1 /*- 2 * Copyright (c) 1998 Berkeley Software Design, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 3. Berkeley Software Design Inc's name may not be used to endorse or 13 * promote products derived from this software without specific prior 14 * written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from BSDI $Id: mutex_witness.c,v 1.1.2.20 2000/04/27 03:10:27 cp Exp $ 29 * and BSDI $Id: synch_machdep.c,v 2.3.2.39 2000/04/27 03:10:25 cp Exp $ 30 */ 31 32 /* 33 * Implementation of turnstiles used to hold queue of threads blocked on 34 * non-sleepable locks. Sleepable locks use condition variables to 35 * implement their queues. Turnstiles differ from a sleep queue in that 36 * turnstile queue's are assigned to a lock held by an owning thread. Thus, 37 * when one thread is enqueued onto a turnstile, it can lend its priority 38 * to the owning thread. 39 * 40 * We wish to avoid bloating locks with an embedded turnstile and we do not 41 * want to use back-pointers in the locks for the same reason. Thus, we 42 * use a similar approach to that of Solaris 7 as described in Solaris 43 * Internals by Jim Mauro and Richard McDougall. Turnstiles are looked up 44 * in a hash table based on the address of the lock. Each entry in the 45 * hash table is a linked-lists of turnstiles and is called a turnstile 46 * chain. Each chain contains a spin mutex that protects all of the 47 * turnstiles in the chain. 48 * 49 * Each time a thread is created, a turnstile is allocated from a UMA zone 50 * and attached to that thread. When a thread blocks on a lock, if it is the 51 * first thread to block, it lends its turnstile to the lock. If the lock 52 * already has a turnstile, then it gives its turnstile to the lock's 53 * turnstile's free list. When a thread is woken up, it takes a turnstile from 54 * the free list if there are any other waiters. If it is the only thread 55 * blocked on the lock, then it reclaims the turnstile associated with the lock 56 * and removes it from the hash table. 57 */ 58 59 #include <sys/cdefs.h> 60 __FBSDID("$FreeBSD$"); 61 62 #include "opt_ddb.h" 63 #include "opt_turnstile_profiling.h" 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/kernel.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/mutex.h> 71 #include <sys/proc.h> 72 #include <sys/queue.h> 73 #include <sys/sched.h> 74 #include <sys/sysctl.h> 75 #include <sys/turnstile.h> 76 77 #include <vm/uma.h> 78 79 #ifdef DDB 80 #include <sys/kdb.h> 81 #include <ddb/ddb.h> 82 #include <sys/lockmgr.h> 83 #include <sys/sx.h> 84 #endif 85 86 /* 87 * Constants for the hash table of turnstile chains. TC_SHIFT is a magic 88 * number chosen because the sleep queue's use the same value for the 89 * shift. Basically, we ignore the lower 8 bits of the address. 90 * TC_TABLESIZE must be a power of two for TC_MASK to work properly. 91 */ 92 #define TC_TABLESIZE 128 /* Must be power of 2. */ 93 #define TC_MASK (TC_TABLESIZE - 1) 94 #define TC_SHIFT 8 95 #define TC_HASH(lock) (((uintptr_t)(lock) >> TC_SHIFT) & TC_MASK) 96 #define TC_LOOKUP(lock) &turnstile_chains[TC_HASH(lock)] 97 98 /* 99 * There are three different lists of turnstiles as follows. The list 100 * connected by ts_link entries is a per-thread list of all the turnstiles 101 * attached to locks that we own. This is used to fixup our priority when 102 * a lock is released. The other two lists use the ts_hash entries. The 103 * first of these two is the turnstile chain list that a turnstile is on 104 * when it is attached to a lock. The second list to use ts_hash is the 105 * free list hung off of a turnstile that is attached to a lock. 106 * 107 * Each turnstile contains three lists of threads. The two ts_blocked lists 108 * are linked list of threads blocked on the turnstile's lock. One list is 109 * for exclusive waiters, and the other is for shared waiters. The 110 * ts_pending list is a linked list of threads previously awakened by 111 * turnstile_signal() or turnstile_wait() that are waiting to be put on 112 * the run queue. 113 * 114 * Locking key: 115 * c - turnstile chain lock 116 * q - td_contested lock 117 */ 118 struct turnstile { 119 struct mtx ts_lock; /* Spin lock for self. */ 120 struct threadqueue ts_blocked[2]; /* (c + q) Blocked threads. */ 121 struct threadqueue ts_pending; /* (c) Pending threads. */ 122 LIST_ENTRY(turnstile) ts_hash; /* (c) Chain and free list. */ 123 LIST_ENTRY(turnstile) ts_link; /* (q) Contested locks. */ 124 LIST_HEAD(, turnstile) ts_free; /* (c) Free turnstiles. */ 125 struct lock_object *ts_lockobj; /* (c) Lock we reference. */ 126 struct thread *ts_owner; /* (c + q) Who owns the lock. */ 127 }; 128 129 struct turnstile_chain { 130 LIST_HEAD(, turnstile) tc_turnstiles; /* List of turnstiles. */ 131 struct mtx tc_lock; /* Spin