1 /*- 2 * Copyright (c) 2000 Doug Rabson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/bus.h> 33 #include <sys/cpuset.h> 34 #include <sys/interrupt.h> 35 #include <sys/kernel.h> 36 #include <sys/kthread.h> 37 #include <sys/limits.h> 38 #include <sys/lock.h> 39 #include <sys/malloc.h> 40 #include <sys/mutex.h> 41 #include <sys/proc.h> 42 #include <sys/sched.h> 43 #include <sys/taskqueue.h> 44 #include <sys/unistd.h> 45 #include <machine/stdarg.h> 46 47 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues"); 48 static void *taskqueue_giant_ih; 49 static void *taskqueue_ih; 50 static void taskqueue_fast_enqueue(void *); 51 static void taskqueue_swi_enqueue(void *); 52 static void taskqueue_swi_giant_enqueue(void *); 53 54 struct taskqueue_busy { 55 struct task *tb_running; 56 TAILQ_ENTRY(taskqueue_busy) tb_link; 57 }; 58 59 struct taskqueue { 60 STAILQ_HEAD(, task) tq_queue; 61 taskqueue_enqueue_fn tq_enqueue; 62 void *tq_context; 63 TAILQ_HEAD(, taskqueue_busy) tq_active; 64 struct mtx tq_mutex; 65 struct thread **tq_threads; 66 int tq_tcount; 67 int tq_spin; 68 int tq_flags; 69 int tq_callouts; 70 taskqueue_callback_fn tq_callbacks[TASKQUEUE_NUM_CALLBACKS]; 71 void *tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS]; 72 }; 73 74 #define TQ_FLAGS_ACTIVE (1 << 0) 75 #define TQ_FLAGS_BLOCKED (1 << 1) 76 #define TQ_FLAGS_UNLOCKED_ENQUEUE (1 << 2) 77 78 #define DT_CALLOUT_ARMED (1 << 0) 79 80 #define TQ_LOCK(tq) \ 81 do { \ 82 if ((tq)->tq_spin) \ 83 mtx_lock_spin(&(tq)->tq_mutex); \ 84 else \ 85 mtx_lock(&(tq)->tq_mutex); \ 86 } while (0) 87 #define TQ_ASSERT_LOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_OWNED) 88 89 #define TQ_UNLOCK(tq) \ 90 do { \ 91 if ((tq)->tq_spin) \ 92 mtx_unlock_spin(&(tq)->tq_mutex); \ 93 else \ 94 mtx_unlock(&(tq)->tq_mutex); \ 95 } while (0) 96 #define TQ_ASSERT_UNLOCKED(tq) mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED) 97 98 void 99 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task, 100 int priority, task_fn_t func, void *context) 101 { 102 103 TASK_INIT(&timeout_task->t, priority, func, context); 104 callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 105 CALLOUT_RETURNUNLOCKED); 106 timeout_task->q = queue; 107 timeout_task->f = 0; 108 } 109 110 static __inline int 111 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm, 112 int t) 113 { 114 if (tq->tq_spin) 115 return (msleep_spin(p, m, wm, t)); 116 return (msleep(p, m, pri, wm, t)); 117 } 118 119 static struct taskqueue * 120 _taskqueue_create(const char *name __unused, int mflags, 121 taskqueue_enqueue_fn enqueue, void *context, 122 int mtxflags, const char *mtxname) 123 { 124 struct taskqueue *queue; 125 126 queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO); 127 if (!queue) 128 return NULL; 129 130 STAILQ_INIT(&queue->tq_queue); 131 TAILQ_INIT(&queue->tq_active); 132 queue->tq_enqueue = enqueue; 133 queue->tq_context = context; 134 queue->tq_spin = (mtxflags & MTX_SPIN) != 0; 135 queue->tq_flags |= TQ_FLAGS_ACTIVE; 136 if (enqueue == taskqueue_fast_enqueue || 137 enqueue == taskqueue_swi_enqueue || 138 enqueue == taskqueue_swi_giant_enqueue || 139 enqueue == taskqueue_thread_enqueue) 140 queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE; 141 mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags); 142 143 return queue; 144 } 145 146 struct taskqueue * 147 taskqueue_create(const char *name, int mflags, 148 taskqueue_enqueue_fn enqueue, void *context) 149 { 150 return _taskqueue_create(name, mflags, enqueue, context, 151 MTX_DEF, "taskqueue"); 152 } 153 154 void 155 taskqueue_set_callback(struct