1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/cpuset.h> 34 #include <sys/interrupt.h> 35 #include <sys/kernel.h> 36 #include <sys/kthread.h> 37 #include <sys/libkern.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/taskqueue.h> 46 #include <sys/unistd.h> 47 #include <machine/stdarg.h> 48 49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); 50 static void *taskqueue_giant_ih; 51 static void *taskqueue_ih; 52 static void taskqueue_fast_enqueue(void *); 53 static void taskqueue_swi_enqueue(void *); 54 static void taskqueue_swi_giant_enqueue(void *); 55 56 struct taskqueue_busy { 57 struct task *tb_running; 58 TAILQ_ENTRY(taskqueue_busy) tb_link; 59 }; 60 61 struct task * const TB_DRAIN_WAITER = (struct task *)0x1; 62 63 struct taskqueue { 64 STAILQ_HEAD(, task) tq_queue; 65 taskqueue_enqueue_fn tq_enqueue; 66 void *tq_context; 67 char *tq_name; 68 TAILQ_HEAD(, taskqueue_busy) tq_active; 69 struct mtx tq_mutex; 70 struct thread **tq_threads; 71 int tq_tcount; 72 int tq_spin; 73 int tq_flags; 74 int tq_callouts; 75 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 76 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 77 }; 78 79 #define TQ_FLAGS_ACTIVE (1 << 0) 80 #define TQ_FLAGS_BLOCKED (1 << 1) 81 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 82 83 #define DT_CALLOUT_ARMED (1 << 0) 84 85 #define TQ_LOCK(tq) \ 86 do { \ 87 if ((tq)->tq_spin) \ 88 mtx_lock_spin(&(tq)->tq_mutex); \ 89 else \ 90 mtx_lock(&(tq)->tq_mutex); \ 91 } while (0) 92 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 93 94 #define TQ_UNLOCK(tq) \ 95 do { \ 96 if ((tq)->tq_spin) \ 97 mtx_unlock_spin(&(tq)->tq_mutex); \ 98 else \ 99 mtx_unlock(&(tq)->tq_mutex); \ 100 } while (0) 101 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 102 103 void 104 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, 105 int priority, task_fn_t func, void *context) 106 { 107 108 TASK_INIT(&timeout_task->t, priority, func, context); 109 callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 110 CALLOUT_RETURNUNLOCKED); 111 timeout_task->q = queue; 112 timeout_task->f = 0; 113 } 114 115 static __inline int 116 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 117 int t) 118 { 119 if (tq->tq_spin) 120 return (msleep_spin(p, m, wm, t)); 121 return (msleep(p, m, pri, wm, t)); 122 } 123 124 static struct taskqueue * 125 _taskqueue_create(const char *name, int mflags, 126 taskqueue_enqueue_fn enqueue, void *context, 127 int mtxflags, const char *mtxname __unused) 128 { 129 struct taskqueue *queue; 130 char *tq_name; 131 132 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO); 133 if (!tq_name) 134 return (NULL); 135 136 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 137 138 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); 139 if (!queue) 140 return (NULL); 141 142 STAILQ_INIT(&queue->tq_queue); 143 TAILQ_INIT(&queue->tq_active); 144 queue->tq_enqueue = enqueue; 145 queue->tq_context = context; 146 queue->tq_name = tq_name; 147 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 148 queue->tq_flags |= TQ_FLAGS_ACTIVE; 149 if (enqueue == taskqueue_fast_enqueue || 150 enqueue == taskqueue_swi_enqueue || 151 enqueue == taskqueue_swi_giant_enqueue || 152 enqueue == taskqueue_thread_enqueue) 153 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 154 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 155 156 return (queue); 157 } 158 159 struct taskqueue * 160 taskqueue_create(const char *name, int mflags, 161 taskqueue_enqueue_fn enqueue, void *context) 162 { 163 164 return _taskqueue_create(name, mflags, enqueue, context, 165 MTX_DEF, name); 166 } 