lock for this chain. */ 132 #ifdef TURNSTILE_PROFILING 133 u_int tc_depth; /* Length of tc_queues. */ 134 u_int tc_max_depth; /* Max length of tc_queues. */ 135 #endif 136 }; 137 138 #ifdef TURNSTILE_PROFILING 139 u_int turnstile_max_depth; 140 SYSCTL_NODE(_debug, OID_AUTO, turnstile, CTLFLAG_RD, 0, "turnstile profiling"); 141 SYSCTL_NODE(_debug_turnstile, OID_AUTO, chains, CTLFLAG_RD, 0, 142 "turnstile chain stats"); 143 SYSCTL_UINT(_debug_turnstile, OID_AUTO, max_depth, CTLFLAG_RD, 144 &turnstile_max_depth, 0, "maxmimum depth achieved of a single chain"); 145 #endif 146 static struct mtx td_contested_lock; 147 static struct turnstile_chain turnstile_chains[TC_TABLESIZE]; 148 static uma_zone_t turnstile_zone; 149 150 /* 151 * Prototypes for non-exported routines. 152 */ 153 static void init_turnstile0(void *dummy); 154 #ifdef TURNSTILE_PROFILING 155 static void init_turnstile_profiling(void *arg); 156 #endif 157 static void propagate_priority(struct thread *td); 158 static int turnstile_adjust_thread(struct turnstile *ts, 159 struct thread *td); 160 static struct thread *turnstile_first_waiter(struct turnstile *ts); 161 static void turnstile_setowner(struct turnstile *ts, struct thread *owner); 162 #ifdef INVARIANTS 163 static void turnstile_dtor(void *mem, int size, void *arg); 164 #endif 165 static int turnstile_init(void *mem, int size, int flags); 166 static void turnstile_fini(void *mem, int size); 167 168 /* 169 * Walks the chain of turnstiles and their owners to propagate the priority 170 * of the thread being blocked to all the threads holding locks that have to 171 * release their locks before this thread can run again. 172 */ 173 static void 174 propagate_priority(struct thread *td) 175 { 176 struct turnstile *ts; 177 int pri; 178 179 THREAD_LOCK_ASSERT(td, MA_OWNED); 180 pri = td->td_priority; 181 ts = td->td_blocked; 182 MPASS(td->td_lock == &ts->ts_lock); 183 /* 184 * Grab a recursive lock on this turnstile chain so it stays locked 185 * for the whole operation. The caller expects us to return with 186 * the original lock held. We only ever lock down the chain so 187 * the lock order is constant. 188 */ 189 mtx_lock_spin(&ts->ts_lock); 190 for (;;) { 191 td = ts->ts_owner; 192 193 if (td == NULL) { 194 /* 195 * This might be a read lock with no owner. There's 196 * not much we can do, so just bail. 197 */ 198 mtx_unlock_spin(&ts->ts_lock); 199 return; 200 } 201 202 thread_lock_flags(td, MTX_DUPOK); 203 mtx_unlock_spin(&ts->ts_lock); 204 MPASS(td->td_proc != NULL); 205 MPASS(td->td_proc->p_magic == P_MAGIC); 206 207 /* 208 * If the thread is asleep, then we are probably about 209 * to deadlock. To make debugging this easier, just 210 * panic and tell the user which thread misbehaved so 211 * they can hopefully get a stack trace from the truly 212 * misbehaving thread. 213 */ 214 if (TD_IS_SLEEPING(td)) { 215 printf( 216 "Sleeping thread (tid %d, pid %d) owns a non-sleepable lock\n", 217 td->td_tid, td->td_proc->p_pid); 218 #ifdef DDB 219 db_trace_thread(td, -1); 220 #endif 221 panic("sleeping thread"); 222 } 223 224 /* 225 * If this thread already has higher priority than the 226 * thread that is being blocked, we are finished. 227 */ 228 if (td->td_priority <= pri) { 229 thread_unlock(td); 230 return; 231 } 232 233 /* 234 * Bump this thread's priority. 235 */ 236 sched_lend_prio(td, pri); 237 238 /* 239 * If lock holder is actually running or on the run queue 240 * then we are done. 241 */ 242 if (TD_IS_RUNNING(td) || TD_ON_RUNQ(td)) { 243 MPASS(td->td_blocked == NULL); 244 thread_unlock(td); 245 return; 246 } 247 248 #ifndef SMP 249 /* 250 * For UP, we check to see if td is curthread (this shouldn't 251 * ever happen however as it would mean we are in a deadlock.) 252 */ 253 KASSERT(td != curthread, ("Deadlock detected")); 254 #endif 255 256 /* 257 * If we aren't blocked on a lock, we should be. 258 */ 259 KASSERT(TD_ON_LOCK(td), ( 260 "thread %d(%s):%d holds %s but isn't blocked on a lock\n", 261 td->td_tid, td->td_proc->p_comm, td->td_state, 262 ts->ts_lockobj->lo_name)); 263 264 /* 265 * Pick up the lock that td is blocked on. 266 */ 267 ts = td->td_blocked; 268 MPASS(ts != NULL); 269 MPASS(td->td_lock == &ts->ts_lock); 270 /* Resort td on the list if needed. */ 271 if (!turnstile_adjust_thread(ts, td)) { 272 mtx_unlock_spin(&ts->ts_lock); 273 return; 274 } 275 /* The thread lock is released as ts lock above. */ 276 } 277 } 278 279 /* 280 * Adjust the thread's position on a turnstile after its priority has been 281 * changed. 