xref: /freebsd/sys/kern/subr_taskqueue.c (revision 298cf604ccf133b101c6fad42d1a078a1fac58ca)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45 
46 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
47 static void	*taskqueue_giant_ih;
48 static void	*taskqueue_ih;
49 
50 struct taskqueue_busy {
51 	struct task	*tb_running;
52 	TAILQ_ENTRY(taskqueue_busy) tb_link;
53 };
54 
55 struct taskqueue {
56 	STAILQ_HEAD(, task)	tq_queue;
57 	taskqueue_enqueue_fn	tq_enqueue;
58 	void			*tq_context;
59 	TAILQ_HEAD(, taskqueue_busy) tq_active;
60 	struct mtx		tq_mutex;
61 	struct thread		**tq_threads;
62 	int			tq_tcount;
63 	int			tq_spin;
64 	int			tq_flags;
65 	int			tq_callouts;
66 };
67 
68 #define	TQ_FLAGS_ACTIVE		(1 << 0)
69 #define	TQ_FLAGS_BLOCKED	(1 << 1)
70 #define	TQ_FLAGS_PENDING	(1 << 2)
71 
72 #define	DT_CALLOUT_ARMED	(1 << 0)
73 
74 #define	TQ_LOCK(tq)							\
75 	do {								\
76 		if ((tq)->tq_spin)					\
77 			mtx_lock_spin(&(tq)->tq_mutex);			\
78 		else							\
79 			mtx_lock(&(tq)->tq_mutex);			\
80 	} while (0)
81 
82 #define	TQ_UNLOCK(tq)							\
83 	do {								\
84 		if ((tq)->tq_spin)					\
85 			mtx_unlock_spin(&(tq)->tq_mutex);		\
86 		else							\
87 			mtx_unlock(&(tq)->tq_mutex);			\
88 	} while (0)
89 
90 void
91 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
92     int priority, task_fn_t func, void *context)
93 {
94 
95 	TASK_INIT(&timeout_task->t, priority, func, context);
96 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex, 0);
97 	timeout_task->q = queue;
98 	timeout_task->f = 0;
99 }
100 
101 static __inline int
102 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
103     int t)
104 {
105 	if (tq->tq_spin)
106 		return (msleep_spin(p, m, wm, t));
107 	return (msleep(p, m, pri, wm, t));
108 }
109 
110 static struct taskqueue *
111 _taskqueue_create(const char *name __unused, int mflags,
112 		 taskqueue_enqueue_fn enqueue, void *context,
113 		 int mtxflags, const char *mtxname)
114 {
115 	struct taskqueue *queue;
116 
117 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
118 	if (!queue)
119 		return NULL;
120 
121 	STAILQ_INIT(&queue->tq_queue);
122 	TAILQ_INIT(&queue->tq_active);
123 	queue->tq_enqueue = enqueue;
124 	queue->tq_context = context;
125 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
126 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
127 	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
128 
129 	return queue;
130 }
131 
132 struct taskqueue *
133 taskqueue_create(const char *name, int mflags,
134 		 taskqueue_enqueue_fn enqueue, void *context)
135 {
136 	return _taskqueue_create(name, mflags, enqueue, context,
137 			MTX_DEF, "taskqueue");
138 }
139 
140 /*
141  * Signal a taskqueue thread to terminate.
142  */
143 static void
144 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
145 {
146 
147 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
148 		wakeup(tq);
149 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
150 	}
151 }
152 
153 void
154 taskqueue_free(struct taskqueue *queue)
155 {
156 
157 	TQ_LOCK(queue);
158 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
159 	taskqueue_terminate(queue->tq_threads, queue);
160 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
161 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
162 	mtx_destroy(&queue->tq_mutex);
163 	free(queue->tq_threads, M_TASKQUEUE);
164 	free(queue, M_TASKQUEUE);
165 }
166 
167 static int
168 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
169 {
170 	struct task *ins;
171 	struct task *prev;
172 
173 	/*
174 	 * Count multiple enqueues.
