority(td);
683 	critical_exit();
684 
685 	if (LOCK_LOG_TEST(lock, 0))
686 		CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__,
687 		    td->td_tid, lock, lock->lo_name);
688 
689 	mi_switch(SW_VOL, NULL);
690 
691 	if (LOCK_LOG_TEST(lock, 0))
692 		CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s",
693 		    __func__, td->td_tid, lock, lock->lo_name);
694 
695 	mtx_unlock_spin(&sched_lock);
696 }
697 
698 /*
699  * Pick the highest priority thread on this turnstile and put it on the
700  * pending list.  This must be called with the turnstile chain locked.
701  */
702 int
703 turnstile_signal(struct turnstile *ts, int queue)
704 {
705 	struct turnstile_chain *tc;
706 	struct thread *td;
707 	int empty;
708 
709 	MPASS(ts != NULL);
710 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
711 	MPASS(ts->ts_owner == curthread ||
712 	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
713 	tc = TC_LOOKUP(ts->ts_lockobj);
714 	mtx_assert(&tc->tc_lock, MA_OWNED);
715 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
716 
717 	/*
718 	 * Pick the highest priority thread blocked on this lock and
719 	 * move it to the pending list.
720 	 */
721 	td = TAILQ_FIRST(&ts->ts_blocked[queue]);
722 	MPASS(td->td_proc->p_magic == P_MAGIC);
723 	mtx_lock_spin(&td_contested_lock);
724 	TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq);
725 	mtx_unlock_spin(&td_contested_lock);
726 	TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq);
727 
728 	/*
729 	 * If the turnstile is now empty, remove it from its chain and
730 	 * give it to the about-to-be-woken thread.  Otherwise take a
731 	 * turnstile from the free list and give it to the thread.
732 	 */
733 	empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
734 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]);
735 	if (empty) {
736 		MPASS(LIST_EMPTY(&ts->ts_free));
737 #ifdef TURNSTILE_PROFILING
738 		tc->tc_depth--;
739 #endif
740 	} else
741 		ts = LIST_FIRST(&ts->ts_free);
742 	MPASS(ts != NULL);
743 	LIST_REMOVE(ts, ts_hash);
744 	td->td_turnstile = ts;
745 
746 	return (empty);
747 }
748 
749 /*
750  * Put all blocked threads on the pending list.  This must be called with
751  * the turnstile chain locked.
752  */
753 void
754 turnstile_broadcast(struct turnstile *ts, int queue)
755 {
756 	struct turnstile_chain *tc;
757 	struct turnstile *ts1;
758 	struct thread *td;
759 
760 	MPASS(ts != NULL);
761 	MPASS(curthread->td_proc->p_magic == P_MAGIC);
762 	MPASS(ts->ts_owner == curthread ||
763 	    (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL));
764 	tc = TC_LOOKUP(ts->ts_lockobj);
765 	mtx_assert(&tc->tc_lock, MA_OWNED);
766 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
767 
768 	/*
769 	 * Transfer the blocked list to the pending list.
770 	 */
771 	mtx_lock_spin(&td_contested_lock);
772 	TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq);
773 	mtx_unlock_spin(&td_contested_lock);
774 
775 	/*
776 	 * Give a turnstile to each thread.  The last thread gets
777 	 * this turnstile if the turnstile is empty.
778 	 */
779 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) {
780 		if (LIST_EMPTY(&ts->ts_free)) {
781 			MPASS(TAILQ_NEXT(td, td_lockq) == NULL);
782 			ts1 = ts;
783 #ifdef TURNSTILE_PROFILING
784 			tc->tc_depth--;
785 #endif
786 		} else
787 			ts1 = LIST_FIRST(&ts->ts_free);
788 		MPASS(ts1 != NULL);
789 		LIST_REMOVE(ts1, ts_hash);
790 		td->td_turnstile = ts1;
791 	}
792 }
793 
794 /*
795  * Wakeup all threads on the pending list and adjust the priority of the
796  * current thread appropriately.  This must be called with the turnstile
797  * chain locked.
