xref: /freebsd/sys/kern/subr_taskqueue.c (revision d4a14c8563b1654a5bb8046546bc61f70f0322db)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45 
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void	*taskqueue_giant_ih;
48 static void	*taskqueue_ih;
49 static void	 taskqueue_fast_enqueue(void *);
50 static void	 taskqueue_swi_enqueue(void *);
51 static void	 taskqueue_swi_giant_enqueue(void *);
52 
53 struct taskqueue_busy {
54 	struct task	*tb_running;
55 	TAILQ_ENTRY(taskqueue_busy) tb_link;
56 };
57 
58 struct taskqueue {
59 	STAILQ_HEAD(, task)	tq_queue;
60 	taskqueue_enqueue_fn	tq_enqueue;
61 	void			*tq_context;
62 	TAILQ_HEAD(, taskqueue_busy) tq_active;
63 	struct mtx		tq_mutex;
64 	struct thread		**tq_threads;
65 	int			tq_tcount;
66 	int			tq_spin;
67 	int			tq_flags;
68 	int			tq_callouts;
69 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
70 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
71 };
72 
73 #define	TQ_FLAGS_ACTIVE		(1 << 0)
74 #define	TQ_FLAGS_BLOCKED	(1 << 1)
75 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
76 
77 #define	DT_CALLOUT_ARMED	(1 << 0)
78 
79 #define	TQ_LOCK(tq)							\
80 	do {								\
81 		if ((tq)->tq_spin)					\
82 			mtx_lock_spin(&(tq)->tq_mutex);			\
83 		else							\
84 			mtx_lock(&(tq)->tq_mutex);			\
85 	} while (0)
86 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
87 
88 #define	TQ_UNLOCK(tq)							\
89 	do {								\
90 		if ((tq)->tq_spin)					\
91 			mtx_unlock_spin(&(tq)->tq_mutex);		\
92 		else							\
93 			mtx_unlock(&(tq)->tq_mutex);			\
94 	} while (0)
95 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
96 
97 void
98 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
99     int priority, task_fn_t func, void *context)
100 {
101 
102 	TASK_INIT(&timeout_task->t, priority, func, context);
103 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
104 	    CALLOUT_RETURNUNLOCKED);
105 	timeout_task->q = queue;
106 	timeout_task->f = 0;
107 }
108 
109 static __inline int
110 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
111     int t)
112 {
113 	if (tq->tq_spin)
114 		return (msleep_spin(p, m, wm, t));
115 	return (msleep(p, m, pri, wm, t));
116 }
117 
118 static struct taskqueue *
119 _taskqueue_create(const char *name __unused, int mflags,
120 		 taskqueue_enqueue_fn enqueue, void *context,
121 		 int mtxflags, const char *mtxname)
122 {
123 	struct taskqueue *queue;
124 
125 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
126 	if (!queue)
127 		return NULL;
128 
129 	STAILQ_INIT(&queue->tq_queue);
130 	TAILQ_INIT(&queue->tq_active);
131 	queue->tq_enqueue = enqueue;
132 	queue->tq_context = context;
133 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
134 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
135 	if (enqueue == taskqueue_fast_enqueue ||
136 	    enqueue == taskqueue_swi_enqueue ||
137 	    enqueue == taskqueue_swi_giant_enqueue ||
138 	    enqueue == taskqueue_thread_enqueue)
139 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
140 	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
141 
142 	return queue;
143 }
144 
145 struct taskqueue *
146 taskqueue_create(const char *name, int mflags,
147 		 taskqueue_enqueue_fn enqueue, void *context)
148 {
149 	return _taskqueue_create(name, mflags, enqueue, context,
150 			MTX_DEF, "taskqueue");
151 }
152 
153 void
154 taskqueue_set_callback(struct taskqueue *queue,
155     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
156     void *context)
157 {
158 
159 	KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
160 	    (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
161 	    ("Callback type %d not valid, must be %d-%d", cb_type,
162 	    TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
163 	KASSERT((queue->tq_callbacks[cb_type] == NULL),
164 	    ("Re-initialization of taskqueue callback?"));
165 
166 	queue->tq_callbacks[cb_type] = callback;
167 	queue->tq_cb_contexts[cb_type] = context;
168 }
169 
170 /*
171  * Signal a taskqueue thread to terminate.
