xref: /freebsd/sys/kern/subr_trap.c (revision c68159a6d8eede11766cf13896d0f7670dbd51aa)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD$
39  */
40 
41 /*
42  * 386 Trap and System call handling
43  */
44 
45 #include "opt_cpu.h"
46 #include "opt_ddb.h"
47 #include "opt_ktrace.h"
48 #include "opt_clock.h"
49 #include "opt_trap.h"
50 
51 #include <sys/param.h>
52 #include <sys/bus.h>
53 #include <sys/systm.h>
54 #include <sys/proc.h>
55 #include <sys/pioctl.h>
56 #include <sys/ipl.h>
57 #include <sys/kernel.h>
58 #include <sys/ktr.h>
59 #include <sys/mutex.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/syscall.h>
63 #include <sys/sysctl.h>
64 #include <sys/sysent.h>
65 #include <sys/uio.h>
66 #include <sys/vmmeter.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <sys/lock.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_extern.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/md_var.h>
82 #include <machine/pcb.h>
83 #ifdef SMP
84 #include <machine/smp.h>
85 #endif
86 #include <machine/tss.h>
87 
88 #include <i386/isa/icu.h>
89 #include <i386/isa/intr_machdep.h>
90 
91 #ifdef POWERFAIL_NMI
92 #include <sys/syslog.h>
93 #include <machine/clock.h>
94 #endif
95 
96 #include <machine/vm86.h>
97 
98 #include <ddb/ddb.h>
99 
100 #include "isa.h"
101 #include "npx.h"
102 
103 #include <sys/sysctl.h>
104 
105 int (*pmath_emulate) __P((struct trapframe *));
106 
107 extern void trap __P((struct trapframe frame));
108 extern int trapwrite __P((unsigned addr));
109 extern void syscall2 __P((struct trapframe frame));
110 extern void ast __P((struct trapframe frame));
111 
112 static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
113 static void trap_fatal __P((struct trapframe *, vm_offset_t));
114 void dblfault_handler __P((void));
115 
116 extern inthand_t IDTVEC(syscall);
117 
118 #define MAX_TRAP_MSG		28
119 static char *trap_msg[] = {
120 	"",					/*  0 unused */
121 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
122 	"",					/*  2 unused */
123 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
124 	"",					/*  4 unused */
125 	"",					/*  5 unused */
126 	"arithmetic trap",			/*  6 T_ARITHTRAP */
127 	"system forced exception",		/*  7 T_ASTFLT */
128 	"",					/*  8 unused */
129 	"general protection fault",		/*  9 T_PROTFLT */
130 	"trace trap",				/* 10 T_TRCTRAP */
131 	"",					/* 11 unused */
132 	"page fault",				/* 12 T_PAGEFLT */
133 	"",					/* 13 unused */
134 	"alignment fault",			/* 14 T_ALIGNFLT */
135 	"",					/* 15 unused */
136 	"",					/* 16 unused */
137 	"",					/* 17 unused */
138 	"integer divide fault",			/* 18 T_DIVIDE */
139 	"non-maskable interrupt trap",		/* 19 T_NMI */
140 	"overflow trap",			/* 20 T_OFLOW */
141 	"FPU bounds check fault",		/* 21 T_BOUND */
142 	"FPU device not available",		/* 22 T_DNA */
143 	"double fault",				/* 23 T_DOUBLEFLT */
144 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
145 	"invalid TSS fault",			/* 25 T_TSSFLT */
146 	"segment not present fault",		/* 26 T_SEGNPFLT */
147 	"stack fault",				/* 27 T_STKFLT */
148 	"machine check trap",			/* 28 T_MCHK */
149 };
150 
151 static __inline int userret __P((struct proc *p, struct trapframe *frame,
152 				  u_quad_t oticks, int have_giant));
153 
154 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
155 extern int has_f00f_bug;
156 #endif
157 
158 #ifdef DDB
159 static int ddb_on_nmi = 1;
160 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
161 	&ddb_on_nmi, 0, "Go to DDB on NMI");
162 #endif
163 static int panic_on_nmi = 1;
164 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
165 	&panic_on_nmi, 0, "Panic on NMI");
166 
167 #ifdef WITNESS
168 extern char *syscallnames[];
169 #endif
170 
171 static __inline int
172 userret(p, frame, oticks, have_giant)
173 	struct proc *p;
174 	struct trapframe *frame;
175 	u_quad_t oticks;
176 	int have_giant;
177 {
178 	int sig, s;
179 
180 	while ((sig = CURSIG(p)) != 0) {
181 		if (have_giant == 0) {
182 			mtx_enter(&Giant, MTX_DEF);
183 			have_giant = 1;
184 		}
185 		postsig(sig);
186 	}
187 
188 	p->p_priority = p->p_usrpri;
189 	if (resched_wanted()) {
190 		/*
191 		 * Since we are curproc, clock will normally just change
192 		 * our priority without moving us from one queue to another
193 		 * (since the running process is not on a queue.)
194 		 * If that happened after we setrunqueue ourselves but before we
195 		 * mi_switch()'ed, we might not be on the queue indicated by
196 		 * our priority.
