1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/cpuset.h> 34 #include <sys/interrupt.h> 35 #include <sys/kernel.h> 36 #include <sys/kthread.h> 37 #include <sys/libkern.h> 38 #include <sys/limits.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/sched.h> 44 #include <sys/smp.h> 45 #include <sys/taskqueue.h> 46 #include <sys/unistd.h> 47 #include <machine/stdarg.h> 48 49 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); 50 static void *taskqueue_giant_ih; 51 static void *taskqueue_ih; 52 static void taskqueue_fast_enqueue(void *); 53 static void taskqueue_swi_enqueue(void *); 54 static void taskqueue_swi_giant_enqueue(void *); 55 56 struct taskqueue_busy { 57 struct task *tb_running; 58 TAILQ_ENTRY(taskqueue_busy) tb_link; 59 }; 60 61 struct task * const TB_DRAIN_WAITER = (struct task *)0x1; 62 63 struct taskqueue { 64 STAILQ_HEAD(, task) tq_queue; 65 taskqueue_enqueue_fn tq_enqueue; 66 void *tq_context; 67 char *tq_name; 68 TAILQ_HEAD(, taskqueue_busy) tq_active; 69 struct mtx tq_mutex; 70 struct thread **tq_threads; 71 struct thread *tq_curthread; 72 int tq_tcount; 73 int tq_spin; 74 int tq_flags; 75 int tq_callouts; 76 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 77 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 78 }; 79 80 #define TQ_FLAGS_ACTIVE (1 << 0) 81 #define TQ_FLAGS_BLOCKED (1 << 1) 82 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 83 84 #define DT_CALLOUT_ARMED (1 << 0) 85 86 #define TQ_LOCK(tq) \ 87 do { \ 88 if ((tq)->tq_spin) \ 89 mtx_lock_spin(&(tq)->tq_mutex); \ 90 else \ 91 mtx_lock(&(tq)->tq_mutex); \ 92 } while (0) 93 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 94 95 #define TQ_UNLOCK(tq) \ 96 do { \ 97 if ((tq)->tq_spin) \ 98 mtx_unlock_spin(&(tq)->tq_mutex); \ 99 else \ 100 mtx_unlock(&(tq)->tq_mutex); \ 101 } while (0) 102 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 103 104 void 105 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, 106 int priority, task_fn_t func, void *context) 107 { 108 109 TASK_INIT(&timeout_task->t, priority, func, context); 110 callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 111 CALLOUT_RETURNUNLOCKED); 112 timeout_task->q = queue; 113 timeout_task->f = 0; 114 } 115 116 static __inline int 117 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 118 int t) 119 { 120 if (tq->tq_spin) 121 return (msleep_spin(p, m, wm, t)); 122 return (msleep(p, m, pri, wm, t)); 123 } 124 125 static struct taskqueue * 126 _taskqueue_create(const char *name, int mflags, 127 taskqueue_enqueue_fn enqueue, void *context, 128 int mtxflags, const char *mtxname __unused) 129 { 130 struct taskqueue *queue; 131 char *tq_name; 132 133 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO); 134 if (!tq_name) 135 return (NULL); 136 137 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 138 139 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); 140 if (!queue) 141 return (NULL); 142 143 STAILQ_INIT(&queue->tq_queue); 144 TAILQ_INIT(&queue->tq_active); 145 queue->tq_enqueue = enqueue; 146 queue->tq_context = context; 147 queue->tq_name = tq_name; 148 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 149 queue->tq_flags |= TQ_FLAGS_ACTIVE; 150 if (enqueue == taskqueue_fast_enqueue || 151 enqueue == taskqueue_swi_enqueue || 152 enqueue == taskqueue_swi_giant_enqueue || 153 enqueue == taskqueue_thread_enqueue) 154 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 155 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 156 157 return (queue); 158 } 159 160 struct taskqueue * 161 taskqueue_create(const char *name, int mflags, 162 taskqueue_enqueue_fn enqueue, void *context) 163 { 164 165 return _taskqueue_create(name, mflags, enqueue, context, 166 MTX_DEF, name); 167 } 168 169 void 170 taskqueue_set_callback(struct taskqueue *queue, 171 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback, 172 void *context) 173 { 174 175 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) && 176 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)), 177 ("Callback type %d not valid, must be %d-%d", cb_type, 178 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX)); 179 KASSERT((queue->tq_callbacks[cb_type] == NULL), 180 ("Re-initialization of taskqueue callback?")); 181 182 queue->tq_callbacks[cb_type] = callback; 183 queue->tq_cb_contexts[cb_type] = context; 184 } 185 186 /* 187 * Signal a taskqueue thread to terminate. 188 */ 189 static void 190 taskqueue_terminate(struct thread **pp, struct taskqueue *tq) 191 { 192 193 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 194 wakeup(tq); 195 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 196 } 197 } 198 199 void 200 taskqueue_free(struct taskqueue *queue) 201 { 202 203 TQ_LOCK(queue); 204 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 205 taskqueue_terminate(queue->tq_threads, queue); 206 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 207 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 208 mtx_destroy(&queue->tq_mutex); 209 free(queue->tq_threads, M_TASKQUEUE); 210 free(queue->tq_name, M_TASKQUEUE); 211 free(queue, M_TASKQUEUE); 212 } 213 214 static int 215 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task) 216 { 217 struct task *ins; 218 struct task *prev; 219 220 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func")); 221 /* 222 * Count multiple enqueues. 223 */ 224 if (task->ta_pending) { 225 if (task->ta_pending < UCHAR_MAX) 226 task->ta_pending++; 227 TQ_UNLOCK(queue); 228 return (0); 229 } 230 231 /* 232 * Optimise the case when all tasks have the same priority. 233 */ 234 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); 235 if (!prev || prev->ta_priority >= task->ta_priority) { 236 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 237 } else { 238 prev = NULL; 239 for (ins = STAILQ_FIRST(&queue->tq_queue); ins; 240 prev = ins, ins = STAILQ_NEXT(ins, ta_link)) 241 if (ins->ta_priority < task->ta_priority) 242 break; 243 244 if (prev) 245 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); 246 else 247 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); 248 } 249 250 task->ta_pending = 1; 251 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0) 252 TQ_UNLOCK(queue); 253 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 254 queue->tq_enqueue(queue->tq_context); 255 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0) 256 TQ_UNLOCK(queue); 257 258 /* Return with lock released. */ 259 return (0); 260 } 261 262 int 263 grouptaskqueue_enqueue(struct taskqueue *queue, struct task *task) 264 { 265 TQ_LOCK(queue); 266 if (task->ta_pending) { 267 TQ_UNLOCK(queue); 268 return (0); 269 } 270 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 271 task->ta_pending = 1; 272 TQ_UNLOCK(queue); 273 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 274 queue->tq_enqueue(queue->tq_context); 275 return (0); 276 } 277 278 int 279 taskqueue_enqueue(struct taskqueue *queue, struct task *task) 280 { 281 int res; 282 283 TQ_LOCK(queue); 284 res = taskqueue_enqueue_locked(queue, task); 285 /* The lock is released inside. */ 286 287 return (res); 288 } 289 290 static void 291 taskqueue_timeout_func(void *arg) 292 { 293 struct taskqueue *queue; 294 struct timeout_task *timeout_task; 295 296 timeout_task = arg; 297 queue = timeout_task->q; 298 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); 299 timeout_task->f &= ~DT_CALLOUT_ARMED; 300 queue->tq_callouts--; 301 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t); 302 /* The lock is released inside. */ 303 } 304 305 int 306 taskqueue_enqueue_timeout(struct taskqueue *queue, 307 struct timeout_task *timeout_task, int ticks) 308 { 309 int res; 310 311 TQ_LOCK(queue); 312 KASSERT(timeout_task->q == NULL || timeout_task->q == queue, 313 ("Migrated queue")); 314 KASSERT(!queue->tq_spin, ("Timeout for spin-queue")); 315 timeout_task->q = queue; 316 res = timeout_task->t.ta_pending; 317 if (ticks == 0) { 318 taskqueue_enqueue_locked(queue, &timeout_task->t); 319 /* The lock is released inside. */ 320 } else { 321 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 322 res++; 323 } else { 324 queue->tq_callouts++; 325 timeout_task->f |= DT_CALLOUT_ARMED; 326 if (ticks < 0) 327 ticks = -ticks; /* Ignore overflow. */ 328 } 329 if (ticks > 0) { 330 callout_reset(&timeout_task->c, ticks, 331 taskqueue_timeout_func, timeout_task); 332 } 333 TQ_UNLOCK(queue); 334 } 335 return (res); 336 } 337 338 static void 339 taskqueue_task_nop_fn(void *context, int pending) 340 { 341 } 342 343 /* 344 * Block until all currently queued tasks in this taskqueue 345 * have begun execution. Tasks queued during execution of 346 * this function are ignored. 347 */ 348 static void 349 taskqueue_drain_tq_queue(struct taskqueue *queue) 350 { 351 struct task t_barrier; 352 353 if (STAILQ_EMPTY(&queue->tq_queue)) 354 return; 355 356 /* 357 * Enqueue our barrier after all current tasks, but with 358 * the highest priority so that newly queued tasks cannot 359 * pass it. Because of the high priority, we can not use 360 * taskqueue_enqueue_locked directly (which drops the lock 361 * anyway) so just insert it at tail while we have the 362 * queue lock. 363 */ 364 TASK_INIT(&t_barrier, USHRT_MAX, taskqueue_task_nop_fn, &t_barrier); 365 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 366 t_barrier.ta_pending = 1; 367 368 /* 369 * Once the barrier has executed, all previously queued tasks 370 * have completed or are currently executing. 371 */ 372 while (t_barrier.ta_pending != 0) 373 TQ_SLEEP(queue, &t_barrier, &queue->tq_mutex, PWAIT, "-", 0); 374 } 375 376 /* 377 * Block until all currently executing tasks for this taskqueue 378 * complete. Tasks that begin execution during the execution 379 * of this function are ignored. 380 */ 381 static void 382 taskqueue_drain_tq_active(struct taskqueue *queue) 383 { 384 struct taskqueue_busy tb_marker, *tb_first; 385 386 if (TAILQ_EMPTY(&queue->tq_active)) 387 return; 388 389 /* Block taskq_terminate().*/ 390 queue->tq_callouts++; 391 392 /* 393 * Wait for all currently executing taskqueue threads 394 * to go idle. 395 */ 396 tb_marker.tb_running = TB_DRAIN_WAITER; 397 TAILQ_INSERT_TAIL(&queue->tq_active, &tb_marker, tb_link); 398 while (TAILQ_FIRST(&queue->tq_active) != &tb_marker) 399 TQ_SLEEP(queue, &tb_marker, &queue->tq_mutex, PWAIT, "-", 0); 400 TAILQ_REMOVE(&queue->tq_active, &tb_marker, tb_link); 401 402 /* 403 * Wakeup any other drain waiter that happened to queue up 404 * without any intervening active thread. 