xref: /freebsd/sys/kern/subr_trap.c (revision 99e8005137088aafb1350e23b113d69b01b0820f)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  * $FreeBSD$
39  */
40 
41 /*
42  * 386 Trap and System call handling
43  */
44 
45 #include "opt_clock.h"
46 #include "opt_cpu.h"
47 #include "opt_ddb.h"
48 #include "opt_isa.h"
49 #include "opt_ktrace.h"
50 #include "opt_npx.h"
51 #include "opt_trap.h"
52 
53 #include <sys/param.h>
54 #include <sys/bus.h>
55 #include <sys/systm.h>
56 #include <sys/proc.h>
57 #include <sys/pioctl.h>
58 #include <sys/kernel.h>
59 #include <sys/ktr.h>
60 #include <sys/mutex.h>
61 #include <sys/resourcevar.h>
62 #include <sys/signalvar.h>
63 #include <sys/syscall.h>
64 #include <sys/sysctl.h>
65 #include <sys/sysent.h>
66 #include <sys/uio.h>
67 #include <sys/vmmeter.h>
68 #ifdef KTRACE
69 #include <sys/ktrace.h>
70 #endif
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <sys/lock.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_page.h>
79 #include <vm/vm_extern.h>
80 
81 #include <machine/cpu.h>
82 #include <machine/md_var.h>
83 #include <machine/pcb.h>
84 #ifdef SMP
85 #include <machine/smp.h>
86 #endif
87 #include <machine/tss.h>
88 
89 #include <i386/isa/icu.h>
90 #include <i386/isa/intr_machdep.h>
91 
92 #ifdef POWERFAIL_NMI
93 #include <sys/syslog.h>
94 #include <machine/clock.h>
95 #endif
96 
97 #include <machine/vm86.h>
98 
99 #include <ddb/ddb.h>
100 
101 #include <sys/sysctl.h>
102 
103 int (*pmath_emulate) __P((struct trapframe *));
104 
105 extern void trap __P((struct trapframe frame));
106 extern int trapwrite __P((unsigned addr));
107 extern void syscall __P((struct trapframe frame));
108 extern void ast __P((struct trapframe *framep));
109 
110 static int trap_pfault __P((struct trapframe *, int, vm_offset_t));
111 static void trap_fatal __P((struct trapframe *, vm_offset_t));
112 void dblfault_handler __P((void));
113 
114 extern inthand_t IDTVEC(lcall_syscall);
115 
116 #define MAX_TRAP_MSG		28
117 static char *trap_msg[] = {
118 	"",					/*  0 unused */
119 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
120 	"",					/*  2 unused */
121 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
122 	"",					/*  4 unused */
123 	"",					/*  5 unused */
124 	"arithmetic trap",			/*  6 T_ARITHTRAP */
125 	"",					/*  7 unused */
126 	"",					/*  8 unused */
127 	"general protection fault",		/*  9 T_PROTFLT */
128 	"trace trap",				/* 10 T_TRCTRAP */
129 	"",					/* 11 unused */
130 	"page fault",				/* 12 T_PAGEFLT */
131 	"",					/* 13 unused */
132 	"alignment fault",			/* 14 T_ALIGNFLT */
133 	"",					/* 15 unused */
134 	"",					/* 16 unused */
135 	"",					/* 17 unused */
136 	"integer divide fault",			/* 18 T_DIVIDE */
137 	"non-maskable interrupt trap",		/* 19 T_NMI */
138 	"overflow trap",			/* 20 T_OFLOW */
139 	"FPU bounds check fault",		/* 21 T_BOUND */
140 	"FPU device not available",		/* 22 T_DNA */
141 	"double fault",				/* 23 T_DOUBLEFLT */
142 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
143 	"invalid TSS fault",			/* 25 T_TSSFLT */
144 	"segment not present fault",		/* 26 T_SEGNPFLT */
145 	"stack fault",				/* 27 T_STKFLT */
146 	"machine check trap",			/* 28 T_MCHK */
147 };
148 
149 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
150 extern int has_f00f_bug;
151 #endif
152 
153 #ifdef DDB
154 static int ddb_on_nmi = 1;
155 SYSCTL_INT(_machdep, OID_AUTO, ddb_on_nmi, CTLFLAG_RW,
156 	&ddb_on_nmi, 0, "Go to DDB on NMI");
157 #endif
158 static int panic_on_nmi = 1;
159 SYSCTL_INT(_machdep, OID_AUTO, panic_on_nmi, CTLFLAG_RW,
160 	&panic_on_nmi, 0, "Panic on NMI");
161 
162 #ifdef WITNESS
163 extern char *syscallnames[];
164 #endif
165 
166 void
167 userret(p, frame, oticks)
168 	struct proc *p;
169 	struct trapframe *frame;
170 	u_quad_t oticks;
171 {
172 	int sig;
173 
174 	while ((sig = CURSIG(p)) != 0)
175 		postsig(sig);
176 
177 	mtx_lock_spin(&sched_lock);
178 	p->p_pri.pri_level = p->p_pri.pri_user;
179 	if (resched_wanted(p)) {
180 		/*
181 		 * Since we are curproc, clock will normally just change
182 		 * our priority without moving us from one queue to another
183 		 * (since the running process is not on a queue.)
184 		 * If that happened after we setrunqueue ourselves but before we
185 		 * mi_switch()'ed, we might not be on the queue indicated by
186 		 * our priority.
187 		 */
188 		DROP_GIANT_NOSWITCH();
189 		setrunqueue(p);
190 		p->p_stats->p_ru.ru_nivcsw++;
191 		mi_switch();
192 		mtx_unlock_spin(&sched_lock);
193 		PICKUP_GIANT();
194 		while ((sig = CURSIG(p)) != 0)
195 			postsig(sig);
196 		mtx_lock_spin(&sched_lock);
197 	}
198 
199 	/*
200 	 * Charge system time if profiling.