197 		 */
198 		s = splhigh();
199 		mtx_enter(&sched_lock, MTX_SPIN);
200 		DROP_GIANT_NOSWITCH();
201 		setrunqueue(p);
202 		p->p_stats->p_ru.ru_nivcsw++;
203 		mi_switch();
204 		mtx_exit(&sched_lock, MTX_SPIN);
205 		PICKUP_GIANT();
206 		splx(s);
207 		while ((sig = CURSIG(p)) != 0) {
208 			if (have_giant == 0) {
209 				mtx_enter(&Giant, MTX_DEF);
210 				have_giant = 1;
211 			}
212 			postsig(sig);
213 		}
214 	}
215 	/*
216 	 * Charge system time if profiling.
217 	 */
218 	if (p->p_flag & P_PROFIL) {
219 		if (have_giant == 0) {
220 			mtx_enter(&Giant, MTX_DEF);
221 			have_giant = 1;
222 		}
223 		addupc_task(p, frame->tf_eip,
224 			    (u_int)(p->p_sticks - oticks) * psratio);
225 	}
226 	curpriority = p->p_priority;
227 	return(have_giant);
228 }
229 
230 /*
231  * Exception, fault, and trap interface to the FreeBSD kernel.
232  * This common code is called from assembly language IDT gate entry
233  * routines that prepare a suitable stack frame, and restore this
234  * frame after the exception has been processed.
235  */
236 
237 void
238 trap(frame)
239 	struct trapframe frame;
240 {
241 	struct proc *p = curproc;
242 	u_quad_t sticks = 0;
243 	int i = 0, ucode = 0, type, code;
244 	vm_offset_t eva;
245 #ifdef POWERFAIL_NMI
246 	static int lastalert = 0;
247 #endif
248 
249 	atomic_add_int(&cnt.v_trap, 1);
250 
251 	if ((frame.tf_eflags & PSL_I) == 0) {
252 		/*
253 		 * Buggy application or kernel code has disabled
254 		 * interrupts and then trapped.  Enabling interrupts
255 		 * now is wrong, but it is better than running with
256 		 * interrupts disabled until they are accidentally
257 		 * enabled later.  XXX Consider whether is this still
258 		 * correct.
259 		 */
260 		type = frame.tf_trapno;
261 		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
262 			printf(
263 			    "pid %ld (%s): trap %d with interrupts disabled\n",
264 			    (long)curproc->p_pid, curproc->p_comm, type);
265 		else if (type != T_BPTFLT && type != T_TRCTRAP)
266 			/*
267 			 * XXX not quite right, since this may be for a
268 			 * multiple fault in user mode.
269 			 */
270 			printf("kernel trap %d with interrupts disabled\n",
271 			    type);
272 		enable_intr();
273 	}
274 
275 	eva = 0;
276 	if (frame.tf_trapno == T_PAGEFLT) {
277 		/*
278 		 * For some Cyrix CPUs, %cr2 is clobbered by
279 		 * interrupts.  This problem is worked around by using
280 		 * an interrupt gate for the pagefault handler.  We
281 		 * are finally ready to read %cr2 and then must
282 		 * reenable interrupts.
283 		 */
284 		eva = rcr2();
285 		enable_intr();
286 	}
287 
288 	mtx_enter(&Giant, MTX_DEF);
289 
290 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
291 restart:
292 #endif
293 
294 	type = frame.tf_trapno;
295 	code = frame.tf_err;
296 
297         if ((ISPL(frame.tf_cs) == SEL_UPL) ||
298 	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
299 		/* user trap */
300 
301 		sticks = p->p_sticks;
302 		p->p_md.md_regs = &frame;
303 
304 		switch (type) {
305 		case T_PRIVINFLT:	/* privileged instruction fault */
306 			ucode = type;
307 			i = SIGILL;
308 			break;
309 
310 		case T_BPTFLT:		/* bpt instruction fault */
311 		case T_TRCTRAP:		/* trace trap */
312 			frame.tf_eflags &= ~PSL_T;
313 			i = SIGTRAP;
314 			break;
315 
316 		case T_ARITHTRAP:	/* arithmetic trap */
317 			ucode = code;
318 			i = SIGFPE;
319 			break;
320 
321 			/*
322 			 * The following two traps can happen in
323 			 * vm86 mode, and, if so, we want to handle
324 			 * them specially.
325 			 */
326 		case T_PROTFLT:		/* general protection fault */
327 		case T_STKFLT:		/* stack fault */
328 			if (frame.tf_eflags & PSL_VM) {
329 				i = vm86_emulate((struct vm86frame *)&frame);
330 				if (i == 0)
331 					goto user;
332 				break;
333 			}
334 			/* FALL THROUGH */
335 
336 		case T_SEGNPFLT:	/* segment not present fault */
337 		case T_TSSFLT:		/* invalid TSS fault */
338 		case T_DOUBLEFLT:	/* double fault */
339 		default:
340 			ucode = code + BUS_SEGM_FAULT ;
341 			i = SIGBUS;
342 			break;
343 
344 		case T_PAGEFLT:		/* page fault */
345 			i = trap_pfault(&frame, TRUE, eva);
346 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
347 			if (i == -2) {
348 				/*
349 				 * f00f hack workaround has triggered, treat
350 				 * as illegal instruction not page fault.
