xref: /freebsd/sys/kern/subr_trap.c (revision 05c7a37afb48ddd5ee1bd921a5d46fe59cc70b15)
1 /*-
2  * Copyright (C) 1994, David Greenman
3  * Copyright (c) 1990, 1993
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * the University of Utah, and William Jolitz.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	from: @(#)trap.c	7.4 (Berkeley) 5/13/91
38  *	$Id: trap.c,v 1.74 1996/03/27 17:33:39 bde Exp $
39  */
40 
41 /*
42  * 386 Trap and System call handling
43  */
44 
45 #include "opt_ktrace.h"
46 #include "opt_ddb.h"
47 
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/acct.h>
52 #include <sys/kernel.h>
53 #include <sys/syscall.h>
54 #include <sys/sysent.h>
55 #include <sys/queue.h>
56 #include <sys/vmmeter.h>
57 #ifdef KTRACE
58 #include <sys/ktrace.h>
59 #endif
60 
61 #include <vm/vm.h>
62 #include <vm/vm_param.h>
63 #include <vm/vm_prot.h>
64 #include <vm/lock.h>
65 #include <vm/pmap.h>
66 #include <vm/vm_kern.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_page.h>
69 #include <vm/vm_extern.h>
70 
71 #include <sys/user.h>
72 
73 #include <machine/cpu.h>
74 #include <machine/md_var.h>
75 #include <machine/psl.h>
76 #include <machine/reg.h>
77 #include <machine/trap.h>
78 #include <machine/../isa/isa_device.h>
79 
80 #ifdef POWERFAIL_NMI
81 # include <syslog.h>
82 # include <machine/clock.h>
83 #endif
84 
85 #include "isa.h"
86 #include "npx.h"
87 
88 int (*pmath_emulate) __P((struct trapframe *));
89 
90 extern void trap __P((struct trapframe frame));
91 extern int trapwrite __P((unsigned addr));
92 extern void syscall __P((struct trapframe frame));
93 
94 static int trap_pfault __P((struct trapframe *, int));
95 static void trap_fatal __P((struct trapframe *));
96 void dblfault_handler __P((void));
97 
98 extern inthand_t IDTVEC(syscall);
99 
100 #define MAX_TRAP_MSG		27
101 static char *trap_msg[] = {
102 	"",					/*  0 unused */
103 	"privileged instruction fault",		/*  1 T_PRIVINFLT */
104 	"",					/*  2 unused */
105 	"breakpoint instruction fault",		/*  3 T_BPTFLT */
106 	"",					/*  4 unused */
107 	"",					/*  5 unused */
108 	"arithmetic trap",			/*  6 T_ARITHTRAP */
109 	"system forced exception",		/*  7 T_ASTFLT */
110 	"",					/*  8 unused */
111 	"general protection fault",		/*  9 T_PROTFLT */
112 	"trace trap",				/* 10 T_TRCTRAP */
113 	"",					/* 11 unused */
114 	"page fault",				/* 12 T_PAGEFLT */
115 	"",					/* 13 unused */
116 	"alignment fault",			/* 14 T_ALIGNFLT */
117 	"",					/* 15 unused */
118 	"",					/* 16 unused */
119 	"",					/* 17 unused */
120 	"integer divide fault",			/* 18 T_DIVIDE */
121 	"non-maskable interrupt trap",		/* 19 T_NMI */
122 	"overflow trap",			/* 20 T_OFLOW */
123 	"FPU bounds check fault",		/* 21 T_BOUND */
124 	"FPU device not available",		/* 22 T_DNA */
125 	"double fault",				/* 23 T_DOUBLEFLT */
126 	"FPU operand fetch fault",		/* 24 T_FPOPFLT */
127 	"invalid TSS fault",			/* 25 T_TSSFLT */
128 	"segment not present fault",		/* 26 T_SEGNPFLT */
129 	"stack fault",				/* 27 T_STKFLT */
130 };
131 
132 static void userret __P((struct proc *p, struct trapframe *frame,
133 			 u_quad_t oticks));
134 
135 static inline void
136 userret(p, frame, oticks)
137 	struct proc *p;
138 	struct trapframe *frame;
139 	u_quad_t oticks;
140 {
141 	int sig, s;
142 
143 	while ((sig = CURSIG(p)) != 0)
144 		postsig(sig);
145 	p->p_priority = p->p_usrpri;
146 	if (want_resched) {
147 		/*
148 		 * Since we are curproc, clock will normally just change
149 		 * our priority without moving us from one queue to another
150 		 * (since the running process is not on a queue.)