175 	 */
176 	if (task->ta_pending) {
177 		if (task->ta_pending < USHRT_MAX)
178 			task->ta_pending++;
179 		return (0);
180 	}
181 
182 	/*
183 	 * Optimise the case when all tasks have the same priority.
184 	 */
185 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
186 	if (!prev || prev->ta_priority >= task->ta_priority) {
187 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
188 	} else {
189 		prev = NULL;
190 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
191 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
192 			if (ins->ta_priority < task->ta_priority)
193 				break;
194 
195 		if (prev)
196 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
197 		else
198 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
199 	}
200 
201 	task->ta_pending = 1;
202 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
203 		queue->tq_enqueue(queue->tq_context);
204 	else
205 		queue->tq_flags |= TQ_FLAGS_PENDING;
206 
207 	return (0);
208 }
209 int
210 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
211 {
212 	int res;
213 
214 	TQ_LOCK(queue);
215 	res = taskqueue_enqueue_locked(queue, task);
216 	TQ_UNLOCK(queue);
217 
218 	return (res);
219 }
220 
221 static void
222 taskqueue_timeout_func(void *arg)
223 {
224 	struct taskqueue *queue;
225 	struct timeout_task *timeout_task;
226 
227 	timeout_task = arg;
228 	queue = timeout_task->q;
229 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
230 	timeout_task->f &= ~DT_CALLOUT_ARMED;
231 	queue->tq_callouts--;
232 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
233 }
234 
235 int
236 taskqueue_enqueue_timeout(struct taskqueue *queue,
237     struct timeout_task *timeout_task, int ticks)
238 {
239 	int res;
240 
241 	TQ_LOCK(queue);
242 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
243 	    ("Migrated queue"));
244 	KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
245 	timeout_task->q = queue;
246 	res = timeout_task->t.ta_pending;
247 	if (ticks == 0) {
248 		taskqueue_enqueue_locked(queue, &timeout_task->t);
249 	} else {
250 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
251 			res++;
252 		} else {
253 			queue->tq_callouts++;
254 			timeout_task->f |= DT_CALLOUT_ARMED;
255 			if (ticks < 0)
256 				ticks = -ticks; /* Ignore overflow. */
257 		}
258 		if (ticks > 0) {
259 			callout_reset(&timeout_task->c, ticks,
260 			    taskqueue_timeout_func, timeout_task);
261 		}
262 	}
263 	TQ_UNLOCK(queue);
264 	return (res);
265 }
266 
267 void
268 taskqueue_block(struct taskqueue *queue)
269 {
270 
271 	TQ_LOCK(queue);
272 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
273 	TQ_UNLOCK(queue);
274 }
275 
276 void
277 taskqueue_unblock(struct taskqueue *queue)
278 {
279 
280 	TQ_LOCK(queue);
281 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
282 	if (queue->tq_flags & TQ_FLAGS_PENDING) {
283 		queue->tq_flags &= ~TQ_FLAGS_PENDING;
284 		queue->tq_enqueue(queue->tq_context);
285 	}
286 	TQ_UNLOCK(queue);
287 }
288 
289 static void
290 taskqueue_run_locked(struct taskqueue *queue)
291 {
292 	struct taskqueue_busy tb;
293 	struct task *task;
294 	int pending;
295 
296 	mtx_assert(&queue->tq_mutex, MA_OWNED);
297 	tb.tb_running = NULL;
298 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
299 
300 	while (STAILQ_FIRST(&queue->tq_queue)) {
301 		/*
302 		 * Carefully remove the first task from the queue and
303 		 * zero its pending count.