798  */
799 void
800 turnstile_unpend(struct turnstile *ts, int owner_type)
801 {
802 	TAILQ_HEAD( ,thread) pending_threads;
803 	struct turnstile_chain *tc;
804 	struct thread *td;
805 	u_char cp, pri;
806 
807 	MPASS(ts != NULL);
808 	MPASS(ts->ts_owner == curthread ||
809 	    (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL));
810 	tc = TC_LOOKUP(ts->ts_lockobj);
811 	mtx_assert(&tc->tc_lock, MA_OWNED);
812 	MPASS(!TAILQ_EMPTY(&ts->ts_pending));
813 
814 	/*
815 	 * Move the list of pending threads out of the turnstile and
816 	 * into a local variable.
817 	 */
818 	TAILQ_INIT(&pending_threads);
819 	TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq);
820 #ifdef INVARIANTS
821 	if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) &&
822 	    TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]))
823 		ts->ts_lockobj = NULL;
824 #endif
825 
826 	/*
827 	 * Remove the turnstile from this thread's list of contested locks
828 	 * since this thread doesn't own it anymore.  New threads will
829 	 * not be blocking on the turnstile until it is claimed by a new
830 	 * owner.  There might not be a current owner if this is a shared
831 	 * lock.
832 	 */
833 	if (ts->ts_owner != NULL) {
834 		mtx_lock_spin(&td_contested_lock);
835 		ts->ts_owner = NULL;
836 		LIST_REMOVE(ts, ts_link);
837 		mtx_unlock_spin(&td_contested_lock);
838 	}
839 	critical_enter();
840 	mtx_unlock_spin(&tc->tc_lock);
841 
842 	/*
843 	 * Adjust the priority of curthread based on other contested
844 	 * locks it owns.  Don't lower the priority below the base
845 	 * priority however.
846 	 */
847 	td = curthread;
848 	pri = PRI_MAX;
849 	mtx_lock_spin(&sched_lock);
850 	mtx_lock_spin(&td_contested_lock);
851 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
852 		cp = turnstile_first_waiter(ts)->td_priority;
853 		if (cp < pri)
854 			pri = cp;
855 	}
856 	mtx_unlock_spin(&td_contested_lock);
857 	sched_unlend_prio(td, pri);
858 
859 	/*
860 	 * Wake up all the pending threads.  If a thread is not blocked
861 	 * on a lock, then it is currently executing on another CPU in
862 	 * turnstile_wait() or sitting on a run queue waiting to resume
863 	 * in turnstile_wait().  Set a flag to force it to try to acquire
864 	 * the lock again instead of blocking.
865 	 */
866 	while (!TAILQ_EMPTY(&pending_threads)) {
867 		td = TAILQ_FIRST(&pending_threads);
868 		TAILQ_REMOVE(&pending_threads, td, td_lockq);
869 		MPASS(td->td_proc->p_magic == P_MAGIC);
870 		if (TD_ON_LOCK(td)) {
871 			td->td_blocked = NULL;
872 			td->td_lockname = NULL;
873 #ifdef INVARIANTS
874 			td->td_tsqueue = 0xff;
875 #endif
876 			TD_CLR_LOCK(td);
877 			MPASS(TD_CAN_RUN(td));
878 			sched_add(td, SRQ_BORING);
879 		} else {
880 			td->td_flags |= TDF_TSNOBLOCK;
881 			MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td));
882 		}
883 	}
884 	critical_exit();
885 	mtx_unlock_spin(&sched_lock);
886 }
887 
888 /*
889  * Give up ownership of a turnstile.  This must be called with the
890  * turnstile chain locked.