282 */ 283 static int 284 turnstile_adjust_thread(struct turnstile *ts, struct thread *td) 285 { 286 struct thread *td1, *td2; 287 int queue; 288 289 THREAD_LOCK_ASSERT(td, MA_OWNED); 290 MPASS(TD_ON_LOCK(td)); 291 292 /* 293 * This thread may not be blocked on this turnstile anymore 294 * but instead might already be woken up on another CPU 295 * that is waiting on the thread lock in turnstile_unpend() to 296 * finish waking this thread up. We can detect this case 297 * by checking to see if this thread has been given a 298 * turnstile by either turnstile_signal() or 299 * turnstile_broadcast(). In this case, treat the thread as 300 * if it was already running. 301 */ 302 if (td->td_turnstile != NULL) 303 return (0); 304 305 /* 306 * Check if the thread needs to be moved on the blocked chain. 307 * It needs to be moved if either its priority is lower than 308 * the previous thread or higher than the next thread. 309 */ 310 MPASS(td->td_lock == &ts->ts_lock); 311 td1 = TAILQ_PREV(td, threadqueue, td_lockq); 312 td2 = TAILQ_NEXT(td, td_lockq); 313 if ((td1 != NULL && td->td_priority < td1->td_priority) || 314 (td2 != NULL && td->td_priority > td2->td_priority)) { 315 316 /* 317 * Remove thread from blocked chain and determine where 318 * it should be moved to. 319 */ 320 queue = td->td_tsqueue; 321 MPASS(queue == TS_EXCLUSIVE_QUEUE || queue == TS_SHARED_QUEUE); 322 mtx_lock_spin(&td_contested_lock); 323 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 324 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) { 325 MPASS(td1->td_proc->p_magic == P_MAGIC); 326 if (td1->td_priority > td->td_priority) 327 break; 328 } 329 330 if (td1 == NULL) 331 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 332 else 333 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 334 mtx_unlock_spin(&td_contested_lock); 335 if (td1 == NULL) 336 CTR3(KTR_LOCK, 337 "turnstile_adjust_thread: td %d put at tail on [%p] %s", 338 td->td_tid, ts->ts_lockobj, ts->ts_lockobj->lo_name); 339 else 340 CTR4(KTR_LOCK, 341 "turnstile_adjust_thread: td %d moved before %d on [%p] %s", 342 td->td_tid, td1->td_tid, ts->ts_lockobj, 343 ts->ts_lockobj->lo_name); 344 } 345 return (1); 346 } 347 348 /* 349 * Early initialization of turnstiles. This is not done via a SYSINIT() 350 * since this needs to be initialized very early when mutexes are first 351 * initialized. 352 */ 353 void 354 init_turnstiles(void) 355 { 356 int i; 357 358 for (i = 0; i < TC_TABLESIZE; i++) { 359 LIST_INIT(&turnstile_chains[i].tc_turnstiles); 360 mtx_init(&turnstile_chains[i].tc_lock, "turnstile chain", 361 NULL, MTX_SPIN); 362 } 363 mtx_init(&td_contested_lock, "td_contested", NULL, MTX_SPIN); 364 LIST_INIT(&thread0.td_contested); 365 thread0.td_turnstile = NULL; 366 } 367 368 #ifdef TURNSTILE_PROFILING 369 static void 370 init_turnstile_profiling(void *arg) 371 { 372 struct sysctl_oid *chain_oid; 373 char chain_name[10]; 374 int i; 375 376 for (i = 0; i < TC_TABLESIZE; i++) { 377 snprintf(chain_name, sizeof(chain_name), "%d", i); 378 chain_oid = SYSCTL_ADD_NODE(NULL, 379 SYSCTL_STATIC_CHILDREN(_debug_turnstile_chains), OID_AUTO, 380 chain_name, CTLFLAG_RD, NULL, "turnstile chain stats"); 381 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 382 "depth", CTLFLAG_RD, &turnstile_chains[i].tc_depth, 0, 383 NULL); 384 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 385 "max_depth", CTLFLAG_RD, &turnstile_chains[i].tc_max_depth, 386 0, NULL); 387 } 388 } 389 SYSINIT(turnstile_profiling, SI_SUB_LOCK, SI_ORDER_ANY, 390 init_turnstile_profiling, NULL); 391 #endif 392 393 static void 394 init_turnstile0(void *dummy) 395 { 396 397 turnstile_zone = uma_zcreate("TURNSTILE", sizeof(struct turnstile), 398 #ifdef INVARIANTS 399 NULL, turnstile_dtor, turnstile_init, turnstile_fini, 400 UMA_ALIGN_CACHE, 0); 401 #else 402 NULL, NULL, turnstile_init, turnstile_fini, UMA_ALIGN_CACHE, 0); 403 #endif 404 thread0.td_turnstile = turnstile_alloc(); 405 } 406 SYSINIT(turnstile0, SI_SUB_LOCK, SI_ORDER_ANY, init_turnstile0, NULL); 407 408 /* 409 * Update a thread on the turnstile list after it's priority has been changed. 410 * The old priority is passed in as an argument. 411 */ 412 void 413 turnstile_adjust(struct thread *td, u_char oldpri) 414 { 415 struct turnstile *ts; 416 417 MPASS(TD_ON_LOCK(td)); 418 419 /* 420 * Pick up the lock that td is blocked on. 421 */ 422 ts = td->td_blocked; 423 MPASS(ts != NULL); 424 MPASS(td->td_lock == &ts->ts_lock); 425 mtx_assert(&ts->ts_lock, MA_OWNED); 426 427 /* Resort the turnstile on the list. */ 428 if (!turnstile_adjust_thread(ts, td)) 429 return; 430 /* 431 * If our priority was lowered and we are at the head of the 432 * turnstile, then propagate our new priority up the chain. 