172  */
173 static void
174 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
175 {
176 
177 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
178 		wakeup(tq);
179 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
180 	}
181 }
182 
183 void
184 taskqueue_free(struct taskqueue *queue)
185 {
186 
187 	TQ_LOCK(queue);
188 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
189 	taskqueue_terminate(queue->tq_threads, queue);
190 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
191 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
192 	mtx_destroy(&queue->tq_mutex);
193 	free(queue->tq_threads, M_TASKQUEUE);
194 	free(queue, M_TASKQUEUE);
195 }
196 
197 static int
198 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
199 {
200 	struct task *ins;
201 	struct task *prev;
202 
203 	/*
204 	 * Count multiple enqueues.
205 	 */
206 	if (task->ta_pending) {
207 		if (task->ta_pending < USHRT_MAX)
208 			task->ta_pending++;
209 		TQ_UNLOCK(queue);
210 		return (0);
211 	}
212 
213 	/*
214 	 * Optimise the case when all tasks have the same priority.
215 	 */
216 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
217 	if (!prev || prev->ta_priority >= task->ta_priority) {
218 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
219 	} else {
220 		prev = NULL;
221 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
222 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
223 			if (ins->ta_priority < task->ta_priority)
224 				break;
225 
226 		if (prev)
227 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
228 		else
229 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
230 	}
231 
232 	task->ta_pending = 1;
233 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
234 		TQ_UNLOCK(queue);
235 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
236 		queue->tq_enqueue(queue->tq_context);
237 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
238 		TQ_UNLOCK(queue);
239 
240 	return (0);
241 }
242 int
243 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
244 {
245 	int res;
246 
247 	TQ_LOCK(queue);
248 	res = taskqueue_enqueue_locked(queue, task);
249 
250 	return (res);
251 }
252 
253 static void
254 taskqueue_timeout_func(void *arg)
255 {
256 	struct taskqueue *queue;
257 	struct timeout_task *timeout_task;
258 
259 	timeout_task = arg;
260 	queue = timeout_task->q;
261 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
262 	timeout_task->f &= ~DT_CALLOUT_ARMED;
263 	queue->tq_callouts--;
264 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
265 }
266 
267 int
268 taskqueue_enqueue_timeout(struct taskqueue *queue,
269     struct timeout_task *timeout_task, int ticks)
270 {
271 	int res;
272 
273 	TQ_LOCK(queue);
274 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
275 	    ("Migrated queue"));
276 	KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
277 	timeout_task->q = queue;
278 	res = timeout_task->t.ta_pending;
279 	if (ticks == 0) {
280 		taskqueue_enqueue_locked(queue, &timeout_task->t);
281 	} else {
282 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
283 			res++;
284 		} else {
285 			queue->tq_callouts++;
286 			timeout_task->f |= DT_CALLOUT_ARMED;
287 			if (ticks < 0)
288 				ticks = -ticks; /* Ignore overflow. */
289 		}
290 		if (ticks > 0) {
291 			callout_reset(&timeout_task->c, ticks,
292 			    taskqueue_timeout_func, timeout_task);
293 		}
294 		TQ_UNLOCK(queue);
295 	}
296 	return (res);
297 }
298 
299 void
300 taskqueue_block(struct taskqueue *queue)
301 {
302 
303 	TQ_LOCK(queue);
304 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
305 	TQ_UNLOCK(queue);
306 }
307 
308 void
309 taskqueue_unblock(struct taskqueue *queue)
310 {
311 
312 	TQ_LOCK(queue);
313 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
314 	if (!STAILQ_EMPTY(&queue->tq_queue))
315 		queue->tq_enqueue(queue->tq_context);
316 	TQ_UNLOCK(queue);
317 }
318 
319 static void
320 taskqueue_run_locked(struct taskqueue *queue)
321 {
322 	struct taskqueue_busy tb;
323 	struct task *task;
324 	int pending;
325 
326 	TQ_ASSERT_LOCKED(queue);
327 	tb.tb_running = NULL;
328 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
329 
330 	while (STAILQ_FIRST(&queue->tq_queue)) {
331 		/*
332 		 * Carefully remove the first task from the queue and
333 		 * zero its pending count.
