xref: /freebsd/sys/kern/subr_taskqueue.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/cpuset.h>
34 #include <sys/interrupt.h>
35 #include <sys/kernel.h>
36 #include <sys/kthread.h>
37 #include <sys/libkern.h>
38 #include <sys/limits.h>
39 #include <sys/lock.h>
40 #include <sys/malloc.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/sched.h>
45 #include <sys/smp.h>
46 #include <sys/taskqueue.h>
47 #include <sys/unistd.h>
48 #include <machine/stdarg.h>
49 
50 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
51 static void	*taskqueue_giant_ih;
52 static void	*taskqueue_ih;
53 static void	 taskqueue_fast_enqueue(void *);
54 static void	 taskqueue_swi_enqueue(void *);
55 static void	 taskqueue_swi_giant_enqueue(void *);
56 
57 struct taskqueue_busy {
58 	struct task		*tb_running;
59 	u_int			 tb_seq;
60 	bool			 tb_canceling;
61 	LIST_ENTRY(taskqueue_busy) tb_link;
62 };
63 
64 struct taskqueue {
65 	STAILQ_HEAD(, task)	tq_queue;
66 	LIST_HEAD(, taskqueue_busy) tq_active;
67 	struct task		*tq_hint;
68 	u_int			tq_seq;
69 	int			tq_callouts;
70 	struct mtx_padalign	tq_mutex;
71 	taskqueue_enqueue_fn	tq_enqueue;
72 	void			*tq_context;
73 	char			*tq_name;
74 	struct thread		**tq_threads;
75 	int			tq_tcount;
76 	int			tq_spin;
77 	int			tq_flags;
78 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
79 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
80 };
81 
82 #define	TQ_FLAGS_ACTIVE		(1 << 0)
83 #define	TQ_FLAGS_BLOCKED	(1 << 1)
84 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
85 
86 #define	DT_CALLOUT_ARMED	(1 << 0)
87 #define	DT_DRAIN_IN_PROGRESS	(1 << 1)
88 
89 #define	TQ_LOCK(tq)							\
90 	do {								\
91 		if ((tq)->tq_spin)					\
92 			mtx_lock_spin(&(tq)->tq_mutex);			\
93 		else							\
94 			mtx_lock(&(tq)->tq_mutex);			\
95 	} while (0)
96 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
97 
98 #define	TQ_UNLOCK(tq)							\
99 	do {								\
100 		if ((tq)->tq_spin)					\
101 			mtx_unlock_spin(&(tq)->tq_mutex);		\
102 		else							\
103 			mtx_unlock(&(tq)->tq_mutex);			\
104 	} while (0)
105 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
106 
107 void
108 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
109     int priority, task_fn_t func, void *context)
110 {
111 
112 	TASK_INIT(&timeout_task->t, priority, func, context);
113 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
114 	    CALLOUT_RETURNUNLOCKED);
115 	timeout_task->q = queue;
116 	timeout_task->f = 0;
117 }
118 
119 static __inline int
120 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
121 {
122 	if (tq->tq_spin)
123 		return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
124 	return (msleep(p, &tq->tq_mutex, 0, wm, 0));
125 }
126 
127 static struct taskqueue_busy *
128 task_get_busy(struct taskqueue *queue, struct task *task)
129 {
130 	struct taskqueue_busy *tb;
131 
132 	TQ_ASSERT_LOCKED(queue);
133 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
134 		if (tb->tb_running == task)
135 			return (tb);
136 	}
137 	return (NULL);
138 }
139 
140 static struct taskqueue *
141 _taskqueue_create(const char *name, int mflags,
142 		 taskqueue_enqueue_fn enqueue, void *context,
143 		 int mtxflags, const char *mtxname __unused)
144 {
145 	struct taskqueue *queue;
146 	char *tq_name;
147 
148 	tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
149 	if (tq_name == NULL)
150 		return (NULL);
151 
152 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
153 	if (queue == NULL) {
154 		free(tq_name, M_TASKQUEUE);
155 		return (NULL);
156 	}
157 
158 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
159 
160 	STAILQ_INIT(&queue->tq_queue);
161 	LIST_INIT(&queue->tq_active);
162 	queue->tq_enqueue = enqueue;
163 	queue->tq_context = context;
164 	queue->tq_name = tq_name;
165 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
166 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
167 	if (enqueue == taskqueue_fast_enqueue ||
168 	    enqueue == taskqueue_swi_enqueue ||
169 	    enqueue == taskqueue_swi_giant_enqueue ||
170 	    enqueue == taskqueue_thread_enqueue)
171 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
172 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
173 
174 	return (queue);
175 }
176 
177 struct taskqueue *
178 taskqueue_create(const char *name, int mflags,
179 		 taskqueue_enqueue_fn enqueue, void *context)
180 {
181 
182 	return _taskqueue_create(name, mflags, enqueue, context,
183 			MTX_DEF, name);
184 }
185 
186 void
187 taskqueue_set_callback(struct taskqueue *queue,
188     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
189     void *context)
190 {
191 
192 	KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
193 	    (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
194 	    ("Callback type %d not valid, must be %d-%d", cb_type,
195 	    TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
196 	KASSERT((queue->tq_callbacks[cb_type] == NULL),
197 	    ("Re-initialization of taskqueue callback?"));
198 
199 	queue->tq_callbacks[cb_type] = callback;
200 	queue->tq_cb_contexts[cb_type] = context;
201 }
202 
203 /*
204  * Signal a taskqueue thread to terminate.
