xref: /freebsd/sys/kern/subr_trap.c (revision 3e0f6b97b257a96f7275e4442204263e44b16686)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  *	$FreeBSD$
39  */
40 
41 /*
42  * 386 Trap and System call handling
43  */
44 
45 #include "opt_ktrace.h"
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/acct.h>
52 #include <sys/kernel.h>
53 #include <sys/syscall.h>
54 #include <sys/sysent.h>
55 #include <sys/queue.h>
56 #include <sys/vmmeter.h>
57 #ifdef KTRACE
58 #include <sys/ktrace.h>
59 #endif
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_prot.h>
64 #include <sys/lock.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_extern.h>
70 
71 #include <sys/user.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/md_var.h>
75 #include <machine/psl.h>
76 #include <machine/reg.h>
77 #include <machine/trap.h>
78 #include <machine/../isa/isa_device.h>
79 
80 #ifdef POWERFAIL_NMI
81 #include <sys/syslog.h>
82 #include <machine/clock.h>
83 #endif
84 
85 #include "isa.h"
86 #include "npx.h"
87 
88 int (*pmath_emulate) __P((struct trapframe *));
89 
90 extern void trap __P((struct trapframe frame));
91 extern int trapwrite __P((unsigned addr));
92 extern void syscall __P((struct trapframe frame));
93 
94 static int trap_pfault __P((struct trapframe *, int));
95 static void trap_fatal __P((struct trapframe *));
96 void dblfault_handler __P((void));
97 
98 extern inthand_t IDTVEC(syscall);
99 
100 #define MAX_TRAP_MSG		28
101 static char *trap_msg[] = {
102 	"",					/*  0 unused */
103 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
104 	"",					/*  2 unused */
105 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
106 	"",					/*  4 unused */
107 	"",					/*  5 unused */
108 	"arithmetic trap",			/*  6 T_ARITHTRAP */
109 	"system forced exception",		/*  7 T_ASTFLT */
110 	"",					/*  8 unused */
111 	"general protection fault",		/*  9 T_PROTFLT */
112 	"trace trap",				/* 10 T_TRCTRAP */
113 	"",					/* 11 unused */
114 	"page fault",				/* 12 T_PAGEFLT */
115 	"",					/* 13 unused */
116 	"alignment fault",			/* 14 T_ALIGNFLT */
117 	"",					/* 15 unused */
118 	"",					/* 16 unused */
119 	"",					/* 17 unused */
120 	"integer divide fault",			/* 18 T_DIVIDE */
121 	"non-maskable interrupt trap",		/* 19 T_NMI */
122 	"overflow trap",			/* 20 T_OFLOW */
123 	"FPU bounds check fault",		/* 21 T_BOUND */
124 	"FPU device not available",		/* 22 T_DNA */
125 	"double fault",				/* 23 T_DOUBLEFLT */
126 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
127 	"invalid TSS fault",			/* 25 T_TSSFLT */
128 	"segment not present fault",		/* 26 T_SEGNPFLT */
129 	"stack fault",				/* 27 T_STKFLT */
130 	"machine check trap",			/* 28 T_MCHK */
131 };
132 
133 static void userret __P((struct proc *p, struct trapframe *frame,
134 			 u_quad_t oticks));
135 
136 static inline void
137 userret(p, frame, oticks)
138 	struct proc *p;
139 	struct trapframe *frame;
140 	u_quad_t oticks;
141 {
142 	int sig, s;
143 
144 	while ((sig = CURSIG(p)) != 0)
145 		postsig(sig);
146 	p->p_priority = p->p_usrpri;
147 	if (want_resched) {
148 		/*
149 		 * Since we are curproc, clock will normally just change
150 		 * our priority without moving us from one queue to another
151 		 * (since the running process is not on a queue.)
152 		 * If that happened after we setrunqueue ourselves but before we
153 		 * mi_switch()'ed, we might not be on the queue indicated by
154 		 * our priority.
155 		 */
156 		s = splhigh();
157 		setrunqueue(p);
158 		p->p_stats->p_ru.ru_nivcsw++;
159 		mi_switch();
160 		splx(s);
161 		while ((sig = CURSIG(p)) != 0)
162 			postsig(sig);
163 	}
164 	/*
165 	 * Charge system time if profiling.
