xref: /freebsd/sys/kern/subr_taskqueue.c (revision 39beb93c3f8bdbf72a61fda42300b5ebed7390c8)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/sched.h>
41 #include <sys/taskqueue.h>
42 #include <sys/unistd.h>
43 #include <machine/stdarg.h>
44 
45 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
46 static void	*taskqueue_giant_ih;
47 static void	*taskqueue_ih;
48 static STAILQ_HEAD(taskqueue_list, taskqueue) taskqueue_queues;
49 static struct mtx taskqueue_queues_mutex;
50 
51 struct taskqueue {
52 	STAILQ_ENTRY(taskqueue)	tq_link;
53 	STAILQ_HEAD(, task)	tq_queue;
54 	const char		*tq_name;
55 	taskqueue_enqueue_fn	tq_enqueue;
56 	void			*tq_context;
57 	struct task		*tq_running;
58 	struct mtx		tq_mutex;
59 	struct thread		**tq_threads;
60 	int			tq_tcount;
61 	int			tq_spin;
62 	int			tq_flags;
63 };
64 
65 #define	TQ_FLAGS_ACTIVE		(1 << 0)
66 #define	TQ_FLAGS_BLOCKED	(1 << 1)
67 #define	TQ_FLAGS_PENDING	(1 << 2)
68 
69 static __inline void
70 TQ_LOCK(struct taskqueue *tq)
71 {
72 	if (tq->tq_spin)
73 		mtx_lock_spin(&tq->tq_mutex);
74 	else
75 		mtx_lock(&tq->tq_mutex);
76 }
77 
78 static __inline void
79 TQ_UNLOCK(struct taskqueue *tq)
80 {
81 	if (tq->tq_spin)
82 		mtx_unlock_spin(&tq->tq_mutex);
83 	else
84 		mtx_unlock(&tq->tq_mutex);
85 }
86 
87 static void	init_taskqueue_list(void *data);
88 
89 static __inline int
90 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
91     int t)
92 {
93 	if (tq->tq_spin)
94 		return (msleep_spin(p, m, wm, t));
95 	return (msleep(p, m, pri, wm, t));
96 }
97 
98 static void
99 init_taskqueue_list(void *data __unused)
100 {
101 
102 	mtx_init(&taskqueue_queues_mutex, "taskqueue list", NULL, MTX_DEF);
103 	STAILQ_INIT(&taskqueue_queues);
104 }
105 SYSINIT(taskqueue_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_taskqueue_list,
106     NULL);
107 
108 static struct taskqueue *
109 _taskqueue_create(const char *name, int mflags,
110 		 taskqueue_enqueue_fn enqueue, void *context,
111 		 int mtxflags, const char *mtxname)
112 {
113 	struct taskqueue *queue;
114 
115 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
116 	if (!queue)
117 		return NULL;
118 
119 	STAILQ_INIT(&queue->tq_queue);
120 	queue->tq_name = name;
121 	queue->tq_enqueue = enqueue;
122 	queue->tq_context = context;
123 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
124 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
125 	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
126 
127 	mtx_lock(&taskqueue_queues_mutex);
128 	STAILQ_INSERT_TAIL(&taskqueue_queues, queue, tq_link);
129 	mtx_unlock(&taskqueue_queues_mutex);
130 
131 	return queue;
132 }
133 
134 struct taskqueue *
135 taskqueue_create(const char *name, int mflags,
136 		 taskqueue_enqueue_fn enqueue, void *context)
137 {
138 	return _taskqueue_create(name, mflags, enqueue, context,
139 			MTX_DEF, "taskqueue");
140 }
141 
142 /*
143  * Signal a taskqueue thread to terminate.
144  */
145 static void
146 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
147 {
148 
149 	while (tq->tq_tcount > 0) {
150 		wakeup(tq);
151 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
152 	}
153 }
154 
155 void
156 taskqueue_free(struct taskqueue *queue)
157 {
158 
159 	mtx_lock(&taskqueue_queues_mutex);
160 	STAILQ_REMOVE(&taskqueue_queues, queue, taskqueue, tq_link);
161 	mtx_unlock(&taskqueue_queues_mutex);
162 
163 	TQ_LOCK(queue);
164 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
165 	taskqueue_run(queue);
166 	taskqueue_terminate(queue->tq_threads, queue);
167 	mtx_destroy(&queue->tq_mutex);
168 	free(queue->tq_threads, M_TASKQUEUE);
169 	free(queue, M_TASKQUEUE);
170 }
171 
172 /*
173  * Returns with the taskqueue locked.