351 				 */
352 				frame.tf_trapno = T_PRIVINFLT;
353 				goto restart;
354 			}
355 #endif
356 			if (i == -1)
357 				goto out;
358 			if (i == 0)
359 				goto user;
360 
361 			ucode = T_PAGEFLT;
362 			break;
363 
364 		case T_DIVIDE:		/* integer divide fault */
365 			ucode = FPE_INTDIV;
366 			i = SIGFPE;
367 			break;
368 
369 #if NISA > 0
370 		case T_NMI:
371 #ifdef POWERFAIL_NMI
372 #ifndef TIMER_FREQ
373 #  define TIMER_FREQ 1193182
374 #endif
375 			if (time_second - lastalert > 10) {
376 				log(LOG_WARNING, "NMI: power fail\n");
377 				sysbeep(TIMER_FREQ/880, hz);
378 				lastalert = time_second;
379 			}
380 			goto out;
381 #else /* !POWERFAIL_NMI */
382 			/* machine/parity/power fail/"kitchen sink" faults */
383 			if (isa_nmi(code) == 0) {
384 #ifdef DDB
385 				/*
386 				 * NMI can be hooked up to a pushbutton
387 				 * for debugging.
388 				 */
389 				if (ddb_on_nmi) {
390 					printf ("NMI ... going to debugger\n");
391 					kdb_trap (type, 0, &frame);
392 				}
393 #endif /* DDB */
394 				goto out;
395 			} else if (panic_on_nmi)
396 				panic("NMI indicates hardware failure");
397 			break;
398 #endif /* POWERFAIL_NMI */
399 #endif /* NISA > 0 */
400 
401 		case T_OFLOW:		/* integer overflow fault */
402 			ucode = FPE_INTOVF;
403 			i = SIGFPE;
404 			break;
405 
406 		case T_BOUND:		/* bounds check fault */
407 			ucode = FPE_FLTSUB;
408 			i = SIGFPE;
409 			break;
410 
411 		case T_DNA:
412 #if NNPX > 0
413 			/* transparent fault (due to context switch "late") */
414 			if (npxdna())
415 				goto out;
416 #endif
417 			if (!pmath_emulate) {
418 				i = SIGFPE;
419 				ucode = FPE_FPU_NP_TRAP;
420 				break;
421 			}
422 			i = (*pmath_emulate)(&frame);
423 			if (i == 0) {
424 				if (!(frame.tf_eflags & PSL_T))
425 					goto out;
426 				frame.tf_eflags &= ~PSL_T;
427 				i = SIGTRAP;
428 			}
429 			/* else ucode = emulator_only_knows() XXX */
430 			break;
431 
432 		case T_FPOPFLT:		/* FPU operand fetch fault */
433 			ucode = T_FPOPFLT;
434 			i = SIGILL;
435 			break;
436 		}
437 	} else {
438 		/* kernel trap */
439 
440 		switch (type) {
441 		case T_PAGEFLT:			/* page fault */
442 			(void) trap_pfault(&frame, FALSE, eva);
443 			goto out;
444 
445 		case T_DNA:
446 #if NNPX > 0
447 			/*
448 			 * The kernel is apparently using npx for copying.
449 			 * XXX this should be fatal unless the kernel has
450 			 * registered such use.
451 			 */
452 			if (npxdna())
453 				goto out;
454 #endif
455 			break;
456 
457 			/*
458 			 * The following two traps can happen in
459 			 * vm86 mode, and, if so, we want to handle
460 			 * them specially.
461 			 */
462 		case T_PROTFLT:		/* general protection fault */
463 		case T_STKFLT:		/* stack fault */
464 			if (frame.tf_eflags & PSL_VM) {
465 				i = vm86_emulate((struct vm86frame *)&frame);
466 				if (i != 0)
467 					/*
468 					 * returns to original process
469 					 */
470 					mtx_exit(&Giant, MTX_DEF);
471 					vm86_trap((struct vm86frame *)&frame);
472 				goto out;
473 			}
474 			if (type == T_STKFLT)
475 				break;
476 
477 			/* FALL THROUGH */
478 
479 		case T_SEGNPFLT:	/* segment not present fault */
480 			if (in_vm86call)
481 				break;
482 
483 			if (intr_nesting_level != 0)
484 				break;
485 
486 			/*
487 			 * Invalid %fs's and %gs's can be created using
488 			 * procfs or PT_SETREGS or by invalidating the
489 			 * underlying LDT entry.  This causes a fault
490 			 * in kernel mode when the kernel attempts to
491 			 * switch contexts.  Lose the bad context
492 			 * (XXX) so that we can continue, and generate
493 			 * a signal.
494 			 */
495 			if (frame.tf_eip == (int)cpu_switch_load_gs) {
496 				curpcb->pcb_gs = 0;
497 				psignal(p, SIGBUS);
498 				goto out;
499 			}
500 
501 			/*
502 			 * Invalid segment selectors and out of bounds
503 			 * %eip's and %esp's can be set up in user mode.
504 			 * This causes a fault in kernel mode when the
505 			 * kernel tries to return to user mode.  We want
506 			 * to get this fault so that we can fix the
507 			 * problem here and not have to check all the
508 			 * selectors and pointers when the user changes
509 			 * them.