taskqueue *queue, 156 enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback, 157 void *context) 158 { 159 160 KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) && 161 (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)), 162 ("Callback type %d not valid, must be %d-%d", cb_type, 163 TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX)); 164 KASSERT((queue->tq_callbacks[cb_type] == NULL), 165 ("Re-initialization of taskqueue callback?")); 166 167 queue->tq_callbacks[cb_type] = callback; 168 queue->tq_cb_contexts[cb_type] = context; 169 } 170 171 /* 172 * Signal a taskqueue thread to terminate. 173 */ 174 static void 175 taskqueue_terminate(struct thread **pp, struct taskqueue *tq) 176 { 177 178 while (tq->tq_tcount > 0 || tq->tq_callouts > 0) { 179 wakeup(tq); 180 TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0); 181 } 182 } 183 184 void 185 taskqueue_free(struct taskqueue *queue) 186 { 187 188 TQ_LOCK(queue); 189 queue->tq_flags &= ~TQ_FLAGS_ACTIVE; 190 taskqueue_terminate(queue->tq_threads, queue); 191 KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?")); 192 KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks")); 193 mtx_destroy(&queue->tq_mutex); 194 free(queue->tq_threads, M_TASKQUEUE); 195 free(queue, M_TASKQUEUE); 196 } 197 198 static int 199 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task) 200 { 201 struct task *ins; 202 struct task *prev; 203 204 /* 205 * Count multiple enqueues. 206 */ 207 if (task->ta_pending) { 208 if (task->ta_pending < USHRT_MAX) 209 task->ta_pending++; 210 TQ_UNLOCK(queue); 211 return (0); 212 } 213 214 /* 215 * Optimise the case when all tasks have the same priority. 216 */ 217 prev = STAILQ_LAST(&queue->tq_queue, task, ta_link); 218 if (!prev || prev->ta_priority >= task->ta_priority) { 219 STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link); 220 } else { 221 prev = NULL; 222 for (ins = STAILQ_FIRST(&queue->tq_queue); ins; 223 prev = ins, ins = STAILQ_NEXT(ins, ta_link)) 224 if (ins->ta_priority < task->ta_priority) 225 break; 226 227 if (prev) 228 STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link); 229 else 230 STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link); 231 } 232 233 task->ta_pending = 1; 234 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0) 235 TQ_UNLOCK(queue); 236 if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0) 237 queue->tq_enqueue(queue->tq_context); 238 if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0) 239 TQ_UNLOCK(queue); 240 241 /* Return with lock released. */ 242 return (0); 243 } 244 int 245 taskqueue_enqueue(struct taskqueue *queue, struct task *task) 246 { 247 int res; 248 249 TQ_LOCK(queue); 250 res = taskqueue_enqueue_locked(queue, task); 251 /* The lock is released inside. */ 252 253 return (res); 254 } 255 256 static void 257 taskqueue_timeout_func(void *arg) 258 { 259 struct taskqueue *queue; 260 struct timeout_task *timeout_task; 261 262 timeout_task = arg; 263 queue = timeout_task->q; 264 KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout")); 265 timeout_task->f &= ~DT_CALLOUT_ARMED; 266 queue->tq_callouts--; 267 taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t); 268 /* The lock is released inside. */ 269 } 270 271 int 272 taskqueue_enqueue_timeout(struct taskqueue *queue, 273 struct timeout_task *timeout_task, int ticks) 274 { 275 int res; 276 277 TQ_LOCK(queue); 278 KASSERT(timeout_task->q == NULL || timeout_task->q == queue, 279 ("Migrated queue")); 280 KASSERT(!queue->tq_spin, ("Timeout for spin-queue")); 281 timeout_task->q = queue; 282 res = timeout_task->t.ta_pending; 283 if (ticks == 0) { 284 taskqueue_enqueue_locked(queue, &timeout_task->t); 285 /* The lock is released inside. */ 286 } else { 287 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 288 res++; 289 } else { 290 queue->tq_callouts++; 291 timeout_task->f |= DT_CALLOUT_ARMED; 292 if (ticks < 0) 293 ticks = -ticks; /* Ignore overflow. */ 294 } 295 if (ticks > 0) { 296 callout_reset(&timeout_task->c, ticks, 297 taskqueue_timeout_func, timeout_task); 298 } 299 TQ_UNLOCK(queue); 300 } 301 return (res); 302 } 303 304 static void 305 taskqueue_drain_running(struct taskqueue *queue) 306 { 307 308 while (!TAILQ_EMPTY(&queue->tq_active)) 309 TQ_SLEEP(queue, &queue->tq_active, &queue->tq_mutex, 310 PWAIT, "-", 0); 311 } 312 313 void 314 taskqueue_block(struct taskqueue *queue) 315 { 316 317 TQ_LOCK(queue); 318 queue->tq_flags |= TQ_FLAGS_BLOCKED; 319 TQ_UNLOCK(queue); 320 } 321 322 void 323 taskqueue_unblock(struct taskqueue *queue) 324 { 325 326 TQ_LOCK(queue); 327 queue->tq_flags &= ~TQ_FLAGS_BLOCKED; 328 if (!STAILQ_EMPTY(&queue->tq_queue)) 329 queue->tq_enqueue(queue->tq_context); 330 TQ_UNLOCK(queue); 331 } 332 333 static void 334 taskqueue_run_locked(struct taskqueue *queue) 335 { 336 struct taskqueue_busy tb; 337 struct task *task; 338 int pending; 339 340 TQ_ASSERT_LOCKED(queue); 341 tb.tb_running = NULL; 342 TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link); 343 344 while (STAILQ_FIRST(&queue->tq_queue)) { 345 /* 346 * Carefully remove the first task from the queue and 347 * zero its pending count. 348 */ 349 task = STAILQ_FIRST(&queue->tq_queue); 350 STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link); 351 pending = task->ta_pending; 352 task->ta_pending = 0; 353 tb.tb_running = task; 354 TQ_UNLOCK(queue); 355 356 task->ta_func(task->ta_context, pending); 357 358 TQ_LOCK(queue); 359 tb.tb_running = NULL; 360 wakeup(task); 361 } 362 TAILQ_REMOVE(&queue->tq_active, &tb, tb_link); 363 if (TAILQ_EMPTY(&queue->tq_active)) 364 wakeup(&queue->tq_active); 365 } 366 367 void 368 taskqueue_run(struct taskqueue *queue) 369 { 370 371 TQ_LOCK(queue); 372 taskqueue_run_locked(queue); 373 TQ_UNLOCK(queue); 374 } 375 376 static int 377 task_is_running(struct taskqueue *queue, struct task *task) 378 { 379 struct taskqueue_busy *tb; 380 381 TQ_ASSERT_LOCKED(queue); 382 TAILQ_FOREACH(tb, &queue->tq_active, tb_link) { 383 if (tb->tb_running == task) 384 return (1); 385 } 386 return (0); 387 } 388 389 static int 390 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task, 391 u_int *pendp) 392 { 393 394 if (task->ta_pending > 0) 395 STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link); 396 if (pendp != NULL) 397 *pendp = task->ta_pending; 398 task->ta_pending = 0; 399 return (task_is_running(queue, task) ? EBUSY : 0); 400 } 401 402 int 403 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp) 404 { 405 int error; 406 407 TQ_LOCK(queue); 408 error = taskqueue_cancel_locked(queue, task, pendp); 409 TQ_UNLOCK(queue); 410 411 return (error); 412 } 413 414 int 415 taskqueue_cancel_timeout(struct taskqueue *queue, 416 struct timeout_task *timeout_task, u_int *pendp) 417 { 418 u_int pending, pending1; 419 int error; 420 421 TQ_LOCK(queue); 422 pending = !!callout_stop(&timeout_task->c); 423 error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1); 424 if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) { 425 timeout_task->f &= ~DT_CALLOUT_ARMED; 426 queue->tq_callouts--; 427 } 428 TQ_UNLOCK(queue); 429 430 if (pendp != NULL) 431 *pendp = pending + pending1; 432 return (error); 433 } 434 435 void 436 