1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is malloc'd and attached to 50 * that thread. When a thread blocks on a lock, if it is the first thread 51 * to block, it lends its turnstile to the lock. If the lock already has 52 * a turnstile, then it gives its turnstile to the lock's turnstile's free 53 * list. When a thread is woken up, it takes a turnstile from the free list 54 * if there are any other waiters. If it is the only thread blocked on the 55 * lock, then it reclaims the turnstile associated with the lock and removes 56 * it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_turnstile_profiling.h" 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/malloc.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/queue.h> 74 #include <sys/sched.h> 75 #include <sys/sysctl.h> 76 #include <sys/turnstile.h> 77 78 #ifdef DDB 79 #include <sys/kdb.h> 80 #include <ddb/ddb.h> 81 #include <sys/lockmgr.h> 82 #include <sys/sx.h> 83 #endif 84 85 /* 86 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 87 * number chosen because the sleep queue's use the same value for the 88 * shift. Basically, we ignore the lower 8 bits of the address. 89 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 90 */ 91 #define TC_TABLESIZE 128 /* Must be power of 2. */ 92 #define TC_MASK (TC_TABLESIZE - 1) 93 #define TC_SHIFT 8 94 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 95 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 96 97 /* 98 * There are three different lists of turnstiles as follows. The list 99 * connected by ts_link entries is a per-thread list of all the turnstiles 100 * attached to locks that we own. This is used to fixup our priority when 101 * a lock is released. The other two lists use the ts_hash entries. The 102 * first of these two is the turnstile chain list that a turnstile is on 103 * when it is attached to a lock. The second list to use ts_hash is the 104 * free list hung off of a turnstile that is attached to a lock. 105 * 106 * Each turnstile contains three lists of threads. The two ts_blocked lists 107 * are linked list of threads blocked on the turnstile's lock. One list is 108 * for exclusive waiters, and the other is for shared waiters. The 109 * ts_pending list is a linked list of threads previously awakened by 110 * turnstile_signal() or turnstile_wait() that are waiting to be put on 111 * the run queue. 112 * 113 * Locking key: 114 * c - turnstile chain lock 115 * q - td_contested lock 116 */ 117 struct turnstile { 118 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 119 struct threadqueue ts_pending; /* (c) Pending threads. */ 120 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 121 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 122 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 123 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 124 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 125 }; 126 127 struct turnstile_chain { 128 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 129 struct mtx tc_lock; /* Spin lock for this chain. */ 130 #ifdef TURNSTILE_PROFILING 131 u_int tc_depth; /* Length of tc_queues. */ 132 u_int tc_max_depth; /* Max length of tc_queues. */ 133 #endif 134 }; 135 136 #ifdef TURNSTILE_PROFILING 137 u_int turnstile_max_depth; 138 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling"); 139 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 140 "turnstile chain stats"); 141 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 142 &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain"); 143 #endif 144 static struct mtx td_contested_lock; 145 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 146 147 static MALLOC_DEFINE(M_TURNSTILE, "turnstiles", "turnstiles"); 148 149 /* 150 * Prototypes for non-exported routines. 151 */ 152 static void init_turnstile0(void *dummy); 153 #ifdef TURNSTILE_PROFILING 154 static void init_turnstile_profiling(void *arg); 155 #endif 156 static void propagate_priority(struct thread *td); 157 static int turnstile_adjust_thread(struct turnstile *ts, 158 struct thread *td); 159 static struct thread *turnstile_first_waiter(struct turnstile *ts); 160 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 161 162 /* 163 * Walks the chain of turnstiles and their owners to propagate the priority 164 * of the thread being blocked to all the threads holding locks that have to 165 * release their locks before this thread can run again. 