510 			 */
511 			if (frame.tf_eip == (int)doreti_iret) {
512 				frame.tf_eip = (int)doreti_iret_fault;
513 				goto out;
514 			}
515 			if (frame.tf_eip == (int)doreti_popl_ds) {
516 				frame.tf_eip = (int)doreti_popl_ds_fault;
517 				goto out;
518 			}
519 			if (frame.tf_eip == (int)doreti_popl_es) {
520 				frame.tf_eip = (int)doreti_popl_es_fault;
521 				goto out;
522 				}
523 			if (frame.tf_eip == (int)doreti_popl_fs) {
524 				frame.tf_eip = (int)doreti_popl_fs_fault;
525 				goto out;
526 			}
527 			if (curpcb && curpcb->pcb_onfault) {
528 				frame.tf_eip = (int)curpcb->pcb_onfault;
529 				goto out;
530 			}
531 			break;
532 
533 		case T_TSSFLT:
534 			/*
535 			 * PSL_NT can be set in user mode and isn't cleared
536 			 * automatically when the kernel is entered.  This
537 			 * causes a TSS fault when the kernel attempts to
538 			 * `iret' because the TSS link is uninitialized.  We
539 			 * want to get this fault so that we can fix the
540 			 * problem here and not every time the kernel is
541 			 * entered.
542 			 */
543 			if (frame.tf_eflags & PSL_NT) {
544 				frame.tf_eflags &= ~PSL_NT;
545 				goto out;
546 			}
547 			break;
548 
549 		case T_TRCTRAP:	 /* trace trap */
550 			if (frame.tf_eip == (int)IDTVEC(syscall)) {
551 				/*
552 				 * We've just entered system mode via the
553 				 * syscall lcall.  Continue single stepping
554 				 * silently until the syscall handler has
555 				 * saved the flags.
556 				 */
557 				goto out;
558 			}
559 			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
560 				/*
561 				 * The syscall handler has now saved the
562 				 * flags.  Stop single stepping it.
563 				 */
564 				frame.tf_eflags &= ~PSL_T;
565 				goto out;
566 			}
567 			/*
568 			 * Ignore debug register trace traps due to
569 			 * accesses in the user's address space, which
570 			 * can happen under several conditions such as
571 			 * if a user sets a watchpoint on a buffer and
572 			 * then passes that buffer to a system call.
573 			 * We still want to get TRCTRAPS for addresses
574 			 * in kernel space because that is useful when
575 			 * debugging the kernel.
576 			 */
577 			if (user_dbreg_trap() && !in_vm86call) {
578 				/*
579 				 * Reset breakpoint bits because the
580 				 * processor doesn't
581 				 */
582 				load_dr6(rdr6() & 0xfffffff0);
583 				goto out;
584 			}
585 			/*
586 			 * Fall through (TRCTRAP kernel mode, kernel address)
587 			 */
588 		case T_BPTFLT:
589 			/*
590 			 * If DDB is enabled, let it handle the debugger trap.
591 			 * Otherwise, debugger traps "can't happen".
592 			 */
593 #ifdef DDB
594 			if (kdb_trap (type, 0, &frame))
595 				goto out;
596 #endif
597 			break;
598 
599 #if NISA > 0
600 		case T_NMI:
601 #ifdef POWERFAIL_NMI
602 			if (time_second - lastalert > 10) {
603 				log(LOG_WARNING, "NMI: power fail\n");
604 				sysbeep(TIMER_FREQ/880, hz);
605 				lastalert = time_second;
606 			}
607 			goto out;
608 #else /* !POWERFAIL_NMI */
609 			/* machine/parity/power fail/"kitchen sink" faults */
610 			if (isa_nmi(code) == 0) {
611 #ifdef DDB
612 				/*
613 				 * NMI can be hooked up to a pushbutton
614 				 * for debugging.
615 				 */
616 				if (ddb_on_nmi) {
617 					printf ("NMI ... going to debugger\n");
618 					kdb_trap (type, 0, &frame);
619 				}
620 #endif /* DDB */
621 				goto out;
622 			} else if (panic_on_nmi == 0)
623 				goto out;
624 			/* FALL THROUGH */
625 #endif /* POWERFAIL_NMI */
626 #endif /* NISA > 0 */
627 		}
628 
629 		trap_fatal(&frame, eva);
630 		goto out;
631 	}
632 
633 	/* Translate fault for emulators (e.g. Linux) */
634 	if (*p->p_sysent->sv_transtrap)
635 		i = (*p->p_sysent->sv_transtrap)(i, type);
636 
637 	trapsignal(p, i, ucode);
638 
639 #ifdef DEBUG
640 	if (type <= MAX_TRAP_MSG) {
641 		uprintf("fatal process exception: %s",
642 			trap_msg[type]);
643 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
644 			uprintf(", fault VA = 0x%lx", (u_long)eva);
645 		uprintf("\n");
646 	}
647 #endif
648 
649 user:
650 	userret(p, &frame, sticks, 1);
651 out:
652 	mtx_exit(&Giant, MTX_DEF);
653 }
654 
655 #ifdef notyet
656 /*
657  * This version doesn't allow a page fault to user space while
658  * in the kernel. The rest of the kernel needs to be made "safe"
659  * before this can be used. I think the only things remaining
660  * to be made safe are the iBCS2 code and the process tracing/
661  * debugging code.
