1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/bus.h> 35 #include <sys/cpuset.h> 36 #include <sys/interrupt.h> 37 #include <sys/kernel.h> 38 #include <sys/kthread.h> 39 #include <sys/libkern.h> 40 #include <sys/limits.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/epoch.h> 46 #include <sys/sched.h> 47 #include <sys/smp.h> 48 #include <sys/taskqueue.h> 49 #include <sys/unistd.h> 50 #include <machine/stdarg.h> 51 52 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); 53 static void *taskqueue_giant_ih; 54 static void *taskqueue_ih; 55 static void taskqueue_fast_enqueue(void *); 56 static void taskqueue_swi_enqueue(void *); 57 static void taskqueue_swi_giant_enqueue(void *); 58 59 struct taskqueue_busy { 60 struct task *tb_running; 61 u_int tb_seq; 62 LIST_ENTRY(taskqueue_busy) tb_link; 63 }; 64 65 struct taskqueue { 66 STAILQ_HEAD(, task) tq_queue; 67 LIST_HEAD(, taskqueue_busy) tq_active; 68 struct task *tq_hint; 69 u_int tq_seq; 70 int tq_callouts; 71 struct mtx_padalign tq_mutex; 72 taskqueue_enqueue_fn tq_enqueue; 73 void *tq_context; 74 char *tq_name; 75 struct thread **tq_threads; 76 int tq_tcount; 77 int tq_spin; 78 int tq_flags; 79 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 80 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 81 }; 82 83 #define TQ_FLAGS_ACTIVE (1 << 0) 84 #define TQ_FLAGS_BLOCKED (1 << 1) 85 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 86 87 #define DT_CALLOUT_ARMED (1 << 0) 88 #define DT_DRAIN_IN_PROGRESS (1 << 1) 89 90 #define TQ_LOCK(tq) \ 91 do { \ 92 if ((tq)->tq_spin) \ 93 mtx_lock_spin(&(tq)->tq_mutex); \ 94 else \ 95 mtx_lock(&(tq)->tq_mutex); \ 96 } while (0) 97 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 98 99 #define TQ_UNLOCK(tq) \ 100 do { \ 101 if ((tq)->tq_spin) \ 102 mtx_unlock_spin(&(tq)->tq_mutex); \ 103 else \ 104 mtx_unlock(&(tq)->tq_mutex); \ 105 } while (0) 106 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 107 108 void 109 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, 110 int priority, task_fn_t func, void *context) 111 { 112 113 TASK_INIT(&timeout_task->t, priority, func, context); 114 callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 115 CALLOUT_RETURNUNLOCKED); 116 timeout_task->q = queue; 117 timeout_task->f = 0; 118 } 119 120 static __inline int 121 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm) 122 { 123 if (tq->tq_spin) 124 return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0)); 125 return (msleep(p, &tq->tq_mutex, 0, wm, 0)); 126 } 127 128 static struct taskqueue * 129 _taskqueue_create(const char *name, int mflags, 130 taskqueue_enqueue_fn enqueue, void *context, 131 int mtxflags, const char *mtxname __unused) 132 { 133 struct taskqueue *queue; 134 char *tq_name; 135 136 tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO); 137 if (tq_name == NULL) 138 return (NULL); 139 140 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); 141 if (queue == NULL) { 142 free(tq_name, M_TASKQUEUE); 143 return (NULL); 144 } 145 146 snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue"); 147 148 STAILQ_INIT(&queue->tq_queue); 149 LIST_INIT(&queue->tq_active); 150 queue->tq_enqueue = enqueue; 151 queue->tq_context = context; 152 queue->tq_name = tq_name; 153 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 154 queue->tq_flags |= TQ_FLAGS_ACTIVE; 155 if (enqueue == taskqueue_fast_enqueue || 156 enqueue == taskqueue_swi_enqueue || 157 enqueue == taskqueue_swi_giant_enqueue || 158 enqueue == taskqueue_thread_enqueue) 159 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 160 mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags); 161 162 return (queue); 163 } 164 165 