151 		 * If that happened after we setrunqueue ourselves but before we
152 		 * mi_switch()'ed, we might not be on the queue indicated by
153 		 * our priority.
154 		 */
155 		s = splclock();
156 		setrunqueue(p);
157 		p->p_stats->p_ru.ru_nivcsw++;
158 		mi_switch();
159 		splx(s);
160 		while ((sig = CURSIG(p)) != 0)
161 			postsig(sig);
162 	}
163 	/*
164 	 * Charge system time if profiling.
165 	 */
166 	if (p->p_flag & P_PROFIL) {
167 		u_quad_t ticks = p->p_sticks - oticks;
168 
169 		if (ticks) {
170 #ifdef PROFTIMER
171 			extern int profscale;
172 			addupc(frame->tf_eip, &p->p_stats->p_prof,
173 			    ticks * profscale);
174 #else
175 			addupc(frame->tf_eip, &p->p_stats->p_prof, ticks);
176 #endif
177 		}
178 	}
179 	curpriority = p->p_priority;
180 }
181 
182 /*
183  * Exception, fault, and trap interface to the FreeBSD kernel.
184  * This common code is called from assembly language IDT gate entry
185  * routines that prepare a suitable stack frame, and restore this
186  * frame after the exception has been processed.
187  */
188 
189 void
190 trap(frame)
191 	struct trapframe frame;
192 {
193 	struct proc *p = curproc;
194 	u_quad_t sticks = 0;
195 	int i = 0, ucode = 0, type, code;
196 #ifdef DEBUG
197 	u_long eva;
198 #endif
199 
200 	type = frame.tf_trapno;
201 	code = frame.tf_err;
202 
203 	if (ISPL(frame.tf_cs) == SEL_UPL) {
204 		/* user trap */
205 
206 		sticks = p->p_sticks;
207 		p->p_md.md_regs = (int *)&frame;
208 
209 		switch (type) {
210 		case T_PRIVINFLT:	/* privileged instruction fault */
211 			ucode = type;
212 			i = SIGILL;
213 			break;
214 
215 		case T_BPTFLT:		/* bpt instruction fault */
216 		case T_TRCTRAP:		/* trace trap */
217 			frame.tf_eflags &= ~PSL_T;
218 			i = SIGTRAP;
219 			break;
220 
221 		case T_ARITHTRAP:	/* arithmetic trap */
222 			ucode = code;
223 			i = SIGFPE;
224 			break;
225 
226 		case T_ASTFLT:		/* Allow process switch */
227 			astoff();
228 			cnt.v_soft++;
229 			if (p->p_flag & P_OWEUPC) {
230 				addupc(frame.tf_eip, &p->p_stats->p_prof, 1);
231 				p->p_flag &= ~P_OWEUPC;
232 			}
233 			goto out;
234 
235 		case T_PROTFLT:		/* general protection fault */
236 		case T_SEGNPFLT:	/* segment not present fault */
237 		case T_STKFLT:		/* stack fault */
238 		case T_TSSFLT:		/* invalid TSS fault */
239 		case T_DOUBLEFLT:	/* double fault */
240 		default:
241 			ucode = code + BUS_SEGM_FAULT ;
242 			i = SIGBUS;
243 			break;
244 
245 		case T_PAGEFLT:		/* page fault */
246 			i = trap_pfault(&frame, TRUE);
247 			if (i == -1)
248 				return;
249 			if (i == 0)
250 				goto out;
251 
252 			ucode = T_PAGEFLT;
253 			break;
254 
255 		case T_DIVIDE:		/* integer divide fault */
256 			ucode = FPE_INTDIV_TRAP;
257 			i = SIGFPE;
258 			break;
259 
260 #if NISA > 0
261 		case T_NMI:
262 #ifdef POWERFAIL_NMI
263 			goto handle_powerfail;
264 #else /* !POWERFAIL_NMI */
265 #ifdef DDB
266 			/* NMI can be hooked up to a pushbutton for debugging */