166 */ 167 static void 168 propagate_priority(struct thread *td) 169 { 170 struct turnstile_chain *tc; 171 struct turnstile *ts; 172 int pri; 173 174 mtx_assert(&sched_lock, MA_OWNED); 175 pri = td->td_priority; 176 ts = td->td_blocked; 177 for (;;) { 178 td = ts->ts_owner; 179 180 if (td == NULL) { 181 /* 182 * This might be a read lock with no owner. There's 183 * not much we can do, so just bail. 184 */ 185 return; 186 } 187 188 MPASS(td->td_proc != NULL); 189 MPASS(td->td_proc->p_magic == P_MAGIC); 190 191 /* 192 * If the thread is asleep, then we are probably about 193 * to deadlock. To make debugging this easier, just 194 * panic and tell the user which thread misbehaved so 195 * they can hopefully get a stack trace from the truly 196 * misbehaving thread. 197 */ 198 if (TD_IS_SLEEPING(td)) { 199 printf( 200 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 201 td->td_tid, td->td_proc->p_pid); 202 #ifdef DDB 203 db_trace_thread(td, -1); 204 #endif 205 panic("sleeping thread"); 206 } 207 208 /* 209 * If this thread already has higher priority than the 210 * thread that is being blocked, we are finished. 211 */ 212 if (td->td_priority <= pri) 213 return; 214 215 /* 216 * Bump this thread's priority. 217 */ 218 sched_lend_prio(td, pri); 219 220 /* 221 * If lock holder is actually running or on the run queue 222 * then we are done. 223 */ 224 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 225 MPASS(td->td_blocked == NULL); 226 return; 227 } 228 229 #ifndef SMP 230 /* 231 * For UP, we check to see if td is curthread (this shouldn't 232 * ever happen however as it would mean we are in a deadlock.) 233 */ 234 KASSERT(td != curthread, ("Deadlock detected")); 235 #endif 236 237 /* 238 * If we aren't blocked on a lock, we should be. 239 */ 240 KASSERT(TD_ON_LOCK(td), ( 241 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 242 td->td_tid, td->td_proc->p_comm, td->td_state, 243 ts->ts_lockobj->lo_name)); 244 245 /* 246 * Pick up the lock that td is blocked on. 247 */ 248 ts = td->td_blocked; 249 MPASS(ts != NULL); 250 tc = TC_LOOKUP(ts->ts_lockobj); 251 mtx_lock_spin(&tc->tc_lock); 252 253 /* Resort td on the list if needed. */ 254 if (!turnstile_adjust_thread(ts, td)) { 255 mtx_unlock_spin(&tc->tc_lock); 256 return; 257 } 258 mtx_unlock_spin(&tc->tc_lock); 259 } 260 } 261 262 /* 263 * Adjust the thread's position on a turnstile after its priority has been 264 * changed. 265 */ 266 static int 267 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 268 { 269 struct turnstile_chain *tc; 270 struct thread *td1, *td2; 271 int queue; 272 273 mtx_assert(&sched_lock, MA_OWNED); 274 MPASS(TD_ON_LOCK(td)); 275 276 /* 277 * This thread may not be blocked on this turnstile anymore 278 * but instead might already be woken up on another CPU 279 * that is waiting on sched_lock in turnstile_unpend() to 280 * finish waking this thread up. We can detect this case 281 * by checking to see if this thread has been given a 282 * turnstile by either turnstile_signal() or 283 * turnstile_broadcast(). In this case, treat the thread as 284 * if it was already running. 285 */ 286 if (td->td_turnstile != NULL) 287 return (0); 288 289 /* 290 * Check if the thread needs to be moved on the blocked chain. 291 * It needs to be moved if either its priority is lower than 292 * the previous thread or higher than the next thread. 293 */ 294 tc = TC_LOOKUP(ts->ts_lockobj); 295 mtx_assert(&tc->tc_lock, MA_OWNED); 296 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 297 td2 = TAILQ_NEXT(td, td_lockq); 298 if ((td1 != NULL && td->td_priority < td1->td_priority) || 299 (td2 != NULL && td->td_priority > td2->td_priority)) { 300 301 /* 302 * Remove thread from blocked chain and determine where 303 * it should be moved to. 304 */ 305 queue = td->td_tsqueue; 306 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 307 mtx_lock_spin(&td_contested_lock); 308 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 309 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 310 MPASS(td1->td_proc->p_magic == P_MAGIC); 311 if (td1->td_priority > td->td_priority) 312 break; 313 } 314 315 if (td1 == NULL) 316 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 317 else 318 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 319 mtx_unlock_spin(&td_contested_lock); 320 if (td1 == NULL) 321 CTR3(KTR_LOCK, 322 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 323 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 324 else 325 CTR4(KTR_LOCK, 326 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 327 td->td_tid, td1->td_tid, ts->ts_lockobj, 328 ts->ts_lockobj->lo_name); 329 } 330 return (1); 331 } 332 333 /* 334 * Early initialization of turnstiles. This is not done via a SYSINIT() 335 * since this needs to be initialized very early when mutexes are first 336 * initialized. 