304 		 */
305 		task = STAILQ_FIRST(&queue->tq_queue);
306 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
307 		pending = task->ta_pending;
308 		task->ta_pending = 0;
309 		tb.tb_running = task;
310 		TQ_UNLOCK(queue);
311 
312 		task->ta_func(task->ta_context, pending);
313 
314 		TQ_LOCK(queue);
315 		tb.tb_running = NULL;
316 		wakeup(task);
317 	}
318 	TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
319 }
320 
321 void
322 taskqueue_run(struct taskqueue *queue)
323 {
324 
325 	TQ_LOCK(queue);
326 	taskqueue_run_locked(queue);
327 	TQ_UNLOCK(queue);
328 }
329 
330 static int
331 task_is_running(struct taskqueue *queue, struct task *task)
332 {
333 	struct taskqueue_busy *tb;
334 
335 	mtx_assert(&queue->tq_mutex, MA_OWNED);
336 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
337 		if (tb->tb_running == task)
338 			return (1);
339 	}
340 	return (0);
341 }
342 
343 static int
344 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
345     u_int *pendp)
346 {
347 
348 	if (task->ta_pending > 0)
349 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
350 	if (pendp != NULL)
351 		*pendp = task->ta_pending;
352 	task->ta_pending = 0;
353 	return (task_is_running(queue, task) ? EBUSY : 0);
354 }
355 
356 int
357 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
358 {
359 	u_int pending;
360 	int error;
361 
362 	TQ_LOCK(queue);
363 	pending = task->ta_pending;
364 	error = taskqueue_cancel_locked(queue, task, pendp);
365 	TQ_UNLOCK(queue);
366 
367 	return (error);
368 }
369 
370 int
371 taskqueue_cancel_timeout(struct taskqueue *queue,
372     struct timeout_task *timeout_task, u_int *pendp)
373 {
374 	u_int pending, pending1;
375 	int error;
376 
377 	TQ_LOCK(queue);
378 	pending = !!callout_stop(&timeout_task->c);
379 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
380 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
381 		timeout_task->f &= ~DT_CALLOUT_ARMED;
382 		queue->tq_callouts--;
383 	}
384 	TQ_UNLOCK(queue);
385 
386 	if (pendp != NULL)
387 		*pendp = pending + pending1;
388 	return (error);
389 }
390 
391 void
392 taskqueue_drain(struct taskqueue *queue, struct task *task)
393 {
394 
395 	if (!queue->tq_spin)
396 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
397 
398 	TQ_LOCK(queue);
399 	while (task->ta_pending != 0 || task_is_running(queue, task))
400 		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
401 	TQ_UNLOCK(queue);
402 }
403 
404 void
405 taskqueue_drain_timeout(struct taskqueue *queue,
406     struct timeout_task *timeout_task)
407 {
408 
409 	callout_drain(&timeout_task->c);
410 	taskqueue_drain(queue, &timeout_task->t);
411 }
412 
413 static void
414 taskqueue_swi_enqueue(void *context)
415 {
416 	swi_sched(taskqueue_ih, 0);
417 }
418 
419 static void
420 taskqueue_swi_run(void *dummy)
421 {
422 	taskqueue_run(taskqueue_swi);
423 }
424 
425 static void
426 taskqueue_swi_giant_enqueue(void *context)
427 {
428 	swi_sched(taskqueue_giant_ih, 0);
429 }
430 
431 static void
432 taskqueue_swi_giant_run(void *dummy)
433 {
434 	taskqueue_run(taskqueue_swi_giant);
435 }
436 
437 int
438 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
439 			const char *name, ...)
