xref: /freebsd/sys/kern/subr_taskqueue.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/bus.h>
35 #include <sys/cpuset.h>
36 #include <sys/interrupt.h>
37 #include <sys/kernel.h>
38 #include <sys/kthread.h>
39 #include <sys/libkern.h>
40 #include <sys/limits.h>
41 #include <sys/lock.h>
42 #include <sys/malloc.h>
43 #include <sys/mutex.h>
44 #include <sys/proc.h>
45 #include <sys/epoch.h>
46 #include <sys/sched.h>
47 #include <sys/smp.h>
48 #include <sys/taskqueue.h>
49 #include <sys/unistd.h>
50 #include <machine/stdarg.h>
51 
52 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
53 static void	*taskqueue_giant_ih;
54 static void	*taskqueue_ih;
55 static void	 taskqueue_fast_enqueue(void *);
56 static void	 taskqueue_swi_enqueue(void *);
57 static void	 taskqueue_swi_giant_enqueue(void *);
58 
59 struct taskqueue_busy {
60 	struct task		*tb_running;
61 	u_int			 tb_seq;
62 	LIST_ENTRY(taskqueue_busy) tb_link;
63 };
64 
65 struct taskqueue {
66 	STAILQ_HEAD(, task)	tq_queue;
67 	LIST_HEAD(, taskqueue_busy) tq_active;
68 	struct task		*tq_hint;
69 	u_int			tq_seq;
70 	int			tq_callouts;
71 	struct mtx_padalign	tq_mutex;
72 	taskqueue_enqueue_fn	tq_enqueue;
73 	void			*tq_context;
74 	char			*tq_name;
75 	struct thread		**tq_threads;
76 	int			tq_tcount;
77 	int			tq_spin;
78 	int			tq_flags;
79 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
80 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
81 };
82 
83 #define	TQ_FLAGS_ACTIVE		(1 << 0)
84 #define	TQ_FLAGS_BLOCKED	(1 << 1)
85 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
86 
87 #define	DT_CALLOUT_ARMED	(1 << 0)
88 #define	DT_DRAIN_IN_PROGRESS	(1 << 1)
89 
90 #define	TQ_LOCK(tq)							\
91 	do {								\
92 		if ((tq)->tq_spin)					\
93 			mtx_lock_spin(&(tq)->tq_mutex);			\
94 		else							\
95 			mtx_lock(&(tq)->tq_mutex);			\
96 	} while (0)
97 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
98 
99 #define	TQ_UNLOCK(tq)							\
100 	do {								\
101 		if ((tq)->tq_spin)					\
102 			mtx_unlock_spin(&(tq)->tq_mutex);		\
103 		else							\
104 			mtx_unlock(&(tq)->tq_mutex);			\
105 	} while (0)
106 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
107 
108 void
109 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
110     int priority, task_fn_t func, void *context)
111 {
112 
113 	TASK_INIT(&timeout_task->t, priority, func, context);
114 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
115 	    CALLOUT_RETURNUNLOCKED);
116 	timeout_task->q = queue;
117 	timeout_task->f = 0;
118 }
119 
120 static __inline int
121 TQ_SLEEP(struct taskqueue *tq, void *p, const char *wm)
122 {
123 	if (tq->tq_spin)
124 		return (msleep_spin(p, (struct mtx *)&tq->tq_mutex, wm, 0));
125 	return (msleep(p, &tq->tq_mutex, 0, wm, 0));
126 }
127 
128 static struct taskqueue *
129 _taskqueue_create(const char *name, int mflags,
130 		 taskqueue_enqueue_fn enqueue, void *context,
131 		 int mtxflags, const char *mtxname __unused)
132 {
133 	struct taskqueue *queue;
134 	char *tq_name;
135 
136 	tq_name = malloc(TASKQUEUE_NAMELEN, M_TASKQUEUE, mflags | M_ZERO);
137 	if (tq_name == NULL)
138 		return (NULL);
139 
140 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
141 	if (queue == NULL) {
142 		free(tq_name, M_TASKQUEUE);
143 		return (NULL);
144 	}
145 
146 	snprintf(tq_name, TASKQUEUE_NAMELEN, "%s", (name) ? name : "taskqueue");
147 
148 	STAILQ_INIT(&queue->tq_queue);
149 	LIST_INIT(&queue->tq_active);
150 	queue->tq_enqueue = enqueue;
151 	queue->tq_context = context;
152 	queue->tq_name = tq_name;
153 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
154 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
155 	if (enqueue == taskqueue_fast_enqueue ||
156 	    enqueue == taskqueue_swi_enqueue ||
157 	    enqueue == taskqueue_swi_giant_enqueue ||
158 	    enqueue == taskqueue_thread_enqueue)
159 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
160 	mtx_init(&queue->tq_mutex, tq_name, NULL, mtxflags);
161 
162 	return (queue);
163 }
164 
165 struct taskqueue *
166 taskqueue_create(const char *name, int mflags,
167 		 taskqueue_enqueue_fn enqueue, void *context)
168 {
169 
170 	return _taskqueue_create(name, mflags, enqueue, context,
171 			MTX_DEF, name);
172 }
173 
174 void
175 taskqueue_set_callback(struct taskqueue *queue,
176     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
177     void *context)
178 {
179 
180 	KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
181 	    (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
182 	    ("Callback type %d not valid, must be %d-%d", cb_type,
183 	    TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
184 	KASSERT((queue->tq_callbacks[cb_type] == NULL),
185 	    ("Re-initialization of taskqueue callback?"));
186 
187 	queue->tq_callbacks[cb_type] = callback;
188 	queue->tq_cb_contexts[cb_type] = context;
189 }
190 
191 /*
192  * Signal a taskqueue thread to terminate.
