xref: /freebsd/sys/kern/subr_taskqueue.c (revision fed1ca4b719c56c930f2259d80663cd34be812bb)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/libkern.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/sched.h>
44 #include <sys/smp.h>
45 #include <sys/taskqueue.h>
46 #include <sys/unistd.h>
47 #include <machine/stdarg.h>
48 
49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
50 static void	*taskqueue_giant_ih;
51 static void	*taskqueue_ih;
52 static void	 taskqueue_fast_enqueue(void *);
53 static void	 taskqueue_swi_enqueue(void *);
54 static void	 taskqueue_swi_giant_enqueue(void *);
55 
56 struct taskqueue_busy {
57 	struct task	*tb_running;
58 	TAILQ_ENTRY(taskqueue_busy) tb_link;
59 };
60 
61 struct task * const TB_DRAIN_WAITER = (struct task *)0x1;
62 
63 struct taskqueue {
64 	STAILQ_HEAD(, task)	tq_queue;
65 	taskqueue_enqueue_fn	tq_enqueue;
66 	void			*tq_context;
67 	char			*tq_name;
68 	TAILQ_HEAD(, taskqueue_busy) tq_active;
69 	struct mtx		tq_mutex;
70 	struct thread		**tq_threads;
71 	int			tq_tcount;
72 	int			tq_spin;
73 	int			tq_flags;
74 	int			tq_callouts;
75 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
76 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
77 };
78 
79 #define	TQ_FLAGS_ACTIVE		(1 << 0)
80 #define	TQ_FLAGS_BLOCKED	(1 << 1)
81 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
82 
83 #define	DT_CALLOUT_ARMED	(1 << 0)
84 
85 #define	TQ_LOCK(tq)							\
86 	do {								\
87 		if ((tq)->tq_spin)					\
88 			mtx_lock_spin(&(tq)->tq_mutex);			\
89 		else							\
90 			mtx_lock(&(tq)->tq_mutex);			\
91 	} while (0)
92 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
93 
94 #define	TQ_UNLOCK(tq)							\
95 	do {								\
96 		if ((tq)->tq_spin)					\
97 			mtx_unlock_spin(&(tq)->tq_mutex);		\
98 		else							\
99 			mtx_unlock(&(tq)->tq_mutex);			\
100 	} while (0)
101 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
102 
103 void
104 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
105     int priority, task_fn_t func, void *context)
106 {
107 
108 	TASK_INIT(&timeout_task->t, priority, func, context);
109 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
110 	    CALLOUT_RETURNUNLOCKED);
111 	timeout_task->q = queue;
112 	timeout_task->f = 0;
113 }
114 
115 static __inline int
116 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
117     int t)
118 {
119 	if (tq->tq_spin)
120 		return (msleep_spin(p, m, wm, t));
121 	return (msleep(p, m, pri, wm, t));
122 }
123 
124 static struct taskqueue *
125 _taskqueue_create(const char *name, int mflags,
126 		 taskqueue_enqueue_fn enqueue, void *context,
127 		 int mtxflags, const char *mtxname __unused)
128 {
129 	struct taskqueue *queue;
130 	char *tq_name;
131 
132 	tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
133 	if (!tq_name)
134 		return (NULL);
135 
136 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
137 
138 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
139 	if (!queue)
140 		return (NULL);
141 
142 	STAILQ_INIT(&queue->tq_queue);
143 	TAILQ_INIT(&queue->tq_active);
144 	queue->tq_enqueue = enqueue;
145 	queue->tq_context = context;
146 	queue->tq_name = tq_name;
147 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
148 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
149 	if (enqueue == taskqueue_fast_enqueue ||
150 	    enqueue == taskqueue_swi_enqueue ||
151 	    enqueue == taskqueue_swi_giant_enqueue ||
152 	    enqueue == taskqueue_thread_enqueue)
153 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
154 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
155 
156 	return (queue);
157 }
158 
159 struct taskqueue *
160 taskqueue_create(const char *name, int mflags,
161 		 taskqueue_enqueue_fn enqueue, void *context)
162 {
163 
164 	return _taskqueue_create(name, mflags, enqueue, context,
165 			MTX_DEF, name);
166 }
167 
168 void
169 taskqueue_set_callback(struct taskqueue *queue,
170     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
171     void *context)
172 {
173 
174 	KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
175 	    (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
176 	    ("Callback type %d not valid, must be %d-%d", cb_type,
177 	    TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
178 	KASSERT((queue->tq_callbacks[cb_type] == NULL),
179 	    ("Re-initialization of taskqueue callback?"));
180 
181 	queue->tq_callbacks[cb_type] = callback;
182 	queue->tq_cb_contexts[cb_type] = context;
183 }
184 
185 /*
186  * Signal a taskqueue thread to terminate.