205  */
206 static void
207 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
208 {
209 
210 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
211 		wakeup(tq);
212 		TQ_SLEEP(tq, pp, "tq_destroy");
213 	}
214 }
215 
216 void
217 taskqueue_free(struct taskqueue *queue)
218 {
219 
220 	TQ_LOCK(queue);
221 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
222 	taskqueue_terminate(queue->tq_threads, queue);
223 	KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
224 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
225 	mtx_destroy(&queue->tq_mutex);
226 	free(queue->tq_threads, M_TASKQUEUE);
227 	free(queue->tq_name, M_TASKQUEUE);
228 	free(queue, M_TASKQUEUE);
229 }
230 
231 static int
232 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task, int flags)
233 {
234 	struct task *ins;
235 	struct task *prev;
236 	struct taskqueue_busy *tb;
237 
238 	KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
239 	/*
240 	 * Ignore canceling task if requested.
241 	 */
242 	if (__predict_false((flags & TASKQUEUE_FAIL_IF_CANCELING) != 0)) {
243 		tb = task_get_busy(queue, task);
244 		if (tb != NULL && tb->tb_canceling) {
245 			TQ_UNLOCK(queue);
246 			return (ECANCELED);
247 		}
248 	}
249 
250 	/*
251 	 * Count multiple enqueues.
252 	 */
253 	if (task->ta_pending) {
254 		if (__predict_false((flags & TASKQUEUE_FAIL_IF_PENDING) != 0)) {
255 			TQ_UNLOCK(queue);
256 			return (EEXIST);
257 		}
258 		if (task->ta_pending < USHRT_MAX)
259 			task->ta_pending++;
260 		TQ_UNLOCK(queue);
261 		return (0);
262 	}
263 
264 	/*
265 	 * Optimise cases when all tasks use small set of priorities.
266 	 * In case of only one priority we always insert at the end.
267 	 * In case of two tq_hint typically gives the insertion point.
268 	 * In case of more then two tq_hint should halve the search.