267 			printf ("NMI ... going to debugger\n");
268 			if (kdb_trap (type, 0, &frame))
269 				return;
270 #endif /* DDB */
271 			/* machine/parity/power fail/"kitchen sink" faults */
272 			if (isa_nmi(code) == 0) return;
273 			panic("NMI indicates hardware failure");
274 #endif /* POWERFAIL_NMI */
275 #endif /* NISA > 0 */
276 
277 		case T_OFLOW:		/* integer overflow fault */
278 			ucode = FPE_INTOVF_TRAP;
279 			i = SIGFPE;
280 			break;
281 
282 		case T_BOUND:		/* bounds check fault */
283 			ucode = FPE_SUBRNG_TRAP;
284 			i = SIGFPE;
285 			break;
286 
287 		case T_DNA:
288 #if NNPX > 0
289 			/* if a transparent fault (due to context switch "late") */
290 			if (npxdna())
291 				return;
292 #endif	/* NNPX > 0 */
293 
294 			if (!pmath_emulate) {
295 				i = SIGFPE;
296 				ucode = FPE_FPU_NP_TRAP;
297 				break;
298 			}
299 			i = (*pmath_emulate)(&frame);
300 			if (i == 0) {
301 				if (!(frame.tf_eflags & PSL_T))
302 					return;
303 				frame.tf_eflags &= ~PSL_T;
304 				i = SIGTRAP;
305 			}
306 			/* else ucode = emulator_only_knows() XXX */
307 			break;
308 
309 		case T_FPOPFLT:		/* FPU operand fetch fault */
310 			ucode = T_FPOPFLT;
311 			i = SIGILL;
312 			break;
313 		}
314 	} else {
315 		/* kernel trap */
316 
317 		switch (type) {
318 		case T_PAGEFLT:			/* page fault */
319 			(void) trap_pfault(&frame, FALSE);
320 			return;
321 
322 		case T_PROTFLT:		/* general protection fault */
323 		case T_SEGNPFLT:	/* segment not present fault */
324 			/*
325 			 * Invalid segment selectors and out of bounds
326 			 * %eip's and %esp's can be set up in user mode.
327 			 * This causes a fault in kernel mode when the
328 			 * kernel tries to return to user mode.  We want
329 			 * to get this fault so that we can fix the
330 			 * problem here and not have to check all the
331 			 * selectors and pointers when the user changes
332 			 * them.
333 			 */
334 #define	MAYBE_DORETI_FAULT(where, whereto)				\
335 	do {								\
336 		if (frame.tf_eip == (int)where) {			\
337 			frame.tf_eip = (int)whereto;			\
338 			return;						\
339 		}							\
340 	} while (0)
341 
342 			if (intr_nesting_level == 0) {
343 				MAYBE_DORETI_FAULT(doreti_iret,
344 						   doreti_iret_fault);
345 				MAYBE_DORETI_FAULT(doreti_popl_ds,
346 						   doreti_popl_ds_fault);
347 				MAYBE_DORETI_FAULT(doreti_popl_es,
348 						   doreti_popl_es_fault);
349 			}
350 			if (curpcb && curpcb->pcb_onfault) {
351 				frame.tf_eip = (int)curpcb->pcb_onfault;
352 				return;
353 			}
354 			break;
355 
356 		case T_TSSFLT:
357 			/*
358 			 * PSL_NT can be set in user mode and isn't cleared
359 			 * automatically when the kernel is entered.  This
360 			 * causes a TSS fault when the kernel attempts to
361 			 * `iret' because the TSS link is uninitialized.  We
362 			 * want to get this fault so that we can fix the
363 			 * problem here and not every time the kernel is
364 			 * entered.