334 		 */
335 		task = STAILQ_FIRST(&queue->tq_queue);
336 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
337 		pending = task->ta_pending;
338 		task->ta_pending = 0;
339 		tb.tb_running = task;
340 		TQ_UNLOCK(queue);
341 
342 		task->ta_func(task->ta_context, pending);
343 
344 		TQ_LOCK(queue);
345 		tb.tb_running = NULL;
346 		wakeup(task);
347 	}
348 	TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
349 }
350 
351 void
352 taskqueue_run(struct taskqueue *queue)
353 {
354 
355 	TQ_LOCK(queue);
356 	taskqueue_run_locked(queue);
357 	TQ_UNLOCK(queue);
358 }
359 
360 static int
361 task_is_running(struct taskqueue *queue, struct task *task)
362 {
363 	struct taskqueue_busy *tb;
364 
365 	TQ_ASSERT_LOCKED(queue);
366 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
367 		if (tb->tb_running == task)
368 			return (1);
369 	}
370 	return (0);
371 }
372 
373 static int
374 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
375     u_int *pendp)
376 {
377 
378 	if (task->ta_pending > 0)
379 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
380 	if (pendp != NULL)
381 		*pendp = task->ta_pending;
382 	task->ta_pending = 0;
383 	return (task_is_running(queue, task) ? EBUSY : 0);
384 }
385 
386 int
387 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
388 {
389 	u_int pending;
390 	int error;
391 
392 	TQ_LOCK(queue);
393 	pending = task->ta_pending;
394 	error = taskqueue_cancel_locked(queue, task, pendp);
395 	TQ_UNLOCK(queue);
396 
397 	return (error);
398 }
399 
400 int
401 taskqueue_cancel_timeout(struct taskqueue *queue,
402     struct timeout_task *timeout_task, u_int *pendp)
403 {
404 	u_int pending, pending1;
405 	int error;
406 
407 	TQ_LOCK(queue);
408 	pending = !!callout_stop(&timeout_task->c);
409 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
410 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
411 		timeout_task->f &= ~DT_CALLOUT_ARMED;
412 		queue->tq_callouts--;
413 	}
414 	TQ_UNLOCK(queue);
415 
416 	if (pendp != NULL)
417 		*pendp = pending + pending1;
418 	return (error);
419 }
420 
421 void
422 taskqueue_drain(struct taskqueue *queue, struct task *task)
423 {
424 
425 	if (!queue->tq_spin)
426 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
427 
428 	TQ_LOCK(queue);
429 	while (task->ta_pending != 0 || task_is_running(queue, task))
430 		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
431 	TQ_UNLOCK(queue);
432 }
433 
434 void
435 taskqueue_drain_timeout(struct taskqueue *queue,
436     struct timeout_task *timeout_task)
437 {
438 
439 	callout_drain(&timeout_task->c);
440 	taskqueue_drain(queue, &timeout_task->t);
441 }
442 
443 static void
444 taskqueue_swi_enqueue(void *context)
445 {
446 	swi_sched(taskqueue_ih, 0);
447 }
448 
449 static void
450 taskqueue_swi_run(void *dummy)
451 {
452 	taskqueue_run(taskqueue_swi);
453 }
454 
455 static void
456 taskqueue_swi_giant_enqueue(void *context)
457 {
458 	swi_sched(taskqueue_giant_ih, 0);
459 }
460 
461 static void
462 taskqueue_swi_giant_run(void *dummy)
463 {
464 	taskqueue_run(taskqueue_swi_giant);
465 }
466 
467 int
468 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
469 			const char *name, ...)