269 	 */
270 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
271 	if (!prev || prev->ta_priority >= task->ta_priority) {
272 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
273 	} else {
274 		prev = queue->tq_hint;
275 		if (prev && prev->ta_priority >= task->ta_priority) {
276 			ins = STAILQ_NEXT(prev, ta_link);
277 		} else {
278 			prev = NULL;
279 			ins = STAILQ_FIRST(&queue->tq_queue);
280 		}
281 		for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
282 			if (ins->ta_priority < task->ta_priority)
283 				break;
284 
285 		if (prev) {
286 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
287 			queue->tq_hint = task;
288 		} else
289 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
290 	}
291 
292 	task->ta_pending = 1;
293 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
294 		TQ_UNLOCK(queue);
295 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
296 		queue->tq_enqueue(queue->tq_context);
297 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
298 		TQ_UNLOCK(queue);
299 
300 	/* Return with lock released. */
301 	return (0);
302 }
303 
304 int
305 taskqueue_enqueue_flags(struct taskqueue *queue, struct task *task, int flags)
306 {
307 	int res;
308 
309 	TQ_LOCK(queue);
310 	res = taskqueue_enqueue_locked(queue, task, flags);
311 	/* The lock is released inside. */
312 
313 	return (res);
314 }
315 
316 int
317 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
318 {
319 	return (taskqueue_enqueue_flags(queue, task, 0));
320 }
321 
322 static void
323 taskqueue_timeout_func(void *arg)
324 {
325 	struct taskqueue *queue;
326 	struct timeout_task *timeout_task;
327 
328 	timeout_task = arg;
329 	queue = timeout_task->q;
330 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
331 	timeout_task->f &= ~DT_CALLOUT_ARMED;
332 	queue->tq_callouts--;
333 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t, 0);
334 	/* The lock is released inside. */
335 }
336 
337 int
338 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
339     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
340 {
341 	int res;
342 
343 	TQ_LOCK(queue);
344 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
345 	    ("Migrated queue"));
346 	timeout_task->q = queue;
347 	res = timeout_task->t.ta_pending;
348 	if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
349 		/* Do nothing */
350 		TQ_UNLOCK(queue);
351 		res = -1;
352 	} else if (sbt == 0) {
353 		taskqueue_enqueue_locked(queue, &timeout_task->t, 0);
354 		/* The lock is released inside. */
355 	} else {
356 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
357 			res++;
358 		} else {
359 			queue->tq_callouts++;
360 			timeout_task->f |= DT_CALLOUT_ARMED;
361 			if (sbt < 0)
362 				sbt = -sbt; /* Ignore overflow. */
363 		}
364 		if (sbt > 0) {
365 			if (queue->tq_spin)
366 				flags |= C_DIRECT_EXEC;
367 			callout_reset_sbt(&timeout_task->c, sbt, pr,
368 			    taskqueue_timeout_func, timeout_task, flags);
369 		}
370 		TQ_UNLOCK(queue);
371 	}
372 	return (res);
373 }
374 
375 int
376 taskqueue_enqueue_timeout(struct taskqueue *queue,
377     struct timeout_task *ttask, int ticks)
378 {
379 
380 	return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
381 	    0, C_HARDCLOCK));
382 }
383 
384 static void
385 taskqueue_task_nop_fn(void *context, int pending)
386 {
387 }
388 
389 /*
390  * Block until all currently queued tasks in this taskqueue
391  * have begun execution.  Tasks queued during execution of
392  * this function are ignored.
393  */
394 static int
395 taskqueue_drain_tq_queue(struct taskqueue *queue)
396 {
397 	struct task t_barrier;
398 
399 	if (STAILQ_EMPTY(&queue->tq_queue))
400 		return (0);
401 
402 	/*
403 	 * Enqueue our barrier after all current tasks, but with
404 	 * the highest priority so that newly queued tasks cannot
405 	 * pass it.  Because of the high priority, we can not use
406 	 * taskqueue_enqueue_locked directly (which drops the lock
407 	 * anyway) so just insert it at tail while we have the
408 	 * queue lock.
409 	 */
410 	TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
411 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
412 	queue->tq_hint = &t_barrier;
413 	t_barrier.ta_pending = 1;
414 
415 	/*
416 	 * Once the barrier has executed, all previously queued tasks
417 	 * have completed or are currently executing.
418 	 */
419 	while (t_barrier.ta_pending != 0)
420 		TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
421 	return (1);
422 }
423 
424 /*
425  * Block until all currently executing tasks for this taskqueue
426  * complete.  Tasks that begin execution during the execution
427  * of this function are ignored.