201 	 */
202 	if (p->p_sflag & PS_PROFIL) {
203 		mtx_unlock_spin(&sched_lock);
204 		/* XXX - do we need Giant? */
205 		if (!mtx_owned(&Giant))
206 			mtx_lock(&Giant);
207 		addupc_task(p, TRAPF_PC(frame),
208 			    (u_int)(p->p_sticks - oticks) * psratio);
209 	} else
210 		mtx_unlock_spin(&sched_lock);
211 }
212 
213 /*
214  * Exception, fault, and trap interface to the FreeBSD kernel.
215  * This common code is called from assembly language IDT gate entry
216  * routines that prepare a suitable stack frame, and restore this
217  * frame after the exception has been processed.
218  */
219 
220 void
221 trap(frame)
222 	struct trapframe frame;
223 {
224 	struct proc *p = curproc;
225 	u_quad_t sticks = 0;
226 	int i = 0, ucode = 0, type, code;
227 	vm_offset_t eva;
228 #ifdef POWERFAIL_NMI
229 	static int lastalert = 0;
230 #endif
231 
232 	atomic_add_int(&cnt.v_trap, 1);
233 
234 	if ((frame.tf_eflags & PSL_I) == 0) {
235 		/*
236 		 * Buggy application or kernel code has disabled
237 		 * interrupts and then trapped.  Enabling interrupts
238 		 * now is wrong, but it is better than running with
239 		 * interrupts disabled until they are accidentally
240 		 * enabled later.  XXX This is really bad if we trap
241 		 * while holding a spin lock.
242 		 */
243 		type = frame.tf_trapno;
244 		if (ISPL(frame.tf_cs) == SEL_UPL || (frame.tf_eflags & PSL_VM))
245 			printf(
246 			    "pid %ld (%s): trap %d with interrupts disabled\n",
247 			    (long)curproc->p_pid, curproc->p_comm, type);
248 		else if (type != T_BPTFLT && type != T_TRCTRAP) {
249 			/*
250 			 * XXX not quite right, since this may be for a
251 			 * multiple fault in user mode.
252 			 */
253 			printf("kernel trap %d with interrupts disabled\n",
254 			    type);
255 			/*
256 			 * We should walk p_heldmtx here and see if any are
257 			 * spin mutexes, and not do this if so.
258 			 */
259 			enable_intr();
260 		}
261 	}
262 
263 	eva = 0;
264 
265 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
266 restart:
267 #endif
268 
269 	type = frame.tf_trapno;
270 	code = frame.tf_err;
271 
272         if ((ISPL(frame.tf_cs) == SEL_UPL) ||
273 	    ((frame.tf_eflags & PSL_VM) && !in_vm86call)) {
274 		/* user trap */
275 
276 		mtx_lock_spin(&sched_lock);
277 		sticks = p->p_sticks;
278 		mtx_unlock_spin(&sched_lock);
279 		p->p_md.md_regs = &frame;
280 
281 		switch (type) {
282 		case T_PRIVINFLT:	/* privileged instruction fault */
283 			ucode = type;
284 			i = SIGILL;
285 			break;
286 
287 		case T_BPTFLT:		/* bpt instruction fault */
288 		case T_TRCTRAP:		/* trace trap */
289 			frame.tf_eflags &= ~PSL_T;
290 			i = SIGTRAP;
291 			break;
292 
293 		case T_ARITHTRAP:	/* arithmetic trap */
294 #ifdef DEV_NPX
295 			ucode = npxtrap();
296 			if (ucode == -1)
297 				return;
298 #else
299 			ucode = code;
300 #endif
301 			i = SIGFPE;
302 			break;
303 
304 			/*
305 			 * The following two traps can happen in
306 			 * vm86 mode, and, if so, we want to handle
307 			 * them specially.
308 			 */
309 		case T_PROTFLT:		/* general protection fault */
310 		case T_STKFLT:		/* stack fault */
311 			if (frame.tf_eflags & PSL_VM) {
312 				mtx_lock(&Giant);
313 				i = vm86_emulate((struct vm86frame *)&frame);
314 				mtx_unlock(&Giant);
315 				if (i == 0)
316 					goto user;
317 				break;
318 			}
319 			/* FALL THROUGH */
320 
321 		case T_SEGNPFLT:	/* segment not present fault */
322 		case T_TSSFLT:		/* invalid TSS fault */
323 		case T_DOUBLEFLT:	/* double fault */
324 		default:
325 			ucode = code + BUS_SEGM_FAULT ;
326 			i = SIGBUS;
327 			break;
328 
329 		case T_PAGEFLT:		/* page fault */
330 			/*
331 			 * For some Cyrix CPUs, %cr2 is clobbered by
332 			 * interrupts.  This problem is worked around by using
333 			 * an interrupt gate for the pagefault handler.  We
334 			 * are finally ready to read %cr2 and then must
335 			 * reenable interrupts.
336 			 */
337 			eva = rcr2();
338 			enable_intr();
339 			i = trap_pfault(&frame, TRUE, eva);
340 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
341 			if (i == -2) {
342 				/*
343 				 * f00f hack workaround has triggered, treat
344 				 * as illegal instruction not page fault.