167 168 void 169 taskqueue_set_callback(struct taskqueue *queue, 170 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback, 171 void *context) 172 { 173 174 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) && 175 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)), 176 ("Callback type %d not valid, must be %d-%d", cb_type, 177 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX)); 178 KASSERT((queue->tq_callbacks[cb_type] == NULL), 179 ("Re-initialization of taskqueue callback?")); 180 181 queue->tq_callbacks[cb_type] = callback; 182 queue->tq_cb_contexts[cb_type] = context; 183 } 184 185 /* 186 * Signal a taskqueue thread to terminate. 187 */ 188 static void 189 taskqueue_terminate(struct thread **pp, struct taskqueue *tq) 190 { 191 192 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 193 wakeup(tq); 194 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 195 } 196 } 197 198 void 199 taskqueue_free(struct taskqueue *queue) 200 { 201 202 TQ_LOCK(queue); 203 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 204 taskqueue_terminate(queue->tq_threads, queue); 205 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 206 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 207 mtx_destroy(&queue->tq_mutex); 208 free(queue->tq_threads, M_TASKQUEUE); 209 free(queue->tq_name, M_TASKQUEUE); 210 free(queue, M_TASKQUEUE); 211 } 212 213 static int 214 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task) 215 { 216 struct task *ins; 217 struct task *prev; 218 219 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func")); 220 /* 221 * Count multiple enqueues. 222 */ 223 if (task->ta_pending) { 224 if (task->ta_pending < USHRT_MAX) 225 task->ta_pending++; 226 TQ_UNLOCK(queue); 227 return (0); 228 } 229 230 /* 231 * Optimise the case when all tasks have the same priority. 232 */ 233 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); 234 if (!prev || prev->ta_priority >= task->ta_priority) { 235 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 236 } else { 237 prev = NULL; 238 for (ins = STAILQ_FIRST(&queue->tq_queue); ins; 239 prev = ins, ins = STAILQ_NEXT(ins, ta_link)) 240 if (ins->ta_priority < task->ta_priority) 241 break; 242 243 if (prev) 244 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); 245 else 246 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); 247 } 248 249 task->ta_pending = 1; 250 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0) 251 TQ_UNLOCK(queue); 252 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 253 queue->tq_enqueue(queue->tq_context); 254 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0) 255 TQ_UNLOCK(queue); 256 257 /* Return with lock released. */ 258 return (0); 259 } 260 261 int 262 grouptaskqueue_enqueue(struct taskqueue *queue, struct task *task) 263 { 264 TQ_LOCK(queue); 265 if (task->ta_pending) { 266 TQ_UNLOCK(queue); 267 return (0); 268 } 269 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 270 task->ta_pending = 1; 271 TQ_UNLOCK(queue); 272 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 273 queue->tq_enqueue(queue->tq_context); 274 return (0); 275 } 276 277 int 278 taskqueue_enqueue(struct taskqueue *queue, struct task *task) 279 { 280 int res; 281 282 TQ_LOCK(queue); 283 res = taskqueue_enqueue_locked(queue, task); 284 /* The lock is released inside. */ 285 286 return (res); 287 } 288 289 static void 290 taskqueue_timeout_func(void *arg) 291 { 292 struct taskqueue *queue; 293 struct timeout_task *timeout_task; 294 295 timeout_task = arg; 296 queue = timeout_task->q; 297 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); 298 timeout_task->f &= ~DT_CALLOUT_ARMED; 299 queue->tq_callouts--; 300 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t); 301 /* The lock is released inside. */ 302 } 303 304 int 305 taskqueue_enqueue_timeout(struct taskqueue *queue, 306 struct timeout_task *timeout_task, int ticks) 307 { 308 int res; 309 310 TQ_LOCK(queue); 311 KASSERT(timeout_task->q == NULL || timeout_task->q == queue, 312 ("Migrated queue")); 313 KASSERT(!queue->tq_spin, ("Timeout for spin-queue")); 314 timeout_task->q = queue; 315 res = timeout_task->t.ta_pending; 316 if (ticks == 0) { 317 taskqueue_enqueue_locked(queue, &timeout_task->t); 318 /* The lock is released inside. */ 319 } else { 320 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 321 res++; 322 } else { 323 queue->tq_callouts++; 324 timeout_task->f |= DT_CALLOUT_ARMED; 325 if (ticks < 0) 326 ticks = -ticks; /* Ignore overflow. */ 327 } 328 if (ticks > 0) { 329 callout_reset(&timeout_task->c, ticks, 330 taskqueue_timeout_func, timeout_task); 331 } 332 TQ_UNLOCK(queue); 333 } 334 return (res); 335 } 336 337 static void 338 taskqueue_task_nop_fn(void *context, int pending) 339 { 340 } 341 342 /* 343 * Block until all currently queued tasks in this taskqueue 344 * have begun execution. Tasks queued during execution of 345 * this function are ignored. 346 */ 347 static void 348 taskqueue_drain_tq_queue(struct taskqueue *queue) 349 { 350 struct task t_barrier; 351 352 if (STAILQ_EMPTY(&queue->tq_queue)) 353 return; 354 355 /* 356 * Enqueue our barrier after all current tasks, but with 357 * the highest priority so that newly queued tasks cannot 358 * pass it. Because of the high priority, we can not use 359 * taskqueue_enqueue_locked directly (which drops the lock 360 * anyway) so just insert it at tail while we have the 361 * queue lock. 362 */ 363 TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier); 364 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 365 t_barrier.ta_pending = 1; 366 367 /* 368 * Once the barrier has executed, all previously queued tasks 369 * have completed or are currently executing. 370 */ 371 while (t_barrier.ta_pending != 0) 372 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 373 } 374 375 /* 376 * Block until all currently executing tasks for this taskqueue 377 * complete. Tasks that begin execution during the execution 378 * of this function are ignored. 379 */ 380 static void 381 taskqueue_drain_tq_active(struct taskqueue *queue) 382 { 383 struct taskqueue_busy tb_marker, *tb_first; 384 385 if (TAILQ_EMPTY(&queue->tq_active)) 386 return; 387 388 /* Block taskq_terminate().*/ 389 queue->tq_callouts++; 390 391 /* 392 * Wait for all currently executing taskqueue threads 393 * to go idle. 394 */ 395 tb_marker.tb_running = TB_DRAIN_WAITER; 396 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 397 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 398 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 399 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 400 401 /* 402 * Wakeup any other drain waiter that happened to queue up 403 * without any intervening active thread. 