428  */
429 static int
430 taskqueue_drain_tq_active(struct taskqueue *queue)
431 {
432 	struct taskqueue_busy *tb;
433 	u_int seq;
434 
435 	if (LIST_EMPTY(&queue->tq_active))
436 		return (0);
437 
438 	/* Block taskq_terminate().*/
439 	queue->tq_callouts++;
440 
441 	/* Wait for any active task with sequence from the past. */
442 	seq = queue->tq_seq;
443 restart:
444 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
445 		if ((int)(tb->tb_seq - seq) <= 0) {
446 			TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
447 			goto restart;
448 		}
449 	}
450 
451 	/* Release taskqueue_terminate(). */
452 	queue->tq_callouts--;
453 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
454 		wakeup_one(queue->tq_threads);
455 	return (1);
456 }
457 
458 void
459 taskqueue_block(struct taskqueue *queue)
460 {
461 
462 	TQ_LOCK(queue);
463 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
464 	TQ_UNLOCK(queue);
465 }
466 
467 void
468 taskqueue_unblock(struct taskqueue *queue)
469 {
470 
471 	TQ_LOCK(queue);
472 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
473 	if (!STAILQ_EMPTY(&queue->tq_queue))
474 		queue->tq_enqueue(queue->tq_context);
475 	TQ_UNLOCK(queue);
476 }
477 
478 static void
479 taskqueue_run_locked(struct taskqueue *queue)
480 {
481 	struct epoch_tracker et;
482 	struct taskqueue_busy tb;
483 	struct task *task;
484 	bool in_net_epoch;
485 	int pending;
486 
487 	KASSERT(queue != NULL, ("tq is NULL"));
488 	TQ_ASSERT_LOCKED(queue);
489 	tb.tb_running = NULL;
490 	LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
491 	in_net_epoch = false;
492 
493 	while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
494 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
495 		if (queue->tq_hint == task)
496 			queue->tq_hint = NULL;
497 		pending = task->ta_pending;
498 		task->ta_pending = 0;
499 		tb.tb_running = task;
500 		tb.tb_seq = ++queue->tq_seq;
501 		tb.tb_canceling = false;
502 		TQ_UNLOCK(queue);
503 
504 		KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
505 		if (!in_net_epoch && TASK_IS_NET(task)) {
506 			in_net_epoch = true;
507 			NET_EPOCH_ENTER(et);
508 		} else if (in_net_epoch && !TASK_IS_NET(task)) {
509 			NET_EPOCH_EXIT(et);
510 			in_net_epoch = false;
511 		}
512 		task->ta_func(task->ta_context, pending);
513 
514 		TQ_LOCK(queue);
515 		wakeup(task);
516 	}
517 	if (in_net_epoch)
518 		NET_EPOCH_EXIT(et);
519 	LIST_REMOVE(&tb, tb_link);
520 }
521 
522 void
523 taskqueue_run(struct taskqueue *queue)
524 {
525 
526 	TQ_LOCK(queue);
527 	taskqueue_run_locked(queue);
528 	TQ_UNLOCK(queue);
529 }
530 
531 /*
532  * Only use this function in single threaded contexts. It returns
533  * non-zero if the given task is either pending or running. Else the
534  * task is idle and can be queued again or freed.
535  */
536 int
537 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
538 {
539 	int retval;
540 
541 	TQ_LOCK(queue);
542 	retval = task->ta_pending > 0 || task_get_busy(queue, task) != NULL;
543 	TQ_UNLOCK(queue);
544 
545 	return (retval);
546 }
547 
548 static int
549 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
550     u_int *pendp)
551 {
552 	struct taskqueue_busy *tb;
553 	int retval = 0;
554 
555 	if (task->ta_pending > 0) {
556 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
557 		if (queue->tq_hint == task)
558 			queue->tq_hint = NULL;
559 	}
560 	if (pendp != NULL)
561 		*pendp = task->ta_pending;
562 	task->ta_pending = 0;
563 	tb = task_get_busy(queue, task);
564 	if (tb != NULL) {
565 		tb->tb_canceling = true;
566 		retval = EBUSY;
567 	}
568 
569 	return (retval);
570 }
571 
572 int
573 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
574 {
575 	int error;
576 
577 	TQ_LOCK(queue);
578 	error = taskqueue_cancel_locked(queue, task, pendp);
579 	TQ_UNLOCK(queue);
580 
581 	return (error);
582 }
583 
584 int
585 taskqueue_cancel_timeout(struct taskqueue *queue,
586     struct timeout_task *timeout_task, u_int *pendp)
587 {
588 	u_int pending, pending1;
589 	int error;