337 */ 338 void 339 init_turnstiles(void) 340 { 341 int i; 342 343 for (i = 0; i < TC_TABLESIZE; i++) { 344 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 345 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 346 NULL, MTX_SPIN); 347 } 348 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 349 LIST_INIT(&thread0.td_contested); 350 thread0.td_turnstile = NULL; 351 } 352 353 #ifdef TURNSTILE_PROFILING 354 static void 355 init_turnstile_profiling(void *arg) 356 { 357 struct sysctl_oid *chain_oid; 358 char chain_name[10]; 359 int i; 360 361 for (i = 0; i < TC_TABLESIZE; i++) { 362 snprintf(chain_name, sizeof(chain_name), "%d", i); 363 chain_oid = SYSCTL_ADD_NODE(NULL, 364 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 365 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 366 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 367 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 368 NULL); 369 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 370 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 371 0, NULL); 372 } 373 } 374 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 375 init_turnstile_profiling, NULL); 376 #endif 377 378 static void 379 init_turnstile0(void *dummy) 380 { 381 382 thread0.td_turnstile = turnstile_alloc(); 383 } 384 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 385 386 /* 387 * Update a thread on the turnstile list after it's priority has been changed. 388 * The old priority is passed in as an argument. 389 */ 390 void 391 turnstile_adjust(struct thread *td, u_char oldpri) 392 { 393 struct turnstile_chain *tc; 394 struct turnstile *ts; 395 396 mtx_assert(&sched_lock, MA_OWNED); 397 MPASS(TD_ON_LOCK(td)); 398 399 /* 400 * Pick up the lock that td is blocked on. 401 */ 402 ts = td->td_blocked; 403 MPASS(ts != NULL); 404 tc = TC_LOOKUP(ts->ts_lockobj); 405 mtx_lock_spin(&tc->tc_lock); 406 407 /* Resort the turnstile on the list. */ 408 if (!turnstile_adjust_thread(ts, td)) { 409 mtx_unlock_spin(&tc->tc_lock); 410 return; 411 } 412 413 /* 414 * If our priority was lowered and we are at the head of the 415 * turnstile, then propagate our new priority up the chain. 416 * Note that we currently don't try to revoke lent priorities 417 * when our priority goes up. 418 */ 419 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 420 td->td_tsqueue == TS_SHARED_QUEUE); 421 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 422 td->td_priority < oldpri) { 423 mtx_unlock_spin(&tc->tc_lock); 424 critical_enter(); 425 propagate_priority(td); 426 critical_exit(); 427 } else 428 mtx_unlock_spin(&tc->tc_lock); 429 } 430 431 /* 432 * Set the owner of the lock this turnstile is attached to. 433 */ 434 static void 435 turnstile_setowner(struct turnstile *ts, struct thread *owner) 436 { 437 438 mtx_assert(&td_contested_lock, MA_OWNED); 439 MPASS(ts->ts_owner == NULL); 440 441 /* A shared lock might not have an owner. */ 442 if (owner == NULL) 443 return; 444 445 MPASS(owner->td_proc->p_magic == P_MAGIC); 446 ts->ts_owner = owner; 447 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 448 } 449 450 /* 451 * Malloc a turnstile for a new thread, initialize it and return it. 452 */ 453 struct turnstile * 454 turnstile_alloc(void) 455 { 456 struct turnstile *ts; 457 458 ts = malloc(sizeof(struct turnstile), M_TURNSTILE, M_WAITOK | M_ZERO); 459 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 460 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 461 TAILQ_INIT(&ts->ts_pending); 462 LIST_INIT(&ts->ts_free); 463 return (ts); 464 } 465 466 /* 467 * Free a turnstile when a thread is destroyed. 