struct taskqueue * 166 taskqueue_create(const char *name, int mflags, 167 taskqueue_enqueue_fn enqueue, void *context) 168 { 169 170 return _taskqueue_create(name, mflags, enqueue, context, 171 MTX_DEF, name); 172 } 173 174 void 175 taskqueue_set_callback(struct taskqueue *queue, 176 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback, 177 void *context) 178 { 179 180 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) && 181 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)), 182 ("Callback type %d not valid, must be %d-%d", cb_type, 183 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX)); 184 KASSERT((queue->tq_callbacks[cb_type] == NULL), 185 ("Re-initialization of taskqueue callback?")); 186 187 queue->tq_callbacks[cb_type] = callback; 188 queue->tq_cb_contexts[cb_type] = context; 189 } 190 191 /* 192 * Signal a taskqueue thread to terminate. 193 */ 194 static void 195 taskqueue_terminate(struct thread **pp, struct taskqueue *tq) 196 { 197 198 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 199 wakeup(tq); 200 TQ_SLEEP(tq, pp, "tq_destroy"); 201 } 202 } 203 204 void 205 taskqueue_free(struct taskqueue *queue) 206 { 207 208 TQ_LOCK(queue); 209 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 210 taskqueue_terminate(queue->tq_threads, queue); 211 KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?")); 212 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 213 mtx_destroy(&queue->tq_mutex); 214 free(queue->tq_threads, M_TASKQUEUE); 215 free(queue->tq_name, M_TASKQUEUE); 216 free(queue, M_TASKQUEUE); 217 } 218 219 static int 220 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task) 221 { 222 struct task *ins; 223 struct task *prev; 224 225 KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func")); 226 /* 227 * Count multiple enqueues. 228 */ 229 if (task->ta_pending) { 230 if (task->ta_pending < USHRT_MAX) 231 task->ta_pending++; 232 TQ_UNLOCK(queue); 233 return (0); 234 } 235 236 /* 237 * Optimise cases when all tasks use small set of priorities. 238 * In case of only one priority we always insert at the end. 239 * In case of two tq_hint typically gives the insertion point. 240 * In case of more then two tq_hint should halve the search. 241 */ 242 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); 243 if (!prev || prev->ta_priority >= task->ta_priority) { 244 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 245 } else { 246 prev = queue->tq_hint; 247 if (prev && prev->ta_priority >= task->ta_priority) { 248 ins = STAILQ_NEXT(prev, ta_link); 249 } else { 250 prev = NULL; 251 ins = STAILQ_FIRST(&queue->tq_queue); 252 } 253 for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link)) 254 if (ins->ta_priority < task->ta_priority) 255 break; 256 257 if (prev) { 258 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); 259 queue->tq_hint = task; 260 } else 261 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); 262 } 263 264 task->ta_pending = 1; 265 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0) 266 TQ_UNLOCK(queue); 267 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 268 queue->tq_enqueue(queue->tq_context); 269 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0) 270 TQ_UNLOCK(queue); 271 272 /* Return with lock released. */ 273 return (0); 274 } 275 276 int 277 taskqueue_enqueue(struct taskqueue *queue, struct task *task) 278 { 279 int res; 280 281 TQ_LOCK(queue); 282 res = taskqueue_enqueue_locked(queue, task); 283 /* The lock is released inside. */ 284 285 return (res); 286 } 287 288 static void 289 taskqueue_timeout_func(void *arg) 290 { 291 struct taskqueue *queue; 292 struct timeout_task *timeout_task; 293 294 timeout_task = arg; 295 