365 			 */
366 			if (frame.tf_eflags & PSL_NT) {
367 				frame.tf_eflags &= ~PSL_NT;
368 				return;
369 			}
370 			break;
371 
372 		case T_TRCTRAP:	 /* trace trap */
373 			if (frame.tf_eip == (int)IDTVEC(syscall)) {
374 				/*
375 				 * We've just entered system mode via the
376 				 * syscall lcall.  Continue single stepping
377 				 * silently until the syscall handler has
378 				 * saved the flags.
379 				 */
380 				return;
381 			}
382 			if (frame.tf_eip == (int)IDTVEC(syscall) + 1) {
383 				/*
384 				 * The syscall handler has now saved the
385 				 * flags.  Stop single stepping it.
386 				 */
387 				frame.tf_eflags &= ~PSL_T;
388 				return;
389 			}
390 			/*
391 			 * Fall through.
392 			 */
393 		case T_BPTFLT:
394 			/*
395 			 * If DDB is enabled, let it handle the debugger trap.
396 			 * Otherwise, debugger traps "can't happen".
397 			 */
398 #ifdef DDB
399 			if (kdb_trap (type, 0, &frame))
400 				return;
401 #endif
402 			break;
403 
404 #if NISA > 0
405 		case T_NMI:
406 #ifdef POWERFAIL_NMI
407 #ifndef TIMER_FREQ
408 #  define TIMER_FREQ 1193182
409 #endif
410 	handle_powerfail:
411 		{
412 		  static unsigned lastalert = 0;
413 
414 		  if(time.tv_sec - lastalert > 10)
415 		    {
416 		      log(LOG_WARNING, "NMI: power fail\n");
417 		      sysbeep(TIMER_FREQ/880, hz);
418 		      lastalert = time.tv_sec;
419 		    }
420 		  return;
421 		}
422 #else /* !POWERFAIL_NMI */
423 #ifdef DDB
424 			/* NMI can be hooked up to a pushbutton for debugging */
425 			printf ("NMI ... going to debugger\n");
426 			if (kdb_trap (type, 0, &frame))
427 				return;
428 #endif /* DDB */
429 			/* machine/parity/power fail/"kitchen sink" faults */
430 			if (isa_nmi(code) == 0) return;
431 			/* FALL THROUGH */
432 #endif /* POWERFAIL_NMI */
433 #endif /* NISA > 0 */
434 		}
435 
436 		trap_fatal(&frame);
437 		return;
438 	}
439 
440 	trapsignal(p, i, ucode);
441 
442 #ifdef DEBUG
443 	eva = rcr2();
444 	if (type <= MAX_TRAP_MSG) {
445 		uprintf("fatal process exception: %s",
446 			trap_msg[type]);
447 		if ((type == T_PAGEFLT) || (type == T_PROTFLT))
448 			uprintf(", fault VA = 0x%x", eva);
449 		uprintf("\n");
450 	}
451 #endif
452 
453 out:
454 	userret(p, &frame, sticks);
455 }
456 
457 #ifdef notyet
458 /*
459  * This version doesn't allow a page fault to user space while
460  * in the kernel. The rest of the kernel needs to be made "safe"
461  * before this can be used. I think the only things remaining
462  * to be made safe are the iBCS2 code and the process tracing/
463  * debugging code.