590 
591 	TQ_LOCK(queue);
592 	pending = !!(callout_stop(&timeout_task->c) > 0);
593 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
594 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
595 		timeout_task->f &= ~DT_CALLOUT_ARMED;
596 		queue->tq_callouts--;
597 	}
598 	TQ_UNLOCK(queue);
599 
600 	if (pendp != NULL)
601 		*pendp = pending + pending1;
602 	return (error);
603 }
604 
605 void
606 taskqueue_drain(struct taskqueue *queue, struct task *task)
607 {
608 
609 	if (!queue->tq_spin)
610 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
611 
612 	TQ_LOCK(queue);
613 	while (task->ta_pending != 0 || task_get_busy(queue, task) != NULL)
614 		TQ_SLEEP(queue, task, "tq_drain");
615 	TQ_UNLOCK(queue);
616 }
617 
618 void
619 taskqueue_drain_all(struct taskqueue *queue)
620 {
621 
622 	if (!queue->tq_spin)
623 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
624 
625 	TQ_LOCK(queue);
626 	(void)taskqueue_drain_tq_queue(queue);
627 	(void)taskqueue_drain_tq_active(queue);
628 	TQ_UNLOCK(queue);
629 }
630 
631 void
632 taskqueue_drain_timeout(struct taskqueue *queue,
633     struct timeout_task *timeout_task)
634 {
635 
636 	/*
637 	 * Set flag to prevent timer from re-starting during drain:
638 	 */
639 	TQ_LOCK(queue);
640 	KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
641 	    ("Drain already in progress"));
642 	timeout_task->f |= DT_DRAIN_IN_PROGRESS;
643 	TQ_UNLOCK(queue);
644 
645 	callout_drain(&timeout_task->c);
646 	taskqueue_drain(queue, &timeout_task->t);
647 
648 	/*
649 	 * Clear flag to allow timer to re-start:
650 	 */
651 	TQ_LOCK(queue);
652 	timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
653 	TQ_UNLOCK(queue);
654 }
655 
656 void
657 taskqueue_quiesce(struct taskqueue *queue)
658 {
659 	int ret;
660 
661 	TQ_LOCK(queue);
662 	do {
663 		ret = taskqueue_drain_tq_queue(queue);
664 		if (ret == 0)
665 			ret = taskqueue_drain_tq_active(queue);
666 	} while (ret != 0);
667 	TQ_UNLOCK(queue);
668 }
669 
670 static void
671 taskqueue_swi_enqueue(void *context)
672 {
673 	swi_sched(taskqueue_ih, 0);
674 }
675 
676 static void
677 taskqueue_swi_run(void *dummy)
678 {
679 	taskqueue_run(taskqueue_swi);
680 }
681 
682 static void
683 taskqueue_swi_giant_enqueue(void *context)
684 {
685 	swi_sched(taskqueue_giant_ih, 0);
686 }
687 
688 static void
689 taskqueue_swi_giant_run(void *dummy)
690 {
691 	taskqueue_run(taskqueue_swi_giant);
692 }
693 
694 static int
695 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
696     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
697 {
698 	char ktname[MAXCOMLEN + 1];
699 	struct thread *td;
700 	struct taskqueue *tq;
701 	int i, error;
702 
703 	if (count <= 0)
704 		return (EINVAL);
705 
706 	vsnprintf(ktname, sizeof(ktname), name, ap);
707 	tq = *tqp;
708 
709 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
710 	    M_NOWAIT | M_ZERO);
711 	if (tq->tq_threads == NULL) {
712 		printf("%s: no memory for %s threads\n", __func__, ktname);
713 		return (ENOMEM);
714 	}
715 
716 	for (i = 0; i < count; i++) {
717 		if (count == 1)
718 			error = kthread_add(taskqueue_thread_loop, tqp, p,
719 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
720 		else
721 			error = kthread_add(taskqueue_thread_loop, tqp, p,
722 			    &tq->tq_threads[i], RFSTOPPED, 0,
723 			    "%s_%d", ktname, i);
724 		if (error) {
725 			/* should be ok to continue, taskqueue_free will dtrt */
726 			printf("%s: kthread_add(%s): error %d", __func__,
727 			    ktname, error);
728 			tq->tq_threads[i] = NULL;		/* paranoid */
729 		} else
730 			tq->tq_tcount++;
731 	}
732 	if (tq->tq_tcount == 0) {
733 		free(tq->tq_threads, M_TASKQUEUE);
734 		tq->tq_threads = NULL;
735 		return (ENOMEM);
736 	}
737 	for (i = 0; i < count; i++) {
738 		if (tq->tq_threads[i] == NULL)
739 			continue;
740 		td = tq->tq_threads[i];
741 		if (mask) {
742 			error = cpuset_setthread(td->td_tid, mask);
743 			/*
744 			 * Failing to pin is rarely an actual fatal error;
745 			 * it'll just affect performance.