queue = timeout_task->q; 296 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); 297 timeout_task->f &= ~DT_CALLOUT_ARMED; 298 queue->tq_callouts--; 299 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t); 300 /* The lock is released inside. */ 301 } 302 303 int 304 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue, 305 struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags) 306 { 307 int res; 308 309 TQ_LOCK(queue); 310 KASSERT(timeout_task->q == NULL || timeout_task->q == queue, 311 ("Migrated queue")); 312 KASSERT(!queue->tq_spin, ("Timeout for spin-queue")); 313 timeout_task->q = queue; 314 res = timeout_task->t.ta_pending; 315 if (timeout_task->f & DT_DRAIN_IN_PROGRESS) { 316 /* Do nothing */ 317 TQ_UNLOCK(queue); 318 res = -1; 319 } else if (sbt == 0) { 320 taskqueue_enqueue_locked(queue, &timeout_task->t); 321 /* The lock is released inside. */ 322 } else { 323 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 324 res++; 325 } else { 326 queue->tq_callouts++; 327 timeout_task->f |= DT_CALLOUT_ARMED; 328 if (sbt < 0) 329 sbt = -sbt; /* Ignore overflow. */ 330 } 331 if (sbt > 0) { 332 callout_reset_sbt(&timeout_task->c, sbt, pr, 333 taskqueue_timeout_func, timeout_task, flags); 334 } 335 TQ_UNLOCK(queue); 336 } 337 return (res); 338 } 339 340 int 341 taskqueue_enqueue_timeout(struct taskqueue *queue, 342 struct timeout_task *ttask, int ticks) 343 { 344 345 return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt, 346 0, 0)); 347 } 348 349 static void 350 taskqueue_task_nop_fn(void *context, int pending) 351 { 352 } 353 354 /* 355 * Block until all currently queued tasks in this taskqueue 356 * have begun execution. Tasks queued during execution of 357 * this function are ignored. 358 */ 359 static int 360 taskqueue_drain_tq_queue(struct taskqueue *queue) 361 { 362 struct task t_barrier; 363 364 if (STAILQ_EMPTY(&queue->tq_queue)) 365 return (0); 366 367 /* 368 * Enqueue our barrier after all current tasks, but with 369 * the highest priority so that newly queued tasks cannot 370 * pass it. Because of the high priority, we can not use 371 * taskqueue_enqueue_locked directly (which drops the lock 372 * anyway) so just insert it at tail while we have the 373 * queue lock. 374 */ 375 TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier); 376 STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link); 377 queue->tq_hint = &t_barrier; 378 t_barrier.ta_pending = 1; 379 380 /* 381 * Once the barrier has executed, all previously queued tasks 382 * have completed or are currently executing. 383 */ 384 while (t_barrier.ta_pending != 0) 385 TQ_SLEEP(queue, &t_barrier, "tq_qdrain"); 386 return (1); 387 } 388 389 /* 390 * Block until all currently executing tasks for this taskqueue 391 * complete. Tasks that begin execution during the execution 392 * of this function are ignored. 393 */ 394 static int 395 taskqueue_drain_tq_active(struct taskqueue *queue) 396 { 397 struct taskqueue_busy *tb; 398 u_int seq; 399 400 if (LIST_EMPTY(&queue->tq_active)) 401 return (0); 402 403 /* Block taskq_terminate().*/ 404 queue->tq_callouts++; 405 406 /* Wait for any active task with sequence from the past. */ 407 seq = queue->tq_seq; 408 restart: 409 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 410 if ((int)(tb->tb_seq - seq) <= 0) { 411 TQ_SLEEP(queue, tb->tb_running, "tq_adrain"); 412 goto restart; 413 } 414 } 415 416 /* Release taskqueue_terminate(). */ 417 queue->tq_callouts--; 418 if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0) 419 wakeup_one(queue->tq_threads); 420 return (1); 421 } 422 423 void 424 taskqueue_block(struct taskqueue *queue) 425 { 426 427 TQ_LOCK(queue); 428 queue->tq_flags |= TQ_FLAGS_BLOCKED; 429 TQ_UNLOCK(queue); 430 } 431 432 void 433 taskqueue_unblock(struct taskqueue *queue) 434 { 435 436 TQ_LOCK(queue); 437 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 438 if (!STAILQ_EMPTY(&queue->tq_queue)) 439 queue->tq_enqueue(queue->tq_context); 440 TQ_UNLOCK(queue); 441 } 442 443 static void 444 taskqueue_run_locked(struct taskqueue *queue) 445 { 446 struct epoch_tracker et; 447 struct taskqueue_busy tb; 448 struct task *task; 449 bool in_net_epoch; 450 int pending; 451 452 KASSERT(queue != NULL, ("tq is NULL")); 453 TQ_ASSERT_LOCKED(queue); 454 tb.tb_running = NULL; 455 LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link); 456 in_net_epoch = false; 457 458 while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) { 459 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 460 if (queue->tq_hint == task) 461 queue->tq_hint = NULL; 462 pending = task->ta_pending; 463 task->ta_pending = 0; 464 tb.tb_running = task; 465 tb.tb_seq = ++queue->tq_seq; 466 TQ_UNLOCK(queue); 467 468 KASSERT(task->ta_func != NULL, ("task->ta_func is NULL")); 469 if (!in_net_epoch && TASK_IS_NET(task)) { 470 in_net_epoch = true; 471 NET_EPOCH_ENTER(et); 472 } else if (in_net_epoch && !TASK_IS_NET(task)) { 473 NET_EPOCH_EXIT(et); 474 in_net_epoch = false; 475 } 476 task->ta_func(task->ta_context, pending); 477 478 TQ_LOCK(queue); 479 wakeup(task); 480 } 481 if (in_net_epoch) 482 NET_EPOCH_EXIT(et); 483 LIST_REMOVE(&tb, tb_link); 484 } 485 486 void 487 taskqueue_run(struct taskqueue *queue) 488 { 489 490 TQ_LOCK(queue); 491 taskqueue_run_locked(queue); 492 TQ_UNLOCK(queue); 493 } 494 495 static int 496 task_is_running(struct taskqueue *queue, struct task *task) 497 { 498 struct taskqueue_busy *tb; 499 500 TQ_ASSERT_LOCKED(queue); 501 LIST_FOREACH(tb, &queue->tq_active, tb_link) { 502 if (tb->tb_running == task) 503 return (1); 504 } 505 return (0); 506 } 507 508 /* 509 * Only use this function in single threaded contexts. It returns 510 * non-zero if the given task is either pending or running. Else the 511 * task is idle and can be queued again or freed. 512 */ 513 int 514 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task) 515 { 516 int retval; 517 518 TQ_LOCK(queue); 519 retval = task->ta_pending > 0 || task_is_running(queue, task); 520 TQ_UNLOCK(queue); 521 522 return (retval); 523 } 524 525 static int 526 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, 527 u_int *pendp) 528 { 529 530 if (task->ta_pending > 0) { 531 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); 532 if (queue->tq_hint == task) 533 queue->tq_hint = NULL; 534 } 535 if (pendp != NULL) 536 *pendp = task->ta_pending; 537 task->ta_pending = 0; 538 return (task_is_running(queue, task) ? EBUSY : 0); 539 } 540 541 int 542 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) 543 { 544 int error; 545 546 TQ_LOCK(queue); 547 error = taskqueue_cancel_locked(queue, task, pendp); 548 TQ_UNLOCK(queue); 549 550 return (error); 551 } 552 553 int 554 taskqueue_cancel_timeout(struct taskqueue *queue, 555 struct timeout_task *timeout_task, u_int *pendp) 556 { 557 u_int pending, pending1; 558 int error; 559 560 TQ_LOCK(queue); 561 pending = !!