433 * Note that we currently don't try to revoke lent priorities 434 * when our priority goes up. 435 */ 436 MPASS(td->td_tsqueue == TS_EXCLUSIVE_QUEUE || 437 td->td_tsqueue == TS_SHARED_QUEUE); 438 if (td == TAILQ_FIRST(&ts->ts_blocked[td->td_tsqueue]) && 439 td->td_priority < oldpri) { 440 propagate_priority(td); 441 } 442 } 443 444 /* 445 * Set the owner of the lock this turnstile is attached to. 446 */ 447 static void 448 turnstile_setowner(struct turnstile *ts, struct thread *owner) 449 { 450 451 mtx_assert(&td_contested_lock, MA_OWNED); 452 MPASS(ts->ts_owner == NULL); 453 454 /* A shared lock might not have an owner. */ 455 if (owner == NULL) 456 return; 457 458 MPASS(owner->td_proc->p_magic == P_MAGIC); 459 ts->ts_owner = owner; 460 LIST_INSERT_HEAD(&owner->td_contested, ts, ts_link); 461 } 462 463 #ifdef INVARIANTS 464 /* 465 * UMA zone item deallocator. 466 */ 467 static void 468 turnstile_dtor(void *mem, int size, void *arg) 469 { 470 struct turnstile *ts; 471 472 ts = mem; 473 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE])); 474 MPASS(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 475 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 476 } 477 #endif 478 479 /* 480 * UMA zone item initializer. 481 */ 482 static int 483 turnstile_init(void *mem, int size, int flags) 484 { 485 struct turnstile *ts; 486 487 bzero(mem, size); 488 ts = mem; 489 TAILQ_INIT(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 490 TAILQ_INIT(&ts->ts_blocked[TS_SHARED_QUEUE]); 491 TAILQ_INIT(&ts->ts_pending); 492 LIST_INIT(&ts->ts_free); 493 mtx_init(&ts->ts_lock, "turnstile lock", NULL, MTX_SPIN | MTX_RECURSE); 494 return (0); 495 } 496 497 static void 498 turnstile_fini(void *mem, int size) 499 { 500 struct turnstile *ts; 501 502 ts = mem; 503 mtx_destroy(&ts->ts_lock); 504 } 505 506 /* 507 * Get a turnstile for a new thread. 508 */ 509 struct turnstile * 510 turnstile_alloc(void) 511 { 512 513 return (uma_zalloc(turnstile_zone, M_WAITOK)); 514 } 515 516 /* 517 * Free a turnstile when a thread is destroyed. 518 */ 519 void 520 turnstile_free(struct turnstile *ts) 521 { 522 523 uma_zfree(turnstile_zone, ts); 524 } 525 526 /* 527 * Lock the turnstile chain associated with the specified lock. 528 */ 529 void 530 turnstile_chain_lock(struct lock_object *lock) 531 { 532 struct turnstile_chain *tc; 533 534 tc = TC_LOOKUP(lock); 535 mtx_lock_spin(&tc->tc_lock); 536 } 537 538 struct turnstile * 539 turnstile_trywait(struct lock_object *lock) 540 { 541 struct turnstile_chain *tc; 542 struct turnstile *ts; 543 544 tc = TC_LOOKUP(lock); 545 mtx_lock_spin(&tc->tc_lock); 546 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 547 if (ts->ts_lockobj == lock) { 548 mtx_lock_spin(&ts->ts_lock); 549 return (ts); 550 } 551 552 ts = curthread->td_turnstile; 553 MPASS(ts != NULL); 554 mtx_lock_spin(&ts->ts_lock); 555 KASSERT(ts->ts_lockobj == NULL, ("stale ts_lockobj pointer")); 556 ts->ts_lockobj = lock; 557 558 return (ts); 559 } 560 561 void 562 turnstile_cancel(struct turnstile *ts) 563 { 564 struct turnstile_chain *tc; 565 struct lock_object *lock; 566 567 mtx_assert(&ts->ts_lock, MA_OWNED); 568 569 mtx_unlock_spin(&ts->ts_lock); 570 lock = ts->ts_lockobj; 571 if (ts == curthread->td_turnstile) 572 ts->ts_lockobj = NULL; 573 tc = TC_LOOKUP(lock); 574 mtx_unlock_spin(&tc->tc_lock); 575 } 576 577 /* 578 * Look up the turnstile for a lock in the hash table locking the associated 579 * turnstile chain along the way. If no turnstile is found in the hash 580 * table, NULL is returned. 581 */ 582 struct turnstile * 583 turnstile_lookup(struct lock_object *lock) 584 { 585 struct turnstile_chain *tc; 586 struct turnstile *ts; 587 588 tc = TC_LOOKUP(lock); 589 mtx_assert(&tc->tc_lock, MA_OWNED); 590 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 591 if (ts->ts_lockobj == lock) { 592 mtx_lock_spin(&ts->ts_lock); 593 return (ts); 594 } 595 return (NULL); 596 } 597 598 /* 599 * Unlock the turnstile chain associated with a given lock. 600 */ 601 void 602 turnstile_chain_unlock(struct lock_object *lock) 603 { 604 struct turnstile_chain *tc; 605 606 tc = TC_LOOKUP(lock); 607 mtx_unlock_spin(&tc->tc_lock); 608 } 609 610 /* 611 * Return a pointer to the thread waiting on this turnstile with the 612 * most important priority or NULL if the turnstile has no waiters. 613 */ 614 static struct thread * 615 turnstile_first_waiter(struct turnstile *ts) 616 { 617 struct thread *std, *xtd; 618 619 std = TAILQ_FIRST(&ts->ts_blocked[TS_SHARED_QUEUE]); 620 xtd = TAILQ_FIRST(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]); 621 if (xtd == NULL || (std != NULL && std->td_priority < xtd->td_priority)) 622 return (std); 623 return (xtd); 624 } 625 626 /* 627 * Take ownership of a turnstile and adjust the priority of the new 628 * owner appropriately. 