891  */
892 void
893 turnstile_disown(struct turnstile *ts)
894 {
895 	struct turnstile_chain *tc;
896 	struct thread *td;
897 	u_char cp, pri;
898 
899 	MPASS(ts != NULL);
900 	MPASS(ts->ts_owner == curthread);
901 	tc = TC_LOOKUP(ts->ts_lockobj);
902 	mtx_assert(&tc->tc_lock, MA_OWNED);
903 	MPASS(TAILQ_EMPTY(&ts->ts_pending));
904 	MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) ||
905 	    !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]));
906 
907 	/*
908 	 * Remove the turnstile from this thread's list of contested locks
909 	 * since this thread doesn't own it anymore.  New threads will
910 	 * not be blocking on the turnstile until it is claimed by a new
911 	 * owner.
912 	 */
913 	mtx_lock_spin(&td_contested_lock);
914 	ts->ts_owner = NULL;
915 	LIST_REMOVE(ts, ts_link);
916 	mtx_unlock_spin(&td_contested_lock);
917 	mtx_unlock_spin(&tc->tc_lock);
918 
919 	/*
920 	 * Adjust the priority of curthread based on other contested
921 	 * locks it owns.  Don't lower the priority below the base
922 	 * priority however.
923 	 */
924 	td = curthread;
925 	pri = PRI_MAX;
926 	mtx_lock_spin(&sched_lock);
927 	mtx_lock_spin(&td_contested_lock);
928 	LIST_FOREACH(ts, &td->td_contested, ts_link) {
929 		cp = turnstile_first_waiter(ts)->td_priority;
930 		if (cp < pri)
931 			pri = cp;
932 	}
933 	mtx_unlock_spin(&td_contested_lock);
934 	sched_unlend_prio(td, pri);
935 	mtx_unlock_spin(&sched_lock);
936 }
937 
938 /*
939  * Return the first thread in a turnstile.
940  */
941 struct thread *
942 turnstile_head(struct turnstile *ts, int queue)
943 {
944 #ifdef INVARIANTS
945 	struct turnstile_chain *tc;
946 
947 	MPASS(ts != NULL);
948 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
949 	tc = TC_LOOKUP(ts->ts_lockobj);
950 	mtx_assert(&tc->tc_lock, MA_OWNED);
951 #endif
952 	return (TAILQ_FIRST(&ts->ts_blocked[queue]));
953 }
954 
955 /*
956  * Returns true if a sub-queue of a turnstile is empty.
957  */
958 int
959 turnstile_empty(struct turnstile *ts, int queue)
960 {
961 #ifdef INVARIANTS
962 	struct turnstile_chain *tc;
963 
964 	MPASS(ts != NULL);
965 	MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE);
966 	tc = TC_LOOKUP(ts->ts_lockobj);
967 	mtx_assert(&tc->tc_lock, MA_OWNED);
968 #endif
969 	return (TAILQ_EMPTY(&ts->ts_blocked[queue]));
970 }
971 
972 #ifdef DDB
973 static void
974 print_thread(struct thread *td, const char *prefix)
975 {
976 
977 	db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid,
978 	    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
979 	    td->td_proc->p_comm);
980 }
981 
982 static void
983 print_queue(struct threadqueue *queue, const char *header, const char *prefix)
984 {
985 	struct thread *td;
986 
987 	db_printf("%s:\n", header);
988 	if (TAILQ_EMPTY(queue)) {
989 		db_printf("%sempty\n", prefix);
990 		return;
991 	}
992 	TAILQ_FOREACH(td, queue, td_lockq) {
993 		print_thread(td, prefix);
994 	}
995 }
996 
997 DB_SHOW_COMMAND(turnstile, db_show_turnstile)
998 {
999 	struct turnstile_chain *tc;
1000 	struct turnstile *ts;
1001 	struct lock_object *lock;
1002 	int i;
1003 
1004 	if (!have_addr)
1005 		return;
1006 
1007 	/*
1008 	 * First, see if there is an active turnstile for the lock indicated
1009 	 * by the address.
1010 	 */
1011 	lock = (struct lock_object *)addr;
1012 	tc = TC_LOOKUP(lock);
1013 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1014 		if (ts->ts_lockobj == lock)
1015 			goto found;
1016 
1017 	/*
1018 	 * Second, see if there is an active turnstile at the address
1019 	 * indicated.
