xref: /freebsd/sys/kern/subr_taskqueue.c (revision 2754fe609d5157d58b92227a582e0c94fd42233a)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/lock.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/sched.h>
41 #include <sys/taskqueue.h>
42 #include <sys/unistd.h>
43 #include <machine/stdarg.h>
44 
45 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
46 static void	*taskqueue_giant_ih;
47 static void	*taskqueue_ih;
48 
49 struct taskqueue_busy {
50 	struct task	*tb_running;
51 	TAILQ_ENTRY(taskqueue_busy) tb_link;
52 };
53 
54 struct taskqueue {
55 	STAILQ_HEAD(, task)	tq_queue;
56 	taskqueue_enqueue_fn	tq_enqueue;
57 	void			*tq_context;
58 	TAILQ_HEAD(, taskqueue_busy) tq_active;
59 	struct mtx		tq_mutex;
60 	struct thread		**tq_threads;
61 	int			tq_tcount;
62 	int			tq_spin;
63 	int			tq_flags;
64 };
65 
66 #define	TQ_FLAGS_ACTIVE		(1 << 0)
67 #define	TQ_FLAGS_BLOCKED	(1 << 1)
68 #define	TQ_FLAGS_PENDING	(1 << 2)
69 
70 #define	TQ_LOCK(tq)							\
71 	do {								\
72 		if ((tq)->tq_spin)					\
73 			mtx_lock_spin(&(tq)->tq_mutex);			\
74 		else							\
75 			mtx_lock(&(tq)->tq_mutex);			\
76 	} while (0)
77 
78 #define	TQ_UNLOCK(tq)							\
79 	do {								\
80 		if ((tq)->tq_spin)					\
81 			mtx_unlock_spin(&(tq)->tq_mutex);		\
82 		else							\
83 			mtx_unlock(&(tq)->tq_mutex);			\
84 	} while (0)
85 
86 static __inline int
87 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
88     int t)
89 {
90 	if (tq->tq_spin)
91 		return (msleep_spin(p, m, wm, t));
92 	return (msleep(p, m, pri, wm, t));
93 }
94 
95 static struct taskqueue *
96 _taskqueue_create(const char *name __unused, int mflags,
97 		 taskqueue_enqueue_fn enqueue, void *context,
98 		 int mtxflags, const char *mtxname)
99 {
100 	struct taskqueue *queue;
101 
102 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
103 	if (!queue)
104 		return NULL;
105 
106 	STAILQ_INIT(&queue->tq_queue);
107 	TAILQ_INIT(&queue->tq_active);
108 	queue->tq_enqueue = enqueue;
109 	queue->tq_context = context;
110 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
111 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
112 	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
113 
114 	return queue;
115 }
116 
117 struct taskqueue *
118 taskqueue_create(const char *name, int mflags,
119 		 taskqueue_enqueue_fn enqueue, void *context)
120 {
121 	return _taskqueue_create(name, mflags, enqueue, context,
122 			MTX_DEF, "taskqueue");
123 }
124 
125 /*
126  * Signal a taskqueue thread to terminate.
127  */
128 static void
129 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
130 {
131 
132 	while (tq->tq_tcount > 0) {
133 		wakeup(tq);
134 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
135 	}
136 }
137 
138 void
139 taskqueue_free(struct taskqueue *queue)
140 {
141 
142 	TQ_LOCK(queue);
143 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
144 	taskqueue_terminate(queue->tq_threads, queue);
145 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
146 	mtx_destroy(&queue->tq_mutex);
147 	free(queue->tq_threads, M_TASKQUEUE);
148 	free(queue, M_TASKQUEUE);
149 }
150 
151 int
152 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
153 {
154 	struct task *ins;
155 	struct task *prev;
156 
157 	TQ_LOCK(queue);
158 
159 	/*
160 	 * Count multiple enqueues.
161 	 */
162 	if (task->ta_pending) {
163 		task->ta_pending++;
164 		TQ_UNLOCK(queue);
165 		return 0;
166 	}
167 
168 	/*
169 	 * Optimise the case when all tasks have the same priority.