464  */
465 static int
466 trap_pfault(frame, usermode)
467 	struct trapframe *frame;
468 	int usermode;
469 {
470 	vm_offset_t va;
471 	struct vmspace *vm = NULL;
472 	vm_map_t map = 0;
473 	int rv = 0;
474 	vm_prot_t ftype;
475 	int eva;
476 	struct proc *p = curproc;
477 
478 	if (frame->tf_err & PGEX_W)
479 		ftype = VM_PROT_READ | VM_PROT_WRITE;
480 	else
481 		ftype = VM_PROT_READ;
482 
483 	eva = rcr2();
484 	va = trunc_page((vm_offset_t)eva);
485 
486 	if (va < VM_MIN_KERNEL_ADDRESS) {
487 		vm_offset_t v;
488 		vm_page_t mpte;
489 
490 		if (p == NULL ||
491 		    (!usermode && va < VM_MAXUSER_ADDRESS &&
492 		    (curpcb == NULL || curpcb->pcb_onfault == NULL))) {
493 			trap_fatal(frame);
494 			return (-1);
495 		}
496 
497 		/*
498 		 * This is a fault on non-kernel virtual memory.
499 		 * vm is initialized above to NULL. If curproc is NULL
500 		 * or curproc->p_vmspace is NULL the fault is fatal.
501 		 */
502 		vm = p->p_vmspace;
503 		if (vm == NULL)
504 			goto nogo;
505 
506 		map = &vm->vm_map;
507 
508 		/*
509 		 * Keep swapout from messing with us during this
510 		 *	critical time.
511 		 */
512 		++p->p_lock;
513 
514 		/*
515 		 * Grow the stack if necessary
516 		 */
517 		if ((caddr_t)va > vm->vm_maxsaddr
518 		    && (caddr_t)va < (caddr_t)USRSTACK) {
519 			if (!grow(p, va)) {
520 				rv = KERN_FAILURE;
521 				--p->p_lock;
522 				goto nogo;
523 			}
524 		}
525 
526 		/* Fault in the user page: */
527 		rv = vm_fault(map, va, ftype, FALSE);
528 
529 		--p->p_lock;
530 	} else {
531 		/*
532 		 * Don't allow user-mode faults in kernel address space.
533 		 */
534 		if (usermode)
535 			goto nogo;
536 
537 		/*
538 		 * Since we know that kernel virtual address addresses
539 		 * always have pte pages mapped, we just have to fault
540 		 * the page.
541 		 */
542 		rv = vm_fault(kernel_map, va, ftype, FALSE);
543 	}
544 
545 	if (rv == KERN_SUCCESS)
546 		return (0);
547 nogo:
548 	if (!usermode) {
549 		if (curpcb && curpcb->pcb_onfault) {
550 			frame->tf_eip = (int)curpcb->pcb_onfault;
551 			return (0);
552 		}
553 		trap_fatal(frame);
554 		return (-1);
555 	}
556 
557 	/* kludge to pass faulting virtual address to sendsig */
558 	frame->tf_err = eva;
559 
560 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
561 }
562 #endif
563 
564 int
565 trap_pfault(frame, usermode)
566 	struct trapframe *frame;
567 	int usermode;
568 {
569 	vm_offset_t va;
570 	struct vmspace *vm = NULL;
571 	vm_map_t map = 0;
572 	int rv = 0;
573 	vm_prot_t ftype;
574 	int eva;
575 	struct proc *p = curproc;
576 
577 	eva = rcr2();
578 	va = trunc_page((vm_offset_t)eva);
579 
580 	if (va >= KERNBASE) {
581 		/*
582 		 * Don't allow user-mode faults in kernel address space.
583 		 */
584 		if (usermode)
585 			goto nogo;
586 
587 		map = kernel_map;
588 	} else {
589 		/*
590 		 * This is a fault on non-kernel virtual memory.
591 		 * vm is initialized above to NULL. If curproc is NULL
592 		 * or curproc->p_vmspace is NULL the fault is fatal.
593 		 */
594 		if (p != NULL)
595 			vm = p->p_vmspace;
596 
597 		if (vm == NULL)
598 			goto nogo;
599 
600 		map = &vm->vm_map;
601 	}
602 
603 	if (frame->tf_err & PGEX_W)
604 		ftype = VM_PROT_READ | VM_PROT_WRITE;
605 	else
606 		ftype = VM_PROT_READ;
607 
608 	if (map != kernel_map) {
609 		vm_offset_t v;
610 		vm_page_t mpte;
611 
612 		/*
613 		 * Keep swapout from messing with us during this
614 		 *	critical time.