1020 	 */
1021 	for (i = 0; i < TC_TABLESIZE; i++)
1022 		LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) {
1023 			if (ts == (struct turnstile *)addr)
1024 				goto found;
1025 		}
1026 
1027 	db_printf("Unable to locate a turnstile via %p\n", (void *)addr);
1028 	return;
1029 found:
1030 	lock = ts->ts_lockobj;
1031 	db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name,
1032 	    lock->lo_name);
1033 	if (ts->ts_owner)
1034 		print_thread(ts->ts_owner, "Lock Owner: ");
1035 	else
1036 		db_printf("Lock Owner: none\n");
1037 	print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t");
1038 	print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters",
1039 	    "\t");
1040 	print_queue(&ts->ts_pending, "Pending Threads", "\t");
1041 
1042 }
1043 
1044 /*
1045  * Show all the threads a particular thread is waiting on based on
1046  * non-sleepable and non-spin locks.
1047  */
1048 static void
1049 print_lockchain(struct thread *td, const char *prefix)
1050 {
1051 	struct lock_object *lock;
1052 	struct lock_class *class;
1053 	struct turnstile *ts;
1054 
1055 	/*
1056 	 * Follow the chain.  We keep walking as long as the thread is
1057 	 * blocked on a turnstile that has an owner.
1058 	 */
1059 	while (!db_pager_quit) {
1060 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1061 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1062 		    td->td_proc->p_comm);
1063 		switch (td->td_state) {
1064 		case TDS_INACTIVE:
1065 			db_printf("is inactive\n");
1066 			return;
1067 		case TDS_CAN_RUN:
1068 			db_printf("can run\n");
1069 			return;
1070 		case TDS_RUNQ:
1071 			db_printf("is on a run queue\n");
1072 			return;
1073 		case TDS_RUNNING:
1074 			db_printf("running on CPU %d\n", td->td_oncpu);
1075 			return;
1076 		case TDS_INHIBITED:
1077 			if (TD_ON_LOCK(td)) {
1078 				ts = td->td_blocked;
1079 				lock = ts->ts_lockobj;
1080 				class = LOCK_CLASS(lock);
1081 				db_printf("blocked on lock %p (%s) \"%s\"\n",
1082 				    lock, class->lc_name, lock->lo_name);
1083 				if (ts->ts_owner == NULL)
1084 					return;
1085 				td = ts->ts_owner;
1086 				break;
1087 			}
1088 			db_printf("inhibited\n");
1089 			return;
1090 		default:
1091 			db_printf("??? (%#x)\n", td->td_state);
1092 			return;
1093 		}
1094 	}
1095 }
1096 
1097 DB_SHOW_COMMAND(lockchain, db_show_lockchain)
1098 {
1099 	struct thread *td;
1100 
1101 	/* Figure out which thread to start with. */
1102 	if (have_addr)
1103 		td = db_lookup_thread(addr, TRUE);
1104 	else
1105 		td = kdb_thread;
1106 
1107 	print_lockchain(td, "");
1108 }
1109 
1110 DB_SHOW_COMMAND(allchains, db_show_allchains)
1111 {
1112 	struct thread *td;
1113 	struct proc *p;
1114 	int i;
1115 
1116 	i = 1;
1117 	FOREACH_PROC_IN_SYSTEM(p) {
1118 		FOREACH_THREAD_IN_PROC(p, td) {
1119 			if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) {
1120 				db_printf("chain %d:\n", i++);
1121 				print_lockchain(td, " ");
1122 			}
1123 			if (db_pager_quit)
1124 				return;
1125 		}
1126 	}
1127 }
1128 
1129 /*
1130  * Show all the threads a particular thread is waiting on based on
1131  * sleepable locks.