174  */
175 struct taskqueue *
176 taskqueue_find(const char *name)
177 {
178 	struct taskqueue *queue;
179 
180 	mtx_lock(&taskqueue_queues_mutex);
181 	STAILQ_FOREACH(queue, &taskqueue_queues, tq_link) {
182 		if (strcmp(queue->tq_name, name) == 0) {
183 			TQ_LOCK(queue);
184 			mtx_unlock(&taskqueue_queues_mutex);
185 			return queue;
186 		}
187 	}
188 	mtx_unlock(&taskqueue_queues_mutex);
189 	return NULL;
190 }
191 
192 int
193 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
194 {
195 	struct task *ins;
196 	struct task *prev;
197 
198 	TQ_LOCK(queue);
199 
200 	/*
201 	 * Count multiple enqueues.
202 	 */
203 	if (task->ta_pending) {
204 		task->ta_pending++;
205 		TQ_UNLOCK(queue);
206 		return 0;
207 	}
208 
209 	/*
210 	 * Optimise the case when all tasks have the same priority.
211 	 */
212 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
213 	if (!prev || prev->ta_priority >= task->ta_priority) {
214 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
215 	} else {
216 		prev = NULL;
217 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
218 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
219 			if (ins->ta_priority < task->ta_priority)
220 				break;
221 
222 		if (prev)
223 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
224 		else
225 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
226 	}
227 
228 	task->ta_pending = 1;
229 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
230 		queue->tq_enqueue(queue->tq_context);
231 	else
232 		queue->tq_flags |= TQ_FLAGS_PENDING;
233 
234 	TQ_UNLOCK(queue);
235 
236 	return 0;
237 }
238 
239 void
240 taskqueue_block(struct taskqueue *queue)
241 {
242 
243 	TQ_LOCK(queue);
244 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
245 	TQ_UNLOCK(queue);
246 }
247 
248 void
249 taskqueue_unblock(struct taskqueue *queue)
250 {
251 
252 	TQ_LOCK(queue);
253 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
254 	if (queue->tq_flags & TQ_FLAGS_PENDING) {
255 		queue->tq_flags &= ~TQ_FLAGS_PENDING;
256 		queue->tq_enqueue(queue->tq_context);
257 	}
258 	TQ_UNLOCK(queue);
259 }
260 
261 void
262 taskqueue_run(struct taskqueue *queue)
263 {
264 	struct task *task;
265 	int owned, pending;
266 
267 	owned = mtx_owned(&queue->tq_mutex);
268 	if (!owned)
269 		TQ_LOCK(queue);
270 	while (STAILQ_FIRST(&queue->tq_queue)) {
271 		/*
272 		 * Carefully remove the first task from the queue and
273 		 * zero its pending count.
274 		 */
275 		task = STAILQ_FIRST(&queue->tq_queue);
276 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
277 		pending = task->ta_pending;
278 		task->ta_pending = 0;
279 		queue->tq_running = task;
280 		TQ_UNLOCK(queue);
281 
282 		task->ta_func(task->ta_context, pending);
283 
284 		TQ_LOCK(queue);
285 		queue->tq_running = NULL;
286 		wakeup(task);
287 	}
288 
289 	/*
290 	 * For compatibility, unlock on return if the queue was not locked
291 	 * on entry, although this opens a race window.
292 	 */
293 	if (!owned)
294 		TQ_UNLOCK(queue);
295 }
296 
297 void
298 taskqueue_drain(struct taskqueue *queue, struct task *task)
299 {
300 	if (queue->tq_spin) {		/* XXX */
301 		mtx_lock_spin(&queue->tq_mutex);
302 		while (task->ta_pending != 0 || task == queue->tq_running)
303 			msleep_spin(task, &queue->tq_mutex, "-", 0);
304 		mtx_unlock_spin(&queue->tq_mutex);
305 	} else {
306 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
307 
308 		mtx_lock(&queue->tq_mutex);
309 		while (task->ta_pending != 0 || task == queue->tq_running)
310 			msleep(task, &queue->tq_mutex, PWAIT, "-", 0);
311 		mtx_unlock(&queue->tq_mutex);
312 	}
313 }
314 
315 static void
316 taskqueue_swi_enqueue(void *context)
317 {
318 	swi_sched(taskqueue_ih, 0);
319 }
320 
321 static void
322 taskqueue_swi_run(void *dummy)
323 {
324 	taskqueue_run(taskqueue_swi);
325 }
326 
327 static void
328 taskqueue_swi_giant_enqueue(void *context)
329 {
330 	swi_sched(taskqueue_giant_ih, 0);
331 }
332 
333 static void
334 taskqueue_swi_giant_run(void *dummy)
335 {
336 	taskqueue_run(taskqueue_swi_giant);
337 }
338 
339 int
340 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
341 			const char *name, ...)