404 */ 405 tb_first = TAILQ_FIRST(&queue->tq_active); 406 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 407 wakeup(tb_first); 408 409 /* Release taskqueue_terminate(). */ 410 queue->tq_callouts--; 411 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 412 wakeup_one(queue->tq_threads); 413 } 414 415 void 416 taskqueue_block(struct taskqueue *queue) 417 { 418 419 TQ_LOCK(queue); 420 queue->tq_flags |= TQ_FLAGS_BLOCKED; 421 TQ_UNLOCK(queue); 422 } 423 424 void 425 taskqueue_unblock(struct taskqueue *queue) 426 { 427 428 TQ_LOCK(queue); 429 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 430 if (!STAILQ_EMPTY(&queue->tq_queue)) 431 queue->tq_enqueue(queue->tq_context); 432 TQ_UNLOCK(queue); 433 } 434 435 static void 436 taskqueue_run_locked(struct taskqueue *queue) 437 { 438 struct taskqueue_busy tb; 439 struct taskqueue_busy *tb_first; 440 struct task *task; 441 int pending; 442 443 KASSERT(queue != NULL, ("tq is NULL")); 444 TQ_ASSERT_LOCKED(queue); 445 tb.tb_running = NULL; 446 447 while (STAILQ_FIRST(&queue->tq_queue)) { 448 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 449 450 /* 451 * Carefully remove the first task from the queue and 452 * zero its pending count. 453 */ 454 task = STAILQ_FIRST(&queue->tq_queue); 455 KASSERT(task != NULL, ("task is NULL")); 456 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 457 pending = task->ta_pending; 458 task->ta_pending = 0; 459 tb.tb_running = task; 460 TQ_UNLOCK(queue); 461 462 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL")); 463 task->ta_func(task->ta_context, pending); 464 465 TQ_LOCK(queue); 466 tb.tb_running = NULL; 467 wakeup(task); 468 469 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 470 tb_first = TAILQ_FIRST(&queue->tq_active); 471 if (tb_first != NULL && 472 tb_first->tb_running == TB_DRAIN_WAITER) 473 wakeup(tb_first); 474 } 475 } 476 477 void 478 taskqueue_run(struct taskqueue *queue) 479 { 480 481 TQ_LOCK(queue); 482 taskqueue_run_locked(queue); 483 TQ_UNLOCK(queue); 484 } 485 486 static int 487 task_is_running(struct taskqueue *queue, struct task *task) 488 { 489 struct taskqueue_busy *tb; 490 491 TQ_ASSERT_LOCKED(queue); 492 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 493 if (tb->tb_running == task) 494 return (1); 495 } 496 return (0); 497 } 498 499 static int 500 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, 501 u_int *pendp) 502 { 503 504 if (task->ta_pending > 0) 505 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); 506 if (pendp != NULL) 507 *pendp = task->ta_pending; 508 task->ta_pending = 0; 509 return (task_is_running(queue, task) ? EBUSY : 0); 510 } 511 512 int 513 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) 514 { 515 int error; 516 517 TQ_LOCK(queue); 518 error = taskqueue_cancel_locked(queue, task, pendp); 519 TQ_UNLOCK(queue); 520 521 return (error); 522 } 523 524 int 525 taskqueue_cancel_timeout(struct taskqueue *queue, 526 struct timeout_task *timeout_task, u_int *pendp) 527 { 528 u_int pending, pending1; 529 int error; 530 531 TQ_LOCK(queue); 532 pending = !!(callout_stop(&timeout_task->c) > 0); 533 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); 534 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 535 timeout_task->f &= ~DT_CALLOUT_ARMED; 536 queue->tq_callouts--; 537 } 538 TQ_UNLOCK(queue); 539 540 if (pendp != NULL) 541 *pendp = pending + pending1; 542 return (error); 543 } 544 545 void 546 taskqueue_drain(struct taskqueue *queue, struct task *task) 547 { 548 549 if (!queue->tq_spin) 550 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 551 552 TQ_LOCK(queue); 553 while (task->ta_pending != 0 || task_is_running(queue, task)) 554 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0); 555 TQ_UNLOCK(queue); 556 } 557 558 void 559 taskqueue_drain_all(struct taskqueue *queue) 560 { 561 562 if (!queue->tq_spin) 563 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 564 565 TQ_LOCK(queue); 566 taskqueue_drain_tq_queue(queue); 567 taskqueue_drain_tq_active(queue); 568 TQ_UNLOCK(queue); 569 } 570 571 void 572 taskqueue_drain_timeout(struct taskqueue *queue, 573 struct timeout_task *timeout_task) 574 { 575 576 