662  */
663 static int
664 trap_pfault(frame, usermode, eva)
665 	struct trapframe *frame;
666 	int usermode;
667 	vm_offset_t eva;
668 {
669 	vm_offset_t va;
670 	struct vmspace *vm = NULL;
671 	vm_map_t map = 0;
672 	int rv = 0;
673 	vm_prot_t ftype;
674 	struct proc *p = curproc;
675 
676 	if (frame->tf_err & PGEX_W)
677 		ftype = VM_PROT_WRITE;
678 	else
679 		ftype = VM_PROT_READ;
680 
681 	va = trunc_page(eva);
682 	if (va < VM_MIN_KERNEL_ADDRESS) {
683 		vm_offset_t v;
684 		vm_page_t mpte;
685 
686 		if (p == NULL ||
687 		    (!usermode && va < VM_MAXUSER_ADDRESS &&
688 		     (intr_nesting_level != 0 || curpcb == NULL ||
689 		      curpcb->pcb_onfault == NULL))) {
690 			trap_fatal(frame, eva);
691 			return (-1);
692 		}
693 
694 		/*
695 		 * This is a fault on non-kernel virtual memory.
696 		 * vm is initialized above to NULL. If curproc is NULL
697 		 * or curproc->p_vmspace is NULL the fault is fatal.
698 		 */
699 		vm = p->p_vmspace;
700 		if (vm == NULL)
701 			goto nogo;
702 
703 		map = &vm->vm_map;
704 
705 		/*
706 		 * Keep swapout from messing with us during this
707 		 *	critical time.
708 		 */
709 		++p->p_lock;
710 
711 		/*
712 		 * Grow the stack if necessary
713 		 */
714 		/* grow_stack returns false only if va falls into
715 		 * a growable stack region and the stack growth
716 		 * fails.  It returns true if va was not within
717 		 * a growable stack region, or if the stack
718 		 * growth succeeded.
719 		 */
720 		if (!grow_stack (p, va)) {
721 			rv = KERN_FAILURE;
722 			--p->p_lock;
723 			goto nogo;
724 		}
725 
726 		/* Fault in the user page: */
727 		rv = vm_fault(map, va, ftype,
728 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
729 						      : VM_FAULT_NORMAL);
730 
731 		--p->p_lock;
732 	} else {
733 		/*
734 		 * Don't allow user-mode faults in kernel address space.
735 		 */
736 		if (usermode)
737 			goto nogo;
738 
739 		/*
740 		 * Since we know that kernel virtual address addresses
741 		 * always have pte pages mapped, we just have to fault
742 		 * the page.
743 		 */
744 		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
745 	}
746 
747 	if (rv == KERN_SUCCESS)
748 		return (0);
749 nogo:
750 	if (!usermode) {
751 		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
752 			frame->tf_eip = (int)curpcb->pcb_onfault;
753 			return (0);
754 		}
755 		trap_fatal(frame, eva);
756 		return (-1);
757 	}
758 
759 	/* kludge to pass faulting virtual address to sendsig */
760 	frame->tf_err = eva;
761 
762 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
763 }
764 #endif
765 
766 int
767 trap_pfault(frame, usermode, eva)
768 	struct trapframe *frame;
769 	int usermode;
770 	vm_offset_t eva;
771 {
772 	vm_offset_t va;
773 	struct vmspace *vm = NULL;
774 	vm_map_t map = 0;
775 	int rv = 0;
776 	vm_prot_t ftype;
777 	struct proc *p = curproc;
778 
779 	va = trunc_page(eva);
780 	if (va >= KERNBASE) {
781 		/*
782 		 * Don't allow user-mode faults in kernel address space.
783 		 * An exception:  if the faulting address is the invalid
784 		 * instruction entry in the IDT, then the Intel Pentium
785 		 * F00F bug workaround was triggered, and we need to
786 		 * treat it is as an illegal instruction, and not a page
787 		 * fault.
788 		 */
789 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
790 		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
791 			return -2;
792 #endif
793 		if (usermode)
794 			goto nogo;
795 
796 		map = kernel_map;
797 	} else {
798 		/*
799 		 * This is a fault on non-kernel virtual memory.
800 		 * vm is initialized above to NULL. If curproc is NULL
801 		 * or curproc->p_vmspace is NULL the fault is fatal.
802 		 */
803 		if (p != NULL)
804 			vm = p->p_vmspace;
805 
806 		if (vm == NULL)
807 			goto nogo;
808 
809 		map = &vm->vm_map;
810 	}
811 
812 	if (frame->tf_err & PGEX_W)
813 		ftype = VM_PROT_WRITE;
814 	else
815 		ftype = VM_PROT_READ;
816 
817 	if (map != kernel_map) {
818 		/*
819 		 * Keep swapout from messing with us during this
820 		 *	critical time.
821 		 */
822 		++p->p_lock;
823 
824 		/*
825 		 * Grow the stack if necessary
826 		 */
827 		/* grow_stack returns false only if va falls into
828 		 * a growable stack region and the stack growth
829 		 * fails.  It returns true if va was not within
830 		 * a growable stack region, or if the stack
831 		 * growth succeeded.
832 		 */
833 		if (!grow_stack (p, va)) {
834 			rv = KERN_FAILURE;
835 			--p->p_lock;
836 			goto nogo;
837 		}
838 
839 		/* Fault in the user page: */
840 		rv = vm_fault(map, va, ftype,
841 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
842 						      : VM_FAULT_NORMAL);
843 
844 		--p->p_lock;
845 	} else {
846 		/*
847 		 * Don't have to worry about process locking or stacks in the kernel.