468 */ 469 void 470 turnstile_free(struct turnstile *ts) 471 { 472 473 MPASS(ts != NULL); 474 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 475 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 476 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 477 free(ts, M_TURNSTILE); 478 } 479 480 /* 481 * Lock the turnstile chain associated with the specified lock. 482 */ 483 void 484 turnstile_lock(struct lock_object *lock) 485 { 486 struct turnstile_chain *tc; 487 488 tc = TC_LOOKUP(lock); 489 mtx_lock_spin(&tc->tc_lock); 490 } 491 492 /* 493 * Look up the turnstile for a lock in the hash table locking the associated 494 * turnstile chain along the way. If no turnstile is found in the hash 495 * table, NULL is returned. 496 */ 497 struct turnstile * 498 turnstile_lookup(struct lock_object *lock) 499 { 500 struct turnstile_chain *tc; 501 struct turnstile *ts; 502 503 tc = TC_LOOKUP(lock); 504 mtx_assert(&tc->tc_lock, MA_OWNED); 505 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 506 if (ts->ts_lockobj == lock) 507 return (ts); 508 return (NULL); 509 } 510 511 /* 512 * Unlock the turnstile chain associated with a given lock. 513 */ 514 void 515 turnstile_release(struct lock_object *lock) 516 { 517 struct turnstile_chain *tc; 518 519 tc = TC_LOOKUP(lock); 520 mtx_unlock_spin(&tc->tc_lock); 521 } 522 523 /* 524 * Return a pointer to the thread waiting on this turnstile with the 525 * most important priority or NULL if the turnstile has no waiters. 526 */ 527 static struct thread * 528 turnstile_first_waiter(struct turnstile *ts) 529 { 530 struct thread *std, *xtd; 531 532 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 533 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 534 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 535 return (std); 536 return (xtd); 537 } 538 539 /* 540 * Take ownership of a turnstile and adjust the priority of the new 541 * owner appropriately. 542 */ 543 void 544 turnstile_claim(struct lock_object *lock) 545 { 546 struct turnstile_chain *tc; 547 struct turnstile *ts; 548 struct thread *td, *owner; 549 550 tc = TC_LOOKUP(lock); 551 mtx_assert(&tc->tc_lock, MA_OWNED); 552 ts = turnstile_lookup(lock); 553 MPASS(ts != NULL); 554 555 owner = curthread; 556 mtx_lock_spin(&td_contested_lock); 557 turnstile_setowner(ts, owner); 558 mtx_unlock_spin(&td_contested_lock); 559 560 td = turnstile_first_waiter(ts); 561 MPASS(td != NULL); 562 MPASS(td->td_proc->p_magic == P_MAGIC); 563 mtx_unlock_spin(&tc->tc_lock); 564 565 /* 566 * Update the priority of the new owner if needed. 567 */ 568 mtx_lock_spin(&sched_lock); 569 if (td->td_priority < owner->td_priority) 570 sched_lend_prio(owner, td->td_priority); 571 mtx_unlock_spin(&sched_lock); 572 } 573 574 /* 575 * Block the current thread on the turnstile assicated with 'lock'. This 576 * function will context switch and not return until this thread has been 577 * woken back up. This function must be called with the appropriate 578 * turnstile chain locked and will return with it unlocked. 579 */ 580 void 581 turnstile_wait(struct lock_object *lock, struct thread *owner, int queue) 582 { 583 struct turnstile_chain *tc; 584 struct turnstile *ts; 585 struct thread *td, *td1; 586 587 td = curthread; 588 tc = TC_LOOKUP(lock); 589 mtx_assert(&tc->tc_lock, MA_OWNED); 590 MPASS(td->td_turnstile != NULL); 591 if (queue == TS_SHARED_QUEUE) 592 MPASS(owner != NULL); 593 if (owner) 594 MPASS(owner->td_proc->p_magic == P_MAGIC); 595 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 596 597 /* Look up the turnstile associated with the lock 'lock'. */ 598 ts = turnstile_lookup(lock); 599 600 /* 601 * If the lock does not already have a turnstile, use this thread's 602 * turnstile. Otherwise insert the current thread into the 603 * turnstile already in use by this lock. 604 */ 605 if (ts == NULL) { 606 #ifdef TURNSTILE_PROFILING 607 tc->tc_depth++; 608 if (tc->tc_depth > tc->tc_max_depth) { 609 tc->tc_max_depth = tc->tc_depth; 610 if (tc->tc_max_depth > turnstile_max_depth) 611 turnstile_max_depth = tc->tc_max_depth; 612 } 613 #endif 614 ts = td->td_turnstile; 615 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 616 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 617 ("thread's turnstile has pending threads")); 618 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 619 ("thread's turnstile has exclusive waiters")); 620 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 621 ("thread's turnstile has shared waiters")); 622 KASSERT(LIST_EMPTY(&ts->ts_free), 623 ("thread's turnstile has a non-empty free list")); 624 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 