629 */ 630 void 631 turnstile_claim(struct turnstile *ts) 632 { 633 struct thread *td, *owner; 634 struct turnstile_chain *tc; 635 636 mtx_assert(&ts->ts_lock, MA_OWNED); 637 MPASS(ts != curthread->td_turnstile); 638 639 owner = curthread; 640 mtx_lock_spin(&td_contested_lock); 641 turnstile_setowner(ts, owner); 642 mtx_unlock_spin(&td_contested_lock); 643 644 td = turnstile_first_waiter(ts); 645 MPASS(td != NULL); 646 MPASS(td->td_proc->p_magic == P_MAGIC); 647 MPASS(td->td_lock == &ts->ts_lock); 648 649 /* 650 * Update the priority of the new owner if needed. 651 */ 652 thread_lock(owner); 653 if (td->td_priority < owner->td_priority) 654 sched_lend_prio(owner, td->td_priority); 655 thread_unlock(owner); 656 tc = TC_LOOKUP(ts->ts_lockobj); 657 mtx_unlock_spin(&ts->ts_lock); 658 mtx_unlock_spin(&tc->tc_lock); 659 } 660 661 /* 662 * Block the current thread on the turnstile assicated with 'lock'. This 663 * function will context switch and not return until this thread has been 664 * woken back up. This function must be called with the appropriate 665 * turnstile chain locked and will return with it unlocked. 666 */ 667 void 668 turnstile_wait(struct turnstile *ts, struct thread *owner, int queue) 669 { 670 struct turnstile_chain *tc; 671 struct thread *td, *td1; 672 struct lock_object *lock; 673 674 td = curthread; 675 mtx_assert(&ts->ts_lock, MA_OWNED); 676 if (queue == TS_SHARED_QUEUE) 677 MPASS(owner != NULL); 678 if (owner) 679 MPASS(owner->td_proc->p_magic == P_MAGIC); 680 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 681 682 /* 683 * If the lock does not already have a turnstile, use this thread's 684 * turnstile. Otherwise insert the current thread into the 685 * turnstile already in use by this lock. 686 */ 687 tc = TC_LOOKUP(ts->ts_lockobj); 688 if (ts == td->td_turnstile) { 689 mtx_assert(&tc->tc_lock, MA_OWNED); 690 #ifdef TURNSTILE_PROFILING 691 tc->tc_depth++; 692 if (tc->tc_depth > tc->tc_max_depth) { 693 tc->tc_max_depth = tc->tc_depth; 694 if (tc->tc_max_depth > turnstile_max_depth) 695 turnstile_max_depth = tc->tc_max_depth; 696 } 697 #endif 698 tc = TC_LOOKUP(ts->ts_lockobj); 699 LIST_INSERT_HEAD(&tc->tc_turnstiles, ts, ts_hash); 700 KASSERT(TAILQ_EMPTY(&ts->ts_pending), 701 ("thread's turnstile has pending threads")); 702 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]), 703 ("thread's turnstile has exclusive waiters")); 704 KASSERT(TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]), 705 ("thread's turnstile has shared waiters")); 706 KASSERT(LIST_EMPTY(&ts->ts_free), 707 ("thread's turnstile has a non-empty free list")); 708 MPASS(ts->ts_lockobj != NULL); 709 mtx_lock_spin(&td_contested_lock); 710 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 711 turnstile_setowner(ts, owner); 712 mtx_unlock_spin(&td_contested_lock); 713 } else { 714 TAILQ_FOREACH(td1, &ts->ts_blocked[queue], td_lockq) 715 if (td1->td_priority > td->td_priority) 716 break; 717 mtx_lock_spin(&td_contested_lock); 718 if (td1 != NULL) 719 TAILQ_INSERT_BEFORE(td1, td, td_lockq); 720 else 721 TAILQ_INSERT_TAIL(&ts->ts_blocked[queue], td, td_lockq); 722 MPASS(owner == ts->ts_owner); 723 mtx_unlock_spin(&td_contested_lock); 724 MPASS(td->td_turnstile != NULL); 725 LIST_INSERT_HEAD(&ts->ts_free, td->td_turnstile, ts_hash); 726 } 727 thread_lock(td); 728 thread_lock_set(td, &ts->ts_lock); 729 td->td_turnstile = NULL; 730 731 /* Save who we are blocked on and switch. */ 732 lock = ts->ts_lockobj; 733 td->td_tsqueue = queue; 734 td->td_blocked = ts; 735 td->td_lockname = lock->lo_name; 736 TD_SET_LOCK(td); 737 mtx_unlock_spin(&tc->tc_lock); 738 propagate_priority(td); 739 740 if (LOCK_LOG_TEST(lock, 0)) 741 CTR4(KTR_LOCK, "%s: td %d blocked on [%p] %s", __func__, 742 td->td_tid, lock, lock->lo_name); 743 744 MPASS(td->td_lock == &ts->ts_lock); 745 SCHED_STAT_INC(switch_turnstile); 746 mi_switch(SW_VOL, NULL); 747 748 if (LOCK_LOG_TEST(lock, 0)) 749 CTR4(KTR_LOCK, "%s: td %d free from blocked on [%p] %s", 750 __func__, td->td_tid, lock, lock->lo_name); 751 thread_unlock(td); 752 } 753 754 /* 755 * Pick the highest priority thread on this turnstile and put it on the 756 * pending list. This must be called with the turnstile chain locked. 757 */ 758 int 759 turnstile_signal(struct turnstile *ts, int queue) 760 { 761 struct turnstile_chain *tc; 762 struct thread *td; 763 int empty; 764 765 MPASS(ts != NULL); 766 mtx_assert(&ts->ts_lock, MA_OWNED); 767 MPASS(curthread->td_proc->p_magic == P_MAGIC); 768 MPASS(ts->ts_owner == curthread || 769 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 770 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 771 772 /* 773 * Pick the highest priority thread blocked on this lock and 774 * move it to the pending list. 775 */ 776 td = TAILQ_FIRST(&ts->ts_blocked[queue]); 777 MPASS(td->td_proc->p_magic == P_MAGIC); 778 mtx_lock_spin(&td_contested_lock); 779 TAILQ_REMOVE(&ts->ts_blocked[queue], td, td_lockq); 780 mtx_unlock_spin(&td_contested_lock); 781 TAILQ_INSERT_TAIL(&ts->ts_pending, td, td_lockq); 782 783 /* 784 * If the turnstile is now empty, remove it from its chain and 785 * give it to the about-to-be-woken thread. Otherwise take a 786 * turnstile from the free list and give it to the thread. 