187  */
188 static void
189 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
190 {
191 
192 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
193 		wakeup(tq);
194 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
195 	}
196 }
197 
198 void
199 taskqueue_free(struct taskqueue *queue)
200 {
201 
202 	TQ_LOCK(queue);
203 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
204 	taskqueue_terminate(queue->tq_threads, queue);
205 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
206 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
207 	mtx_destroy(&queue->tq_mutex);
208 	free(queue->tq_threads, M_TASKQUEUE);
209 	free(queue->tq_name, M_TASKQUEUE);
210 	free(queue, M_TASKQUEUE);
211 }
212 
213 static int
214 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
215 {
216 	struct task *ins;
217 	struct task *prev;
218 
219 	KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
220 	/*
221 	 * Count multiple enqueues.
222 	 */
223 	if (task->ta_pending) {
224 		if (task->ta_pending < USHRT_MAX)
225 			task->ta_pending++;
226 		TQ_UNLOCK(queue);
227 		return (0);
228 	}
229 
230 	/*
231 	 * Optimise the case when all tasks have the same priority.
232 	 */
233 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
234 	if (!prev || prev->ta_priority >= task->ta_priority) {
235 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
236 	} else {
237 		prev = NULL;
238 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
239 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
240 			if (ins->ta_priority < task->ta_priority)
241 				break;
242 
243 		if (prev)
244 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
245 		else
246 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
247 	}
248 
249 	task->ta_pending = 1;
250 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
251 		TQ_UNLOCK(queue);
252 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
253 		queue->tq_enqueue(queue->tq_context);
254 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
255 		TQ_UNLOCK(queue);
256 
257 	/* Return with lock released. */
258 	return (0);
259 }
260 
261 int
262 grouptaskqueue_enqueue(struct taskqueue *queue, struct task *task)
263 {
264 	TQ_LOCK(queue);
265 	if (task->ta_pending) {
266 		TQ_UNLOCK(queue);
267 		return (0);
268 	}
269 	STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
270 	task->ta_pending = 1;
271 	TQ_UNLOCK(queue);
272 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
273 		queue->tq_enqueue(queue->tq_context);
274 	return (0);
275 }
276 
277 int
278 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
279 {
280 	int res;
281 
282 	TQ_LOCK(queue);
283 	res = taskqueue_enqueue_locked(queue, task);
284 	/* The lock is released inside. */
285 
286 	return (res);
287 }
288 
289 static void
290 taskqueue_timeout_func(void *arg)
291 {
292 	struct taskqueue *queue;
293 	struct timeout_task *timeout_task;
294 
295 	timeout_task = arg;
296 	queue = timeout_task->q;
297 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
298 	timeout_task->f &= ~DT_CALLOUT_ARMED;
299 	queue->tq_callouts--;
300 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
301 	/* The lock is released inside. */
302 }
303 
304 int
305 taskqueue_enqueue_timeout(struct taskqueue *queue,
306     struct timeout_task *timeout_task, int ticks)
307 {
308 	int res;
309 
310 	TQ_LOCK(queue);
311 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
312 	    ("Migrated queue"));
313 	KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
314 	timeout_task->q = queue;
315 	res = timeout_task->t.ta_pending;
316 	if (ticks == 0) {
317 		taskqueue_enqueue_locked(queue, &timeout_task->t);
318 		/* The lock is released inside. */
319 	} else {
320 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
321 			res++;
322 		} else {
323 			queue->tq_callouts++;
324 			timeout_task->f |= DT_CALLOUT_ARMED;
325 			if (ticks < 0)
326 				ticks = -ticks; /* Ignore overflow. */
327 		}
328 		if (ticks > 0) {
329 			callout_reset(&timeout_task->c, ticks,
330 			    taskqueue_timeout_func, timeout_task);
331 		}
332 		TQ_UNLOCK(queue);
333 	}
334 	return (res);
335 }
336 
337 static void
338 taskqueue_task_nop_fn(void *context, int pending)
339 {
340 }
341 
342 /*
343  * Block until all currently queued tasks in this taskqueue
344  * have begun execution.  Tasks queued during execution of
345  * this function are ignored.