625 ts->ts_lockobj = lock; 626 mtx_lock_spin(&td_contested_lock); 627 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 628 turnstile_setowner(ts, owner); 629 mtx_unlock_spin(&td_contested_lock); 630 } else { 631 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 632 if (td1->td_priority > td->td_priority) 633 break; 634 mtx_lock_spin(&td_contested_lock); 635 if (td1 != NULL) 636 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 637 else 638 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 639 MPASS(owner == ts->ts_owner); 640 mtx_unlock_spin(&td_contested_lock); 641 MPASS(td->td_turnstile != NULL); 642 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 643 } 644 td->td_turnstile = NULL; 645 mtx_unlock_spin(&tc->tc_lock); 646 647 mtx_lock_spin(&sched_lock); 648 /* 649 * Handle race condition where a thread on another CPU that owns 650 * lock 'lock' could have woken us in between us dropping the 651 * turnstile chain lock and acquiring the sched_lock. 652 */ 653 if (td->td_flags & TDF_TSNOBLOCK) { 654 td->td_flags &= ~TDF_TSNOBLOCK; 655 mtx_unlock_spin(&sched_lock); 656 return; 657 } 658 659 #ifdef notyet 660 /* 661 * If we're borrowing an interrupted thread's VM context, we 662 * must clean up before going to sleep. 663 */ 664 if (td->td_ithd != NULL) { 665 struct ithd *it = td->td_ithd; 666 667 if (it->it_interrupted) { 668 if (LOCK_LOG_TEST(lock, 0)) 669 CTR3(KTR_LOCK, "%s: %p interrupted %p", 670 __func__, it, it->it_interrupted); 671 intr_thd_fixup(it); 672 } 673 } 674 #endif 675 676 /* Save who we are blocked on and switch. */ 677 td->td_tsqueue = queue; 678 td->td_blocked = ts; 679 td->td_lockname = lock->lo_name; 680 TD_SET_LOCK(td); 681 critical_enter(); 682 propagate_priority(td); 683 critical_exit(); 684 685 if (LOCK_LOG_TEST(lock, 0)) 686 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 687 td->td_tid, lock, lock->lo_name); 688 689 mi_switch(SW_VOL, NULL); 690 691 if (LOCK_LOG_TEST(lock, 0)) 692 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 693 __func__, td->td_tid, lock, lock->lo_name); 694 695 mtx_unlock_spin(&sched_lock); 696 } 697 698 /* 699 * Pick the highest priority thread on this turnstile and put it on the 700 * pending list. This must be called with the turnstile chain locked. 701 */ 702 int 703 turnstile_signal(struct turnstile *ts, int queue) 704 { 705 struct turnstile_chain *tc; 706 struct thread *td; 707 int empty; 708 709 MPASS(ts != NULL); 710 MPASS(curthread->td_proc->p_magic == P_MAGIC); 711 MPASS(ts->ts_owner == curthread || 712 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 713 tc = TC_LOOKUP(ts->ts_lockobj); 714 mtx_assert(&tc->tc_lock, MA_OWNED); 715 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 716 717 /* 718 * Pick the highest priority thread blocked on this lock and 719 * move it to the pending list. 720 */ 721 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 722 MPASS(td->td_proc->p_magic == P_MAGIC); 723 mtx_lock_spin(&td_contested_lock); 724 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 725 mtx_unlock_spin(&td_contested_lock); 726 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 727 728 /* 729 * If the turnstile is now empty, remove it from its chain and 730 * give it to the about-to-be-woken thread. Otherwise take a 731 * turnstile from the free list and give it to the thread. 732 */ 733 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 734 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 735 if (empty) { 736 MPASS(LIST_EMPTY(&ts->ts_free)); 737 #ifdef TURNSTILE_PROFILING 738 tc->tc_depth--; 739 #endif 740 } else 741 ts = LIST_FIRST(&ts->ts_free); 742 MPASS(ts != NULL); 743 LIST_REMOVE(ts, ts_hash); 744 td->td_turnstile = ts; 745 746 return (empty); 747 } 748 749 /* 750 * Put all blocked threads on the pending list. This must be called with 751 * the turnstile chain locked. 752 */ 753 void 754 turnstile_broadcast(struct turnstile *ts, int queue) 755 { 756 struct turnstile_chain *tc; 757 struct turnstile *ts1; 758 struct thread *td; 759 760 MPASS(ts != NULL); 761 MPASS(curthread->td_proc->p_magic == P_MAGIC); 762 MPASS(ts->ts_owner == curthread || 763 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 764 tc = TC_LOOKUP(ts->ts_lockobj); 765 mtx_assert(&tc->tc_lock, MA_OWNED); 766 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 767 768 /* 769 * Transfer the blocked list to the pending list. 770 */ 771 mtx_lock_spin(&td_contested_lock); 772 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 773 mtx_unlock_spin(&td_contested_lock); 774 775 /* 776 * Give a turnstile to each thread. The last thread gets 777 * this turnstile if the turnstile is empty. 