848 		 */
849 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
850 	}
851 
852 	if (rv == KERN_SUCCESS)
853 		return (0);
854 nogo:
855 	if (!usermode) {
856 		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
857 			frame->tf_eip = (int)curpcb->pcb_onfault;
858 			return (0);
859 		}
860 		trap_fatal(frame, eva);
861 		return (-1);
862 	}
863 
864 	/* kludge to pass faulting virtual address to sendsig */
865 	frame->tf_err = eva;
866 
867 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
868 }
869 
870 static void
871 trap_fatal(frame, eva)
872 	struct trapframe *frame;
873 	vm_offset_t eva;
874 {
875 	int code, type, ss, esp;
876 	struct soft_segment_descriptor softseg;
877 
878 	code = frame->tf_err;
879 	type = frame->tf_trapno;
880 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
881 
882 	if (type <= MAX_TRAP_MSG)
883 		printf("\n\nFatal trap %d: %s while in %s mode\n",
884 			type, trap_msg[type],
885         		frame->tf_eflags & PSL_VM ? "vm86" :
886 			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
887 #ifdef SMP
888 	/* two seperate prints in case of a trap on an unmapped page */
889 	printf("cpuid = %d; ", cpuid);
890 	printf("lapic.id = %08x\n", lapic.id);
891 #endif
892 	if (type == T_PAGEFLT) {
893 		printf("fault virtual address	= 0x%x\n", eva);
894 		printf("fault code		= %s %s, %s\n",
895 			code & PGEX_U ? "user" : "supervisor",
896 			code & PGEX_W ? "write" : "read",
897 			code & PGEX_P ? "protection violation" : "page not present");
898 	}
899 	printf("instruction pointer	= 0x%x:0x%x\n",
900 	       frame->tf_cs & 0xffff, frame->tf_eip);
901         if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
902 		ss = frame->tf_ss & 0xffff;
903 		esp = frame->tf_esp;
904 	} else {
905 		ss = GSEL(GDATA_SEL, SEL_KPL);
906 		esp = (int)&frame->tf_esp;
907 	}
908 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
909 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
910 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
911 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
912 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
913 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
914 	       softseg.ssd_gran);
915 	printf("processor eflags	= ");
916 	if (frame->tf_eflags & PSL_T)
917 		printf("trace trap, ");
918 	if (frame->tf_eflags & PSL_I)
919 		printf("interrupt enabled, ");
920 	if (frame->tf_eflags & PSL_NT)
921 		printf("nested task, ");
922 	if (frame->tf_eflags & PSL_RF)
923 		printf("resume, ");
924 	if (frame->tf_eflags & PSL_VM)
925 		printf("vm86, ");
926 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
927 	printf("current process		= ");
928 	if (curproc) {
929 		printf("%lu (%s)\n",
930 		    (u_long)curproc->p_pid, curproc->p_comm ?
931 		    curproc->p_comm : "");
932 	} else {
933 		printf("Idle\n");
934 	}
935 
936 #ifdef KDB
937 	if (kdb_trap(&psl))
938 		return;
939 #endif
940 #ifdef DDB
941 	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
942 		return;
943 #endif
944 	printf("trap number		= %d\n", type);
945 	if (type <= MAX_TRAP_MSG)
946 		panic(trap_msg[type]);
947 	else
948 		panic("unknown/reserved trap");
949 }
950 
951 /*
952  * Double fault handler. Called when a fault occurs while writing
953  * a frame for a trap/exception onto the stack. This usually occurs
954  * when the stack overflows (such is the case with infinite recursion,
955  * for example).
956  *
957  * XXX Note that the current PTD gets replaced by IdlePTD when the
958  * task switch occurs. This means that the stack that was active at
959  * the time of the double fault is not available at <kstack> unless
960  * the machine was idle when the double fault occurred. The downside
961  * of this is that "trace <ebp>" in ddb won't work.
962  */
963 void
964 dblfault_handler()
965 {
966 	printf("\nFatal double fault:\n");
967 	printf("eip = 0x%x\n", common_tss.tss_eip);
968 	printf("esp = 0x%x\n", common_tss.tss_esp);
969 	printf("ebp = 0x%x\n", common_tss.tss_ebp);
970 #ifdef SMP
971 	/* two seperate prints in case of a trap on an unmapped page */
972 	printf("cpuid = %d; ", cpuid);
973 	printf("lapic.id = %08x\n", lapic.id);
974 #endif
975 	panic("double fault");
976 }
977 
978 /*
979  * Compensate for 386 brain damage (missing URKR).
980  * This is a little simpler than the pagefault handler in trap() because
981  * it the page tables have already been faulted in and high addresses
982  * are thrown out early for other reasons.
983  */
984 int trapwrite(addr)
985 	unsigned addr;
986 {
987 	struct proc *p;
988 	vm_offset_t va;
989 	struct vmspace *vm;
990 	int rv;
991 
992 	va = trunc_page((vm_offset_t)addr);
993 	/*
994 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
995 	 */
996 	if (va >= VM_MAXUSER_ADDRESS)
997 		return (1);
998 
999 	p = curproc;
1000 	vm = p->p_vmspace;
1001 
1002 	++p->p_lock;
1003 
1004 	if (!grow_stack (p, va)) {
1005 		--p->p_lock;
1006 		return (1);
1007 	}
1008 
1009 	/*
1010 	 * fault the data page
1011 	 */
1012 	rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1013 
1014 	--p->p_lock;
1015 
1016 	if (rv != KERN_SUCCESS)
1017 		return 1;
1018 
1019 	return (0);
1020 }
1021 
1022 /*
1023  *	syscall2 -	MP aware system call request C handler
1024  *
1025  *	A system call is essentially treated as a trap except that the
1026  *	MP lock is not held on entry or return.  We are responsible for
1027  *	obtaining the MP lock if necessary and for handling ASTs
1028  *	(e.g. a task switch) prior to return.