166 	 */
167 	if (p->p_flag & P_PROFIL)
168 		addupc_task(p, frame->tf_eip,
169 			    (u_int)(p->p_sticks - oticks) * psratio);
170 
171 	curpriority = p->p_priority;
172 }
173 
174 /*
175  * Exception, fault, and trap interface to the FreeBSD kernel.
176  * This common code is called from assembly language IDT gate entry
177  * routines that prepare a suitable stack frame, and restore this
178  * frame after the exception has been processed.
179  */
180 
181 void
182 trap(frame)
183 	struct trapframe frame;
184 {
185 	struct proc *p = curproc;
186 	u_quad_t sticks = 0;
187 	int i = 0, ucode = 0, type, code;
188 #ifdef DEBUG
189 	u_long eva;
190 #endif
191 
192 	type = frame.tf_trapno;
193 	code = frame.tf_err;
194 
195 	if (ISPL(frame.tf_cs) == SEL_UPL) {
196 		/* user trap */
197 
198 		sticks = p->p_sticks;
199 		p->p_md.md_regs = (int *)&frame;
200 
201 		switch (type) {
202 		case T_PRIVINFLT:	/* privileged instruction fault */
203 			ucode = type;
204 			i = SIGILL;
205 			break;
206 
207 		case T_BPTFLT:		/* bpt instruction fault */
208 		case T_TRCTRAP:		/* trace trap */
209 			frame.tf_eflags &= ~PSL_T;
210 			i = SIGTRAP;
211 			break;
212 
213 		case T_ARITHTRAP:	/* arithmetic trap */
214 			ucode = code;
215 			i = SIGFPE;
216 			break;
217 
218 		case T_ASTFLT:		/* Allow process switch */
219 			astoff();
220 			cnt.v_soft++;
221 			if (p->p_flag & P_OWEUPC) {
222 				p->p_flag &= ~P_OWEUPC;
223 				addupc_task(p, p->p_stats->p_prof.pr_addr,
224 					    p->p_stats->p_prof.pr_ticks);
225 			}
226 			goto out;
227 
228 		case T_PROTFLT:		/* general protection fault */
229 		case T_SEGNPFLT:	/* segment not present fault */
230 		case T_STKFLT:		/* stack fault */
231 		case T_TSSFLT:		/* invalid TSS fault */
232 		case T_DOUBLEFLT:	/* double fault */
233 		default:
234 			ucode = code + BUS_SEGM_FAULT ;
235 			i = SIGBUS;
236 			break;
237 
238 		case T_PAGEFLT:		/* page fault */
239 			i = trap_pfault(&frame, TRUE);
240 			if (i == -1)
241 				return;
242 			if (i == 0)
243 				goto out;
244 
245 			ucode = T_PAGEFLT;
246 			break;
247 
248 		case T_DIVIDE:		/* integer divide fault */
249 			ucode = FPE_INTDIV_TRAP;
250 			i = SIGFPE;
251 			break;
252 
253 #if NISA > 0
254 		case T_NMI:
255 #ifdef POWERFAIL_NMI
256 			goto handle_powerfail;
257 #else /* !POWERFAIL_NMI */
258 #ifdef DDB
259 			/* NMI can be hooked up to a pushbutton for debugging */
260 			printf ("NMI ... going to debugger\n");
261 			if (kdb_trap (type, 0, &frame))
262 				return;
263 #endif /* DDB */
264 			/* machine/parity/power fail/"kitchen sink" faults */
265 			if (isa_nmi(code) == 0) return;
266 			panic("NMI indicates hardware failure");
267 #endif /* POWERFAIL_NMI */
268 #endif /* NISA > 0 */
269 
270 		case T_OFLOW:		/* integer overflow fault */
271 			ucode = FPE_INTOVF_TRAP;
272 			i = SIGFPE;
273 			break;
274 
275 		case T_BOUND:		/* bounds check fault */
276 			ucode = FPE_SUBRNG_TRAP;
277 			i = SIGFPE;
278 			break;
279 
280 		case T_DNA:
281 #if NNPX > 0
282 			/* if a transparent fault (due to context switch "late") */
283 			if (npxdna())
284 				return;
285 #endif
286 			if (!pmath_emulate) {
287 				i = SIGFPE;
288 				ucode = FPE_FPU_NP_TRAP;
289 				break;
290 			}
291 			i = (*pmath_emulate)(&frame);
292 			if (i == 0) {
293 				if (!(frame.tf_eflags & PSL_T))
294 					return;
295 				frame.tf_eflags &= ~PSL_T;
296 				i = SIGTRAP;
297 			}
298 			/* else ucode = emulator_only_knows() XXX */
299 			break;
300 
301 		case T_FPOPFLT:		/* FPU operand fetch fault */
302 			ucode = T_FPOPFLT;
303 			i = SIGILL;
304 			break;
305 		}
306 	} else {
307 		/* kernel trap */
308 
309 		switch (type) {
310 		case T_PAGEFLT:			/* page fault */
311 			(void) trap_pfault(&frame, FALSE);
312 			return;
313 
314 		case T_DNA:
315 #if NNPX > 0
316 			/*
317 			 * The kernel is apparently using npx for copying.