callout_drain(&timeout_task->c); 577 taskqueue_drain(queue, &timeout_task->t); 578 } 579 580 static void 581 taskqueue_swi_enqueue(void *context) 582 { 583 swi_sched(taskqueue_ih, 0); 584 } 585 586 static void 587 taskqueue_swi_run(void *dummy) 588 { 589 taskqueue_run(taskqueue_swi); 590 } 591 592 static void 593 taskqueue_swi_giant_enqueue(void *context) 594 { 595 swi_sched(taskqueue_giant_ih, 0); 596 } 597 598 static void 599 taskqueue_swi_giant_run(void *dummy) 600 { 601 taskqueue_run(taskqueue_swi_giant); 602 } 603 604 static int 605 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 606 cpuset_t *mask, const char *name, va_list ap) 607 { 608 char ktname[MAXCOMLEN + 1]; 609 struct thread *td; 610 struct taskqueue *tq; 611 int i, error; 612 613 if (count <= 0) 614 return (EINVAL); 615 616 vsnprintf(ktname, sizeof(ktname), name, ap); 617 tq = *tqp; 618 619 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, 620 M_NOWAIT | M_ZERO); 621 if (tq->tq_threads == NULL) { 622 printf("%s: no memory for %s threads\n", __func__, ktname); 623 return (ENOMEM); 624 } 625 626 for (i = 0; i < count; i++) { 627 if (count == 1) 628 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 629 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 630 else 631 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 632 &tq->tq_threads[i], RFSTOPPED, 0, 633 "%s_%d", ktname, i); 634 if (error) { 635 /* should be ok to continue, taskqueue_free will dtrt */ 636 printf("%s: kthread_add(%s): error %d", __func__, 637 ktname, error); 638 tq->tq_threads[i] = NULL; /* paranoid */ 639 } else 640 tq->tq_tcount++; 641 } 642 for (i = 0; i < count; i++) { 643 if (tq->tq_threads[i] == NULL) 644 continue; 645 td = tq->tq_threads[i]; 646 if (mask) { 647 error = cpuset_setthread(td->td_tid, mask); 648 /* 649 * Failing to pin is rarely an actual fatal error; 650 * it'll just affect performance. 651 */ 652 if (error) 653 printf("%s: curthread=%llu: can't pin; " 654 "error=%d\n", 655 __func__, 656 (unsigned long long) td->td_tid, 657 error); 658 } 659 thread_lock(td); 660 sched_prio(td, pri); 661 sched_add(td, SRQ_BORING); 662 thread_unlock(td); 663 } 664 665 return (0); 666 } 667 668 int 669 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 670 const char *name, ...) 671 { 672 va_list ap; 673 int error; 674 675 va_start(ap, name); 676 error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap); 677 va_end(ap); 678 return (error); 679 } 680 681 int 682 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri, 683 cpuset_t *mask, const char *name, ...) 684 { 685 va_list ap; 686 int error; 687 688 va_start(ap, name); 689 error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap); 690 va_end(ap); 691 return (error); 692 } 693 694 static inline void 695 taskqueue_run_callback(struct taskqueue *tq, 696 enum taskqueue_callback_type cb_type) 697 { 698 taskqueue_callback_fn tq_callback; 699 700 TQ_ASSERT_UNLOCKED(tq); 701 tq_callback = tq->tq_callbacks[cb_type]; 702 if (tq_callback != NULL) 703 tq_callback(tq->tq_cb_contexts[cb_type]); 704 } 705 706 void 707 taskqueue_thread_loop(void *arg) 708 { 709 struct taskqueue **tqp, *tq; 710 711 tqp = arg; 712 tq = *tqp; 713 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 714 TQ_LOCK(tq); 715 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 716 /* XXX ? */ 717 taskqueue_run_locked(tq); 718 /* 719 * Because taskqueue_run() can drop tq_mutex, we need to 720 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 721 * meantime, which means we missed a wakeup. 