346  */
347 static void
348 taskqueue_drain_tq_queue(struct taskqueue *queue)
349 {
350 	struct task t_barrier;
351 
352 	if (STAILQ_EMPTY(&queue->tq_queue))
353 		return;
354 
355 	/*
356 	 * Enqueue our barrier after all current tasks, but with
357 	 * the highest priority so that newly queued tasks cannot
358 	 * pass it.  Because of the high priority, we can not use
359 	 * taskqueue_enqueue_locked directly (which drops the lock
360 	 * anyway) so just insert it at tail while we have the
361 	 * queue lock.
362 	 */
363 	TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier);
364 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
365 	t_barrier.ta_pending = 1;
366 
367 	/*
368 	 * Once the barrier has executed, all previously queued tasks
369 	 * have completed or are currently executing.
370 	 */
371 	while (t_barrier.ta_pending != 0)
372 		TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0);
373 }
374 
375 /*
376  * Block until all currently executing tasks for this taskqueue
377  * complete.  Tasks that begin execution during the execution
378  * of this function are ignored.
379  */
380 static void
381 taskqueue_drain_tq_active(struct taskqueue *queue)
382 {
383 	struct taskqueue_busy tb_marker, *tb_first;
384 
385 	if (TAILQ_EMPTY(&queue->tq_active))
386 		return;
387 
388 	/* Block taskq_terminate().*/
389 	queue->tq_callouts++;
390 
391 	/*
392 	 * Wait for all currently executing taskqueue threads
393 	 * to go idle.
394 	 */
395 	tb_marker.tb_running = TB_DRAIN_WAITER;
396 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link);
397 	while (TAILQ_FIRST(&queue->tq_active) != &tb_marker)
398 		TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0);
399 	TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link);
400 
401 	/*
402 	 * Wakeup any other drain waiter that happened to queue up
403 	 * without any intervening active thread.
404 	 */
405 	tb_first = TAILQ_FIRST(&queue->tq_active);
406 	if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER)
407 		wakeup(tb_first);
408 
409 	/* Release taskqueue_terminate(). */
410 	queue->tq_callouts--;
411 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
412 		wakeup_one(queue->tq_threads);
413 }
414 
415 void
416 taskqueue_block(struct taskqueue *queue)
417 {
418 
419 	TQ_LOCK(queue);
420 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
421 	TQ_UNLOCK(queue);
422 }
423 
424 void
425 taskqueue_unblock(struct taskqueue *queue)
426 {
427 
428 	TQ_LOCK(queue);
429 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
430 	if (!STAILQ_EMPTY(&queue->tq_queue))
431 		queue->tq_enqueue(queue->tq_context);
432 	TQ_UNLOCK(queue);
433 }
434 
435 static void
436 taskqueue_run_locked(struct taskqueue *queue)
437 {
438 	struct taskqueue_busy tb;
439 	struct taskqueue_busy *tb_first;
440 	struct task *task;
441 	int pending;
442 
443 	KASSERT(queue != NULL, ("tq is NULL"));
444 	TQ_ASSERT_LOCKED(queue);
445 	tb.tb_running = NULL;
446 
447 	while (STAILQ_FIRST(&queue->tq_queue)) {
448 		TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
449 
450 		/*
451 		 * Carefully remove the first task from the queue and
452 		 * zero its pending count.