405 */ 406 tb_first = TAILQ_FIRST(&queue->tq_active); 407 if (tb_first != NULL && tb_first->tb_running == TB_DRAIN_WAITER) 408 wakeup(tb_first); 409 410 /* Release taskqueue_terminate(). */ 411 queue->tq_callouts--; 412 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 413 wakeup_one(queue->tq_threads); 414 } 415 416 void 417 taskqueue_block(struct taskqueue *queue) 418 { 419 420 TQ_LOCK(queue); 421 queue->tq_flags |= TQ_FLAGS_BLOCKED; 422 TQ_UNLOCK(queue); 423 } 424 425 void 426 taskqueue_unblock(struct taskqueue *queue) 427 { 428 429 TQ_LOCK(queue); 430 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 431 if (!STAILQ_EMPTY(&queue->tq_queue)) 432 queue->tq_enqueue(queue->tq_context); 433 TQ_UNLOCK(queue); 434 } 435 436 static void 437 taskqueue_run_locked(struct taskqueue *queue) 438 { 439 struct taskqueue_busy tb; 440 struct taskqueue_busy *tb_first; 441 struct task *task; 442 int pending; 443 444 KASSERT(queue != NULL, ("tq is NULL")); 445 TQ_ASSERT_LOCKED(queue); 446 tb.tb_running = NULL; 447 448 while (STAILQ_FIRST(&queue->tq_queue)) { 449 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 450 451 /* 452 * Carefully remove the first task from the queue and 453 * zero its pending count. 454 */ 455 task = STAILQ_FIRST(&queue->tq_queue); 456 KASSERT(task != NULL, ("task is NULL")); 457 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 458 pending = task->ta_pending; 459 task->ta_pending = 0; 460 tb.tb_running = task; 461 TQ_UNLOCK(queue); 462 463 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL")); 464 task->ta_func(task->ta_context, pending); 465 466 TQ_LOCK(queue); 467 tb.tb_running = NULL; 468 if ((task->ta_flags & TASK_SKIP_WAKEUP) == 0) 469 wakeup(task); 470 471 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 472 tb_first = TAILQ_FIRST(&queue->tq_active); 473 if (tb_first != NULL && 474 tb_first->tb_running == TB_DRAIN_WAITER) 475 wakeup(tb_first); 476 } 477 } 478 479 void 480 taskqueue_run(struct taskqueue *queue) 481 { 482 483 TQ_LOCK(queue); 484 queue->tq_curthread = curthread; 485 taskqueue_run_locked(queue); 486 queue->tq_curthread = NULL; 487 TQ_UNLOCK(queue); 488 } 489 490 static int 491 task_is_running(struct taskqueue *queue, struct task *task) 492 { 493 struct taskqueue_busy *tb; 494 495 TQ_ASSERT_LOCKED(queue); 496 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 497 if (tb->tb_running == task) 498 return (1); 499 } 500 return (0); 501 } 502 503 static int 504 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, 505 u_int *pendp) 506 { 507 508 if (task->ta_pending > 0) 509 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); 510 if (pendp != NULL) 511 *pendp = task->ta_pending; 512 task->ta_pending = 0; 513 return (task_is_running(queue, task) ? EBUSY : 0); 514 } 515 516 int 517 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) 518 { 519 int error; 520 521 TQ_LOCK(queue); 522 error = taskqueue_cancel_locked(queue, task, pendp); 523 TQ_UNLOCK(queue); 524 525 return (error); 526 } 527 528 int 529 taskqueue_cancel_timeout(struct taskqueue *queue, 530 struct timeout_task *timeout_task, u_int *pendp) 531 { 532 u_int pending, pending1; 533 int error; 534 535 TQ_LOCK(queue); 536 pending = !!(callout_stop(&timeout_task->c) > 0); 537 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); 538 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 539 timeout_task->f &= ~DT_CALLOUT_ARMED; 540 queue->tq_callouts--; 541 } 542 TQ_UNLOCK(queue); 543 544 if (pendp != NULL) 545 *pendp = pending + pending1; 546 return (error); 547 } 548 549 void 550 taskqueue_drain(struct taskqueue *queue, struct task *task) 551 { 552 553 if (!queue->tq_spin) 554 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 555 556 TQ_LOCK(queue); 557 while (task->ta_pending != 0 || task_is_running(queue, task)) 558 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0); 559 TQ_UNLOCK(queue); 560 } 561 562 void 563 taskqueue_drain_all(struct taskqueue *queue) 564 { 565 566 if (!queue->tq_spin) 567 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 568 569 TQ_LOCK(queue); 570 taskqueue_drain_tq_queue(queue); 571 taskqueue_drain_tq_active(queue); 572 TQ_UNLOCK(queue); 573 } 574 575 void 576 taskqueue_drain_timeout(struct