615 		 */
616 		++p->p_lock;
617 
618 		/*
619 		 * Grow the stack if necessary
620 		 */
621 		if ((caddr_t)va > vm->vm_maxsaddr
622 		    && (caddr_t)va < (caddr_t)USRSTACK) {
623 			if (!grow(p, va)) {
624 				rv = KERN_FAILURE;
625 				--p->p_lock;
626 				goto nogo;
627 			}
628 		}
629 
630 		/* Fault in the user page: */
631 		rv = vm_fault(map, va, ftype, FALSE);
632 
633 		--p->p_lock;
634 	} else {
635 		/*
636 		 * Since we know that kernel virtual address addresses
637 		 * always have pte pages mapped, we just have to fault
638 		 * the page.
639 		 */
640 		rv = vm_fault(map, va, ftype, FALSE);
641 	}
642 
643 	if (rv == KERN_SUCCESS)
644 		return (0);
645 nogo:
646 	if (!usermode) {
647 		if (curpcb && curpcb->pcb_onfault) {
648 			frame->tf_eip = (int)curpcb->pcb_onfault;
649 			return (0);
650 		}
651 		trap_fatal(frame);
652 		return (-1);
653 	}
654 
655 	/* kludge to pass faulting virtual address to sendsig */
656 	frame->tf_err = eva;
657 
658 	return((rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV);
659 }
660 
661 static void
662 trap_fatal(frame)
663 	struct trapframe *frame;
664 {
665 	int code, type, eva, ss, esp;
666 	struct soft_segment_descriptor softseg;
667 
668 	code = frame->tf_err;
669 	type = frame->tf_trapno;
670 	eva = rcr2();
671 	sdtossd(&gdt[IDXSEL(frame->tf_cs & 0xffff)].sd, &softseg);
672 
673 	if (type <= MAX_TRAP_MSG)
674 		printf("\n\nFatal trap %d: %s while in %s mode\n",
675 			type, trap_msg[type],
676 			ISPL(frame->tf_cs) == SEL_UPL ? "user" : "kernel");
677 	if (type == T_PAGEFLT) {
678 		printf("fault virtual address	= 0x%x\n", eva);
679 		printf("fault code		= %s %s, %s\n",
680 			code & PGEX_U ? "user" : "supervisor",
681 			code & PGEX_W ? "write" : "read",
682 			code & PGEX_P ? "protection violation" : "page not present");
683 	}
684 	printf("instruction pointer	= 0x%x:0x%x\n",
685 	       frame->tf_cs & 0xffff, frame->tf_eip);
686 	if (ISPL(frame->tf_cs) == SEL_UPL) {
687 		ss = frame->tf_ss & 0xffff;
688 		esp = frame->tf_esp;
689 	} else {
690 		ss = GSEL(GDATA_SEL, SEL_KPL);
691 		esp = (int)&frame->tf_esp;
692 	}
693 	printf("stack pointer	        = 0x%x:0x%x\n", ss, esp);
694 	printf("frame pointer	        = 0x%x:0x%x\n", ss, frame->tf_ebp);
695 	printf("code segment		= base 0x%x, limit 0x%x, type 0x%x\n",
696 	       softseg.ssd_base, softseg.ssd_limit, softseg.ssd_type);
697 	printf("			= DPL %d, pres %d, def32 %d, gran %d\n",
698 	       softseg.ssd_dpl, softseg.ssd_p, softseg.ssd_def32,
699 	       softseg.ssd_gran);
700 	printf("processor eflags	= ");
701 	if (frame->tf_eflags & PSL_T)
702 		printf("trace trap, ");
703 	if (frame->tf_eflags & PSL_I)
704 		printf("interrupt enabled, ");
705 	if (frame->tf_eflags & PSL_NT)
706 		printf("nested task, ");
707 	if (frame->tf_eflags & PSL_RF)
708 		printf("resume, ");
709 	if (frame->tf_eflags & PSL_VM)
710 		printf("vm86, ");
711 	printf("IOPL = %d\n", (frame->tf_eflags & PSL_IOPL) >> 12);
712 	printf("current process		= ");
713 	if (curproc) {
714 		printf("%lu (%s)\n",
715 		    (u_long)curproc->p_pid, curproc->p_comm ?