470 {
471 	va_list ap;
472 	struct thread *td;
473 	struct taskqueue *tq;
474 	int i, error;
475 	char ktname[MAXCOMLEN + 1];
476 
477 	if (count <= 0)
478 		return (EINVAL);
479 
480 	tq = *tqp;
481 
482 	va_start(ap, name);
483 	vsnprintf(ktname, sizeof(ktname), name, ap);
484 	va_end(ap);
485 
486 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
487 	    M_NOWAIT | M_ZERO);
488 	if (tq->tq_threads == NULL) {
489 		printf("%s: no memory for %s threads\n", __func__, ktname);
490 		return (ENOMEM);
491 	}
492 
493 	for (i = 0; i < count; i++) {
494 		if (count == 1)
495 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
496 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
497 		else
498 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
499 			    &tq->tq_threads[i], RFSTOPPED, 0,
500 			    "%s_%d", ktname, i);
501 		if (error) {
502 			/* should be ok to continue, taskqueue_free will dtrt */
503 			printf("%s: kthread_add(%s): error %d", __func__,
504 			    ktname, error);
505 			tq->tq_threads[i] = NULL;		/* paranoid */
506 		} else
507 			tq->tq_tcount++;
508 	}
509 	for (i = 0; i < count; i++) {
510 		if (tq->tq_threads[i] == NULL)
511 			continue;
512 		td = tq->tq_threads[i];
513 		thread_lock(td);
514 		sched_prio(td, pri);
515 		sched_add(td, SRQ_BORING);
516 		thread_unlock(td);
517 	}
518 
519 	return (0);
520 }
521 
522 static inline void
523 taskqueue_run_callback(struct taskqueue *tq,
524     enum taskqueue_callback_type cb_type)
525 {
526 	taskqueue_callback_fn tq_callback;
527 
528 	TQ_ASSERT_UNLOCKED(tq);
529 	tq_callback = tq->tq_callbacks[cb_type];
530 	if (tq_callback != NULL)
531 		tq_callback(tq->tq_cb_contexts[cb_type]);
532 }
533 
534 void
535 taskqueue_thread_loop(void *arg)
536 {
537 	struct taskqueue **tqp, *tq;
538 
539 	tqp = arg;
540 	tq = *tqp;
541 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
542 	TQ_LOCK(tq);
543 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
544 		taskqueue_run_locked(tq);
545 		/*
546 		 * Because taskqueue_run() can drop tq_mutex, we need to
547 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
548 		 * meantime, which means we missed a wakeup.
549 		 */
550 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
551 			break;
552 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
553 	}
554 	taskqueue_run_locked(tq);
555 
556 	/*
557 	 * This thread is on its way out, so just drop the lock temporarily
558 	 * in order to call the shutdown callback.  This allows the callback
559 	 * to look at the taskqueue, even just before it dies.
560 	 */
561 	TQ_UNLOCK(tq);
562 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
563 	TQ_LOCK(tq);
564 
565 	/* rendezvous with thread that asked us to terminate */
566 	tq->tq_tcount--;
567 	wakeup_one(tq->tq_threads);
568 	TQ_UNLOCK(tq);
569 	kthread_exit();
570 }
571 
572 void
573 taskqueue_thread_enqueue(void *context)
574 {
575 	struct taskqueue **tqp, *tq;
576 
577 	tqp = context;
578 	tq = *tqp;
579 
580 	wakeup_one(tq);
581 }
582 
583 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
584 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
585 		     INTR_MPSAFE, &taskqueue_ih));
586 
587 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
588 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
589 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
590 
591 TASKQUEUE_DEFINE_THREAD(thread);
592 
593 struct taskqueue *
594 taskqueue_create_fast(const char *name, int mflags,
595 		 taskqueue_enqueue_fn enqueue, void *context)
596 {
597 	return _taskqueue_create(name, mflags, enqueue, context,
598 			MTX_SPIN, "fast_taskqueue");
599 }
600 
601 /* NB: for backwards compatibility */
602 int
603 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
604 {
605 	return taskqueue_enqueue(queue, task);
606 }
607 
608 static void	*taskqueue_fast_ih;
609 
610 static void
611 taskqueue_fast_enqueue(void *context)
612 {
613 	swi_sched(taskqueue_fast_ih, 0);
614 }
615 
616 static void
617 taskqueue_fast_run(void *dummy)
618 {
619 	taskqueue_run(taskqueue_fast);
620 }
621 
622 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
623 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
624 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
625 
626 int
627 taskqueue_member(struct taskqueue *queue, struct thread *td)
628 {
629 	int i, j, ret = 0;
630 
631 	for (i = 0, j = 0; ; i++) {
632 		if (queue->tq_threads[i] == NULL)
633 			continue;
634 		if (queue->tq_threads[i] == td) {
635 			ret = 1;
636 			break;
637 		}
638 		if (++j >= queue->tq_tcount)
639 			break;
640 	}
641 	return (ret);
642 }
643