787 */ 788 empty = TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 789 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE]); 790 if (empty) { 791 tc = TC_LOOKUP(ts->ts_lockobj); 792 mtx_assert(&tc->tc_lock, MA_OWNED); 793 MPASS(LIST_EMPTY(&ts->ts_free)); 794 #ifdef TURNSTILE_PROFILING 795 tc->tc_depth--; 796 #endif 797 } else 798 ts = LIST_FIRST(&ts->ts_free); 799 MPASS(ts != NULL); 800 LIST_REMOVE(ts, ts_hash); 801 td->td_turnstile = ts; 802 803 return (empty); 804 } 805 806 /* 807 * Put all blocked threads on the pending list. This must be called with 808 * the turnstile chain locked. 809 */ 810 void 811 turnstile_broadcast(struct turnstile *ts, int queue) 812 { 813 struct turnstile_chain *tc; 814 struct turnstile *ts1; 815 struct thread *td; 816 817 MPASS(ts != NULL); 818 mtx_assert(&ts->ts_lock, MA_OWNED); 819 MPASS(curthread->td_proc->p_magic == P_MAGIC); 820 MPASS(ts->ts_owner == curthread || 821 (queue == TS_EXCLUSIVE_QUEUE && ts->ts_owner == NULL)); 822 /* 823 * We must have the chain locked so that we can remove the empty 824 * turnstile from the hash queue. 825 */ 826 tc = TC_LOOKUP(ts->ts_lockobj); 827 mtx_assert(&tc->tc_lock, MA_OWNED); 828 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 829 830 /* 831 * Transfer the blocked list to the pending list. 832 */ 833 mtx_lock_spin(&td_contested_lock); 834 TAILQ_CONCAT(&ts->ts_pending, &ts->ts_blocked[queue], td_lockq); 835 mtx_unlock_spin(&td_contested_lock); 836 837 /* 838 * Give a turnstile to each thread. The last thread gets 839 * this turnstile if the turnstile is empty. 840 */ 841 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) { 842 if (LIST_EMPTY(&ts->ts_free)) { 843 MPASS(TAILQ_NEXT(td, td_lockq) == NULL); 844 ts1 = ts; 845 #ifdef TURNSTILE_PROFILING 846 tc->tc_depth--; 847 #endif 848 } else 849 ts1 = LIST_FIRST(&ts->ts_free); 850 MPASS(ts1 != NULL); 851 LIST_REMOVE(ts1, ts_hash); 852 td->td_turnstile = ts1; 853 } 854 } 855 856 /* 857 * Wakeup all threads on the pending list and adjust the priority of the 858 * current thread appropriately. This must be called with the turnstile 859 * chain locked. 860 */ 861 void 862 turnstile_unpend(struct turnstile *ts, int owner_type) 863 { 864 TAILQ_HEAD( ,thread) pending_threads; 865 struct turnstile *nts; 866 struct thread *td; 867 u_char cp, pri; 868 869 MPASS(ts != NULL); 870 mtx_assert(&ts->ts_lock, MA_OWNED); 871 MPASS(ts->ts_owner == curthread || 872 (owner_type == TS_SHARED_LOCK && ts->ts_owner == NULL)); 873 MPASS(!TAILQ_EMPTY(&ts->ts_pending)); 874 875 /* 876 * Move the list of pending threads out of the turnstile and 877 * into a local variable. 878 */ 879 TAILQ_INIT(&pending_threads); 880 TAILQ_CONCAT(&pending_threads, &ts->ts_pending, td_lockq); 881 #ifdef INVARIANTS 882 if (TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) && 883 TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])) 884 ts->ts_lockobj = NULL; 885 #endif 886 /* 887 * Adjust the priority of curthread based on other contested 888 * locks it owns. Don't lower the priority below the base 889 * priority however. 890 */ 891 td = curthread; 892 pri = PRI_MAX; 893 thread_lock(td); 894 mtx_lock_spin(&td_contested_lock); 895 /* 896 * Remove the turnstile from this thread's list of contested locks 897 * since this thread doesn't own it anymore. New threads will 898 * not be blocking on the turnstile until it is claimed by a new 899 * owner. There might not be a current owner if this is a shared 900 * lock. 901 */ 902 if (ts->ts_owner != NULL) { 903 ts->ts_owner = NULL; 904 LIST_REMOVE(ts, ts_link); 905 } 906 LIST_FOREACH(nts, &td->td_contested, ts_link) { 907 cp = turnstile_first_waiter(nts)->td_priority; 908 if (cp < pri) 909 pri = cp; 910 } 911 mtx_unlock_spin(&td_contested_lock); 912 sched_unlend_prio(td, pri); 913 thread_unlock(td); 914 /* 915 * Wake up all the pending threads. If a thread is not blocked 916 * on a lock, then it is currently executing on another CPU in 917 * turnstile_wait() or sitting on a run queue waiting to resume 918 * in turnstile_wait(). Set a flag to force it to try to acquire 919 * the lock again instead of blocking. 920 */ 921 while (!TAILQ_EMPTY(&pending_threads)) { 922 td = TAILQ_FIRST(&pending_threads); 923 TAILQ_REMOVE(&pending_threads, td, td_lockq); 924 thread_lock(td); 925 MPASS(td->td_lock == &ts->ts_lock); 926 MPASS(td->td_proc->p_magic == P_MAGIC); 927 MPASS(TD_ON_LOCK(td)); 928 TD_CLR_LOCK(td); 929 MPASS(TD_CAN_RUN(td)); 930 td->td_blocked = NULL; 931 td->td_lockname = NULL; 932 #ifdef INVARIANTS 933 td->td_tsqueue = 0xff; 934 #endif 935 sched_add(td, SRQ_BORING); 936 thread_unlock(td); 937 } 938 mtx_unlock_spin(&ts->ts_lock); 939 } 940 941 /* 942 * Give up ownership of a turnstile. This must be called with the 943 * turnstile chain locked. 