453 		 */
454 		task = STAILQ_FIRST(&queue->tq_queue);
455 		KASSERT(task != NULL, ("task is NULL"));
456 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
457 		pending = task->ta_pending;
458 		task->ta_pending = 0;
459 		tb.tb_running = task;
460 		TQ_UNLOCK(queue);
461 
462 		KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
463 		task->ta_func(task->ta_context, pending);
464 
465 		TQ_LOCK(queue);
466 		tb.tb_running = NULL;
467 		wakeup(task);
468 
469 		TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
470 		tb_first = TAILQ_FIRST(&queue->tq_active);
471 		if (tb_first != NULL &&
472 		    tb_first->tb_running == TB_DRAIN_WAITER)
473 			wakeup(tb_first);
474 	}
475 }
476 
477 void
478 taskqueue_run(struct taskqueue *queue)
479 {
480 
481 	TQ_LOCK(queue);
482 	taskqueue_run_locked(queue);
483 	TQ_UNLOCK(queue);
484 }
485 
486 static int
487 task_is_running(struct taskqueue *queue, struct task *task)
488 {
489 	struct taskqueue_busy *tb;
490 
491 	TQ_ASSERT_LOCKED(queue);
492 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
493 		if (tb->tb_running == task)
494 			return (1);
495 	}
496 	return (0);
497 }
498 
499 static int
500 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
501     u_int *pendp)
502 {
503 
504 	if (task->ta_pending > 0)
505 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
506 	if (pendp != NULL)
507 		*pendp = task->ta_pending;
508 	task->ta_pending = 0;
509 	return (task_is_running(queue, task) ? EBUSY : 0);
510 }
511 
512 int
513 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
514 {
515 	int error;
516 
517 	TQ_LOCK(queue);
518 	error = taskqueue_cancel_locked(queue, task, pendp);
519 	TQ_UNLOCK(queue);
520 
521 	return (error);
522 }
523 
524 int
525 taskqueue_cancel_timeout(struct taskqueue *queue,
526     struct timeout_task *timeout_task, u_int *pendp)
527 {
528 	u_int pending, pending1;
529 	int error;
530 
531 	TQ_LOCK(queue);
532 	pending = !!(callout_stop(&timeout_task->c) > 0);
533 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
534 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
535 		timeout_task->f &= ~DT_CALLOUT_ARMED;
536 		queue->tq_callouts--;
537 	}
538 	TQ_UNLOCK(queue);
539 
540 	if (pendp != NULL)
541 		*pendp = pending + pending1;
542 	return (error);
543 }
544 
545 void
546 taskqueue_drain(struct taskqueue *queue, struct task *task)
547 {
548 
549 	if (!queue->tq_spin)
550 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
551 
552 	TQ_LOCK(queue);
553 	while (task->ta_pending != 0 || task_is_running(queue, task))
554 		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
555 	TQ_UNLOCK(queue);
556 }
557 
558 void
559 taskqueue_drain_all(struct taskqueue *queue)
560 {
561 
562 	if (!queue->tq_spin)
563 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
564 
565 	TQ_LOCK(queue);
566 	taskqueue_drain_tq_queue(queue);
567 	taskqueue_drain_tq_active(queue);
568 	TQ_UNLOCK(queue);
569 }
570 
571 void
572 taskqueue_drain_timeout(struct taskqueue *queue,
573     struct timeout_task *timeout_task)
574 {
575 
576 	callout_drain(&timeout_task->c);
577 	taskqueue_drain(queue, &timeout_task->t);
578 }
579 
580 static void
581 taskqueue_swi_enqueue(void *context)
582 {
583 	swi_sched(taskqueue_ih, 0);
584 }
585 
586 static void
587 taskqueue_swi_run(void *dummy)
588 {
589 	taskqueue_run(taskqueue_swi);
590 }
591 
592 static void
593 taskqueue_swi_giant_enqueue(void *context)
594 {
595 	swi_sched(taskqueue_giant_ih, 0);
596 }
597 
598 static void
599 taskqueue_swi_giant_run(void *dummy)
600 {
601 	taskqueue_run(taskqueue_swi_giant);
602 }
603 
604 static int
605 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
606     cpuset_t *mask, const char *name, va_list ap)
607 {
608 	char ktname[MAXCOMLEN + 1];
609 	struct thread *td;
610 	struct taskqueue *tq;
611 	int i, error;
612 
613 	if (count <= 0)
614 		return (EINVAL);
615 
616 	vsnprintf(ktname, sizeof(ktname), name, ap);
617 	tq = *tqp;
618 
619 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
620 	    M_NOWAIT | M_ZERO);
621 	if (tq->tq_threads == NULL) {
622 		printf("%s: no memory for %s threads\n", __func__, ktname);
623 		return (ENOMEM);
624 	}
625 
626 	for (i = 0; i < count; i++) {
627 		if (count == 1)
628 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
629 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
630 		else
631 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
632 			    &tq->tq_threads[i], RFSTOPPED, 0,
633 			    "%s_%d", ktname, i);
634 		if (error) {
635 			/* should be ok to continue, taskqueue_free will dtrt */
636 			printf("%s: kthread_add(%s): error %d", __func__,
637 			    ktname, error);
638 			tq->tq_threads[i] = NULL;		/* paranoid */
639 		} else
640 			tq->tq_tcount++;
641 	}
642 	for (i = 0; i < count; i++) {
643 		if (tq->tq_threads[i] == NULL)
644 			continue;
645 		td = tq->tq_threads[i];
646 		if (mask) {
647 			error = cpuset_setthread(td->td_tid, mask);
648 			/*
649 			 * Failing to pin is rarely an actual fatal error;
650 			 * it'll just affect performance.