318 			 * XXX this should be fatal unless the kernel has
319 			 * registered such use.
320 			 */
321 			if (npxdna())
322 				return;
323 #endif
324 			break;
325 
326 		case T_PROTFLT:		/* general protection fault */
327 		case T_SEGNPFLT:	/* segment not present fault */
328 			/*
329 			 * Invalid segment selectors and out of bounds
330 			 * %eip's and %esp's can be set up in user mode.
331 			 * This causes a fault in kernel mode when the
332 			 * kernel tries to return to user mode.  We want
333 			 * to get this fault so that we can fix the
334 			 * problem here and not have to check all the
335 			 * selectors and pointers when the user changes
336 			 * them.
337 			 */
338 #define	MAYBE_DORETI_FAULT(where, whereto)				\
339 	do {								\
340 		if (frame.tf_eip == (int)where) {			\
341 			frame.tf_eip = (int)whereto;			\
342 			return;						\
343 		}							\
344 	} while (0)
345 
346 			if (intr_nesting_level == 0) {
347 				MAYBE_DORETI_FAULT(doreti_iret,
348 						   doreti_iret_fault);
349 				MAYBE_DORETI_FAULT(doreti_popl_ds,
350 						   doreti_popl_ds_fault);
351 				MAYBE_DORETI_FAULT(doreti_popl_es,
352 						   doreti_popl_es_fault);
353 				if (curpcb && curpcb->pcb_onfault) {
354 					frame.tf_eip = (int)curpcb->pcb_onfault;
355 					return;
356 				}
357 			}
358 			break;
359 
360 		case T_TSSFLT:
361 			/*
362 			 * PSL_NT can be set in user mode and isn't cleared
363 			 * automatically when the kernel is entered.  This
364 			 * causes a TSS fault when the kernel attempts to
365 			 * `iret' because the TSS link is uninitialized.  We
366 			 * want to get this fault so that we can fix the
367 			 * problem here and not every time the kernel is
368 			 * entered.
369 			 */
370 			if (frame.tf_eflags & PSL_NT) {
371 				frame.tf_eflags &= ~PSL_NT;
372 				return;
373 			}
374 			break;
375 
376 		case T_TRCTRAP:	 /* trace trap */
377 			if (frame.tf_eip == (int)IDTVEC(syscall)) {
378 				/*
379 				 * We've just entered system mode via the
380 				 * syscall lcall.  Continue single stepping
381 				 * silently until the syscall handler has
382 				 * saved the flags.
383 				 */
384 				return;
385 			}
386 			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
387 				/*
388 				 * The syscall handler has now saved the
389 				 * flags.  Stop single stepping it.
390 				 */
391 				frame.tf_eflags &= ~PSL_T;
392 				return;
393 			}
394 			/*
395 			 * Fall through.
396 			 */
397 		case T_BPTFLT:
398 			/*
399 			 * If DDB is enabled, let it handle the debugger trap.
400 			 * Otherwise, debugger traps "can't happen".