(callout_stop(&timeout_task->c) > 0); 562 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); 563 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 564 timeout_task->f &= ~DT_CALLOUT_ARMED; 565 queue->tq_callouts--; 566 } 567 TQ_UNLOCK(queue); 568 569 if (pendp != NULL) 570 *pendp = pending + pending1; 571 return (error); 572 } 573 574 void 575 taskqueue_drain(struct taskqueue *queue, struct task *task) 576 { 577 578 if (!queue->tq_spin) 579 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 580 581 TQ_LOCK(queue); 582 while (task->ta_pending != 0 || task_is_running(queue, task)) 583 TQ_SLEEP(queue, task, "tq_drain"); 584 TQ_UNLOCK(queue); 585 } 586 587 void 588 taskqueue_drain_all(struct taskqueue *queue) 589 { 590 591 if (!queue->tq_spin) 592 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 593 594 TQ_LOCK(queue); 595 (void)taskqueue_drain_tq_queue(queue); 596 (void)taskqueue_drain_tq_active(queue); 597 TQ_UNLOCK(queue); 598 } 599 600 void 601 taskqueue_drain_timeout(struct taskqueue *queue, 602 struct timeout_task *timeout_task) 603 { 604 605 /* 606 * Set flag to prevent timer from re-starting during drain: 607 */ 608 TQ_LOCK(queue); 609 KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0, 610 ("Drain already in progress")); 611 timeout_task->f |= DT_DRAIN_IN_PROGRESS; 612 TQ_UNLOCK(queue); 613 614 callout_drain(&timeout_task->c); 615 taskqueue_drain(queue, &timeout_task->t); 616 617 /* 618 * Clear flag to allow timer to re-start: 619 */ 620 TQ_LOCK(queue); 621 timeout_task->f &= ~DT_DRAIN_IN_PROGRESS; 622 TQ_UNLOCK(queue); 623 } 624 625 void 626 taskqueue_quiesce(struct taskqueue *queue) 627 { 628 int ret; 629 630 TQ_LOCK(queue); 631 do { 632 ret = taskqueue_drain_tq_queue(queue); 633 if (ret == 0) 634 ret = taskqueue_drain_tq_active(queue); 635 } while (ret != 0); 636 TQ_UNLOCK(queue); 637 } 638 639 static void 640 taskqueue_swi_enqueue(void *context) 641 { 642 swi_sched(taskqueue_ih, 0); 643 } 644 645 static void 646 taskqueue_swi_run(void *dummy) 647 { 648 taskqueue_run(taskqueue_swi); 649 } 650 651 static void 652 taskqueue_swi_giant_enqueue(void *context) 653 { 654 swi_sched(taskqueue_giant_ih, 0); 655 } 656 657 static void 658 taskqueue_swi_giant_run(void *dummy) 659 { 660 taskqueue_run(taskqueue_swi_giant); 661 } 662 663 static int 664 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 665 cpuset_t *mask, struct proc *p, const char *name, va_list ap) 666 { 667 char ktname[MAXCOMLEN + 1]; 668 struct thread *td; 669 struct taskqueue *tq; 670 int i, error; 671 672 if (count <= 0) 673 return (EINVAL); 674 675 vsnprintf(ktname, sizeof(ktname), name, ap); 676 tq = *tqp; 677 678 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, 679 M_NOWAIT | M_ZERO); 680 if (tq->tq_threads == NULL) { 681 printf("%s: no memory for %s threads\n", __func__, ktname); 682 return (ENOMEM); 683 } 684 685 for (i = 0; i < count; i++) { 686 if (count == 1) 687 error = kthread_add(taskqueue_thread_loop, tqp, p, 688 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 689 else 690 error = kthread_add(taskqueue_thread_loop, tqp, p, 691 &tq->tq_threads[i], RFSTOPPED, 0, 692 "%s_%d", ktname, i); 693 if (error) { 694 /* should be ok to continue, taskqueue_free will dtrt */ 695 printf("%s: kthread_add(%s): error %d", __func__, 696 ktname, error); 697 tq->tq_threads[i] = NULL; /* paranoid */ 698 } else 699 tq->tq_tcount++; 700 } 701 if (tq->tq_tcount == 0) { 702 free(tq->tq_threads, M_TASKQUEUE); 703 tq->tq_threads = NULL; 704 return (ENOMEM); 705 } 706 for (i = 0; i < count; i++) { 707 if (tq->tq_threads[i] == NULL) 708 continue; 709 td = tq->tq_threads[i]; 710 if (mask) { 711 error = cpuset_setthread(td->td_tid, mask); 712 /* 713 * Failing to pin is rarely an actual fatal error; 714 * it'll just affect performance. 715 */ 716 if (error) 717 printf("%s: curthread=%llu: can't pin; " 718 "error=%d\n", 719 __func__, 720 (unsigned long long) td->td_tid, 721 error); 722 } 723 thread_lock(td); 724 sched_prio(td, pri); 725 sched_add(td, SRQ_BORING); 726 } 727 728 return (0); 729 } 730 731 int 732 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 733 const char *name, ...) 