342 {
343 	va_list ap;
344 	struct thread *td;
345 	struct taskqueue *tq;
346 	int i, error;
347 	char ktname[MAXCOMLEN];
348 
349 	if (count <= 0)
350 		return (EINVAL);
351 
352 	tq = *tqp;
353 
354 	va_start(ap, name);
355 	vsnprintf(ktname, MAXCOMLEN, name, ap);
356 	va_end(ap);
357 
358 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
359 	    M_NOWAIT | M_ZERO);
360 	if (tq->tq_threads == NULL) {
361 		printf("%s: no memory for %s threads\n", __func__, ktname);
362 		return (ENOMEM);
363 	}
364 
365 	for (i = 0; i < count; i++) {
366 		if (count == 1)
367 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
368 			    &tq->tq_threads[i], RFSTOPPED, 0, ktname);
369 		else
370 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
371 			    &tq->tq_threads[i], RFSTOPPED, 0,
372 			    "%s_%d", ktname, i);
373 		if (error) {
374 			/* should be ok to continue, taskqueue_free will dtrt */
375 			printf("%s: kthread_add(%s): error %d", __func__,
376 			    ktname, error);
377 			tq->tq_threads[i] = NULL;		/* paranoid */
378 		} else
379 			tq->tq_tcount++;
380 	}
381 	for (i = 0; i < count; i++) {
382 		if (tq->tq_threads[i] == NULL)
383 			continue;
384 		td = tq->tq_threads[i];
385 		thread_lock(td);
386 		sched_prio(td, pri);
387 		sched_add(td, SRQ_BORING);
388 		thread_unlock(td);
389 	}
390 
391 	return (0);
392 }
393 
394 void
395 taskqueue_thread_loop(void *arg)
396 {
397 	struct taskqueue **tqp, *tq;
398 
399 	tqp = arg;
400 	tq = *tqp;
401 	TQ_LOCK(tq);
402 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
403 		taskqueue_run(tq);
404 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
405 	}
406 
407 	/* rendezvous with thread that asked us to terminate */
408 	tq->tq_tcount--;
409 	wakeup_one(tq->tq_threads);
410 	TQ_UNLOCK(tq);
411 	kthread_exit();
412 }
413 
414 void
415 taskqueue_thread_enqueue(void *context)
416 {
417 	struct taskqueue **tqp, *tq;
418 
419 	tqp = context;
420 	tq = *tqp;
421 
422 	mtx_assert(&tq->tq_mutex, MA_OWNED);
423 	wakeup_one(tq);
424 }
425 
426 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
427 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
428 		     INTR_MPSAFE, &taskqueue_ih));
429 
430 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
431 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
432 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
433 
434 TASKQUEUE_DEFINE_THREAD(thread);
435 
436 struct taskqueue *
437 taskqueue_create_fast(const char *name, int mflags,
438 		 taskqueue_enqueue_fn enqueue, void *context)
439 {
440 	return _taskqueue_create(name, mflags, enqueue, context,
441 			MTX_SPIN, "fast_taskqueue");
442 }
443 
444 /* NB: for backwards compatibility */
445 int
446 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
447 {
448 	return taskqueue_enqueue(queue, task);
449 }
450 
451 static void	*taskqueue_fast_ih;
452 
453 static void
454 taskqueue_fast_enqueue(void *context)
455 {
456 	swi_sched(taskqueue_fast_ih, 0);
457 }
458 
459 static void
460 taskqueue_fast_run(void *dummy)
461 {
462 	taskqueue_run(taskqueue_fast);
463 }
464 
465 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
466 	swi_add(NULL, "Fast task queue", taskqueue_fast_run, NULL,
467 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
468