722 */ 723 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 724 break; 725 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 726 } 727 taskqueue_run_locked(tq); 728 /* 729 * This thread is on its way out, so just drop the lock temporarily 730 * in order to call the shutdown callback. This allows the callback 731 * to look at the taskqueue, even just before it dies. 732 */ 733 TQ_UNLOCK(tq); 734 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 735 TQ_LOCK(tq); 736 737 /* rendezvous with thread that asked us to terminate */ 738 tq->tq_tcount--; 739 wakeup_one(tq->tq_threads); 740 TQ_UNLOCK(tq); 741 kthread_exit(); 742 } 743 744 void 745 taskqueue_thread_enqueue(void *context) 746 { 747 struct taskqueue **tqp, *tq; 748 749 tqp = context; 750 tq = *tqp; 751 wakeup_one(tq); 752 } 753 754 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, 755 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, 756 INTR_MPSAFE, &taskqueue_ih)); 757 758 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, 759 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, 760 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 761 762 TASKQUEUE_DEFINE_THREAD(thread); 763 764 struct taskqueue * 765 taskqueue_create_fast(const char *name, int mflags, 766 taskqueue_enqueue_fn enqueue, void *context) 767 { 768 return _taskqueue_create(name, mflags, enqueue, context, 769 MTX_SPIN, "fast_taskqueue"); 770 } 771 772 static void *taskqueue_fast_ih; 773 774 static void 775 taskqueue_fast_enqueue(void *context) 776 { 777 swi_sched(taskqueue_fast_ih, 0); 778 } 779 780 static void 781 taskqueue_fast_run(void *dummy) 782 { 783 taskqueue_run(taskqueue_fast); 784 } 785 786 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, 787 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL, 788 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); 789 790 int 791 taskqueue_member(struct taskqueue *queue, struct thread *td) 792 { 793 int i, j, ret = 0; 794 795 for (i = 0, j = 0; ; i++) { 796 if (queue->tq_threads[i] == NULL) 797 continue; 798 if (queue->tq_threads[i] == td) { 799 ret = 1; 800 break; 801 } 802 if (++j >= queue->tq_tcount) 803 break; 804 } 805 return (ret); 806 } 807 808 struct taskqgroup_cpu { 809 LIST_HEAD(, grouptask) tgc_tasks; 810 struct taskqueue *tgc_taskq; 811 int tgc_cnt; 812 int tgc_cpu; 813 }; 814 815 struct taskqgroup { 816 struct taskqgroup_cpu tqg_queue[MAXCPU]; 817 struct mtx tqg_lock; 818 char * tqg_name; 819 int tqg_adjusting; 820 int tqg_stride; 821 int tqg_cnt; 822 }; 823 824 struct taskq_bind_task { 825 struct task bt_task; 826 int bt_cpuid; 827 }; 828 829 static void 830 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx) 831 { 832 struct taskqgroup_cpu *qcpu; 833 834 qcpu = &qgroup->tqg_queue[idx]; 835 LIST_INIT(&qcpu->tgc_tasks); 836 qcpu->tgc_taskq = taskqueue_create_fast(NULL, M_WAITOK, 837 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 838 taskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 839 "%s_%d", qgroup->tqg_name, idx); 840 qcpu->tgc_cpu = idx * qgroup->tqg_stride; 841 } 842 843 static void 844 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 845 { 846 847 taskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 848 } 849 850 /* 851 * Find the taskq with least # of tasks that doesn't currently have any 852 * other queues from the uniq identifier. 