651 			 */
652 			if (error)
653 				printf("%s: curthread=%llu: can't pin; "
654 				    "error=%d\n",
655 				    __func__,
656 				    (unsigned long long) td->td_tid,
657 				    error);
658 		}
659 		thread_lock(td);
660 		sched_prio(td, pri);
661 		sched_add(td, SRQ_BORING);
662 		thread_unlock(td);
663 	}
664 
665 	return (0);
666 }
667 
668 int
669 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
670     const char *name, ...)
671 {
672 	va_list ap;
673 	int error;
674 
675 	va_start(ap, name);
676 	error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap);
677 	va_end(ap);
678 	return (error);
679 }
680 
681 int
682 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
683     cpuset_t *mask, const char *name, ...)
684 {
685 	va_list ap;
686 	int error;
687 
688 	va_start(ap, name);
689 	error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap);
690 	va_end(ap);
691 	return (error);
692 }
693 
694 static inline void
695 taskqueue_run_callback(struct taskqueue *tq,
696     enum taskqueue_callback_type cb_type)
697 {
698 	taskqueue_callback_fn tq_callback;
699 
700 	TQ_ASSERT_UNLOCKED(tq);
701 	tq_callback = tq->tq_callbacks[cb_type];
702 	if (tq_callback != NULL)
703 		tq_callback(tq->tq_cb_contexts[cb_type]);
704 }
705 
706 void
707 taskqueue_thread_loop(void *arg)
708 {
709 	struct taskqueue **tqp, *tq;
710 
711 	tqp = arg;
712 	tq = *tqp;
713 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
714 	TQ_LOCK(tq);
715 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
716 		/* XXX ? */
717 		taskqueue_run_locked(tq);
718 		/*
719 		 * Because taskqueue_run() can drop tq_mutex, we need to
720 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
721 		 * meantime, which means we missed a wakeup.
722 		 */
723 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
724 			break;
725 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
726 	}
727 	taskqueue_run_locked(tq);
728 	/*
729 	 * This thread is on its way out, so just drop the lock temporarily
730 	 * in order to call the shutdown callback.  This allows the callback
731 	 * to look at the taskqueue, even just before it dies.