taskqueue *queue, 577 struct timeout_task *timeout_task) 578 { 579 580 callout_drain(&timeout_task->c); 581 taskqueue_drain(queue, &timeout_task->t); 582 } 583 584 static void 585 taskqueue_swi_enqueue(void *context) 586 { 587 swi_sched(taskqueue_ih, 0); 588 } 589 590 static void 591 taskqueue_swi_run(void *dummy) 592 { 593 taskqueue_run(taskqueue_swi); 594 } 595 596 static void 597 taskqueue_swi_giant_enqueue(void *context) 598 { 599 swi_sched(taskqueue_giant_ih, 0); 600 } 601 602 static void 603 taskqueue_swi_giant_run(void *dummy) 604 { 605 taskqueue_run(taskqueue_swi_giant); 606 } 607 608 static int 609 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 610 cpuset_t *mask, const char *name, va_list ap) 611 { 612 char ktname[MAXCOMLEN + 1]; 613 struct thread *td; 614 struct taskqueue *tq; 615 int i, error; 616 617 if (count <= 0) 618 return (EINVAL); 619 620 vsnprintf(ktname, sizeof(ktname), name, ap); 621 tq = *tqp; 622 623 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, 624 M_NOWAIT | M_ZERO); 625 if (tq->tq_threads == NULL) { 626 printf("%s: no memory for %s threads\n", __func__, ktname); 627 return (ENOMEM); 628 } 629 630 for (i = 0; i < count; i++) { 631 if (count == 1) 632 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 633 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 634 else 635 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 636 &tq->tq_threads[i], RFSTOPPED, 0, 637 "%s_%d", ktname, i); 638 if (error) { 639 /* should be ok to continue, taskqueue_free will dtrt */ 640 printf("%s: kthread_add(%s): error %d", __func__, 641 ktname, error); 642 tq->tq_threads[i] = NULL; /* paranoid */ 643 } else 644 tq->tq_tcount++; 645 } 646 for (i = 0; i < count; i++) { 647 if (tq->tq_threads[i] == NULL) 648 continue; 649 td = tq->tq_threads[i]; 650 if (mask) { 651 error = cpuset_setthread(td->td_tid, mask); 652 /* 653 * Failing to pin is rarely an actual fatal error; 654 * it'll just affect performance. 655 */ 656 if (error) 657 printf("%s: curthread=%llu: can't pin; " 658 "error=%d\n", 659 __func__, 660 (unsigned long long) td->td_tid, 661 error); 662 } 663 thread_lock(td); 664 sched_prio(td, pri); 665 sched_add(td, SRQ_BORING); 666 thread_unlock(td); 667 } 668 669 return (0); 670 } 671 672 int 673 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 674 const char *name, ...) 675 { 676 va_list ap; 677 int error; 678 679 va_start(ap, name); 680 error = _taskqueue_start_threads(tqp, count, pri, NULL, name, ap); 681 va_end(ap); 682 return (error); 683 } 684 685 int 686 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri, 687 cpuset_t *mask, const char *name, ...) 688 { 689 va_list ap; 690 int error; 691 692 va_start(ap, name); 693 error = _taskqueue_start_threads(tqp, count, pri, mask, name, ap); 694 va_end(ap); 695 return (error); 696 } 697 698 static inline void 699 taskqueue_run_callback(struct taskqueue *tq, 700 enum taskqueue_callback_type cb_type) 701 { 702 taskqueue_callback_fn tq_callback; 703 704 TQ_ASSERT_UNLOCKED(tq); 705 tq_callback = tq->tq_callbacks[cb_type]; 706 if (tq_callback != NULL) 707 tq_callback(tq->tq_cb_contexts[cb_type]); 708 } 709 710 void 711 taskqueue_thread_loop(void *arg) 712 { 713 struct taskqueue **tqp, *tq; 714 715 tqp = arg; 716 tq = *tqp; 717 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 718 TQ_LOCK(tq); 719 tq->tq_curthread = curthread; 720 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 721 /* XXX ? */ 722 taskqueue_run_locked(tq); 723 /* 724 * Because taskqueue_run() can drop tq_mutex, we need to 725 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 726 * meantime, which means we missed a wakeup. 