345 				 */
346 				frame.tf_trapno = T_PRIVINFLT;
347 				goto restart;
348 			}
349 #endif
350 			if (i == -1)
351 				goto out;
352 			if (i == 0)
353 				goto user;
354 
355 			ucode = T_PAGEFLT;
356 			break;
357 
358 		case T_DIVIDE:		/* integer divide fault */
359 			ucode = FPE_INTDIV;
360 			i = SIGFPE;
361 			break;
362 
363 #ifdef DEV_ISA
364 		case T_NMI:
365 #ifdef POWERFAIL_NMI
366 #ifndef TIMER_FREQ
367 #  define TIMER_FREQ 1193182
368 #endif
369 			mtx_lock(&Giant);
370 			if (time_second - lastalert > 10) {
371 				log(LOG_WARNING, "NMI: power fail\n");
372 				sysbeep(TIMER_FREQ/880, hz);
373 				lastalert = time_second;
374 			}
375 			mtx_unlock(&Giant);
376 			goto out;
377 #else /* !POWERFAIL_NMI */
378 			/* machine/parity/power fail/"kitchen sink" faults */
379 			/* XXX Giant */
380 			if (isa_nmi(code) == 0) {
381 #ifdef DDB
382 				/*
383 				 * NMI can be hooked up to a pushbutton
384 				 * for debugging.
385 				 */
386 				if (ddb_on_nmi) {
387 					printf ("NMI ... going to debugger\n");
388 					kdb_trap (type, 0, &frame);
389 				}
390 #endif /* DDB */
391 				goto out;
392 			} else if (panic_on_nmi)
393 				panic("NMI indicates hardware failure");
394 			break;
395 #endif /* POWERFAIL_NMI */
396 #endif /* DEV_ISA */
397 
398 		case T_OFLOW:		/* integer overflow fault */
399 			ucode = FPE_INTOVF;
400 			i = SIGFPE;
401 			break;
402 
403 		case T_BOUND:		/* bounds check fault */
404 			ucode = FPE_FLTSUB;
405 			i = SIGFPE;
406 			break;
407 
408 		case T_DNA:
409 #ifdef DEV_NPX
410 			/* transparent fault (due to context switch "late") */
411 			if (npxdna())
412 				goto out;
413 #endif
414 			if (!pmath_emulate) {
415 				i = SIGFPE;
416 				ucode = FPE_FPU_NP_TRAP;
417 				break;
418 			}
419 			mtx_lock(&Giant);
420 			i = (*pmath_emulate)(&frame);
421 			mtx_unlock(&Giant);
422 			if (i == 0) {
423 				if (!(frame.tf_eflags & PSL_T))
424 					goto out;
425 				frame.tf_eflags &= ~PSL_T;
426 				i = SIGTRAP;
427 			}
428 			/* else ucode = emulator_only_knows() XXX */
429 			break;
430 
431 		case T_FPOPFLT:		/* FPU operand fetch fault */
432 			ucode = T_FPOPFLT;
433 			i = SIGILL;
434 			break;
435 		}
436 	} else {
437 		/* kernel trap */
438 
439 		switch (type) {
440 		case T_PAGEFLT:			/* page fault */
441 			/*
442 			 * For some Cyrix CPUs, %cr2 is clobbered by
443 			 * interrupts.  This problem is worked around by using
444 			 * an interrupt gate for the pagefault handler.  We
445 			 * are finally ready to read %cr2 and then must
446 			 * reenable interrupts.
447 			 */
448 			eva = rcr2();
449 			enable_intr();
450 			(void) trap_pfault(&frame, FALSE, eva);
451 			goto out;
452 
453 		case T_DNA:
454 #ifdef DEV_NPX
455 			/*
456 			 * The kernel is apparently using npx for copying.
457 			 * XXX this should be fatal unless the kernel has
458 			 * registered such use.
459 			 */
460 			if (npxdna())
461 				goto out;
462 #endif
463 			break;
464 
465 			/*
466 			 * The following two traps can happen in
467 			 * vm86 mode, and, if so, we want to handle
468 			 * them specially.
469 			 */
470 		case T_PROTFLT:		/* general protection fault */
471 		case T_STKFLT:		/* stack fault */
472 			if (frame.tf_eflags & PSL_VM) {
473 				mtx_lock(&Giant);
474 				i = vm86_emulate((struct vm86frame *)&frame);
475 				mtx_unlock(&Giant);
476 				if (i != 0)
477 					/*
478 					 * returns to original process
479 					 */
480 					vm86_trap((struct vm86frame *)&frame);
481 				goto out;
482 			}
483 			if (type == T_STKFLT)
484 				break;
485 
486 			/* FALL THROUGH */
487 
488 		case T_SEGNPFLT:	/* segment not present fault */
489 			if (in_vm86call)
490 				break;
491 
492 			if (p->p_intr_nesting_level != 0)
493 				break;
494 
495 			/*
496 			 * Invalid %fs's and %gs's can be created using
497 			 * procfs or PT_SETREGS or by invalidating the
498 			 * underlying LDT entry.  This causes a fault
499 			 * in kernel mode when the kernel attempts to
500 			 * switch contexts.  Lose the bad context
501 			 * (XXX) so that we can continue, and generate
502 			 * a signal.
503 			 */
504 			if (frame.tf_eip == (int)cpu_switch_load_gs) {
505 				PCPU_GET(curpcb)->pcb_gs = 0;
506 				PROC_LOCK(p);
507 				psignal(p, SIGBUS);
508 				PROC_UNLOCK(p);
509 				goto out;
510 			}
511 
512 			/*
513 			 * Invalid segment selectors and out of bounds
514 			 * %eip's and %esp's can be set up in user mode.
515 			 * This causes a fault in kernel mode when the
516 			 * kernel tries to return to user mode.  We want
517 			 * to get this fault so that we can fix the
518 			 * problem here and not have to check all the
519 			 * selectors and pointers when the user changes
520 			 * them.