778 */ 779 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 780 if (LIST_EMPTY(&ts->ts_free)) { 781 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 782 ts1 = ts; 783 #ifdef TURNSTILE_PROFILING 784 tc->tc_depth--; 785 #endif 786 } else 787 ts1 = LIST_FIRST(&ts->ts_free); 788 MPASS(ts1 != NULL); 789 LIST_REMOVE(ts1, ts_hash); 790 td->td_turnstile = ts1; 791 } 792 } 793 794 /* 795 * Wakeup all threads on the pending list and adjust the priority of the 796 * current thread appropriately. This must be called with the turnstile 797 * chain locked. 798 */ 799 void 800 turnstile_unpend(struct turnstile *ts, int owner_type) 801 { 802 TAILQ_HEAD( ,thread) pending_threads; 803 struct turnstile_chain *tc; 804 struct thread *td; 805 u_char cp, pri; 806 807 MPASS(ts != NULL); 808 MPASS(ts->ts_owner == curthread || 809 (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL)); 810 tc = TC_LOOKUP(ts->ts_lockobj); 811 mtx_assert(&tc->tc_lock, MA_OWNED); 812 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 813 814 /* 815 * Move the list of pending threads out of the turnstile and 816 * into a local variable. 817 */ 818 TAILQ_INIT(&pending_threads); 819 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 820 #ifdef INVARIANTS 821 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 822 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 823 ts->ts_lockobj = NULL; 824 #endif 825 826 /* 827 * Remove the turnstile from this thread's list of contested locks 828 * since this thread doesn't own it anymore. New threads will 829 * not be blocking on the turnstile until it is claimed by a new 830 * owner. There might not be a current owner if this is a shared 831 * lock. 832 */ 833 if (ts->ts_owner != NULL) { 834 mtx_lock_spin(&td_contested_lock); 835 ts->ts_owner = NULL; 836 LIST_REMOVE(ts, ts_link); 837 mtx_unlock_spin(&td_contested_lock); 838 } 839 critical_enter(); 840 mtx_unlock_spin(&tc->tc_lock); 841 842 /* 843 * Adjust the priority of curthread based on other contested 844 * locks it owns. Don't lower the priority below the base 845 * priority however. 846 */ 847 td = curthread; 848 pri = PRI_MAX; 849 mtx_lock_spin(&sched_lock); 850 mtx_lock_spin(&td_contested_lock); 851 LIST_FOREACH(ts, &td->td_contested, ts_link) { 852 cp = turnstile_first_waiter(ts)->td_priority; 853 if (cp < pri) 854 pri = cp; 855 } 856 mtx_unlock_spin(&td_contested_lock); 857 sched_unlend_prio(td, pri); 858 859 /* 860 * Wake up all the pending threads. If a thread is not blocked 861 * on a lock, then it is currently executing on another CPU in 862 * turnstile_wait() or sitting on a run queue waiting to resume 863 * in turnstile_wait(). Set a flag to force it to try to acquire 864 * the lock again instead of blocking. 865 */ 866 while (!TAILQ_EMPTY(&pending_threads)) { 867 td = TAILQ_FIRST(&pending_threads); 868 TAILQ_REMOVE(&pending_threads, td, td_lockq); 869 MPASS(td->td_proc->p_magic == P_MAGIC); 870 if (TD_ON_LOCK(td)) { 871 td->td_blocked = NULL; 872 td->td_lockname = NULL; 873 #ifdef INVARIANTS 874 td->td_tsqueue = 0xff; 875 #endif 876 TD_CLR_LOCK(td); 877 MPASS(TD_CAN_RUN(td)); 878 sched_add(td, SRQ_BORING); 879 } else { 880 td->td_flags |= TDF_TSNOBLOCK; 881 MPASS(TD_IS_RUNNING(td) || TD_ON_RUNQ(td)); 882 } 883 } 884 critical_exit(); 885 mtx_unlock_spin(&sched_lock); 886 } 887 888 /* 889 * Give up ownership of a turnstile. This must be called with the 890 * turnstile chain locked. 891 */ 892 void 893 turnstile_disown(struct turnstile *ts) 894 { 895 struct turnstile_chain *tc; 896 struct thread *td; 897 u_char cp, pri; 898 899 MPASS(ts != NULL); 900 MPASS(ts->ts_owner == curthread); 901 tc = TC_LOOKUP(ts->ts_lockobj); 902 mtx_assert(&tc->tc_lock, MA_OWNED); 903 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 904 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 905 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 906 907 /* 908 * Remove the turnstile from this thread's list of contested locks 909 * since this thread doesn't own it anymore. New threads will 910 * not be blocking on the turnstile until it is claimed by a new 911 * owner. 