944 */ 945 void 946 turnstile_disown(struct turnstile *ts) 947 { 948 struct thread *td; 949 u_char cp, pri; 950 951 MPASS(ts != NULL); 952 mtx_assert(&ts->ts_lock, MA_OWNED); 953 MPASS(ts->ts_owner == curthread); 954 MPASS(TAILQ_EMPTY(&ts->ts_pending)); 955 MPASS(!TAILQ_EMPTY(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE]) || 956 !TAILQ_EMPTY(&ts->ts_blocked[TS_SHARED_QUEUE])); 957 958 /* 959 * Remove the turnstile from this thread's list of contested locks 960 * since this thread doesn't own it anymore. New threads will 961 * not be blocking on the turnstile until it is claimed by a new 962 * owner. 963 */ 964 mtx_lock_spin(&td_contested_lock); 965 ts->ts_owner = NULL; 966 LIST_REMOVE(ts, ts_link); 967 mtx_unlock_spin(&td_contested_lock); 968 969 /* 970 * Adjust the priority of curthread based on other contested 971 * locks it owns. Don't lower the priority below the base 972 * priority however. 973 */ 974 td = curthread; 975 pri = PRI_MAX; 976 thread_lock(td); 977 mtx_unlock_spin(&ts->ts_lock); 978 mtx_lock_spin(&td_contested_lock); 979 LIST_FOREACH(ts, &td->td_contested, ts_link) { 980 cp = turnstile_first_waiter(ts)->td_priority; 981 if (cp < pri) 982 pri = cp; 983 } 984 mtx_unlock_spin(&td_contested_lock); 985 sched_unlend_prio(td, pri); 986 thread_unlock(td); 987 } 988 989 /* 990 * Return the first thread in a turnstile. 991 */ 992 struct thread * 993 turnstile_head(struct turnstile *ts, int queue) 994 { 995 #ifdef INVARIANTS 996 997 MPASS(ts != NULL); 998 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 999 mtx_assert(&ts->ts_lock, MA_OWNED); 1000 #endif 1001 return (TAILQ_FIRST(&ts->ts_blocked[queue])); 1002 } 1003 1004 /* 1005 * Returns true if a sub-queue of a turnstile is empty. 1006 */ 1007 int 1008 turnstile_empty(struct turnstile *ts, int queue) 1009 { 1010 #ifdef INVARIANTS 1011 1012 MPASS(ts != NULL); 1013 MPASS(queue == TS_SHARED_QUEUE || queue == TS_EXCLUSIVE_QUEUE); 1014 mtx_assert(&ts->ts_lock, MA_OWNED); 1015 #endif 1016 return (TAILQ_EMPTY(&ts->ts_blocked[queue])); 1017 } 1018 1019 #ifdef DDB 1020 static void 1021 print_thread(struct thread *td, const char *prefix) 1022 { 1023 1024 db_printf("%s%p (tid %d, pid %d, \"%s\")\n", prefix, td, td->td_tid, 1025 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1026 td->td_proc->p_comm); 1027 } 1028 1029 static void 1030 print_queue(struct threadqueue *queue, const char *header, const char *prefix) 1031 { 1032 struct thread *td; 1033 1034 db_printf("%s:\n", header); 1035 if (TAILQ_EMPTY(queue)) { 1036 db_printf("%sempty\n", prefix); 1037 return; 1038 } 1039 TAILQ_FOREACH(td, queue, td_lockq) { 1040 print_thread(td, prefix); 1041 } 1042 } 1043 1044 DB_SHOW_COMMAND(turnstile, db_show_turnstile) 1045 { 1046 struct turnstile_chain *tc; 1047 struct turnstile *ts; 1048 struct lock_object *lock; 1049 int i; 1050 1051 if (!have_addr) 1052 return; 1053 1054 /* 1055 * First, see if there is an active turnstile for the lock indicated 1056 * by the address. 1057 */ 1058 lock = (struct lock_object *)addr; 1059 tc = TC_LOOKUP(lock); 1060 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1061 if (ts->ts_lockobj == lock) 1062 goto found; 1063 1064 /* 1065 * Second, see if there is an active turnstile at the address 1066 * indicated. 1067 */ 1068 for (i = 0; i < TC_TABLESIZE; i++) 1069 LIST_FOREACH(ts, &turnstile_chains[i].tc_turnstiles, ts_hash) { 1070 if (ts == (struct turnstile *)addr) 1071 goto found; 1072 } 1073 1074 db_printf("Unable to locate a turnstile via %p\n", (void *)addr); 1075 return; 1076 found: 1077 lock = ts->ts_lockobj; 1078 db_printf("Lock: %p - (%s) %s\n", lock, LOCK_CLASS(lock)->lc_name, 1079 lock->lo_name); 1080 if (ts->ts_owner) 1081 print_thread(ts->ts_owner, "Lock Owner: "); 1082 else 1083 db_printf("Lock Owner: none\n"); 1084 print_queue(&ts->ts_blocked[TS_SHARED_QUEUE], "Shared Waiters", "\t"); 1085 print_queue(&ts->ts_blocked[TS_EXCLUSIVE_QUEUE], "Exclusive Waiters", 1086 "\t"); 1087 print_queue(&ts->ts_pending, "Pending Threads", "\t"); 1088 1089 } 1090 1091 /* 1092 * Show all the threads a particular thread is waiting on based on 1093 * non-sleepable and non-spin locks. 1094 */ 1095 static void 1096 print_lockchain(struct thread *td, const char *prefix) 1097 { 1098 struct lock_object *lock; 1099 struct lock_class *class; 1100 struct turnstile *ts; 1101 1102 /* 1103 * Follow the chain. We keep walking as long as the thread is 1104 * blocked on a turnstile that has an owner. 