440 {
441 	va_list ap;
442 	struct thread *td;
443 	struct taskqueue *tq;
444 	int i, error;
445 	char ktname[MAXCOMLEN + 1];
446 
447 	if (count <= 0)
448 		return (EINVAL);
449 
450 	tq = *tqp;
451 
452 	va_start(ap, name);
453 	vsnprintf(ktname, sizeof(ktname), name, ap);
454 	va_end(ap);
455 
456 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
457 	    M_NOWAIT | M_ZERO);
458 	if (tq->tq_threads == NULL) {
459 		printf("%s: no memory for %s threads\n", __func__, ktname);
460 		return (ENOMEM);
461 	}
462 
463 	for (i = 0; i < count; i++) {
464 		if (count == 1)
465 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
466 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
467 		else
468 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
469 			    &tq->tq_threads[i], RFSTOPPED, 0,
470 			    "%s_%d", ktname, i);
471 		if (error) {
472 			/* should be ok to continue, taskqueue_free will dtrt */
473 			printf("%s: kthread_add(%s): error %d", __func__,
474 			    ktname, error);
475 			tq->tq_threads[i] = NULL;		/* paranoid */
476 		} else
477 			tq->tq_tcount++;
478 	}
479 	for (i = 0; i < count; i++) {
480 		if (tq->tq_threads[i] == NULL)
481 			continue;
482 		td = tq->tq_threads[i];
483 		thread_lock(td);
484 		sched_prio(td, pri);
485 		sched_add(td, SRQ_BORING);
486 		thread_unlock(td);
487 	}
488 
489 	return (0);
490 }
491 
492 void
493 taskqueue_thread_loop(void *arg)
494 {
495 	struct taskqueue **tqp, *tq;
496 
497 	tqp = arg;
498 	tq = *tqp;
499 	TQ_LOCK(tq);
500 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
501 		taskqueue_run_locked(tq);
502 		/*
503 		 * Because taskqueue_run() can drop tq_mutex, we need to
504 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
505 		 * meantime, which means we missed a wakeup.
506 		 */
507 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
508 			break;
509 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
510 	}
511 	taskqueue_run_locked(tq);
512 
513 	/* rendezvous with thread that asked us to terminate */
514 	tq->tq_tcount--;
515 	wakeup_one(tq->tq_threads);
516 	TQ_UNLOCK(tq);
517 	kthread_exit();
518 }
519 
520 void
521 taskqueue_thread_enqueue(void *context)
522 {
523 	struct taskqueue **tqp, *tq;
524 
525 	tqp = context;
526 	tq = *tqp;
527 
528 	mtx_assert(&tq->tq_mutex, MA_OWNED);
529 	wakeup_one(tq);
530 }
531 
532 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
533 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
534 		     INTR_MPSAFE, &taskqueue_ih));
535 
536 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
537 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
538 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
539 
540 TASKQUEUE_DEFINE_THREAD(thread);
541 
542 struct taskqueue *
543 taskqueue_create_fast(const char *name, int mflags,
544 		 taskqueue_enqueue_fn enqueue, void *context)
545 {
546 	return _taskqueue_create(name, mflags, enqueue, context,
547 			MTX_SPIN, "fast_taskqueue");
548 }
549 
550 /* NB: for backwards compatibility */
551 int
552 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
553 {
554 	return taskqueue_enqueue(queue, task);
555 }
556 
557 static void	*taskqueue_fast_ih;
558 
559 static void
560 taskqueue_fast_enqueue(void *context)
561 {
562 	swi_sched(taskqueue_fast_ih, 0);
563 }
564 
565 static void
566 taskqueue_fast_run(void *dummy)
567 {
568 	taskqueue_run(taskqueue_fast);
569 }
570 
571 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
572 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
573 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
574 
575 int
576 taskqueue_member(struct taskqueue *queue, struct thread *td)
577 {
578 	int i, j, ret = 0;
579 
580 	TQ_LOCK(queue);
581 	for (i = 0, j = 0; ; i++) {
582 		if (queue->tq_threads[i] == NULL)
583 			continue;
584 		if (queue->tq_threads[i] == td) {
585 			ret = 1;
586 			break;
587 		}
588 		if (++j >= queue->tq_tcount)
589 			break;
590 	}
591 	TQ_UNLOCK(queue);
592 	return (ret);
593 }
594