521 			 */
522 			if (frame.tf_eip == (int)doreti_iret) {
523 				frame.tf_eip = (int)doreti_iret_fault;
524 				goto out;
525 			}
526 			if (frame.tf_eip == (int)doreti_popl_ds) {
527 				frame.tf_eip = (int)doreti_popl_ds_fault;
528 				goto out;
529 			}
530 			if (frame.tf_eip == (int)doreti_popl_es) {
531 				frame.tf_eip = (int)doreti_popl_es_fault;
532 				goto out;
533 			}
534 			if (frame.tf_eip == (int)doreti_popl_fs) {
535 				frame.tf_eip = (int)doreti_popl_fs_fault;
536 				goto out;
537 			}
538 			if (PCPU_GET(curpcb) != NULL &&
539 			    PCPU_GET(curpcb)->pcb_onfault != NULL) {
540 				frame.tf_eip =
541 				    (int)PCPU_GET(curpcb)->pcb_onfault;
542 				goto out;
543 			}
544 			break;
545 
546 		case T_TSSFLT:
547 			/*
548 			 * PSL_NT can be set in user mode and isn't cleared
549 			 * automatically when the kernel is entered.  This
550 			 * causes a TSS fault when the kernel attempts to
551 			 * `iret' because the TSS link is uninitialized.  We
552 			 * want to get this fault so that we can fix the
553 			 * problem here and not every time the kernel is
554 			 * entered.
555 			 */
556 			if (frame.tf_eflags & PSL_NT) {
557 				frame.tf_eflags &= ~PSL_NT;
558 				goto out;
559 			}
560 			break;
561 
562 		case T_TRCTRAP:	 /* trace trap */
563 			if (frame.tf_eip == (int)IDTVEC(lcall_syscall)) {
564 				/*
565 				 * We've just entered system mode via the
566 				 * syscall lcall.  Continue single stepping
567 				 * silently until the syscall handler has
568 				 * saved the flags.
569 				 */
570 				goto out;
571 			}
572 			if (frame.tf_eip == (int)IDTVEC(lcall_syscall) + 1) {
573 				/*
574 				 * The syscall handler has now saved the
575 				 * flags.  Stop single stepping it.
576 				 */
577 				frame.tf_eflags &= ~PSL_T;
578 				goto out;
579 			}
580 			/*
581 			 * Ignore debug register trace traps due to
582 			 * accesses in the user's address space, which
583 			 * can happen under several conditions such as
584 			 * if a user sets a watchpoint on a buffer and
585 			 * then passes that buffer to a system call.
586 			 * We still want to get TRCTRAPS for addresses
587 			 * in kernel space because that is useful when
588 			 * debugging the kernel.
589 			 */
590 			/* XXX Giant */
591 			if (user_dbreg_trap() && !in_vm86call) {
592 				/*
593 				 * Reset breakpoint bits because the
594 				 * processor doesn't
595 				 */
596 				load_dr6(rdr6() & 0xfffffff0);
597 				goto out;
598 			}
599 			/*
600 			 * Fall through (TRCTRAP kernel mode, kernel address)
601 			 */
602 		case T_BPTFLT:
603 			/*
604 			 * If DDB is enabled, let it handle the debugger trap.
605 			 * Otherwise, debugger traps "can't happen".
606 			 */
607 #ifdef DDB
608 			/* XXX Giant */
609 			if (kdb_trap (type, 0, &frame))
610 				goto out;
611 #endif
612 			break;
613 
614 #ifdef DEV_ISA
615 		case T_NMI:
616 #ifdef POWERFAIL_NMI
617 			mtx_lock(&Giant);
618 			if (time_second - lastalert > 10) {
619 				log(LOG_WARNING, "NMI: power fail\n");
620 				sysbeep(TIMER_FREQ/880, hz);
621 				lastalert = time_second;
622 			}
623 			mtx_unlock(&Giant);
624 			goto out;
625 #else /* !POWERFAIL_NMI */
626 			/* XXX Giant */
627 			/* machine/parity/power fail/"kitchen sink" faults */
628 			if (isa_nmi(code) == 0) {
629 #ifdef DDB
630 				/*
631 				 * NMI can be hooked up to a pushbutton
632 				 * for debugging.
633 				 */
634 				if (ddb_on_nmi) {
635 					printf ("NMI ... going to debugger\n");
636 					kdb_trap (type, 0, &frame);
637 				}
638 #endif /* DDB */
639 				goto out;
640 			} else if (panic_on_nmi == 0)
641 				goto out;
642 			/* FALL THROUGH */
643 #endif /* POWERFAIL_NMI */
644 #endif /* DEV_ISA */
645 		}
646 
647 		trap_fatal(&frame, eva);
648 		goto out;
649 	}
650 
651 	mtx_lock(&Giant);
652 	/* Translate fault for emulators (e.g. Linux) */
653 	if (*p->p_sysent->sv_transtrap)
654 		i = (*p->p_sysent->sv_transtrap)(i, type);
655 
656 	trapsignal(p, i, ucode);
657 
658 #ifdef DEBUG
659 	if (type <= MAX_TRAP_MSG) {
660 		uprintf("fatal process exception: %s",
661 			trap_msg[type]);
662 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
663 			uprintf(", fault VA = 0x%lx", (u_long)eva);
664 		uprintf("\n");
665 	}
666 #endif
667 	mtx_unlock(&Giant);
668 
669 user:
670 	userret(p, &frame, sticks);
671 	if (mtx_owned(&Giant))
672 		mtx_unlock(&Giant);
673 out:
674 	return;
675 }
676 
677 #ifdef notyet
678 /*
679  * This version doesn't allow a page fault to user space while
680  * in the kernel. The rest of the kernel needs to be made "safe"
681  * before this can be used. I think the only things remaining
682  * to be made safe are the iBCS2 code and the process tracing/
683  * debugging code.