716 		    curproc->p_comm : "");
717 	} else {
718 		printf("Idle\n");
719 	}
720 	printf("interrupt mask		= ");
721 	if ((cpl & net_imask) == net_imask)
722 		printf("net ");
723 	if ((cpl & tty_imask) == tty_imask)
724 		printf("tty ");
725 	if ((cpl & bio_imask) == bio_imask)
726 		printf("bio ");
727 	if (cpl == 0)
728 		printf("none");
729 	printf("\n");
730 
731 #ifdef KDB
732 	if (kdb_trap(&psl))
733 		return;
734 #endif
735 #ifdef DDB
736 	if (kdb_trap (type, 0, frame))
737 		return;
738 #endif
739 	if (type <= MAX_TRAP_MSG)
740 		panic(trap_msg[type]);
741 	else
742 		panic("unknown/reserved trap");
743 }
744 
745 /*
746  * Double fault handler. Called when a fault occurs while writing
747  * a frame for a trap/exception onto the stack. This usually occurs
748  * when the stack overflows (such is the case with infinite recursion,
749  * for example).
750  *
751  * XXX Note that the current PTD gets replaced by IdlePTD when the
752  * task switch occurs. This means that the stack that was active at
753  * the time of the double fault is not available at <kstack> unless
754  * the machine was idle when the double fault occurred. The downside
755  * of this is that "trace <ebp>" in ddb won't work.
756  */
757 void
758 dblfault_handler()
759 {
760 	struct pcb *pcb = curpcb;
761 
762 	if (pcb != NULL) {
763 		printf("\nFatal double fault:\n");
764 		printf("eip = 0x%x\n", pcb->pcb_tss.tss_eip);
765 		printf("esp = 0x%x\n", pcb->pcb_tss.tss_esp);
766 		printf("ebp = 0x%x\n", pcb->pcb_tss.tss_ebp);
767 	}
768 
769 	panic("double fault");
770 }
771 
772 /*
773  * Compensate for 386 brain damage (missing URKR).
774  * This is a little simpler than the pagefault handler in trap() because
775  * it the page tables have already been faulted in and high addresses
776  * are thrown out early for other reasons.
777  */
778 int trapwrite(addr)
779 	unsigned addr;
780 {
781 	struct proc *p;
782 	vm_offset_t va, v;
783 	struct vmspace *vm;
784 	int rv;
785 
786 	va = trunc_page((vm_offset_t)addr);
787 	/*
788 	 * XXX - MAX is END.  Changed > to >= for temp. fix.
789 	 */
790 	if (va >= VM_MAXUSER_ADDRESS)
791 		return (1);
792 
793 	p = curproc;
794 	vm = p->p_vmspace;
795 
796 	++p->p_lock;
797 
798 	if ((caddr_t)va >= vm->vm_maxsaddr
799 	    && (caddr_t)va < (caddr_t)USRSTACK) {
800 		if (!grow(p, va)) {
801 			--p->p_lock;
802 			return (1);
803 		}
804 	}
805 
806 	v = trunc_page(vtopte(va));
807 
808 	/*
809 	 * wire the pte page
810 	 */
811 	if (va < USRSTACK) {
812 		vm_map_pageable(&vm->vm_map, v, round_page(v+1), FALSE);
813 	}
814 
815 	/*
816 	 * fault the data page
817 	 */
818 	rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, FALSE);
819 
820 	/*
821 	 * unwire the pte page
822 	 */
823 	if (va < USRSTACK) {
824 		vm_map_pageable(&vm->vm_map, v, round_page(v+1), TRUE);
825 	}
826 
827 	--p->p_lock;
828 
829 	if (rv != KERN_SUCCESS)
830 		return 1;
831 
832 	return (0);
833 }
834 
835 /*
836  * System call request from POSIX system call gate interface to kernel.