401 			 */
402 #ifdef DDB
403 			if (kdb_trap (type, 0, &frame))
404 				return;
405 #endif
406 			break;
407 
408 #if NISA > 0
409 		case T_NMI:
410 #ifdef POWERFAIL_NMI
411 #ifndef TIMER_FREQ
412 #  define TIMER_FREQ 1193182
413 #endif
414 	handle_powerfail:
415 		{
416 		  static unsigned lastalert = 0;
417 
418 		  if(time.tv_sec - lastalert > 10)
419 		    {
420 		      log(LOG_WARNING, "NMI: power fail\n");
421 		      sysbeep(TIMER_FREQ/880, hz);
422 		      lastalert = time.tv_sec;
423 		    }
424 		  return;
425 		}
426 #else /* !POWERFAIL_NMI */
427 #ifdef DDB
428 			/* NMI can be hooked up to a pushbutton for debugging */
429 			printf ("NMI ... going to debugger\n");
430 			if (kdb_trap (type, 0, &frame))
431 				return;
432 #endif /* DDB */
433 			/* machine/parity/power fail/"kitchen sink" faults */
434 			if (isa_nmi(code) == 0) return;
435 			/* FALL THROUGH */
436 #endif /* POWERFAIL_NMI */
437 #endif /* NISA > 0 */
438 		}
439 
440 		trap_fatal(&frame);
441 		return;
442 	}
443 
444 	trapsignal(p, i, ucode);
445 
446 #ifdef DEBUG
447 	eva = rcr2();
448 	if (type <= MAX_TRAP_MSG) {
449 		uprintf("fatal process exception: %s",
450 			trap_msg[type]);
451 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
452 			uprintf(", fault VA = 0x%x", eva);
453 		uprintf("\n");
454 	}
455 #endif
456 
457 out:
458 	userret(p, &frame, sticks);
459 }
460 
461 #ifdef notyet
462 /*
463  * This version doesn't allow a page fault to user space while
464  * in the kernel. The rest of the kernel needs to be made "safe"
465  * before this can be used. I think the only things remaining
466  * to be made safe are the iBCS2 code and the process tracing/
467  * debugging code.
468  */
469 static int
470 trap_pfault(frame, usermode)
471 	struct trapframe *frame;
472 	int usermode;
473 {
474 	vm_offset_t va;
475 	struct vmspace *vm = NULL;
476 	vm_map_t map = 0;
477 	int rv = 0;
478 	vm_prot_t ftype;
479 	int eva;
480 	struct proc *p = curproc;
481 
482 	if (frame->tf_err & PGEX_W)
483 		ftype = VM_PROT_READ | VM_PROT_WRITE;
484 	else
485 		ftype = VM_PROT_READ;
486 
487 	eva = rcr2();
488 	va = trunc_page((vm_offset_t)eva);
489 
490 	if (va < VM_MIN_KERNEL_ADDRESS) {
491 		vm_offset_t v;
492 		vm_page_t mpte;
493 
494 		if (p == NULL ||
495 		    (!usermode && va < VM_MAXUSER_ADDRESS &&
496 		     (intr_nesting_level != 0 || curpcb == NULL ||
497 		      curpcb->pcb_onfault == NULL))) {
498 			trap_fatal(frame);
499 			return (-1);
500 		}
501 
502 		/*
503 		 * This is a fault on non-kernel virtual memory.
504 		 * vm is initialized above to NULL. If curproc is NULL
505 		 * or curproc->p_vmspace is NULL the fault is fatal.
506 		 */
507 		vm = p->p_vmspace;
508 		if (vm == NULL)
509 			goto nogo;
510 
511 		map = &vm->vm_map;
512 
513 		/*
514 		 * Keep swapout from messing with us during this
515 		 *	critical time.
516 		 */
517 		++p->p_lock;
518 
519 		/*
520 		 * Grow the stack if necessary
521 		 */
522 		if ((caddr_t)va > vm->vm_maxsaddr
523 		    && (caddr_t)va < (caddr_t)USRSTACK) {
524 			if (!grow(p, va)) {
525 				rv = KERN_FAILURE;
526 				--p->p_lock;
527 				goto nogo;
528 			}
529 		}
530 
531 		/* Fault in the user page: */
532 		rv = vm_fault(map, va, ftype, FALSE);
533 
534 		--p->p_lock;
535 	} else {
536 		/*
537 		 * Don't allow user-mode faults in kernel address space.