170 	 */
171 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
172 	if (!prev || prev->ta_priority >= task->ta_priority) {
173 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
174 	} else {
175 		prev = NULL;
176 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
177 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
178 			if (ins->ta_priority < task->ta_priority)
179 				break;
180 
181 		if (prev)
182 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
183 		else
184 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
185 	}
186 
187 	task->ta_pending = 1;
188 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
189 		queue->tq_enqueue(queue->tq_context);
190 	else
191 		queue->tq_flags |= TQ_FLAGS_PENDING;
192 
193 	TQ_UNLOCK(queue);
194 
195 	return 0;
196 }
197 
198 void
199 taskqueue_block(struct taskqueue *queue)
200 {
201 
202 	TQ_LOCK(queue);
203 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
204 	TQ_UNLOCK(queue);
205 }
206 
207 void
208 taskqueue_unblock(struct taskqueue *queue)
209 {
210 
211 	TQ_LOCK(queue);
212 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
213 	if (queue->tq_flags & TQ_FLAGS_PENDING) {
214 		queue->tq_flags &= ~TQ_FLAGS_PENDING;
215 		queue->tq_enqueue(queue->tq_context);
216 	}
217 	TQ_UNLOCK(queue);
218 }
219 
220 static void
221 taskqueue_run_locked(struct taskqueue *queue)
222 {
223 	struct taskqueue_busy tb;
224 	struct task *task;
225 	int pending;
226 
227 	mtx_assert(&queue->tq_mutex, MA_OWNED);
228 	tb.tb_running = NULL;
229 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
230 
231 	while (STAILQ_FIRST(&queue->tq_queue)) {
232 		/*
233 		 * Carefully remove the first task from the queue and
234 		 * zero its pending count.
235 		 */
236 		task = STAILQ_FIRST(&queue->tq_queue);
237 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
238 		pending = task->ta_pending;
239 		task->ta_pending = 0;
240 		tb.tb_running = task;
241 		TQ_UNLOCK(queue);
242 
243 		task->ta_func(task->ta_context, pending);
244 
245 		TQ_LOCK(queue);
246 		tb.tb_running = NULL;
247 		wakeup(task);
248 	}
249 	TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
250 }
251 
252 void
253 taskqueue_run(struct taskqueue *queue)
254 {
255 
256 	TQ_LOCK(queue);
257 	taskqueue_run_locked(queue);
258 	TQ_UNLOCK(queue);
259 }
260 
261 static int
262 task_is_running(struct taskqueue *queue, struct task *task)
263 {
264 	struct taskqueue_busy *tb;
265 
266 	mtx_assert(&queue->tq_mutex, MA_OWNED);
267 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
268 		if (tb->tb_running == task)
269 			return (1);
270 	}
271 	return (0);
272 }
273 
274 int
275 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
276 {
277 	u_int pending;
278 	int error;
279 
280 	TQ_LOCK(queue);
281 	if ((pending = task->ta_pending) > 0)
282 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
283 	task->ta_pending = 0;
284 	error = task_is_running(queue, task) ? EBUSY : 0;
285 	TQ_UNLOCK(queue);
286 
287 	if (pendp != NULL)
288 		*pendp = pending;
289 	return (error);
290 }
291 
292 void
293 taskqueue_drain(struct taskqueue *queue, struct task *task)
294 {
295 
296 	if (!queue->tq_spin)
297 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
298 
299 	TQ_LOCK(queue);
300 	while (task->ta_pending != 0 || task_is_running(queue, task))
301 		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
302 	TQ_UNLOCK(queue);
303 }
304 
305 static void
306 taskqueue_swi_enqueue(void *context)
307 {
308 	swi_sched(taskqueue_ih, 0);
309 }
310 
311 static void
312 taskqueue_swi_run(void *dummy)
313 {
314 	taskqueue_run(taskqueue_swi);
315 }
316 
317 static void
318 taskqueue_swi_giant_enqueue(void *context)
319 {
320 	swi_sched(taskqueue_giant_ih, 0);
321 }
322 
323 static void
324 taskqueue_swi_giant_run(void *dummy)
325 {
326 	taskqueue_run(taskqueue_swi_giant);
327 }
328 
329 int
330 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
331 			const char *name, ...)