746 			 */
747 			if (error)
748 				printf("%s: curthread=%llu: can't pin; "
749 				    "error=%d\n",
750 				    __func__,
751 				    (unsigned long long) td->td_tid,
752 				    error);
753 		}
754 		thread_lock(td);
755 		sched_prio(td, pri);
756 		sched_add(td, SRQ_BORING);
757 	}
758 
759 	return (0);
760 }
761 
762 int
763 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
764     const char *name, ...)
765 {
766 	va_list ap;
767 	int error;
768 
769 	va_start(ap, name);
770 	error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
771 	va_end(ap);
772 	return (error);
773 }
774 
775 int
776 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
777     struct proc *proc, const char *name, ...)
778 {
779 	va_list ap;
780 	int error;
781 
782 	va_start(ap, name);
783 	error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
784 	va_end(ap);
785 	return (error);
786 }
787 
788 int
789 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
790     cpuset_t *mask, const char *name, ...)
791 {
792 	va_list ap;
793 	int error;
794 
795 	va_start(ap, name);
796 	error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
797 	va_end(ap);
798 	return (error);
799 }
800 
801 static inline void
802 taskqueue_run_callback(struct taskqueue *tq,
803     enum taskqueue_callback_type cb_type)
804 {
805 	taskqueue_callback_fn tq_callback;
806 
807 	TQ_ASSERT_UNLOCKED(tq);
808 	tq_callback = tq->tq_callbacks[cb_type];
809 	if (tq_callback != NULL)
810 		tq_callback(tq->tq_cb_contexts[cb_type]);
811 }
812 
813 void
814 taskqueue_thread_loop(void *arg)
815 {
816 	struct taskqueue **tqp, *tq;
817 
818 	tqp = arg;
819 	tq = *tqp;
820 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
821 	TQ_LOCK(tq);
822 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
823 		/* XXX ? */
824 		taskqueue_run_locked(tq);
825 		/*
826 		 * Because taskqueue_run() can drop tq_mutex, we need to
827 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
828 		 * meantime, which means we missed a wakeup.
829 		 */
830 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
831 			break;
832 		TQ_SLEEP(tq, tq, "-");
833 	}
834 	taskqueue_run_locked(tq);
835 	/*
836 	 * This thread is on its way out, so just drop the lock temporarily
837 	 * in order to call the shutdown callback.  This allows the callback
838 	 * to look at the taskqueue, even just before it dies.
839 	 */
840 	TQ_UNLOCK(tq);
841 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
842 	TQ_LOCK(tq);
843 
844 	/* rendezvous with thread that asked us to terminate */
845 	tq->tq_tcount--;
846 	wakeup_one(tq->tq_threads);
847 	TQ_UNLOCK(tq);
848 	kthread_exit();
849 }
850 
851 void
852 taskqueue_thread_enqueue(void *context)
853 {
854 	struct taskqueue **tqp, *tq;
855 
856 	tqp = context;
857 	tq = *tqp;
858 	wakeup_any(tq);
859 }
860 
861 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
862 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
863 		     INTR_MPSAFE, &taskqueue_ih));
864 
865 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
866 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
867 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
868 
869 TASKQUEUE_DEFINE_THREAD(thread);
870 
871 struct taskqueue *
872 taskqueue_create_fast(const char *name, int mflags,
873 		 taskqueue_enqueue_fn enqueue, void *context)
874 {
875 	return _taskqueue_create(name, mflags, enqueue, context,
876 			MTX_SPIN, "fast_taskqueue");
877 }
878 
879 static void	*taskqueue_fast_ih;
880 
881 static void
882 taskqueue_fast_enqueue(void *context)
883 {
884 	swi_sched(taskqueue_fast_ih, 0);
885 }
886 
887 static void
888 taskqueue_fast_run(void *dummy)
889 {
890 	taskqueue_run(taskqueue_fast);
891 }
892 
893 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
894 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
895 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
896 
897 int
898 taskqueue_member(struct taskqueue *queue, struct thread *td)
899 {
900 	int i, j, ret = 0;
901 
902 	for (i = 0, j = 0; ; i++) {
903 		if (queue->tq_threads[i] == NULL)
904 			continue;
905 		if (queue->tq_threads[i] == td) {
906 			ret = 1;
907 			break;
908 		}
909 		if (++j >= queue->tq_tcount)
910 			break;
911 	}
912 	return (ret);
913 }
914