727 */ 728 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 729 break; 730 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 731 } 732 taskqueue_run_locked(tq); 733 tq->tq_curthread = NULL; 734 /* 735 * This thread is on its way out, so just drop the lock temporarily 736 * in order to call the shutdown callback. This allows the callback 737 * to look at the taskqueue, even just before it dies. 738 */ 739 TQ_UNLOCK(tq); 740 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 741 TQ_LOCK(tq); 742 743 /* rendezvous with thread that asked us to terminate */ 744 tq->tq_tcount--; 745 wakeup_one(tq->tq_threads); 746 TQ_UNLOCK(tq); 747 kthread_exit(); 748 } 749 750 void 751 taskqueue_thread_enqueue(void *context) 752 { 753 struct taskqueue **tqp, *tq; 754 755 tqp = context; 756 tq = *tqp; 757 if (tq->tq_curthread != curthread) 758 wakeup_one(tq); 759 } 760 761 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, 762 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, 763 INTR_MPSAFE, &taskqueue_ih)); 764 765 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, 766 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, 767 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 768 769 TASKQUEUE_DEFINE_THREAD(thread); 770 771 struct taskqueue * 772 taskqueue_create_fast(const char *name, int mflags, 773 taskqueue_enqueue_fn enqueue, void *context) 774 { 775 return _taskqueue_create(name, mflags, enqueue, context, 776 MTX_SPIN, "fast_taskqueue"); 777 } 778 779 static void *taskqueue_fast_ih; 780 781 static void 782 taskqueue_fast_enqueue(void *context) 783 { 784 swi_sched(taskqueue_fast_ih, 0); 785 } 786 787 static void 788 taskqueue_fast_run(void *dummy) 789 { 790 taskqueue_run(taskqueue_fast); 791 } 792 793 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, 794 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL, 795 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); 796 797 int 798 taskqueue_member(struct taskqueue *queue, struct thread *td) 799 { 800 int i, j, ret = 0; 801 802 for (i = 0, j = 0; ; i++) { 803 if (queue->tq_threads[i] == NULL) 804 continue; 805 if (queue->tq_threads[i] == td) { 806 ret = 1; 807 break; 808 } 809 if (++j >= queue->tq_tcount) 810 break; 811 } 812 return (ret); 813 } 814 815 struct taskqgroup_cpu { 816 LIST_HEAD(, grouptask) tgc_tasks; 817 struct taskqueue *tgc_taskq; 818 int tgc_cnt; 819 int tgc_cpu; 820 }; 821 822 struct taskqgroup { 823 struct taskqgroup_cpu tqg_queue[MAXCPU]; 824 struct mtx tqg_lock; 825 char * tqg_name; 826 int tqg_adjusting; 827 int tqg_stride; 828 int tqg_cnt; 829 }; 830 831 struct taskq_bind_task { 832 struct task bt_task; 833 int bt_cpuid; 834 }; 835 836 static void 837 taskqgroup_cpu_create(struct taskqgroup *qgroup, int idx) 838 { 839 struct taskqgroup_cpu *qcpu; 840 841 qcpu = &qgroup->tqg_queue[idx]; 842 LIST_INIT(&qcpu->tgc_tasks); 843 qcpu->tgc_taskq = taskqueue_create_fast(NULL, M_WAITOK, 844 taskqueue_thread_enqueue, &qcpu->tgc_taskq); 845 taskqueue_start_threads(&qcpu->tgc_taskq, 1, PI_SOFT, 846 "%s_%d", qgroup->tqg_name, idx); 847 qcpu->tgc_cpu = idx * qgroup->tqg_stride; 848 } 849 850 static void 851 taskqgroup_cpu_remove(struct taskqgroup *qgroup, int idx) 852 { 853 854 taskqueue_free(qgroup->tqg_queue[idx].tgc_taskq); 855 } 856 857 /* 858 * Find the taskq with least # of tasks that doesn't currently have any 859 * other queues from the uniq identifier. 