684  */
685 static int
686 trap_pfault(frame, usermode, eva)
687 	struct trapframe *frame;
688 	int usermode;
689 	vm_offset_t eva;
690 {
691 	vm_offset_t va;
692 	struct vmspace *vm = NULL;
693 	vm_map_t map = 0;
694 	int rv = 0;
695 	vm_prot_t ftype;
696 	struct proc *p = curproc;
697 
698 	if (frame->tf_err & PGEX_W)
699 		ftype = VM_PROT_WRITE;
700 	else
701 		ftype = VM_PROT_READ;
702 
703 	va = trunc_page(eva);
704 	if (va < VM_MIN_KERNEL_ADDRESS) {
705 		vm_offset_t v;
706 		vm_page_t mpte;
707 
708 		if (p == NULL ||
709 		    (!usermode && va < VM_MAXUSER_ADDRESS &&
710 		     (p->p_intr_nesting_level != 0 ||
711 		      PCPU_GET(curpcb) == NULL ||
712 		      PCPU_GET(curpcb)->pcb_onfault == NULL))) {
713 			trap_fatal(frame, eva);
714 			return (-1);
715 		}
716 
717 		/*
718 		 * This is a fault on non-kernel virtual memory.
719 		 * vm is initialized above to NULL. If curproc is NULL
720 		 * or curproc->p_vmspace is NULL the fault is fatal.
721 		 */
722 		vm = p->p_vmspace;
723 		if (vm == NULL)
724 			goto nogo;
725 
726 		map = &vm->vm_map;
727 
728 		/*
729 		 * Keep swapout from messing with us during this
730 		 *	critical time.
731 		 */
732 		PROC_LOCK(p);
733 		++p->p_lock;
734 		PROC_UNLOCK(p);
735 
736 		/*
737 		 * Grow the stack if necessary
738 		 */
739 		/* grow_stack returns false only if va falls into
740 		 * a growable stack region and the stack growth
741 		 * fails.  It returns true if va was not within
742 		 * a growable stack region, or if the stack
743 		 * growth succeeded.
744 		 */
745 		if (!grow_stack (p, va))
746 			rv = KERN_FAILURE;
747 		else
748 			/* Fault in the user page: */
749 			rv = vm_fault(map, va, ftype,
750 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
751 						      : VM_FAULT_NORMAL);
752 
753 		PROC_LOCK(p);
754 		--p->p_lock;
755 		PROC_UNLOCK(p);
756 	} else {
757 		/*
758 		 * Don't allow user-mode faults in kernel address space.
759 		 */
760 		if (usermode)
761 			goto nogo;
762 
763 		/*
764 		 * Since we know that kernel virtual address addresses
765 		 * always have pte pages mapped, we just have to fault
766 		 * the page.
767 		 */
768 		rv = vm_fault(kernel_map, va, ftype, VM_FAULT_NORMAL);
769 	}
770 
771 	if (rv == KERN_SUCCESS)
772 		return (0);
773 nogo:
774 	if (!usermode) {
775 		if (p->p_intr_nesting_level == 0 &&
776 		    PCPU_GET(curpcb) != NULL &&
777 		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
778 			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
779 			return (0);
780 		}
781 		trap_fatal(frame, eva);
782 		return (-1);
783 	}
784 
785 	/* kludge to pass faulting virtual address to sendsig */
786 	frame->tf_err = eva;
787 
788 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
789 }
790 #endif
791 
792 int
793 trap_pfault(frame, usermode, eva)
794 	struct trapframe *frame;
795 	int usermode;
796 	vm_offset_t eva;
797 {
798 	vm_offset_t va;
799 	struct vmspace *vm = NULL;
800 	vm_map_t map = 0;
801 	int rv = 0;
802 	vm_prot_t ftype;
803 	struct proc *p = curproc;
804 
805 	va = trunc_page(eva);
806 	if (va >= KERNBASE) {
807 		/*
808 		 * Don't allow user-mode faults in kernel address space.
809 		 * An exception:  if the faulting address is the invalid
810 		 * instruction entry in the IDT, then the Intel Pentium
811 		 * F00F bug workaround was triggered, and we need to
812 		 * treat it is as an illegal instruction, and not a page
813 		 * fault.
814 		 */
815 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
816 		if ((eva == (unsigned int)&idt[6]) && has_f00f_bug)
817 			return -2;
818 #endif
819 		if (usermode)
820 			goto nogo;
821 
822 		map = kernel_map;
823 	} else {
824 		/*
825 		 * This is a fault on non-kernel virtual memory.
826 		 * vm is initialized above to NULL. If curproc is NULL
827 		 * or curproc->p_vmspace is NULL the fault is fatal.
828 		 */
829 		if (p != NULL)
830 			vm = p->p_vmspace;
831 
832 		if (vm == NULL)
833 			goto nogo;
834 
835 		map = &vm->vm_map;
836 	}
837 
838 	if (frame->tf_err & PGEX_W)
839 		ftype = VM_PROT_WRITE;
840 	else
841 		ftype = VM_PROT_READ;
842 
843 	if (map != kernel_map) {
844 		/*
845 		 * Keep swapout from messing with us during this
846 		 *	critical time.
847 		 */
848 		PROC_LOCK(p);
849 		++p->p_lock;
850 		PROC_UNLOCK(p);
851 
852 		/*
853 		 * Grow the stack if necessary
854 		 */
855 		/* grow_stack returns false only if va falls into
856 		 * a growable stack region and the stack growth
857 		 * fails.  It returns true if va was not within
858 		 * a growable stack region, or if the stack
859 		 * growth succeeded.