732 	 */
733 	TQ_UNLOCK(tq);
734 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
735 	TQ_LOCK(tq);
736 
737 	/* rendezvous with thread that asked us to terminate */
738 	tq->tq_tcount--;
739 	wakeup_one(tq->tq_threads);
740 	TQ_UNLOCK(tq);
741 	kthread_exit();
742 }
743 
744 void
745 taskqueue_thread_enqueue(void *context)
746 {
747 	struct taskqueue **tqp, *tq;
748 
749 	tqp = context;
750 	tq = *tqp;
751 	wakeup_one(tq);
752 }
753 
754 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
755 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
756 		     INTR_MPSAFE, &taskqueue_ih));
757 
758 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
759 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
760 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
761 
762 TASKQUEUE_DEFINE_THREAD(thread);
763 
764 struct taskqueue *
765 taskqueue_create_fast(const char *name, int mflags,
766 		 taskqueue_enqueue_fn enqueue, void *context)
767 {
768 	return _taskqueue_create(name, mflags, enqueue, context,
769 			MTX_SPIN, "fast_taskqueue");
770 }
771 
772 static void	*taskqueue_fast_ih;
773 
774 static void
775 taskqueue_fast_enqueue(void *context)
776 {
777 	swi_sched(taskqueue_fast_ih, 0);
778 }
779 
780 static void
781 taskqueue_fast_run(void *dummy)
782 {
783 	taskqueue_run(taskqueue_fast);
784 }
785 
786 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
787 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
788 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
789 
790 int
791 taskqueue_member(struct taskqueue *queue, struct thread *td)
792 {
793 	int i, j, ret = 0;
794 
795 	for (i = 0, j = 0; ; i++) {
796 		if (queue->tq_threads[i] == NULL)
797 			continue;
798 		if (queue->tq_threads[i] == td) {
799 			ret = 1;
800 			break;
801 		}
802 		if (++j >= queue->tq_tcount)
803 			break;
804 	}
805 	return (ret);
806 }
807 
808 struct taskqgroup_cpu {
809 	LIST_HEAD(, grouptask)	tgc_tasks;
810 	struct taskqueue	*tgc_taskq;
811 	int	tgc_cnt;
812 	int	tgc_cpu;
813 };
814 
815 struct taskqgroup {
816 	struct taskqgroup_cpu tqg_queue[MAXCPU];
817 	struct mtx	tqg_lock;
818 	char *		tqg_name;
819 	int		tqg_adjusting;
820 	int		tqg_stride;
821 	int		tqg_cnt;
822 };
823 
824 struct taskq_bind_task {
825 	struct task bt_task;
826 	int	bt_cpuid;
827 };
828 
829 static void
830 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx)
831 {
832 	struct taskqgroup_cpu *qcpu;
833 
834 	qcpu = &qgroup->tqg_queue[idx];
835 	LIST_INIT(&qcpu->tgc_tasks);
836 	qcpu->tgc_taskq = taskqueue_create_fast(NULL, M_WAITOK,
837 	    taskqueue_thread_enqueue, &qcpu->tgc_taskq);
838 	taskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT,
839 	    "%s_%d", qgroup->tqg_name, idx);
840 	qcpu->tgc_cpu = idx * qgroup->tqg_stride;
841 }
842 
843 static void
844 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx)
845 {
846 
847 	taskqueue_free(qgroup->tqg_queue[idx].tgc_taskq);
848 }
849 
850 /*
851  * Find the taskq with least # of tasks that doesn't currently have any
852  * other queues from the uniq identifier.
853  */
854 static int
855 taskqgroup_find(struct taskqgroup *qgroup, void *uniq)
856 {
857 	struct grouptask *n;
858 	int i, idx, mincnt;
859 	int strict;
860 
861 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
862 	if (qgroup->tqg_cnt == 0)
863 		return (0);
864 	idx = -1;
865 	mincnt = INT_MAX;
866 	/*
867 	 * Two passes;  First scan for a queue with the least tasks that
868 	 * does not already service this uniq id.  If that fails simply find
869 	 * the queue with the least total tasks;
870 	 */
871 	for (strict = 1; mincnt == INT_MAX; strict = 0) {
872 		for (i = 0; i < qgroup->tqg_cnt; i++) {
873 			if (qgroup->tqg_queue[i].tgc_cnt > mincnt)
874 				continue;
875 			if (strict) {
876 				LIST_FOREACH(n,
877 				    &qgroup->tqg_queue[i].tgc_tasks, gt_list)
878 					if (n->gt_uniq == uniq)
879 						break;
880 				if (n != NULL)
881 					continue;
882 			}
883 			mincnt = qgroup->tqg_queue[i].tgc_cnt;
884 			idx = i;
885 		}
886 	}
887 	if (idx == -1)
888 		panic("taskqgroup_find: Failed to pick a qid.");
889 
890 	return (idx);
891 }
892 
893 void