912 */ 913 mtx_lock_spin(&td_contested_lock); 914 ts->ts_owner = NULL; 915 LIST_REMOVE(ts, ts_link); 916 mtx_unlock_spin(&td_contested_lock); 917 mtx_unlock_spin(&tc->tc_lock); 918 919 /* 920 * Adjust the priority of curthread based on other contested 921 * locks it owns. Don't lower the priority below the base 922 * priority however. 923 */ 924 td = curthread; 925 pri = PRI_MAX; 926 mtx_lock_spin(&sched_lock); 927 mtx_lock_spin(&td_contested_lock); 928 LIST_FOREACH(ts, &td->td_contested, ts_link) { 929 cp = turnstile_first_waiter(ts)->td_priority; 930 if (cp < pri) 931 pri = cp; 932 } 933 mtx_unlock_spin(&td_contested_lock); 934 sched_unlend_prio(td, pri); 935 mtx_unlock_spin(&sched_lock); 936 } 937 938 /* 939 * Return the first thread in a turnstile. 940 */ 941 struct thread * 942 turnstile_head(struct turnstile *ts, int queue) 943 { 944 #ifdef INVARIANTS 945 struct turnstile_chain *tc; 946 947 MPASS(ts != NULL); 948 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 949 tc = TC_LOOKUP(ts->ts_lockobj); 950 mtx_assert(&tc->tc_lock, MA_OWNED); 951 #endif 952 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 953 } 954 955 /* 956 * Returns true if a sub-queue of a turnstile is empty. 957 */ 958 int 959 turnstile_empty(struct turnstile *ts, int queue) 960 { 961 #ifdef INVARIANTS 962 struct turnstile_chain *tc; 963 964 MPASS(ts != NULL); 965 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 966 tc = TC_LOOKUP(ts->ts_lockobj); 967 mtx_assert(&tc->tc_lock, MA_OWNED); 968 #endif 969 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 970 } 971 972 #ifdef DDB 973 static void 974 print_thread(struct thread *td, const char *prefix) 975 { 976 977 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 978 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 979 td->td_proc->p_comm); 980 } 981 982 static void 983 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 984 { 985 struct thread *td; 986 987 db_printf("%s:\n", header); 988 if (TAILQ_EMPTY(queue)) { 989 db_printf("%sempty\n", prefix); 990 return; 991 } 992 TAILQ_FOREACH(td, queue, td_lockq) { 993 print_thread(td, prefix); 994 } 995 } 996 997 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 998 { 999 struct turnstile_chain *tc; 1000 struct turnstile *ts; 1001 struct lock_object *lock; 1002 int i; 1003 1004 if (!have_addr) 1005 return; 1006 1007 /* 1008 * First, see if there is an active turnstile for the lock indicated 1009 * by the address. 1010 */ 1011 lock = (struct lock_object *)addr; 1012 tc = TC_LOOKUP(lock); 1013 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1014 if (ts->ts_lockobj == lock) 1015 goto found; 1016 1017 /* 1018 * Second, see if there is an active turnstile at the address 1019 * indicated. 1020 */ 1021 for (i = 0; i < TC_TABLESIZE; i++) 1022 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1023 if (ts == (struct turnstile *)addr) 1024 goto found; 1025 } 1026 1027 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1028 return; 1029 found: 1030 lock = ts->ts_lockobj; 1031 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1032 lock->lo_name); 1033 if (ts->ts_owner) 1034 print_thread(ts->ts_owner, "Lock Owner: "); 1035 else 1036 db_printf("Lock Owner: none\n"); 1037 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1038 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1039 "\t"); 1040 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1041 1042 } 1043 1044 /* 1045 * Show all the threads a particular thread is waiting on based on 1046 * non-sleepable and non-spin locks. 1047 */ 1048 static void 1049 print_lockchain(struct thread *td, const char *prefix) 1050 { 1051 struct lock_object *lock; 1052 struct lock_class *class; 1053 struct turnstile *ts; 1054 1055 /* 1056 * Follow the chain. We keep walking as long as the thread is 1057 * blocked on a turnstile that has an owner. 