734 { 735 va_list ap; 736 int error; 737 738 va_start(ap, name); 739 error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap); 740 va_end(ap); 741 return (error); 742 } 743 744 int 745 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri, 746 struct proc *proc, const char *name, ...) 747 { 748 va_list ap; 749 int error; 750 751 va_start(ap, name); 752 error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap); 753 va_end(ap); 754 return (error); 755 } 756 757 int 758 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri, 759 cpuset_t *mask, const char *name, ...) 760 { 761 va_list ap; 762 int error; 763 764 va_start(ap, name); 765 error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap); 766 va_end(ap); 767 return (error); 768 } 769 770 static inline void 771 taskqueue_run_callback(struct taskqueue *tq, 772 enum taskqueue_callback_type cb_type) 773 { 774 taskqueue_callback_fn tq_callback; 775 776 TQ_ASSERT_UNLOCKED(tq); 777 tq_callback = tq->tq_callbacks[cb_type]; 778 if (tq_callback != NULL) 779 tq_callback(tq->tq_cb_contexts[cb_type]); 780 } 781 782 void 783 taskqueue_thread_loop(void *arg) 784 { 785 struct taskqueue **tqp, *tq; 786 787 tqp = arg; 788 tq = *tqp; 789 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 790 TQ_LOCK(tq); 791 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 792 /* XXX ? */ 793 taskqueue_run_locked(tq); 794 /* 795 * Because taskqueue_run() can drop tq_mutex, we need to 796 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 797 * meantime, which means we missed a wakeup. 798 */ 799 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 800 break; 801 TQ_SLEEP(tq, tq, "-"); 802 } 803 taskqueue_run_locked(tq); 804 /* 805 * This thread is on its way out, so just drop the lock temporarily 806 * in order to call the shutdown callback. This allows the callback 807 * to look at the taskqueue, even just before it dies. 808 */ 809 TQ_UNLOCK(tq); 810 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 811 TQ_LOCK(tq); 812 813 /* rendezvous with thread that asked us to terminate */ 814 tq->tq_tcount--; 815 wakeup_one(tq->tq_threads); 816 TQ_UNLOCK(tq); 817 kthread_exit(); 818 } 819 820 void 821 taskqueue_thread_enqueue(void *context) 822 { 823 struct taskqueue **tqp, *tq; 824 825 tqp = context; 826 tq = *tqp; 827 wakeup_any(tq); 828 } 829 830 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, 831 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, 832 INTR_MPSAFE, &taskqueue_ih)); 833 834 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, 835 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, 836 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 837 838 TASKQUEUE_DEFINE_THREAD(thread); 839 840 struct taskqueue * 841 taskqueue_create_fast(const char *name, int mflags, 842 taskqueue_enqueue_fn enqueue, void *context) 843 { 844 return _taskqueue_create(name, mflags, enqueue, context, 845 MTX_SPIN, "fast_taskqueue"); 846 } 847 848 static void *taskqueue_fast_ih; 849 850 static void 851 taskqueue_fast_enqueue(void *context) 852 { 853 swi_sched(taskqueue_fast_ih, 0); 854 } 855 856 static void 857 taskqueue_fast_run(void *dummy) 858 { 859 taskqueue_run(taskqueue_fast); 860 } 861 862 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, 863 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL, 864 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); 865 866 int 867 taskqueue_member(struct taskqueue *queue, struct thread *td) 868 { 869 int i, j, ret = 0; 870 871 for (i = 0, j = 0; ; i++) { 872 if (queue->tq_threads[i] == NULL) 873 continue; 874 if (queue->tq_threads[i] == td) { 875 ret = 1; 876 break; 877 } 878 if (++j >= queue->tq_tcount) 879 break; 880 } 881 return (ret); 882 } 883