1105 */ 1106 while (!db_pager_quit) { 1107 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1108 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1109 td->td_proc->p_comm); 1110 switch (td->td_state) { 1111 case TDS_INACTIVE: 1112 db_printf("is inactive\n"); 1113 return; 1114 case TDS_CAN_RUN: 1115 db_printf("can run\n"); 1116 return; 1117 case TDS_RUNQ: 1118 db_printf("is on a run queue\n"); 1119 return; 1120 case TDS_RUNNING: 1121 db_printf("running on CPU %d\n", td->td_oncpu); 1122 return; 1123 case TDS_INHIBITED: 1124 if (TD_ON_LOCK(td)) { 1125 ts = td->td_blocked; 1126 lock = ts->ts_lockobj; 1127 class = LOCK_CLASS(lock); 1128 db_printf("blocked on lock %p (%s) \"%s\"\n", 1129 lock, class->lc_name, lock->lo_name); 1130 if (ts->ts_owner == NULL) 1131 return; 1132 td = ts->ts_owner; 1133 break; 1134 } 1135 db_printf("inhibited\n"); 1136 return; 1137 default: 1138 db_printf("??? (%#x)\n", td->td_state); 1139 return; 1140 } 1141 } 1142 } 1143 1144 DB_SHOW_COMMAND(lockchain, db_show_lockchain) 1145 { 1146 struct thread *td; 1147 1148 /* Figure out which thread to start with. */ 1149 if (have_addr) 1150 td = db_lookup_thread(addr, TRUE); 1151 else 1152 td = kdb_thread; 1153 1154 print_lockchain(td, ""); 1155 } 1156 1157 DB_SHOW_COMMAND(allchains, db_show_allchains) 1158 { 1159 struct thread *td; 1160 struct proc *p; 1161 int i; 1162 1163 i = 1; 1164 FOREACH_PROC_IN_SYSTEM(p) { 1165 FOREACH_THREAD_IN_PROC(p, td) { 1166 if (TD_ON_LOCK(td) && LIST_EMPTY(&td->td_contested)) { 1167 db_printf("chain %d:\n", i++); 1168 print_lockchain(td, " "); 1169 } 1170 if (db_pager_quit) 1171 return; 1172 } 1173 } 1174 } 1175 1176 /* 1177 * Show all the threads a particular thread is waiting on based on 1178 * sleepable locks. 1179 */ 1180 static void 1181 print_sleepchain(struct thread *td, const char *prefix) 1182 { 1183 struct thread *owner; 1184 1185 /* 1186 * Follow the chain. We keep walking as long as the thread is 1187 * blocked on a sleep lock that has an owner. 1188 */ 1189 while (!db_pager_quit) { 1190 db_printf("%sthread %d (pid %d, %s) ", prefix, td->td_tid, 1191 td->td_proc->p_pid, td->td_name[0] != '\0' ? td->td_name : 1192 td->td_proc->p_comm); 1193 switch (td->td_state) { 1194 case TDS_INACTIVE: 1195 db_printf("is inactive\n"); 1196 return; 1197 case TDS_CAN_RUN: 1198 db_printf("can run\n"); 1199 return; 1200 case TDS_RUNQ: 1201 db_printf("is on a run queue\n"); 1202 return; 1203 case TDS_RUNNING: 1204 db_printf("running on CPU %d\n", td->td_oncpu); 1205 return; 1206 case TDS_INHIBITED: 1207 if (TD_ON_SLEEPQ(td)) { 1208 if (lockmgr_chain(td, &owner) || 1209 sx_chain(td, &owner)) { 1210 if (owner == NULL) 1211 return; 1212 td = owner; 1213 break; 1214 } 1215 db_printf("sleeping on %p \"%s\"\n", 1216 td->td_wchan, td->td_wmesg); 1217 return; 1218 } 1219 db_printf("inhibited\n"); 1220 return; 1221 default: 1222 db_printf("??? (%#x)\n", td->td_state); 1223 return; 1224 } 1225 } 1226 } 1227 1228 DB_SHOW_COMMAND(sleepchain, db_show_sleepchain) 1229 { 1230 struct thread *td; 1231 1232 /* Figure out which thread to start with. */ 1233 if (have_addr) 1234 td = db_lookup_thread(addr, TRUE); 1235 else 1236 td = kdb_thread; 1237 1238 print_sleepchain(td, ""); 1239 } 1240 1241 static void print_waiters(struct turnstile *ts, int indent); 1242 1243 static void 1244 print_waiter(struct thread *td, int indent) 1245 { 1246 struct turnstile *ts; 1247 int i; 1248 1249 if (db_pager_quit) 1250 return; 1251 for (i = 0; i < indent; i++) 1252 db_printf(" "); 1253 print_thread(td, "thread "); 1254 LIST_FOREACH(ts, &td->td_contested, ts_link) 1255 print_waiters(ts, indent + 1); 1256 } 1257 1258 static void 1259 print_waiters(struct turnstile *ts, int indent) 1260 { 1261 struct lock_object *lock; 1262 struct lock_class *class; 1263 struct thread *td; 1264 int i; 1265 1266 if (db_pager_quit) 1267 return; 1268 lock = ts->ts_lockobj; 1269 class = LOCK_CLASS(lock); 1270 for (i = 0; i < indent; i++) 1271 db_printf(" "); 1272 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, lock->lo_name); 1273 TAILQ_FOREACH(td, &ts->ts_blocked[TS_EXCLUSIVE_QUEUE], td_lockq) 1274 print_waiter(td, indent + 1); 1275 TAILQ_FOREACH(td, &ts->ts_blocked[TS_SHARED_QUEUE], td_lockq) 1276 print_waiter(td, indent + 1); 1277 TAILQ_FOREACH(td, &ts->ts_pending, td_lockq) 1278 print_waiter(td, indent + 1); 1279 } 1280 1281 DB_SHOW_COMMAND(locktree, db_show_locktree) 1282 { 1283 struct lock_object *lock; 1284 struct lock_class *class; 1285 struct turnstile_chain *tc; 1286 struct turnstile *ts; 1287 1288 if (!have_addr) 1289 return; 1290 lock = (struct lock_object *)addr; 1291 tc = TC_LOOKUP(lock); 1292 LIST_FOREACH(ts, &tc->tc_turnstiles, ts_hash) 1293 if (ts->ts_lockobj == lock) 1294 break; 1295 if (ts == NULL) { 1296 class = LOCK_CLASS(lock); 1297 db_printf("lock %p (%s) \"%s\"\n", lock, class->lc_name, 1298 lock->lo_name); 1299 } else 1300 print_waiters(ts, 0); 1301 } 1302 #endif 1303