538 		 */
539 		if (usermode)
540 			goto nogo;
541 
542 		/*
543 		 * Since we know that kernel virtual address addresses
544 		 * always have pte pages mapped, we just have to fault
545 		 * the page.
546 		 */
547 		rv = vm_fault(kernel_map, va, ftype, FALSE);
548 	}
549 
550 	if (rv == KERN_SUCCESS)
551 		return (0);
552 nogo:
553 	if (!usermode) {
554 		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
555 			frame->tf_eip = (int)curpcb->pcb_onfault;
556 			return (0);
557 		}
558 		trap_fatal(frame);
559 		return (-1);
560 	}
561 
562 	/* kludge to pass faulting virtual address to sendsig */
563 	frame->tf_err = eva;
564 
565 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
566 }
567 #endif
568 
569 int
570 trap_pfault(frame, usermode)
571 	struct trapframe *frame;
572 	int usermode;
573 {
574 	vm_offset_t va;
575 	struct vmspace *vm = NULL;
576 	vm_map_t map = 0;
577 	int rv = 0;
578 	vm_prot_t ftype;
579 	int eva;
580 	struct proc *p = curproc;
581 
582 	eva = rcr2();
583 	va = trunc_page((vm_offset_t)eva);
584 
585 	if (va >= KERNBASE) {
586 		/*
587 		 * Don't allow user-mode faults in kernel address space.
588 		 */
589 		if (usermode)
590 			goto nogo;
591 
592 		map = kernel_map;
593 	} else {
594 		/*
595 		 * This is a fault on non-kernel virtual memory.
596 		 * vm is initialized above to NULL. If curproc is NULL
597 		 * or curproc->p_vmspace is NULL the fault is fatal.
598 		 */
599 		if (p != NULL)
600 			vm = p->p_vmspace;
601 
602 		if (vm == NULL)
603 			goto nogo;
604 
605 		map = &vm->vm_map;
606 	}
607 
608 	if (frame->tf_err & PGEX_W)
609 		ftype = VM_PROT_READ | VM_PROT_WRITE;
610 	else
611 		ftype = VM_PROT_READ;
612 
613 	if (map != kernel_map) {
614 		/*
615 		 * Keep swapout from messing with us during this
616 		 *	critical time.
617 		 */
618 		++p->p_lock;
619 
620 		/*
621 		 * Grow the stack if necessary
622 		 */
623 		if ((caddr_t)va > vm->vm_maxsaddr
624 		    && (caddr_t)va < (caddr_t)USRSTACK) {
625 			if (!grow(p, va)) {
626 				rv = KERN_FAILURE;
627 				--p->p_lock;
628 				goto nogo;
629 			}
630 		}
631 
632 		/* Fault in the user page: */
633 		rv = vm_fault(map, va, ftype, FALSE);
634 
635 		--p->p_lock;
636 	} else {
637 		/*
638 		 * Since we know that kernel virtual address addresses
639 		 * always have pte pages mapped, we just have to fault
640 		 * the page.
641 		 */
642 		rv = vm_fault(map, va, ftype, FALSE);
643 	}
644 
645 	if (rv == KERN_SUCCESS)
646 		return (0);
647 nogo:
648 	if (!usermode) {
649 		if (intr_nesting_level == 0 && curpcb && curpcb->pcb_onfault) {
650 			frame->tf_eip = (int)curpcb->pcb_onfault;
651 			return (0);
652 		}
653 		trap_fatal(frame);
654 		return (-1);
655 	}
656 
657 	/* kludge to pass faulting virtual address to sendsig */
658 	frame->tf_err = eva;
659 
660 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
661 }
662 
663 static void
664 trap_fatal(frame)
665 	struct trapframe *frame;
666 {
667 	int code, type, eva, ss, esp;
668 	struct soft_segment_descriptor softseg;
669 
670 	code = frame->tf_err;
671 	type = frame->tf_trapno;
672 	eva = rcr2();
673 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
674 
675 	if (type <= MAX_TRAP_MSG)
676 		printf("\n\nFatal trap %d: %s while in %s mode\n",
677 			type, trap_msg[type],
678 			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
679 	if (type == T_PAGEFLT) {
680 		printf("fault virtual address	= 0x%x\n", eva);
681 		printf("fault code		= %s %s, %s\n",
682 			code & PGEX_U ? "user" : "supervisor",
683 			code & PGEX_W ? "write" : "read",
684 			code & PGEX_P ? "protection violation" : "page not present");
685 	}
686 	printf("instruction pointer	= 0x%x:0x%x\n",
687 	       frame->tf_cs & 0xffff, frame->tf_eip);
688 	if (ISPL(frame->tf_cs) == SEL_UPL) {