1029  *
1030  *	In general, only simple access and manipulation of curproc and
1031  *	the current stack is allowed without having to hold MP lock.
1032  */
1033 void
1034 syscall2(frame)
1035 	struct trapframe frame;
1036 {
1037 	caddr_t params;
1038 	int i;
1039 	struct sysent *callp;
1040 	struct proc *p = curproc;
1041 	u_quad_t sticks;
1042 	int error;
1043 	int narg;
1044 	int args[8];
1045 	int have_giant = 0;
1046 	u_int code;
1047 
1048 	atomic_add_int(&cnt.v_syscall, 1);
1049 
1050 #ifdef DIAGNOSTIC
1051 	if (ISPL(frame.tf_cs) != SEL_UPL) {
1052 		mtx_enter(&Giant, MTX_DEF);
1053 		panic("syscall");
1054 		/* NOT REACHED */
1055 	}
1056 #endif
1057 
1058 	/*
1059 	 * handle atomicy by looping since interrupts are enabled and the
1060 	 * MP lock is not held.
1061 	 */
1062 	sticks = ((volatile struct proc *)p)->p_sticks;
1063 	while (sticks != ((volatile struct proc *)p)->p_sticks)
1064 		sticks = ((volatile struct proc *)p)->p_sticks;
1065 
1066 	p->p_md.md_regs = &frame;
1067 	params = (caddr_t)frame.tf_esp + sizeof(int);
1068 	code = frame.tf_eax;
1069 
1070 	if (p->p_sysent->sv_prepsyscall) {
1071 		/*
1072 		 * The prep code is not MP aware.
1073 		 */
1074 		mtx_enter(&Giant, MTX_DEF);
1075 		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1076 		mtx_exit(&Giant, MTX_DEF);
1077 	} else {
1078 		/*
1079 		 * Need to check if this is a 32 bit or 64 bit syscall.
1080 		 * fuword is MP aware.
1081 		 */
1082 		if (code == SYS_syscall) {
1083 			/*
1084 			 * Code is first argument, followed by actual args.
1085 			 */
1086 			code = fuword(params);
1087 			params += sizeof(int);
1088 		} else if (code == SYS___syscall) {
1089 			/*
1090 			 * Like syscall, but code is a quad, so as to maintain
1091 			 * quad alignment for the rest of the arguments.
1092 			 */
1093 			code = fuword(params);
1094 			params += sizeof(quad_t);
1095 		}
1096 	}
1097 
1098  	if (p->p_sysent->sv_mask)
1099  		code &= p->p_sysent->sv_mask;
1100 
1101  	if (code >= p->p_sysent->sv_size)
1102  		callp = &p->p_sysent->sv_table[0];
1103   	else
1104  		callp = &p->p_sysent->sv_table[code];
1105 
1106 	narg = callp->sy_narg & SYF_ARGMASK;
1107 
1108 	/*
1109 	 * copyin is MP aware, but the tracing code is not
1110 	 */
1111 	if (params && (i = narg * sizeof(int)) &&
1112 	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1113 		mtx_enter(&Giant, MTX_DEF);
1114 		have_giant = 1;
1115 #ifdef KTRACE
1116 		if (KTRPOINT(p, KTR_SYSCALL))
1117 			ktrsyscall(p->p_tracep, code, narg, args);
1118 #endif
1119 		goto bad;
1120 	}
1121 
1122 	/*
1123 	 * Try to run the syscall without the MP lock if the syscall
1124 	 * is MP safe.  We have to obtain the MP lock no matter what if
1125 	 * we are ktracing
1126 	 */
1127 	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1128 		mtx_enter(&Giant, MTX_DEF);
1129 		have_giant = 1;
1130 	}
1131 
1132 #ifdef KTRACE
1133 	if (KTRPOINT(p, KTR_SYSCALL)) {
1134 		if (have_giant == 0) {
1135 			mtx_enter(&Giant, MTX_DEF);
1136 			have_giant = 1;
1137 		}
1138 		ktrsyscall(p->p_tracep, code, narg, args);
1139 	}
1140 #endif
1141 	p->p_retval[0] = 0;
1142 	p->p_retval[1] = frame.tf_edx;
1143 
1144 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1145 
1146 	error = (*callp->sy_call)(p, args);
1147 
1148 	/*
1149 	 * MP SAFE (we may or may not have the MP lock at this point)
1150 	 */
1151 	switch (error) {
1152 	case 0:
1153 		/*
1154 		 * Reinitialize proc pointer `p' as it may be different
1155 		 * if this is a child returning from fork syscall.
1156 		 */
1157 		p = curproc;
1158 		frame.tf_eax = p->p_retval[0];
1159 		frame.tf_edx = p->p_retval[1];
1160 		frame.tf_eflags &= ~PSL_C;
1161 		break;
1162 
1163 	case ERESTART:
1164 		/*
1165 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1166 		 * int 0x80 is 2 bytes. We saved this in tf_err.