taskqueue_drain(struct taskqueue *queue, struct task *task) 437 { 438 439 if (!queue->tq_spin) 440 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 441 442 TQ_LOCK(queue); 443 while (task->ta_pending != 0 || task_is_running(queue, task)) 444 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0); 445 TQ_UNLOCK(queue); 446 } 447 448 void 449 taskqueue_drain_all(struct taskqueue *queue) 450 { 451 struct task *task; 452 453 if (!queue->tq_spin) 454 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 455 456 TQ_LOCK(queue); 457 task = STAILQ_LAST(&queue->tq_queue, task, ta_link); 458 if (task != NULL) 459 while (task->ta_pending != 0) 460 TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0); 461 taskqueue_drain_running(queue); 462 KASSERT(STAILQ_EMPTY(&queue->tq_queue), 463 ("taskqueue queue is not empty after draining")); 464 TQ_UNLOCK(queue); 465 } 466 467 void 468 taskqueue_drain_timeout(struct taskqueue *queue, 469 struct timeout_task *timeout_task) 470 { 471 472 callout_drain(&timeout_task->c); 473 taskqueue_drain(queue, &timeout_task->t); 474 } 475 476 static void 477 taskqueue_swi_enqueue(void *context) 478 { 479 swi_sched(taskqueue_ih, 0); 480 } 481 482 static void 483 taskqueue_swi_run(void *dummy) 484 { 485 taskqueue_run(taskqueue_swi); 486 } 487 488 static void 489 taskqueue_swi_giant_enqueue(void *context) 490 { 491 swi_sched(taskqueue_giant_ih, 0); 492 } 493 494 static void 495 taskqueue_swi_giant_run(void *dummy) 496 { 497 taskqueue_run(taskqueue_swi_giant); 498 } 499 500 static int 501 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 502 cpuset_t *mask, const char *ktname) 503 { 504 struct thread *td; 505 struct taskqueue *tq; 506 int i, error; 507 508 if (count <= 0) 509 return (EINVAL); 510 511 tq = *tqp; 512 513 tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE, 514 M_NOWAIT | M_ZERO); 515 if (tq->tq_threads == NULL) { 516 printf("%s: no memory for %s threads\n", __func__, ktname); 517 return (ENOMEM); 518 } 519 520 for (i = 0; i < count; i++) { 521 if (count == 1) 522 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 523 &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname); 524 else 525 error = kthread_add(taskqueue_thread_loop, tqp, NULL, 526 &tq->tq_threads[i], RFSTOPPED, 0, 527 "%s_%d", ktname, i); 528 if (error) { 529 /* should be ok to continue, taskqueue_free will dtrt */ 530 printf("%s: kthread_add(%s): error %d", __func__, 531 ktname, error); 532 tq->tq_threads[i] = NULL; /* paranoid */ 533 } else 534 tq->tq_tcount++; 535 } 536 for (i = 0; i < count; i++) { 537 if (tq->tq_threads[i] == NULL) 538 continue; 539 td = tq->tq_threads[i]; 540 if (mask) { 541 error = cpuset_setthread(td->td_tid, mask); 542 /* 543 * Failing to pin is rarely an actual fatal error; 544 * it'll just affect performance. 545 */ 546 if (error) 547 printf("%s: curthread=%llu: can't pin; " 548 "error=%d\n", 549 __func__, 550 (unsigned long long) td->td_tid, 551 error); 552 } 553 thread_lock(td); 554 sched_prio(td, pri); 555 sched_add(td, SRQ_BORING); 556 thread_unlock(td); 557 } 558 559 return (0); 560 } 561 562 int 563 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri, 564 const char *name, ...) 565 { 566 char ktname[MAXCOMLEN + 1]; 567 va_list ap; 568 569 va_start(ap, name); 570 vsnprintf(ktname, sizeof(ktname), name, ap); 571 va_end(ap); 572 573 return (_taskqueue_start_threads(tqp, count, pri, NULL, ktname)); 574 } 575 576 int 577 taskqueue_start_threads_pinned(struct taskqueue **tqp, int count, int pri, 578 int cpu_id, const char *name, ...) 