860 		 */
861 		if (!grow_stack (p, va))
862 			rv = KERN_FAILURE;
863 		else
864 			/* Fault in the user page: */
865 			rv = vm_fault(map, va, ftype,
866 			      (ftype & VM_PROT_WRITE) ? VM_FAULT_DIRTY
867 						      : VM_FAULT_NORMAL);
868 
869 		PROC_LOCK(p);
870 		--p->p_lock;
871 		PROC_UNLOCK(p);
872 	} else {
873 		/*
874 		 * Don't have to worry about process locking or stacks in the
875 		 * kernel.
876 		 */
877 		rv = vm_fault(map, va, ftype, VM_FAULT_NORMAL);
878 	}
879 
880 	if (rv == KERN_SUCCESS)
881 		return (0);
882 nogo:
883 	if (!usermode) {
884 		if (p->p_intr_nesting_level == 0 &&
885 		    PCPU_GET(curpcb) != NULL &&
886 		    PCPU_GET(curpcb)->pcb_onfault != NULL) {
887 			frame->tf_eip = (int)PCPU_GET(curpcb)->pcb_onfault;
888 			return (0);
889 		}
890 		trap_fatal(frame, eva);
891 		return (-1);
892 	}
893 
894 	/* kludge to pass faulting virtual address to sendsig */
895 	frame->tf_err = eva;
896 
897 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
898 }
899 
900 static void
901 trap_fatal(frame, eva)
902 	struct trapframe *frame;
903 	vm_offset_t eva;
904 {
905 	int code, type, ss, esp;
906 	struct soft_segment_descriptor softseg;
907 
908 	code = frame->tf_err;
909 	type = frame->tf_trapno;
910 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
911 
912 	if (type <= MAX_TRAP_MSG)
913 		printf("\n\nFatal trap %d: %s while in %s mode\n",
914 			type, trap_msg[type],
915         		frame->tf_eflags & PSL_VM ? "vm86" :
916 			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
917 #ifdef SMP
918 	/* two separate prints in case of a trap on an unmapped page */
919 	printf("cpuid = %d; ", PCPU_GET(cpuid));
920 	printf("lapic.id = %08x\n", lapic.id);
921 #endif
922 	if (type == T_PAGEFLT) {
923 		printf("fault virtual address	= 0x%x\n", eva);
924 		printf("fault code		= %s %s, %s\n",
925 			code & PGEX_U ? "user" : "supervisor",
926 			code & PGEX_W ? "write" : "read",
927 			code & PGEX_P ? "protection violation" : "page not present");
928 	}
929 	printf("instruction pointer	= 0x%x:0x%x\n",
930 	       frame->tf_cs & 0xffff, frame->tf_eip);
931         if ((ISPL(frame->tf_cs) == SEL_UPL) || (frame->tf_eflags & PSL_VM)) {
932 		ss = frame->tf_ss & 0xffff;
933 		esp = frame->tf_esp;
934 	} else {
935 		ss = GSEL(GDATA_SEL, SEL_KPL);
936 		esp = (int)&frame->tf_esp;
937 	}
938 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
939 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
940 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
941 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
942 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
943 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
944 	       softseg.ssd_gran);
945 	printf("processor eflags	= ");
946 	if (frame->tf_eflags & PSL_T)
947 		printf("trace trap, ");
948 	if (frame->tf_eflags & PSL_I)
949 		printf("interrupt enabled, ");
950 	if (frame->tf_eflags & PSL_NT)
951 		printf("nested task, ");
952 	if (frame->tf_eflags & PSL_RF)
953 		printf("resume, ");
954 	if (frame->tf_eflags & PSL_VM)
955 		printf("vm86, ");
956 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
957 	printf("current process		= ");
958 	if (curproc) {
959 		printf("%lu (%s)\n",
960 		    (u_long)curproc->p_pid, curproc->p_comm ?
961 		    curproc->p_comm : "");
962 	} else {
963 		printf("Idle\n");
964 	}
965 
966 #ifdef KDB
967 	if (kdb_trap(&psl))
968 		return;
969 #endif
970 #ifdef DDB
971 	if ((debugger_on_panic || db_active) && kdb_trap(type, 0, frame))
972 		return;
973 #endif
974 	printf("trap number		= %d\n", type);
975 	if (type <= MAX_TRAP_MSG)
976 		panic(trap_msg[type]);
977 	else
978 		panic("unknown/reserved trap");
979 }
980 
981 /*
982  * Double fault handler. Called when a fault occurs while writing
983  * a frame for a trap/exception onto the stack. This usually occurs
984  * when the stack overflows (such is the case with infinite recursion,
985  * for example).
986  *
987  * XXX Note that the current PTD gets replaced by IdlePTD when the
988  * task switch occurs. This means that the stack that was active at
989  * the time of the double fault is not available at <kstack> unless
990  * the machine was idle when the double fault occurred. The downside
991  * of this is that "trace <ebp>" in ddb won't work.
992  */
993 void
994 dblfault_handler()
995 {
996 	printf("\nFatal double fault:\n");
997 	printf("eip = 0x%x\n", PCPU_GET(common_tss.tss_eip));
998 	printf("esp = 0x%x\n", PCPU_GET(common_tss.tss_esp));
999 	printf("ebp = 0x%x\n", PCPU_GET(common_tss.tss_ebp));
1000 #ifdef SMP
1001 	/* two separate prints in case of a trap on an unmapped page */
1002 	printf("cpuid = %d; ", PCPU_GET(cpuid));
1003 	printf("lapic.id = %08x\n", lapic.id);
1004 #endif
1005 	panic("double fault");
1006 }
1007 
1008 /*
1009  * Compensate for 386 brain damage (missing URKR).