689 		ss = frame->tf_ss & 0xffff;
690 		esp = frame->tf_esp;
691 	} else {
692 		ss = GSEL(GDATA_SEL, SEL_KPL);
693 		esp = (int)&frame->tf_esp;
694 	}
695 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
696 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
697 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
698 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
699 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
700 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
701 	       softseg.ssd_gran);
702 	printf("processor eflags	= ");
703 	if (frame->tf_eflags & PSL_T)
704 		printf("trace trap, ");
705 	if (frame->tf_eflags & PSL_I)
706 		printf("interrupt enabled, ");
707 	if (frame->tf_eflags & PSL_NT)
708 		printf("nested task, ");
709 	if (frame->tf_eflags & PSL_RF)
710 		printf("resume, ");
711 	if (frame->tf_eflags & PSL_VM)
712 		printf("vm86, ");
713 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
714 	printf("current process		= ");
715 	if (curproc) {
716 		printf("%lu (%s)\n",
717 		    (u_long)curproc->p_pid, curproc->p_comm ?
718 		    curproc->p_comm : "");
719 	} else {
720 		printf("Idle\n");
721 	}
722 	printf("interrupt mask		= ");
723 	if ((cpl & net_imask) == net_imask)
724 		printf("net ");
725 	if ((cpl & tty_imask) == tty_imask)
726 		printf("tty ");
727 	if ((cpl & bio_imask) == bio_imask)
728 		printf("bio ");
729 	if (cpl == 0)
730 		printf("none");
731 	printf("\n");
732 
733 #ifdef KDB
734 	if (kdb_trap(&psl))
735 		return;
736 #endif
737 #ifdef DDB
738 	if (kdb_trap (type, 0, frame))
739 		return;
740 #endif
741 	if (type <= MAX_TRAP_MSG)
742 		panic(trap_msg[type]);
743 	else
744 		panic("unknown/reserved trap");
745 }
746 
747 /*
748  * Double fault handler. Called when a fault occurs while writing
749  * a frame for a trap/exception onto the stack. This usually occurs
750  * when the stack overflows (such is the case with infinite recursion,
751  * for example).
752  *
753  * XXX Note that the current PTD gets replaced by IdlePTD when the
754  * task switch occurs. This means that the stack that was active at
755  * the time of the double fault is not available at <kstack> unless
756  * the machine was idle when the double fault occurred. The downside
757  * of this is that "trace <ebp>" in ddb won't work.
758  */
759 void
760 dblfault_handler()
761 {
762 	struct pcb *pcb = curpcb;
763 
764 	if (pcb != NULL) {
765 		printf("\nFatal double fault:\n");
766 		printf("eip = 0x%x\n", pcb->pcb_tss.tss_eip);
767 		printf("esp = 0x%x\n", pcb->pcb_tss.tss_esp);
768 		printf("ebp = 0x%x\n", pcb->pcb_tss.tss_ebp);
769 	}
770 
771 	panic("double fault");
772 }
773 
774 /*
775  * Compensate for 386 brain damage (missing URKR).
776  * This is a little simpler than the pagefault handler in trap() because
777  * it the page tables have already been faulted in and high addresses
778  * are thrown out early for other reasons.
779  */
780 int trapwrite(addr)
781 	unsigned addr;
782 {
783 	struct proc *p;
784 	vm_offset_t va;
785 	struct vmspace *vm;
786 	int rv;
787 
788 	va = trunc_page((vm_offset_t)addr);
789 	/*
790 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
791 	 */
792 	if (va >= VM_MAXUSER_ADDRESS)
793 		return (1);
794 
795 	p = curproc;
796 	vm = p->p_vmspace;
797 
798 	++p->p_lock;
799 
800 	if ((caddr_t)va >= vm->vm_maxsaddr
801 	    && (caddr_t)va < (caddr_t)USRSTACK) {
802 		if (!grow(p, va)) {
803 			--p->p_lock;
804 			return (1);
805 		}
806 	}
807 
808 	/*
809 	 * fault the data page
810 	 */
811 	rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, FALSE);
812 
813 	--p->p_lock;
814 
815 	if (rv != KERN_SUCCESS)
816 		return 1;
817 
818 	return (0);
819 }
820 
821 /*
822  * System call request from POSIX system call gate interface to kernel.