579 { 580 char ktname[MAXCOMLEN + 1]; 581 va_list ap; 582 cpuset_t mask; 583 584 va_start(ap, name); 585 vsnprintf(ktname, sizeof(ktname), name, ap); 586 va_end(ap); 587 588 /* 589 * In case someone passes in NOCPU, just fall back to the 590 * default behaviour of "don't pin". 591 */ 592 if (cpu_id != NOCPU) { 593 CPU_ZERO(&mask); 594 CPU_SET(cpu_id, &mask); 595 } 596 597 return (_taskqueue_start_threads(tqp, count, pri, 598 cpu_id == NOCPU ? NULL : &mask, ktname)); 599 } 600 601 static inline void 602 taskqueue_run_callback(struct taskqueue *tq, 603 enum taskqueue_callback_type cb_type) 604 { 605 taskqueue_callback_fn tq_callback; 606 607 TQ_ASSERT_UNLOCKED(tq); 608 tq_callback = tq->tq_callbacks[cb_type]; 609 if (tq_callback != NULL) 610 tq_callback(tq->tq_cb_contexts[cb_type]); 611 } 612 613 void 614 taskqueue_thread_loop(void *arg) 615 { 616 struct taskqueue **tqp, *tq; 617 618 tqp = arg; 619 tq = *tqp; 620 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT); 621 TQ_LOCK(tq); 622 while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) { 623 taskqueue_run_locked(tq); 624 /* 625 * Because taskqueue_run() can drop tq_mutex, we need to 626 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the 627 * meantime, which means we missed a wakeup. 628 */ 629 if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0) 630 break; 631 TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0); 632 } 633 taskqueue_run_locked(tq); 634 635 /* 636 * This thread is on its way out, so just drop the lock temporarily 637 * in order to call the shutdown callback. This allows the callback 638 * to look at the taskqueue, even just before it dies. 639 */ 640 TQ_UNLOCK(tq); 641 taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN); 642 TQ_LOCK(tq); 643 644 /* rendezvous with thread that asked us to terminate */ 645 tq->tq_tcount--; 646 wakeup_one(tq->tq_threads); 647 TQ_UNLOCK(tq); 648 kthread_exit(); 649 } 650 651 void 652 taskqueue_thread_enqueue(void *context) 653 { 654 struct taskqueue **tqp, *tq; 655 656 tqp = context; 657 tq = *tqp; 658 659 wakeup_one(tq); 660 } 661 662 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL, 663 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ, 664 INTR_MPSAFE, &taskqueue_ih)); 665 666 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL, 667 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run, 668 NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih)); 669 670 TASKQUEUE_DEFINE_THREAD(thread); 671 672 struct taskqueue * 673 taskqueue_create_fast(const char *name, int mflags, 674 taskqueue_enqueue_fn enqueue, void *context) 675 { 676 return _taskqueue_create(name, mflags, enqueue, context, 677 MTX_SPIN, "fast_taskqueue"); 678 } 679 680 /* NB: for backwards compatibility */ 681 int 682 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task) 683 { 684 return taskqueue_enqueue(queue, task); 685 } 686 687 static void *taskqueue_fast_ih; 688 689 static void 690 taskqueue_fast_enqueue(void *context) 691 { 692 swi_sched(taskqueue_fast_ih, 0); 693 } 694 695 static void 696 taskqueue_fast_run(void *dummy) 697 { 698 taskqueue_run(taskqueue_fast); 699 } 700 701 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL, 702 swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL, 703 SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih)); 704 705 int 706 taskqueue_member(struct taskqueue *queue, struct thread *td) 707 { 708 int i, j, ret = 0; 709 710 for (i = 0, j = 0; ; i++) { 711 if (queue->tq_threads[i] == NULL) 712 continue; 713 if (queue->tq_threads[i] == td) { 714 ret = 1; 715 break; 716 } 717 if (++j >= queue->tq_tcount) 718 break; 719 } 720 return (ret); 721 } 722