853 */ 854 static int 855 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 856 { 857 struct grouptask *n; 858 int i, idx, mincnt; 859 int strict; 860 861 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 862 if (qgroup->tqg_cnt == 0) 863 return (0); 864 idx = -1; 865 mincnt = INT_MAX; 866 /* 867 * Two passes; First scan for a queue with the least tasks that 868 * does not already service this uniq id. If that fails simply find 869 * the queue with the least total tasks; 870 */ 871 for (strict = 1; mincnt == INT_MAX; strict = 0) { 872 for (i = 0; i < qgroup->tqg_cnt; i++) { 873 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 874 continue; 875 if (strict) { 876 LIST_FOREACH(n, 877 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 878 if (n->gt_uniq == uniq) 879 break; 880 if (n != NULL) 881 continue; 882 } 883 mincnt = qgroup->tqg_queue[i].tgc_cnt; 884 idx = i; 885 } 886 } 887 if (idx == -1) 888 panic("taskqgroup_find: Failed to pick a qid."); 889 890 return (idx); 891 } 892 893 void 894 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 895 void *uniq, int irq, char *name) 896 { 897 cpuset_t mask; 898 int qid; 899 900 gtask->gt_uniq = uniq; 901 gtask->gt_name = name; 902 gtask->gt_irq = irq; 903 gtask->gt_cpu = -1; 904 mtx_lock(&qgroup->tqg_lock); 905 qid = taskqgroup_find(qgroup, uniq); 906 qgroup->tqg_queue[qid].tgc_cnt++; 907 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 908 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 909 if (irq != -1 && smp_started) { 910 CPU_ZERO(&mask); 911 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 912 mtx_unlock(&qgroup->tqg_lock); 913 intr_setaffinity(irq, &mask); 914 } else 915 mtx_unlock(&qgroup->tqg_lock); 916 } 917 918 int 919 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 920 void *uniq, int cpu, int irq, char *name) 921 { 922 cpuset_t mask; 923 int i, qid; 924 925 qid = -1; 926 gtask->gt_uniq = uniq; 927 gtask->gt_name = name; 928 gtask->gt_irq = irq; 929 gtask->gt_cpu = cpu; 930 mtx_lock(&qgroup->tqg_lock); 931 if (smp_started) { 932 for (i = 0; i < qgroup->tqg_cnt; i++) 933 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 934 qid = i; 935 break; 936 } 937 if (qid == -1) { 938 mtx_unlock(&qgroup->tqg_lock); 939 return (EINVAL); 940 } 941 } else 942 qid = 0; 943 qgroup->tqg_queue[qid].tgc_cnt++; 944 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 945 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 946 if (irq != -1 && smp_started) { 947 CPU_ZERO(&mask); 948 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 949 mtx_unlock(&qgroup->tqg_lock); 950 intr_setaffinity(irq, &mask); 951 } else 952 mtx_unlock(&qgroup->tqg_lock); 953 return (0); 954 } 955 956 void 957 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 958 { 959 int i; 960 961 mtx_lock(&qgroup->tqg_lock); 962 for (i = 0; i < qgroup->tqg_cnt; i++) 963 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 964 break; 965 if (i == qgroup->tqg_cnt) 966 panic("taskqgroup_detach: task not in group\n"); 967 qgroup->tqg_queue[i].tgc_cnt--; 968 LIST_REMOVE(gtask, gt_list); 969 mtx_unlock(&qgroup->tqg_lock); 970 gtask->gt_taskqueue = NULL; 971 } 972 973 static void 974 taskqgroup_binder(void *ctx, int pending) 975 { 976 struct taskq_bind_task *task = (struct taskq_bind_task *)ctx; 977 cpuset_t mask; 978 int error; 979 980 CPU_ZERO(&mask); 981 CPU_SET(task->bt_cpuid, &mask); 982 error = cpuset_setthread(curthread->td_tid, &mask); 983 thread_lock(curthread); 984 sched_bind(curthread, task->bt_cpuid); 985 thread_unlock(curthread); 986 987 if (error) 988 printf("taskqgroup_binder: setaffinity failed: %d\n", 989 error); 990 free(task, M_DEVBUF); 991 } 992 993 static void 994 taskqgroup_bind(struct taskqgroup *qgroup) 995 { 996 struct taskq_bind_task *task; 997 int i; 998 999 /* 1000 * Bind taskqueue threads to specific CPUs, if they have been assigned 1001 * one. 1002 */ 1003 for (i = 0; i < qgroup->tqg_cnt; i++) { 1004 task = malloc(sizeof (*task), M_DEVBUF, M_NOWAIT); 1005 