1058 */ 1059 while (!db_pager_quit) { 1060 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1061 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1062 td->td_proc->p_comm); 1063 switch (td->td_state) { 1064 case TDS_INACTIVE: 1065 db_printf("is inactive\n"); 1066 return; 1067 case TDS_CAN_RUN: 1068 db_printf("can run\n"); 1069 return; 1070 case TDS_RUNQ: 1071 db_printf("is on a run queue\n"); 1072 return; 1073 case TDS_RUNNING: 1074 db_printf("running on CPU %d\n", td->td_oncpu); 1075 return; 1076 case TDS_INHIBITED: 1077 if (TD_ON_LOCK(td)) { 1078 ts = td->td_blocked; 1079 lock = ts->ts_lockobj; 1080 class = LOCK_CLASS(lock); 1081 db_printf("blocked on lock %p (%s) \"%s\"\n", 1082 lock, class->lc_name, lock->lo_name); 1083 if (ts->ts_owner == NULL) 1084 return; 1085 td = ts->ts_owner; 1086 break; 1087 } 1088 db_printf("inhibited\n"); 1089 return; 1090 default: 1091 db_printf("??? (%#x)\n", td->td_state); 1092 return; 1093 } 1094 } 1095 } 1096 1097 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1098 { 1099 struct thread *td; 1100 1101 /* Figure out which thread to start with. */ 1102 if (have_addr) 1103 td = db_lookup_thread(addr, TRUE); 1104 else 1105 td = kdb_thread; 1106 1107 print_lockchain(td, ""); 1108 } 1109 1110 DB_SHOW_COMMAND(allchains, db_show_allchains) 1111 { 1112 struct thread *td; 1113 struct proc *p; 1114 int i; 1115 1116 i = 1; 1117 FOREACH_PROC_IN_SYSTEM(p) { 1118 FOREACH_THREAD_IN_PROC(p, td) { 1119 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1120 db_printf("chain %d:\n", i++); 1121 print_lockchain(td, " "); 1122 } 1123 if (db_pager_quit) 1124 return; 1125 } 1126 } 1127 } 1128 1129 /* 1130 * Show all the threads a particular thread is waiting on based on 1131 * sleepable locks. 1132 */ 1133 static void 1134 print_sleepchain(struct thread *td, const char *prefix) 1135 { 1136 struct thread *owner; 1137 1138 /* 1139 * Follow the chain. We keep walking as long as the thread is 1140 * blocked on a sleep lock that has an owner. 1141 */ 1142 while (!db_pager_quit) { 1143 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1144 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1145 td->td_proc->p_comm); 1146 switch (td->td_state) { 1147 case TDS_INACTIVE: 1148 db_printf("is inactive\n"); 1149 return; 1150 case TDS_CAN_RUN: 1151 db_printf("can run\n"); 1152 return; 1153 case TDS_RUNQ: 1154 db_printf("is on a run queue\n"); 1155 return; 1156 case TDS_RUNNING: 1157 db_printf("running on CPU %d\n", td->td_oncpu); 1158 return; 1159 case TDS_INHIBITED: 1160 if (TD_ON_SLEEPQ(td)) { 1161 if (lockmgr_chain(td, &owner) || 1162 sx_chain(td, &owner)) { 1163 if (owner == NULL) 1164 return; 1165 td = owner; 1166 break; 1167 } 1168 db_printf("sleeping on %p \"%s\"\n", 1169 td->td_wchan, td->td_wmesg); 1170 return; 1171 } 1172 db_printf("inhibited\n"); 1173 return; 1174 default: 1175 db_printf("??? (%#x)\n", td->td_state); 1176 return; 1177 } 1178 } 1179 } 1180 1181 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain) 1182 { 1183 struct thread *td; 1184 1185 /* Figure out which thread to start with. */ 1186 if (have_addr) 1187 td = db_lookup_thread(addr, TRUE); 1188 else 1189 td = kdb_thread; 1190 1191 print_sleepchain(td, ""); 1192 } 1193 1194 static void print_waiters(struct turnstile *ts, int indent); 1195 1196 static void 1197 print_waiter(struct thread *td, int indent) 1198 { 1199 struct turnstile *ts; 1200 int i; 1201 1202 if (db_pager_quit) 1203 return; 1204 for (i = 0; i < indent; i++) 1205 db_printf(" "); 1206 print_thread(td, "thread "); 1207 LIST_FOREACH(ts, &td->td_contested, ts_link) 1208 print_waiters(ts, indent + 1); 1209 } 1210 1211 static void 1212 print_waiters(struct turnstile *ts, int indent) 1213 { 1214 struct lock_object *lock; 1215 struct lock_class *class; 1216 struct thread *td; 1217 int i; 1218 1219 if (db_pager_quit) 1220 return; 1221 lock = ts->ts_lockobj; 1222 class = LOCK_CLASS(lock); 1223 for (i = 0; i < indent; i++) 1224 db_printf(" "); 1225 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1226 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1227 print_waiter(td, indent + 1); 1228 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1229 print_waiter(td, indent + 1); 1230 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1231 print_waiter(td, indent + 1); 1232 } 1233 1234 DB_SHOW_COMMAND(locktree, db_show_locktree) 1235 { 1236 struct lock_object *lock; 1237 struct lock_class *class; 1238 struct turnstile_chain *tc; 1239 struct turnstile *ts; 1240 1241 if (!have_addr) 1242 return; 1243 lock = (struct lock_object *)addr; 1244 tc = TC_LOOKUP(lock); 1245 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1246 if (ts->ts_lockobj == lock) 1247 break; 1248 if (ts == NULL) { 1249 class = LOCK_CLASS(lock); 1250 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1251 lock->lo_name); 1252 } else 1253 print_waiters(ts, 0); 1254 } 1255 #endif 1256