1167 		 */
1168 		frame.tf_eip -= frame.tf_err;
1169 		break;
1170 
1171 	case EJUSTRETURN:
1172 		break;
1173 
1174 	default:
1175 bad:
1176  		if (p->p_sysent->sv_errsize) {
1177  			if (error >= p->p_sysent->sv_errsize)
1178   				error = -1;	/* XXX */
1179    			else
1180   				error = p->p_sysent->sv_errtbl[error];
1181 		}
1182 		frame.tf_eax = error;
1183 		frame.tf_eflags |= PSL_C;
1184 		break;
1185 	}
1186 
1187 	/*
1188 	 * Traced syscall.  trapsignal() is not MP aware.
1189 	 */
1190 	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1191 		if (have_giant == 0) {
1192 			mtx_enter(&Giant, MTX_DEF);
1193 			have_giant = 1;
1194 		}
1195 		frame.tf_eflags &= ~PSL_T;
1196 		trapsignal(p, SIGTRAP, 0);
1197 	}
1198 
1199 	/*
1200 	 * Handle reschedule and other end-of-syscall issues
1201 	 */
1202 	have_giant = userret(p, &frame, sticks, have_giant);
1203 
1204 #ifdef KTRACE
1205 	if (KTRPOINT(p, KTR_SYSRET)) {
1206 		if (have_giant == 0) {
1207 			mtx_enter(&Giant, MTX_DEF);
1208 			have_giant = 1;
1209 		}
1210 		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1211 	}
1212 #endif
1213 
1214 	/*
1215 	 * This works because errno is findable through the
1216 	 * register set.  If we ever support an emulation where this
1217 	 * is not the case, this code will need to be revisited.
1218 	 */
1219 	STOPEVENT(p, S_SCX, code);
1220 
1221 	/*
1222 	 * Release the MP lock if we had to get it
1223 	 */
1224 	if (have_giant)
1225 		mtx_exit(&Giant, MTX_DEF);
1226 
1227 	mtx_assert(&sched_lock, MA_NOTOWNED);
1228 	mtx_assert(&Giant, MA_NOTOWNED);
1229 #ifdef WITNESS
1230 	if (witness_list(p)) {
1231 		panic("system call %s returning with mutex(s) held\n",
1232 		    syscallnames[code]);
1233 	}
1234 #endif
1235 }
1236 
1237 void
1238 ast(frame)
1239 	struct trapframe frame;
1240 {
1241 	struct proc *p = CURPROC;
1242 	u_quad_t sticks;
1243 
1244 	/*
1245 	 * handle atomicy by looping since interrupts are enabled and the
1246 	 * MP lock is not held.
1247 	 */
1248 	sticks = ((volatile struct proc *)p)->p_sticks;
1249 	while (sticks != ((volatile struct proc *)p)->p_sticks)
1250 		sticks = ((volatile struct proc *)p)->p_sticks;
1251 
1252 	astoff();
1253 	atomic_add_int(&cnt.v_soft, 1);
1254 	if (p->p_flag & P_OWEUPC) {
1255 		mtx_enter(&Giant, MTX_DEF);
1256 		p->p_flag &= ~P_OWEUPC;
1257 		addupc_task(p, p->p_stats->p_prof.pr_addr,
1258 			    p->p_stats->p_prof.pr_ticks);
1259 	}
1260 	if (p->p_flag & P_ALRMPEND) {
1261 		if (!mtx_owned(&Giant))
1262 			mtx_enter(&Giant, MTX_DEF);
1263 		p->p_flag &= ~P_ALRMPEND;
1264 		psignal(p, SIGVTALRM);
1265 	}
1266 	if (p->p_flag & P_PROFPEND) {
1267 		if (!mtx_owned(&Giant))
1268 			mtx_enter(&Giant, MTX_DEF);
1269 		p->p_flag &= ~P_PROFPEND;
1270 		psignal(p, SIGPROF);
1271 	}
1272 	if (userret(p, &frame, sticks, mtx_owned(&Giant)) != 0)
1273 		mtx_exit(&Giant, MTX_DEF);
1274 }
1275 
1276 /*
1277  * Simplified back end of syscall(), used when returning from fork()
1278  * directly into user mode.  Giant is not held on entry, and must not
1279  * be held on return.
1280  */
1281 void
1282 fork_return(p, frame)
1283 	struct proc *p;
1284 	struct trapframe frame;
1285 {
1286 	int	have_giant;
1287 
1288 	frame.tf_eax = 0;		/* Child returns zero */
1289 	frame.tf_eflags &= ~PSL_C;	/* success */
1290 	frame.tf_edx = 1;
1291 
1292 	have_giant = userret(p, &frame, 0, mtx_owned(&Giant));
1293 #ifdef KTRACE
1294 	if (KTRPOINT(p, KTR_SYSRET)) {
1295 		if (have_giant == 0) {
1296 			mtx_enter(&Giant, MTX_DEF);
1297 			have_giant = 1;
1298 		}
1299 		ktrsysret(p->p_tracep, SYS_fork, 0, 0);
1300 	}
1301 #endif
1302 	if (have_giant)
1303 		mtx_exit(&Giant, MTX_DEF);
1304 }
1305