TASK_INIT(&task->bt_task, 0, taskqgroup_binder, task); 1006 task->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 1007 taskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 1008 &task->bt_task); 1009 } 1010 } 1011 1012 static int 1013 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 1014 { 1015 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 1016 cpuset_t mask; 1017 struct grouptask *gtask; 1018 int i, old_cnt, qid; 1019 1020 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 1021 1022 if (cnt < 1 || cnt * stride > mp_ncpus || !smp_started) { 1023 printf("taskqgroup_adjust failed cnt: %d stride: %d mp_ncpus: %d smp_started: %d\n", 1024 cnt, stride, mp_ncpus, smp_started); 1025 return (EINVAL); 1026 } 1027 if (qgroup->tqg_adjusting) { 1028 printf("taskqgroup_adjust failed: adjusting\n"); 1029 return (EBUSY); 1030 } 1031 qgroup->tqg_adjusting = 1; 1032 old_cnt = qgroup->tqg_cnt; 1033 mtx_unlock(&qgroup->tqg_lock); 1034 /* 1035 * Set up queue for tasks added before boot. 1036 */ 1037 if (old_cnt == 0) { 1038 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 1039 grouptask, gt_list); 1040 qgroup->tqg_queue[0].tgc_cnt = 0; 1041 } 1042 1043 /* 1044 * If new taskq threads have been added. 1045 */ 1046 for (i = old_cnt; i < cnt; i++) 1047 taskqgroup_cpu_create(qgroup, i); 1048 mtx_lock(&qgroup->tqg_lock); 1049 qgroup->tqg_cnt = cnt; 1050 qgroup->tqg_stride = stride; 1051 1052 /* 1053 * Adjust drivers to use new taskqs. 1054 */ 1055 for (i = 0; i < old_cnt; i++) { 1056 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 1057 LIST_REMOVE(gtask, gt_list); 1058 qgroup->tqg_queue[i].tgc_cnt--; 1059 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 1060 } 1061 } 1062 1063 while ((gtask = LIST_FIRST(>ask_head))) { 1064 LIST_REMOVE(gtask, gt_list); 1065 if (gtask->gt_cpu == -1) 1066 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 1067 else { 1068 for (i = 0; i < qgroup->tqg_cnt; i++) 1069 if (qgroup->tqg_queue[i].tgc_cpu == gtask->gt_cpu) { 1070 qid = i; 1071 break; 1072 } 1073 } 1074 qgroup->tqg_queue[qid].tgc_cnt++; 1075 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, 1076 gt_list); 1077 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 1078 } 1079 /* 1080 * Set new CPU and IRQ affinity 1081 */ 1082 for (i = 0; i < cnt; i++) { 1083 qgroup->tqg_queue[i].tgc_cpu = i * qgroup->tqg_stride; 1084 CPU_ZERO(&mask); 1085 CPU_SET(qgroup->tqg_queue[i].tgc_cpu, &mask); 1086 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) { 1087 if (gtask->gt_irq == -1) 1088 continue; 1089 intr_setaffinity(gtask->gt_irq, &mask); 1090 } 1091 } 1092 mtx_unlock(&qgroup->tqg_lock); 1093 1094 /* 1095 * If taskq thread count has been reduced. 1096 */ 1097 for (i = cnt; i < old_cnt; i++) 1098 taskqgroup_cpu_remove(qgroup, i); 1099 1100 mtx_lock(&qgroup->tqg_lock); 1101 qgroup->tqg_adjusting = 0; 1102 1103 taskqgroup_bind(qgroup); 1104 1105 return (0); 1106 } 1107 1108 int 1109 taskqgroup_adjust(struct taskqgroup *qgroup, int cpu, int stride) 1110 { 1111 int error; 1112 1113 mtx_lock(&qgroup->tqg_lock); 1114 error = _taskqgroup_adjust(qgroup, cpu, stride); 1115 mtx_unlock(&qgroup->tqg_lock); 1116 1117 return (error); 1118 } 1119 1120 struct taskqgroup * 1121 taskqgroup_create(char *name) 1122 { 1123 struct taskqgroup *qgroup; 1124 1125 qgroup = malloc(sizeof(*qgroup), M_TASKQUEUE, M_WAITOK | M_ZERO); 1126 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 1127 qgroup->tqg_name = name; 1128 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 1129 1130 return (qgroup); 1131 } 1132 1133 void 1134 taskqgroup_destroy(struct taskqgroup *qgroup) 1135 { 1136 1137 } 1138