1010  * This is a little simpler than the pagefault handler in trap() because
1011  * it the page tables have already been faulted in and high addresses
1012  * are thrown out early for other reasons.
1013  */
1014 int trapwrite(addr)
1015 	unsigned addr;
1016 {
1017 	struct proc *p;
1018 	vm_offset_t va;
1019 	struct vmspace *vm;
1020 	int rv;
1021 
1022 	va = trunc_page((vm_offset_t)addr);
1023 	/*
1024 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
1025 	 */
1026 	if (va >= VM_MAXUSER_ADDRESS)
1027 		return (1);
1028 
1029 	p = curproc;
1030 	vm = p->p_vmspace;
1031 
1032 	PROC_LOCK(p);
1033 	++p->p_lock;
1034 	PROC_UNLOCK(p);
1035 
1036 	if (!grow_stack (p, va))
1037 		rv = KERN_FAILURE;
1038 	else
1039 		/*
1040 		 * fault the data page
1041 		 */
1042 		rv = vm_fault(&vm->vm_map, va, VM_PROT_WRITE, VM_FAULT_DIRTY);
1043 
1044 	PROC_LOCK(p);
1045 	--p->p_lock;
1046 	PROC_UNLOCK(p);
1047 
1048 	if (rv != KERN_SUCCESS)
1049 		return 1;
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  *	syscall -	MP aware system call request C handler
1056  *
1057  *	A system call is essentially treated as a trap except that the
1058  *	MP lock is not held on entry or return.  We are responsible for
1059  *	obtaining the MP lock if necessary and for handling ASTs
1060  *	(e.g. a task switch) prior to return.
1061  *
1062  *	In general, only simple access and manipulation of curproc and
1063  *	the current stack is allowed without having to hold MP lock.
1064  */
1065 void
1066 syscall(frame)
1067 	struct trapframe frame;
1068 {
1069 	caddr_t params;
1070 	int i;
1071 	struct sysent *callp;
1072 	struct proc *p = curproc;
1073 	u_quad_t sticks;
1074 	int error;
1075 	int narg;
1076 	int args[8];
1077 	u_int code;
1078 
1079 	atomic_add_int(&cnt.v_syscall, 1);
1080 
1081 #ifdef DIAGNOSTIC
1082 	if (ISPL(frame.tf_cs) != SEL_UPL) {
1083 		mtx_lock(&Giant);
1084 		panic("syscall");
1085 		/* NOT REACHED */
1086 	}
1087 #endif
1088 
1089 	mtx_lock_spin(&sched_lock);
1090 	sticks = p->p_sticks;
1091 	mtx_unlock_spin(&sched_lock);
1092 
1093 	p->p_md.md_regs = &frame;
1094 	params = (caddr_t)frame.tf_esp + sizeof(int);
1095 	code = frame.tf_eax;
1096 
1097 	if (p->p_sysent->sv_prepsyscall) {
1098 		/*
1099 		 * The prep code is not MP aware.
1100 		 */
1101 		mtx_lock(&Giant);
1102 		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
1103 		mtx_unlock(&Giant);
1104 	} else {
1105 		/*
1106 		 * Need to check if this is a 32 bit or 64 bit syscall.
1107 		 * fuword is MP aware.
1108 		 */
1109 		if (code == SYS_syscall) {
1110 			/*
1111 			 * Code is first argument, followed by actual args.
1112 			 */
1113 			code = fuword(params);
1114 			params += sizeof(int);
1115 		} else if (code == SYS___syscall) {
1116 			/*
1117 			 * Like syscall, but code is a quad, so as to maintain
1118 			 * quad alignment for the rest of the arguments.
1119 			 */
1120 			code = fuword(params);
1121 			params += sizeof(quad_t);
1122 		}
1123 	}
1124 
1125  	if (p->p_sysent->sv_mask)
1126  		code &= p->p_sysent->sv_mask;
1127 
1128  	if (code >= p->p_sysent->sv_size)
1129  		callp = &p->p_sysent->sv_table[0];
1130   	else
1131  		callp = &p->p_sysent->sv_table[code];
1132 
1133 	narg = callp->sy_narg & SYF_ARGMASK;
1134 
1135 	/*
1136 	 * copyin is MP aware, but the tracing code is not
1137 	 */
1138 	if (params && (i = narg * sizeof(int)) &&
1139 	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
1140 		mtx_lock(&Giant);
1141 #ifdef KTRACE
1142 		if (KTRPOINT(p, KTR_SYSCALL))
1143 			ktrsyscall(p->p_tracep, code, narg, args);
1144 #endif
1145 		goto bad;
1146 	}
1147 
1148 	/*
1149 	 * Try to run the syscall without the MP lock if the syscall
1150 	 * is MP safe.
1151 	 */
1152 	if ((callp->sy_narg & SYF_MPSAFE) == 0) {
1153 		mtx_lock(&Giant);
1154 	}
1155 
1156 #ifdef KTRACE
1157 	/*
1158 	 * We have to obtain the MP lock no matter what if
1159 	 * we are ktracing
1160 	 */
1161 	if (KTRPOINT(p, KTR_SYSCALL)) {
1162 		if (!mtx_owned(&Giant))
1163 			mtx_lock(&Giant);
1164 		ktrsyscall(p->p_tracep, code, narg, args);
1165 	}
1166 #endif
1167 	p->p_retval[0] = 0;
1168 	p->p_retval[1] = frame.tf_edx;
1169 
1170 	STOPEVENT(p, S_SCE, narg);	/* MP aware */
1171 
1172 	error = (*callp->sy_call)(p, args);
1173 
1174 	/*
1175 	 * MP SAFE (we may or may not have the MP lock at this point)
1176 	 */
1177 	switch (error) {
1178 	case 0:
1179 		frame.tf_eax = p->p_retval[0];
1180 		frame.tf_edx = p->p_retval[1];
1181 		frame.tf_eflags &= ~PSL_C;
1182 		break;
1183 
1184 	case ERESTART:
1185 		/*
1186 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
1187 		 * int 0x80 is 2 bytes. We saved this in tf_err.