894 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask,
895     void *uniq, int irq, char *name)
896 {
897 	cpuset_t mask;
898 	int qid;
899 
900 	gtask->gt_uniq = uniq;
901 	gtask->gt_name = name;
902 	gtask->gt_irq = irq;
903 	gtask->gt_cpu = -1;
904 	mtx_lock(&qgroup->tqg_lock);
905 	qid = taskqgroup_find(qgroup, uniq);
906 	qgroup->tqg_queue[qid].tgc_cnt++;
907 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
908 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
909 	if (irq != -1 && smp_started) {
910 		CPU_ZERO(&mask);
911 		CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
912 		mtx_unlock(&qgroup->tqg_lock);
913 		intr_setaffinity(irq, &mask);
914 	} else
915 		mtx_unlock(&qgroup->tqg_lock);
916 }
917 
918 int
919 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask,
920 	void *uniq, int cpu, int irq, char *name)
921 {
922 	cpuset_t mask;
923 	int i, qid;
924 
925 	qid = -1;
926 	gtask->gt_uniq = uniq;
927 	gtask->gt_name = name;
928 	gtask->gt_irq = irq;
929 	gtask->gt_cpu = cpu;
930 	mtx_lock(&qgroup->tqg_lock);
931 	if (smp_started) {
932 		for (i = 0; i < qgroup->tqg_cnt; i++)
933 			if (qgroup->tqg_queue[i].tgc_cpu == cpu) {
934 				qid = i;
935 				break;
936 			}
937 		if (qid == -1) {
938 			mtx_unlock(&qgroup->tqg_lock);
939 			return (EINVAL);
940 		}
941 	} else
942 		qid = 0;
943 	qgroup->tqg_queue[qid].tgc_cnt++;
944 	LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list);
945 	gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
946 	if (irq != -1 && smp_started) {
947 		CPU_ZERO(&mask);
948 		CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask);
949 		mtx_unlock(&qgroup->tqg_lock);
950 		intr_setaffinity(irq, &mask);
951 	} else
952 		mtx_unlock(&qgroup->tqg_lock);
953 	return (0);
954 }
955 
956 void
957 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask)
958 {
959 	int i;
960 
961 	mtx_lock(&qgroup->tqg_lock);
962 	for (i = 0; i < qgroup->tqg_cnt; i++)
963 		if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue)
964 			break;
965 	if (i == qgroup->tqg_cnt)
966 		panic("taskqgroup_detach: task not in group\n");
967 	qgroup->tqg_queue[i].tgc_cnt--;
968 	LIST_REMOVE(gtask, gt_list);
969 	mtx_unlock(&qgroup->tqg_lock);
970 	gtask->gt_taskqueue = NULL;
971 }
972 
973 static void
974 taskqgroup_binder(void *ctx, int pending)
975 {
976 	struct taskq_bind_task *task = (struct taskq_bind_task *)ctx;
977 	cpuset_t mask;
978 	int error;
979 
980 	CPU_ZERO(&mask);
981 	CPU_SET(task->bt_cpuid, &mask);
982 	error = cpuset_setthread(curthread->td_tid, &mask);
983 	thread_lock(curthread);
984 	sched_bind(curthread, task->bt_cpuid);
985 	thread_unlock(curthread);
986 
987 	if (error)
988 		printf("taskqgroup_binder: setaffinity failed: %d\n",
989 		    error);
990 	free(task, M_DEVBUF);
991 }
992 
993 static void
994 taskqgroup_bind(struct taskqgroup *qgroup)
995 {
996 	struct taskq_bind_task *task;
997 	int i;
998 
999 	/*
1000 	 * Bind taskqueue threads to specific CPUs, if they have been assigned
1001 	 * one.
1002 	 */
1003 	for (i = 0; i < qgroup->tqg_cnt; i++) {
1004 		task = malloc(sizeof (*task), M_DEVBUF, M_NOWAIT);
1005 		TASK_INIT(&task->bt_task, 0, taskqgroup_binder, task);
1006 		task->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu;
1007 		taskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq,
1008 		    &task->bt_task);
1009 	}
1010 }
1011 
1012 static int
1013 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride)
1014 {
1015 	LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL);
1016 	cpuset_t mask;
1017 	struct grouptask *gtask;
1018 	int i, old_cnt, qid;
1019 
1020 	mtx_assert(&qgroup->tqg_lock, MA_OWNED);
1021 
1022 	if (cnt < 1 || cnt * stride > mp_ncpus || !smp_started) {
1023 		printf("taskqgroup_adjust failed cnt: %d stride: %d mp_ncpus: %d smp_started: %d\n",
1024 			   cnt, stride, mp_ncpus, smp_started);
1025 		return (EINVAL);
1026 	}
1027 	if (qgroup->tqg_adjusting) {
1028 		printf("taskqgroup_adjust failed: adjusting\n");
1029 		return (EBUSY);
1030 	}
1031 	qgroup->tqg_adjusting = 1;
1032 	old_cnt = qgroup->tqg_cnt;
1033 	mtx_unlock(&qgroup->tqg_lock);
1034 	/*
1035 	 * Set up queue for tasks added before boot.