837  * Like trap(), argument is call by reference.
838  */
839 void
840 syscall(frame)
841 	struct trapframe frame;
842 {
843 	caddr_t params;
844 	int i;
845 	struct sysent *callp;
846 	struct proc *p = curproc;
847 	u_quad_t sticks;
848 	int error;
849 	int args[8], rval[2];
850 	u_int code;
851 
852 	sticks = p->p_sticks;
853 	if (ISPL(frame.tf_cs) != SEL_UPL)
854 		panic("syscall");
855 
856 	p->p_md.md_regs = (int *)&frame;
857 	params = (caddr_t)frame.tf_esp + sizeof(int);
858 	code = frame.tf_eax;
859 	if (p->p_sysent->sv_prepsyscall) {
860 		(*p->p_sysent->sv_prepsyscall)(&frame, args, &code, &params);
861 	} else {
862 		/*
863 		 * Need to check if this is a 32 bit or 64 bit syscall.
864 		 */
865 		if (code == SYS_syscall) {
866 			/*
867 			 * Code is first argument, followed by actual args.
868 			 */
869 			code = fuword(params);
870 			params += sizeof(int);
871 		} else if (code == SYS___syscall) {
872 			/*
873 			 * Like syscall, but code is a quad, so as to maintain
874 			 * quad alignment for the rest of the arguments.
875 			 */
876 			code = fuword(params);
877 			params += sizeof(quad_t);
878 		}
879 	}
880 
881  	if (p->p_sysent->sv_mask)
882  		code &= p->p_sysent->sv_mask;
883 
884  	if (code >= p->p_sysent->sv_size)
885  		callp = &p->p_sysent->sv_table[0];
886   	else
887  		callp = &p->p_sysent->sv_table[code];
888 
889 	if (params && (i = callp->sy_narg * sizeof(int)) &&
890 	    (error = copyin(params, (caddr_t)args, (u_int)i))) {
891 #ifdef KTRACE
892 		if (KTRPOINT(p, KTR_SYSCALL))
893 			ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
894 #endif
895 		goto bad;
896 	}
897 #ifdef KTRACE
898 	if (KTRPOINT(p, KTR_SYSCALL))
899 		ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
900 #endif
901 	rval[0] = 0;
902 	rval[1] = frame.tf_edx;
903 
904 	error = (*callp->sy_call)(p, args, rval);
905 
906 	switch (error) {
907 
908 	case 0:
909 		/*
910 		 * Reinitialize proc pointer `p' as it may be different
911 		 * if this is a child returning from fork syscall.
912 		 */
913 		p = curproc;
914 		frame.tf_eax = rval[0];
915 		frame.tf_edx = rval[1];
916 		frame.tf_eflags &= ~PSL_C;
917 		break;
918 
919 	case ERESTART:
920 		/*
921 		 * Reconstruct pc, assuming lcall $X,y is 7 bytes,
922 		 * int 0x80 is 2 bytes. We saved this in tf_err.
923 		 */
924 		frame.tf_eip -= frame.tf_err;
925 		break;
926 
927 	case EJUSTRETURN:
928 		break;
929 
930 	default:
931 bad:
932  		if (p->p_sysent->sv_errsize)
933  			if (error >= p->p_sysent->sv_errsize)
934   				error = -1;	/* XXX */
935    			else
936   				error = p->p_sysent->sv_errtbl[error];
937 		frame.tf_eax = error;
938 		frame.tf_eflags |= PSL_C;
939 		break;
940 	}
941 
942 	if (frame.tf_eflags & PSL_T) {
943 		/* Traced syscall. */
944 		frame.tf_eflags &= ~PSL_T;
945 		trapsignal(p, SIGTRAP, 0);
946 	}
947 
948 	userret(p, &frame, sticks);
949 
950 #ifdef KTRACE
951 	if (KTRPOINT(p, KTR_SYSRET))
952 		ktrsysret(p->p_tracep, code, error, rval[0]);
953 #endif
954 }
955