332 {
333 	va_list ap;
334 	struct thread *td;
335 	struct taskqueue *tq;
336 	int i, error;
337 	char ktname[MAXCOMLEN + 1];
338 
339 	if (count <= 0)
340 		return (EINVAL);
341 
342 	tq = *tqp;
343 
344 	va_start(ap, name);
345 	vsnprintf(ktname, sizeof(ktname), name, ap);
346 	va_end(ap);
347 
348 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
349 	    M_NOWAIT | M_ZERO);
350 	if (tq->tq_threads == NULL) {
351 		printf("%s: no memory for %s threads\n", __func__, ktname);
352 		return (ENOMEM);
353 	}
354 
355 	for (i = 0; i < count; i++) {
356 		if (count == 1)
357 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
358 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
359 		else
360 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
361 			    &tq->tq_threads[i], RFSTOPPED, 0,
362 			    "%s_%d", ktname, i);
363 		if (error) {
364 			/* should be ok to continue, taskqueue_free will dtrt */
365 			printf("%s: kthread_add(%s): error %d", __func__,
366 			    ktname, error);
367 			tq->tq_threads[i] = NULL;		/* paranoid */
368 		} else
369 			tq->tq_tcount++;
370 	}
371 	for (i = 0; i < count; i++) {
372 		if (tq->tq_threads[i] == NULL)
373 			continue;
374 		td = tq->tq_threads[i];
375 		thread_lock(td);
376 		sched_prio(td, pri);
377 		sched_add(td, SRQ_BORING);
378 		thread_unlock(td);
379 	}
380 
381 	return (0);
382 }
383 
384 void
385 taskqueue_thread_loop(void *arg)
386 {
387 	struct taskqueue **tqp, *tq;
388 
389 	tqp = arg;
390 	tq = *tqp;
391 	TQ_LOCK(tq);
392 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
393 		taskqueue_run_locked(tq);
394 		/*
395 		 * Because taskqueue_run() can drop tq_mutex, we need to
396 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
397 		 * meantime, which means we missed a wakeup.
398 		 */
399 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
400 			break;
401 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
402 	}
403 	taskqueue_run_locked(tq);
404 
405 	/* rendezvous with thread that asked us to terminate */
406 	tq->tq_tcount--;
407 	wakeup_one(tq->tq_threads);
408 	TQ_UNLOCK(tq);
409 	kthread_exit();
410 }
411 
412 void
413 taskqueue_thread_enqueue(void *context)
414 {
415 	struct taskqueue **tqp, *tq;
416 
417 	tqp = context;
418 	tq = *tqp;
419 
420 	mtx_assert(&tq->tq_mutex, MA_OWNED);
421 	wakeup_one(tq);
422 }
423 
424 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
425 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
426 		     INTR_MPSAFE, &taskqueue_ih));
427 
428 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
429 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
430 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
431 
432 TASKQUEUE_DEFINE_THREAD(thread);
433 
434 struct taskqueue *
435 taskqueue_create_fast(const char *name, int mflags,
436 		 taskqueue_enqueue_fn enqueue, void *context)
437 {
438 	return _taskqueue_create(name, mflags, enqueue, context,
439 			MTX_SPIN, "fast_taskqueue");
440 }
441 
442 /* NB: for backwards compatibility */
443 int
444 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
445 {
446 	return taskqueue_enqueue(queue, task);
447 }
448 
449 static void	*taskqueue_fast_ih;
450 
451 static void
452 taskqueue_fast_enqueue(void *context)
453 {
454 	swi_sched(taskqueue_fast_ih, 0);
455 }
456 
457 static void
458 taskqueue_fast_run(void *dummy)
459 {
460 	taskqueue_run(taskqueue_fast);
461 }
462 
463 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
464 	swi_add(NULL, "Fast task queue", taskqueue_fast_run, NULL,
465 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
466 
467 int
468 taskqueue_member(struct taskqueue *queue, struct thread *td)
469 {
470 	int i, j, ret = 0;
471 
472 	TQ_LOCK(queue);
473 	for (i = 0, j = 0; ; i++) {
474 		if (queue->tq_threads[i] == NULL)
475 			continue;
476 		if (queue->tq_threads[i] == td) {
477 			ret = 1;
478 			break;
479 		}
480 		if (++j >= queue->tq_tcount)
481 			break;
482 	}
483 	TQ_UNLOCK(queue);
484 	return (ret);
485 }
486