1036 	 */
1037 	if (old_cnt == 0) {
1038 		LIST_SWAP(&gtask_head, &qgroup->tqg_queue[0].tgc_tasks,
1039 		    grouptask, gt_list);
1040 		qgroup->tqg_queue[0].tgc_cnt = 0;
1041 	}
1042 
1043 	/*
1044 	 * If new taskq threads have been added.
1045 	 */
1046 	for (i = old_cnt; i < cnt; i++)
1047 		taskqgroup_cpu_create(qgroup, i);
1048 	mtx_lock(&qgroup->tqg_lock);
1049 	qgroup->tqg_cnt = cnt;
1050 	qgroup->tqg_stride = stride;
1051 
1052 	/*
1053 	 * Adjust drivers to use new taskqs.
1054 	 */
1055 	for (i = 0; i < old_cnt; i++) {
1056 		while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) {
1057 			LIST_REMOVE(gtask, gt_list);
1058 			qgroup->tqg_queue[i].tgc_cnt--;
1059 			LIST_INSERT_HEAD(&gtask_head, gtask, gt_list);
1060 		}
1061 	}
1062 
1063 	while ((gtask = LIST_FIRST(&gtask_head))) {
1064 		LIST_REMOVE(gtask, gt_list);
1065 		if (gtask->gt_cpu == -1)
1066 			qid = taskqgroup_find(qgroup, gtask->gt_uniq);
1067 		else {
1068 			for (i = 0; i < qgroup->tqg_cnt; i++)
1069 				if (qgroup->tqg_queue[i].tgc_cpu == gtask->gt_cpu) {
1070 					qid = i;
1071 					break;
1072 				}
1073 		}
1074 		qgroup->tqg_queue[qid].tgc_cnt++;
1075 		LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask,
1076 		    gt_list);
1077 		gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq;
1078 	}
1079 	/*
1080 	 * Set new CPU and IRQ affinity
1081 	 */
1082 	for (i = 0; i < cnt; i++) {
1083 		qgroup->tqg_queue[i].tgc_cpu = i * qgroup->tqg_stride;
1084 		CPU_ZERO(&mask);
1085 		CPU_SET(qgroup->tqg_queue[i].tgc_cpu, &mask);
1086 		LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) {
1087 			if (gtask->gt_irq == -1)
1088 				continue;
1089 			intr_setaffinity(gtask->gt_irq, &mask);
1090 		}
1091 	}
1092 	mtx_unlock(&qgroup->tqg_lock);
1093 
1094 	/*
1095 	 * If taskq thread count has been reduced.
1096 	 */
1097 	for (i = cnt; i < old_cnt; i++)
1098 		taskqgroup_cpu_remove(qgroup, i);
1099 
1100 	mtx_lock(&qgroup->tqg_lock);
1101 	qgroup->tqg_adjusting = 0;
1102 
1103 	taskqgroup_bind(qgroup);
1104 
1105 	return (0);
1106 }
1107 
1108 int
1109 taskqgroup_adjust(struct taskqgroup *qgroup, int cpu, int stride)
1110 {
1111 	int error;
1112 
1113 	mtx_lock(&qgroup->tqg_lock);
1114 	error = _taskqgroup_adjust(qgroup, cpu, stride);
1115 	mtx_unlock(&qgroup->tqg_lock);
1116 
1117 	return (error);
1118 }
1119 
1120 struct taskqgroup *
1121 taskqgroup_create(char *name)
1122 {
1123 	struct taskqgroup *qgroup;
1124 
1125 	qgroup = malloc(sizeof(*qgroup), M_TASKQUEUE, M_WAITOK | M_ZERO);
1126 	mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF);
1127 	qgroup->tqg_name = name;
1128 	LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks);
1129 
1130 	return (qgroup);
1131 }
1132 
1133 void
1134 taskqgroup_destroy(struct taskqgroup *qgroup)
1135 {
1136 
1137 }
1138