860 */ 861 static int 862 taskqgroup_find(struct taskqgroup *qgroup, void *uniq) 863 { 864 struct grouptask *n; 865 int i, idx, mincnt; 866 int strict; 867 868 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 869 if (qgroup->tqg_cnt == 0) 870 return (0); 871 idx = -1; 872 mincnt = INT_MAX; 873 /* 874 * Two passes; First scan for a queue with the least tasks that 875 * does not already service this uniq id. If that fails simply find 876 * the queue with the least total tasks; 877 */ 878 for (strict = 1; mincnt == INT_MAX; strict = 0) { 879 for (i = 0; i < qgroup->tqg_cnt; i++) { 880 if (qgroup->tqg_queue[i].tgc_cnt > mincnt) 881 continue; 882 if (strict) { 883 LIST_FOREACH(n, 884 &qgroup->tqg_queue[i].tgc_tasks, gt_list) 885 if (n->gt_uniq == uniq) 886 break; 887 if (n != NULL) 888 continue; 889 } 890 mincnt = qgroup->tqg_queue[i].tgc_cnt; 891 idx = i; 892 } 893 } 894 if (idx == -1) 895 panic("taskqgroup_find: Failed to pick a qid."); 896 897 return (idx); 898 } 899 900 void 901 taskqgroup_attach(struct taskqgroup *qgroup, struct grouptask *gtask, 902 void *uniq, int irq, char *name) 903 { 904 cpuset_t mask; 905 int qid; 906 907 gtask->gt_uniq = uniq; 908 gtask->gt_name = name; 909 gtask->gt_irq = irq; 910 gtask->gt_cpu = -1; 911 mtx_lock(&qgroup->tqg_lock); 912 qid = taskqgroup_find(qgroup, uniq); 913 qgroup->tqg_queue[qid].tgc_cnt++; 914 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 915 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 916 if (irq != -1 && smp_started) { 917 CPU_ZERO(&mask); 918 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 919 mtx_unlock(&qgroup->tqg_lock); 920 intr_setaffinity(irq, &mask); 921 } else 922 mtx_unlock(&qgroup->tqg_lock); 923 } 924 925 int 926 taskqgroup_attach_cpu(struct taskqgroup *qgroup, struct grouptask *gtask, 927 void *uniq, int cpu, int irq, char *name) 928 { 929 cpuset_t mask; 930 int i, qid; 931 932 qid = -1; 933 gtask->gt_uniq = uniq; 934 gtask->gt_name = name; 935 gtask->gt_irq = irq; 936 gtask->gt_cpu = cpu; 937 mtx_lock(&qgroup->tqg_lock); 938 if (smp_started) { 939 for (i = 0; i < qgroup->tqg_cnt; i++) 940 if (qgroup->tqg_queue[i].tgc_cpu == cpu) { 941 qid = i; 942 break; 943 } 944 if (qid == -1) { 945 mtx_unlock(&qgroup->tqg_lock); 946 return (EINVAL); 947 } 948 } else 949 qid = 0; 950 qgroup->tqg_queue[qid].tgc_cnt++; 951 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, gt_list); 952 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 953 if (irq != -1 && smp_started) { 954 CPU_ZERO(&mask); 955 CPU_SET(qgroup->tqg_queue[qid].tgc_cpu, &mask); 956 mtx_unlock(&qgroup->tqg_lock); 957 intr_setaffinity(irq, &mask); 958 } else 959 mtx_unlock(&qgroup->tqg_lock); 960 return (0); 961 } 962 963 void 964 taskqgroup_detach(struct taskqgroup *qgroup, struct grouptask *gtask) 965 { 966 int i; 967 968 mtx_lock(&qgroup->tqg_lock); 969 for (i = 0; i < qgroup->tqg_cnt; i++) 970 if (qgroup->tqg_queue[i].tgc_taskq == gtask->gt_taskqueue) 971 break; 972 if (i == qgroup->tqg_cnt) 973 panic("taskqgroup_detach: task not in group\n"); 974 qgroup->tqg_queue[i].tgc_cnt--; 975 LIST_REMOVE(gtask, gt_list); 976 mtx_unlock(&qgroup->tqg_lock); 977 gtask->gt_taskqueue = NULL; 978 } 979 980 static void 981 taskqgroup_binder(void *ctx, int pending) 982 { 983 struct taskq_bind_task *task = (struct taskq_bind_task *)ctx; 984 cpuset_t mask; 985 int error; 986 987 CPU_ZERO(&mask); 988 CPU_SET(task->bt_cpuid, &mask); 989 error = cpuset_setthread(curthread->td_tid, &mask); 990 thread_lock(curthread); 991 sched_bind(curthread, task->bt_cpuid); 992 thread_unlock(curthread); 993 994 if (error) 995 printf("taskqgroup_binder: setaffinity failed: %d\n", 996 error); 997 free(task, M_DEVBUF); 998 } 999 1000 static void 1001 taskqgroup_bind(struct taskqgroup *qgroup) 1002 { 1003 struct taskq_bind_task *task; 1004 int i; 1005 1006 /* 1007 * Bind taskqueue threads to specific CPUs, if they have been assigned 1008 * one. 1009 */ 1010 for (i = 0; i < qgroup->tqg_cnt; i++) { 1011 task = malloc(sizeof (*task), M_DEVBUF, M_NOWAIT); 1012 TASK_INIT(&task->bt_task, 0, taskqgroup_binder, task); 1013 task->bt_cpuid = qgroup->tqg_queue[i].tgc_cpu; 1014 taskqueue_enqueue(qgroup->tqg_queue[i].tgc_taskq, 1015 &task->bt_task); 1016 } 1017 } 1018 1019 static int 1020 _taskqgroup_adjust(struct taskqgroup *qgroup, int cnt, int stride) 1021 { 1022 LIST_HEAD(, grouptask) gtask_head = LIST_HEAD_INITIALIZER(NULL); 1023 cpuset_t mask; 1024 struct grouptask *gtask; 1025 int i, old_cnt, qid; 1026 1027 mtx_assert(&qgroup->tqg_lock, MA_OWNED); 1028 1029 if (cnt < 1 || cnt * stride > mp_ncpus || !smp_started) { 1030 printf("taskqgroup_adjust failed cnt: %d stride: %d mp_ncpus: %d smp_started: %d\n", 1031 cnt, stride, mp_ncpus, smp_started); 1032 return (EINVAL); 1033 } 1034 if (qgroup->tqg_adjusting) { 1035 printf("taskqgroup_adjust failed: adjusting\n"); 1036 return (EBUSY); 1037 } 1038 qgroup->tqg_adjusting = 1; 1039 old_cnt = qgroup->tqg_cnt; 1040 mtx_unlock(&qgroup->tqg_lock); 1041 /* 1042 * Set up queue for tasks added before boot. 1043 */ 1044 if (old_cnt == 0) { 1045 LIST_SWAP(>ask_head, &qgroup->tqg_queue[0].tgc_tasks, 1046 grouptask, gt_list); 1047 qgroup->tqg_queue[0].tgc_cnt = 0; 1048 } 1049 1050 /* 1051 * If new taskq threads have been added. 1052 */ 1053 for (i = old_cnt; i < cnt; i++) 1054 taskqgroup_cpu_create(qgroup, i); 1055 mtx_lock(&qgroup->tqg_lock); 1056 qgroup->tqg_cnt = cnt; 1057 qgroup->tqg_stride = stride; 1058 1059 /* 1060 * Adjust drivers to use new taskqs. 1061 */ 1062 for (i = 0; i < old_cnt; i++) { 1063 while ((gtask = LIST_FIRST(&qgroup->tqg_queue[i].tgc_tasks))) { 1064 LIST_REMOVE(gtask, gt_list); 1065 qgroup->tqg_queue[i].tgc_cnt--; 1066 LIST_INSERT_HEAD(>ask_head, gtask, gt_list); 1067 } 1068 } 1069 1070 while ((gtask = LIST_FIRST(>ask_head))) { 1071 LIST_REMOVE(gtask, gt_list); 1072 if (gtask->gt_cpu == -1) 1073 qid = taskqgroup_find(qgroup, gtask->gt_uniq); 1074 else { 1075 for (i = 0; i < qgroup->tqg_cnt; i++) 1076 if (qgroup->tqg_queue[i].tgc_cpu == gtask->gt_cpu) { 1077 qid = i; 1078 break; 1079 } 1080 } 1081 qgroup->tqg_queue[qid].tgc_cnt++; 1082 LIST_INSERT_HEAD(&qgroup->tqg_queue[qid].tgc_tasks, gtask, 1083 gt_list); 1084 gtask->gt_taskqueue = qgroup->tqg_queue[qid].tgc_taskq; 1085 } 1086 /* 1087 * Set new CPU and IRQ affinity 1088 */ 1089 for (i = 0; i < cnt; i++) { 1090 qgroup->tqg_queue[i].tgc_cpu = i * qgroup->tqg_stride; 1091 CPU_ZERO(&mask); 1092 CPU_SET(qgroup->tqg_queue[i].tgc_cpu, &mask); 1093 LIST_FOREACH(gtask, &qgroup->tqg_queue[i].tgc_tasks, gt_list) { 1094 if (gtask->gt_irq == -1) 1095 continue; 1096 intr_setaffinity(gtask->gt_irq, &mask); 1097 } 1098 } 1099 mtx_unlock(&qgroup->tqg_lock); 1100 1101 /* 1102 * If taskq thread count has been reduced. 1103 */ 1104 for (i = cnt; i < old_cnt; i++) 1105 taskqgroup_cpu_remove(qgroup, i); 1106 1107 mtx_lock(&qgroup->tqg_lock); 1108 qgroup->tqg_adjusting = 0; 1109 1110 taskqgroup_bind(qgroup); 1111 1112 return (0); 1113 } 1114 1115 int 1116 taskqgroup_adjust(struct taskqgroup *qgroup, int cpu, int stride) 1117 { 1118 int error; 1119 1120 mtx_lock(&qgroup->tqg_lock); 1121 error = _taskqgroup_adjust(qgroup, cpu, stride); 1122 mtx_unlock(&qgroup->tqg_lock); 1123 1124 return (error); 1125 } 1126 1127 struct taskqgroup * 1128 taskqgroup_create(char *name) 1129 { 1130 struct taskqgroup *qgroup; 1131 1132 qgroup = malloc(sizeof(*qgroup), M_TASKQUEUE, M_WAITOK | M_ZERO); 1133 mtx_init(&qgroup->tqg_lock, "taskqgroup", NULL, MTX_DEF); 1134 qgroup->tqg_name = name; 1135 LIST_INIT(&qgroup->tqg_queue[0].tgc_tasks); 1136 1137 return (qgroup); 1138 } 1139 1140 void 1141 taskqgroup_destroy(struct taskqgroup *qgroup) 1142 { 1143 1144 } 1145