1132  */
1133 static void
1134 print_sleepchain(struct thread *td, const char *prefix)
1135 {
1136 	struct thread *owner;
1137 
1138 	/*
1139 	 * Follow the chain.  We keep walking as long as the thread is
1140 	 * blocked on a sleep lock that has an owner.
1141 	 */
1142 	while (!db_pager_quit) {
1143 		db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid,
1144 		    td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name :
1145 		    td->td_proc->p_comm);
1146 		switch (td->td_state) {
1147 		case TDS_INACTIVE:
1148 			db_printf("is inactive\n");
1149 			return;
1150 		case TDS_CAN_RUN:
1151 			db_printf("can run\n");
1152 			return;
1153 		case TDS_RUNQ:
1154 			db_printf("is on a run queue\n");
1155 			return;
1156 		case TDS_RUNNING:
1157 			db_printf("running on CPU %d\n", td->td_oncpu);
1158 			return;
1159 		case TDS_INHIBITED:
1160 			if (TD_ON_SLEEPQ(td)) {
1161 				if (lockmgr_chain(td, &owner) ||
1162 				    sx_chain(td, &owner)) {
1163 					if (owner == NULL)
1164 						return;
1165 					td = owner;
1166 					break;
1167 				}
1168 				db_printf("sleeping on %p \"%s\"\n",
1169 				    td->td_wchan, td->td_wmesg);
1170 				return;
1171 			}
1172 			db_printf("inhibited\n");
1173 			return;
1174 		default:
1175 			db_printf("??? (%#x)\n", td->td_state);
1176 			return;
1177 		}
1178 	}
1179 }
1180 
1181 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain)
1182 {
1183 	struct thread *td;
1184 
1185 	/* Figure out which thread to start with. */
1186 	if (have_addr)
1187 		td = db_lookup_thread(addr, TRUE);
1188 	else
1189 		td = kdb_thread;
1190 
1191 	print_sleepchain(td, "");
1192 }
1193 
1194 static void	print_waiters(struct turnstile *ts, int indent);
1195 
1196 static void
1197 print_waiter(struct thread *td, int indent)
1198 {
1199 	struct turnstile *ts;
1200 	int i;
1201 
1202 	if (db_pager_quit)
1203 		return;
1204 	for (i = 0; i < indent; i++)
1205 		db_printf(" ");
1206 	print_thread(td, "thread ");
1207 	LIST_FOREACH(ts, &td->td_contested, ts_link)
1208 		print_waiters(ts, indent + 1);
1209 }
1210 
1211 static void
1212 print_waiters(struct turnstile *ts, int indent)
1213 {
1214 	struct lock_object *lock;
1215 	struct lock_class *class;
1216 	struct thread *td;
1217 	int i;
1218 
1219 	if (db_pager_quit)
1220 		return;
1221 	lock = ts->ts_lockobj;
1222 	class = LOCK_CLASS(lock);
1223 	for (i = 0; i < indent; i++)
1224 		db_printf(" ");
1225 	db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name);
1226 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq)
1227 		print_waiter(td, indent + 1);
1228 	TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq)
1229 		print_waiter(td, indent + 1);
1230 	TAILQ_FOREACH(td, &ts->ts_pending, td_lockq)
1231 		print_waiter(td, indent + 1);
1232 }
1233 
1234 DB_SHOW_COMMAND(locktree, db_show_locktree)
1235 {
1236 	struct lock_object *lock;
1237 	struct lock_class *class;
1238 	struct turnstile_chain *tc;
1239 	struct turnstile *ts;
1240 
1241 	if (!have_addr)
1242 		return;
1243 	lock = (struct lock_object *)addr;
1244 	tc = TC_LOOKUP(lock);
1245 	LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash)
1246 		if (ts->ts_lockobj == lock)
1247 			break;
1248 	if (ts == NULL) {
1249 		class = LOCK_CLASS(lock);
1250 		db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name,
1251 		    lock->lo_name);
1252 	} else
1253 		print_waiters(ts, 0);
1254 }
1255 #endif
1256