823  * Like trap(), argument is call by reference.
824  */
825 void
826 syscall(frame)
827 	struct trapframe frame;
828 {
829 	caddr_t params;
830 	int i;
831 	struct sysent *callp;
832 	struct proc *p = curproc;
833 	u_quad_t sticks;
834 	int error;
835 	int args[8], rval[2];
836 	u_int code;
837 
838 	sticks = p->p_sticks;
839 	if (ISPL(frame.tf_cs) != SEL_UPL)
840 		panic("syscall");
841 
842 	p->p_md.md_regs = (int *)&frame;
843 	params = (caddr_t)frame.tf_esp + sizeof(int);
844 	code = frame.tf_eax;
845 	if (p->p_sysent->sv_prepsyscall) {
846 		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
847 	} else {
848 		/*
849 		 * Need to check if this is a 32 bit or 64 bit syscall.
850 		 */
851 		if (code == SYS_syscall) {
852 			/*
853 			 * Code is first argument, followed by actual args.
854 			 */
855 			code = fuword(params);
856 			params += sizeof(int);
857 		} else if (code == SYS___syscall) {
858 			/*
859 			 * Like syscall, but code is a quad, so as to maintain
860 			 * quad alignment for the rest of the arguments.
861 			 */
862 			code = fuword(params);
863 			params += sizeof(quad_t);
864 		}
865 	}
866 
867  	if (p->p_sysent->sv_mask)
868  		code &= p->p_sysent->sv_mask;
869 
870  	if (code >= p->p_sysent->sv_size)
871  		callp = &p->p_sysent->sv_table[0];
872   	else
873  		callp = &p->p_sysent->sv_table[code];
874 
875 	if (params && (i = callp->sy_narg * sizeof(int)) &&
876 	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
877 #ifdef KTRACE
878 		if (KTRPOINT(p, KTR_SYSCALL))
879 			ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
880 #endif
881 		goto bad;
882 	}
883 #ifdef KTRACE
884 	if (KTRPOINT(p, KTR_SYSCALL))
885 		ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
886 #endif
887 	rval[0] = 0;
888 	rval[1] = frame.tf_edx;
889 
890 	error = (*callp->sy_call)(p, args, rval);
891 
892 	switch (error) {
893 
894 	case 0:
895 		/*
896 		 * Reinitialize proc pointer `p' as it may be different
897 		 * if this is a child returning from fork syscall.
898 		 */
899 		p = curproc;
900 		frame.tf_eax = rval[0];
901 		frame.tf_edx = rval[1];
902 		frame.tf_eflags &= ~PSL_C;
903 		break;
904 
905 	case ERESTART:
906 		/*
907 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
908 		 * int 0x80 is 2 bytes. We saved this in tf_err.
909 		 */
910 		frame.tf_eip -= frame.tf_err;
911 		break;
912 
913 	case EJUSTRETURN:
914 		break;
915 
916 	default:
917 bad:
918  		if (p->p_sysent->sv_errsize)
919  			if (error >= p->p_sysent->sv_errsize)
920   				error = -1;	/* XXX */
921    			else
922   				error = p->p_sysent->sv_errtbl[error];
923 		frame.tf_eax = error;
924 		frame.tf_eflags |= PSL_C;
925 		break;
926 	}
927 
928 	if (frame.tf_eflags & PSL_T) {
929 		/* Traced syscall. */
930 		frame.tf_eflags &= ~PSL_T;
931 		trapsignal(p, SIGTRAP, 0);
932 	}
933 
934 	userret(p, &frame, sticks);
935 
936 #ifdef KTRACE
937 	if (KTRPOINT(p, KTR_SYSRET))
938 		ktrsysret(p->p_tracep, code, error, rval[0]);
939 #endif
940 }
941