1188 		 */
1189 		frame.tf_eip -= frame.tf_err;
1190 		break;
1191 
1192 	case EJUSTRETURN:
1193 		break;
1194 
1195 	default:
1196 bad:
1197  		if (p->p_sysent->sv_errsize) {
1198  			if (error >= p->p_sysent->sv_errsize)
1199   				error = -1;	/* XXX */
1200    			else
1201   				error = p->p_sysent->sv_errtbl[error];
1202 		}
1203 		frame.tf_eax = error;
1204 		frame.tf_eflags |= PSL_C;
1205 		break;
1206 	}
1207 
1208 	/*
1209 	 * Traced syscall.  trapsignal() is not MP aware.
1210 	 */
1211 	if ((frame.tf_eflags & PSL_T) && !(frame.tf_eflags & PSL_VM)) {
1212 		if (!mtx_owned(&Giant))
1213 			mtx_lock(&Giant);
1214 		frame.tf_eflags &= ~PSL_T;
1215 		trapsignal(p, SIGTRAP, 0);
1216 	}
1217 
1218 	/*
1219 	 * Handle reschedule and other end-of-syscall issues
1220 	 */
1221 	userret(p, &frame, sticks);
1222 
1223 #ifdef KTRACE
1224 	if (KTRPOINT(p, KTR_SYSRET)) {
1225 		if (!mtx_owned(&Giant))
1226 			mtx_lock(&Giant);
1227 		ktrsysret(p->p_tracep, code, error, p->p_retval[0]);
1228 	}
1229 #endif
1230 
1231 	/*
1232 	 * Release Giant if we had to get it
1233 	 */
1234 	if (mtx_owned(&Giant))
1235 		mtx_unlock(&Giant);
1236 
1237 	/*
1238 	 * This works because errno is findable through the
1239 	 * register set.  If we ever support an emulation where this
1240 	 * is not the case, this code will need to be revisited.
1241 	 */
1242 	STOPEVENT(p, S_SCX, code);
1243 
1244 #ifdef WITNESS
1245 	if (witness_list(p)) {
1246 		panic("system call %s returning with mutex(s) held\n",
1247 		    syscallnames[code]);
1248 	}
1249 #endif
1250 	mtx_assert(&sched_lock, MA_NOTOWNED);
1251 	mtx_assert(&Giant, MA_NOTOWNED);
1252 }
1253 
1254 void
1255 ast(framep)
1256 	struct trapframe *framep;
1257 {
1258 	struct proc *p = CURPROC;
1259 	u_quad_t sticks;
1260 #if defined(DEV_NPX) && !defined(SMP)
1261 	int ucode;
1262 #endif
1263 
1264 	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
1265 
1266 	/*
1267 	 * We check for a pending AST here rather than in the assembly as
1268 	 * acquiring and releasing mutexes in assembly is not fun.
1269 	 */
1270 	mtx_lock_spin(&sched_lock);
1271 	if (!(astpending(p) || resched_wanted(p))) {
1272 		mtx_unlock_spin(&sched_lock);
1273 		return;
1274 	}
1275 
1276 	sticks = p->p_sticks;
1277 	p->p_md.md_regs = framep;
1278 
1279 	astoff(p);
1280 	cnt.v_soft++;
1281 	mtx_intr_enable(&sched_lock);
1282 	if (p->p_sflag & PS_OWEUPC) {
1283 		p->p_sflag &= ~PS_OWEUPC;
1284 		mtx_unlock_spin(&sched_lock);
1285 		mtx_lock(&Giant);
1286 		mtx_lock_spin(&sched_lock);
1287 		addupc_task(p, p->p_stats->p_prof.pr_addr,
1288 			    p->p_stats->p_prof.pr_ticks);
1289 	}
1290 	if (p->p_sflag & PS_ALRMPEND) {
1291 		p->p_sflag &= ~PS_ALRMPEND;
1292 		mtx_unlock_spin(&sched_lock);
1293 		PROC_LOCK(p);
1294 		psignal(p, SIGVTALRM);
1295 		PROC_UNLOCK(p);
1296 		mtx_lock_spin(&sched_lock);
1297 	}
1298 #if defined(DEV_NPX) && !defined(SMP)
1299 	if (PCPU_GET(curpcb)->pcb_flags & PCB_NPXTRAP) {
1300 		PCPU_GET(curpcb)->pcb_flags &= ~PCB_NPXTRAP;
1301 		mtx_unlock_spin(&sched_lock);
1302 		ucode = npxtrap();
1303 		if (ucode != -1) {
1304 			if (!mtx_owned(&Giant))
1305 				mtx_lock(&Giant);
1306 			trapsignal(p, SIGFPE, ucode);
1307 		}
1308 		mtx_lock_spin(&sched_lock);
1309 	}
1310 #endif
1311 	if (p->p_sflag & PS_PROFPEND) {
1312 		p->p_sflag &= ~PS_PROFPEND;
1313 		mtx_unlock_spin(&sched_lock);
1314 		PROC_LOCK(p);
1315 		psignal(p, SIGPROF);
1316 		PROC_UNLOCK(p);
1317 	} else
1318 		mtx_unlock_spin(&sched_lock);
1319 
1320 	userret(p, framep, sticks);
1321 
1322 	if (mtx_owned(&Giant))
1323 		mtx_unlock(&Giant);
1324 }
1325