193  */
194 static void
195 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
196 {
197 
198 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
199 		wakeup(tq);
200 		TQ_SLEEP(tq, pp, "tq_destroy");
201 	}
202 }
203 
204 void
205 taskqueue_free(struct taskqueue *queue)
206 {
207 
208 	TQ_LOCK(queue);
209 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
210 	taskqueue_terminate(queue->tq_threads, queue);
211 	KASSERT(LIST_EMPTY(&queue->tq_active), ("Tasks still running?"));
212 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
213 	mtx_destroy(&queue->tq_mutex);
214 	free(queue->tq_threads, M_TASKQUEUE);
215 	free(queue->tq_name, M_TASKQUEUE);
216 	free(queue, M_TASKQUEUE);
217 }
218 
219 static int
220 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
221 {
222 	struct task *ins;
223 	struct task *prev;
224 
225 	KASSERT(task->ta_func != NULL, ("enqueueing task with NULL func"));
226 	/*
227 	 * Count multiple enqueues.
228 	 */
229 	if (task->ta_pending) {
230 		if (task->ta_pending < USHRT_MAX)
231 			task->ta_pending++;
232 		TQ_UNLOCK(queue);
233 		return (0);
234 	}
235 
236 	/*
237 	 * Optimise cases when all tasks use small set of priorities.
238 	 * In case of only one priority we always insert at the end.
239 	 * In case of two tq_hint typically gives the insertion point.
240 	 * In case of more then two tq_hint should halve the search.
241 	 */
242 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
243 	if (!prev || prev->ta_priority >= task->ta_priority) {
244 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
245 	} else {
246 		prev = queue->tq_hint;
247 		if (prev && prev->ta_priority >= task->ta_priority) {
248 			ins = STAILQ_NEXT(prev, ta_link);
249 		} else {
250 			prev = NULL;
251 			ins = STAILQ_FIRST(&queue->tq_queue);
252 		}
253 		for (; ins; prev = ins, ins = STAILQ_NEXT(ins, ta_link))
254 			if (ins->ta_priority < task->ta_priority)
255 				break;
256 
257 		if (prev) {
258 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
259 			queue->tq_hint = task;
260 		} else
261 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
262 	}
263 
264 	task->ta_pending = 1;
265 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
266 		TQ_UNLOCK(queue);
267 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
268 		queue->tq_enqueue(queue->tq_context);
269 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
270 		TQ_UNLOCK(queue);
271 
272 	/* Return with lock released. */
273 	return (0);
274 }
275 
276 int
277 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
278 {
279 	int res;
280 
281 	TQ_LOCK(queue);
282 	res = taskqueue_enqueue_locked(queue, task);
283 	/* The lock is released inside. */
284 
285 	return (res);
286 }
287 
288 static void
289 taskqueue_timeout_func(void *arg)
290 {
291 	struct taskqueue *queue;
292 	struct timeout_task *timeout_task;
293 
294 	timeout_task = arg;
295 	queue = timeout_task->q;
296 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
297 	timeout_task->f &= ~DT_CALLOUT_ARMED;
298 	queue->tq_callouts--;
299 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
300 	/* The lock is released inside. */
301 }
302 
303 int
304 taskqueue_enqueue_timeout_sbt(struct taskqueue *queue,
305     struct timeout_task *timeout_task, sbintime_t sbt, sbintime_t pr, int flags)
306 {
307 	int res;
308 
309 	TQ_LOCK(queue);
310 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
311 	    ("Migrated queue"));
312 	timeout_task->q = queue;
313 	res = timeout_task->t.ta_pending;
314 	if (timeout_task->f & DT_DRAIN_IN_PROGRESS) {
315 		/* Do nothing */
316 		TQ_UNLOCK(queue);
317 		res = -1;
318 	} else if (sbt == 0) {
319 		taskqueue_enqueue_locked(queue, &timeout_task->t);
320 		/* The lock is released inside. */
321 	} else {
322 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
323 			res++;
324 		} else {
325 			queue->tq_callouts++;
326 			timeout_task->f |= DT_CALLOUT_ARMED;
327 			if (sbt < 0)
328 				sbt = -sbt; /* Ignore overflow. */
329 		}
330 		if (sbt > 0) {
331 			if (queue->tq_spin)
332 				flags |= C_DIRECT_EXEC;
333 			callout_reset_sbt(&timeout_task->c, sbt, pr,
334 			    taskqueue_timeout_func, timeout_task, flags);
335 		}
336 		TQ_UNLOCK(queue);
337 	}
338 	return (res);
339 }
340 
341 int
342 taskqueue_enqueue_timeout(struct taskqueue *queue,
343     struct timeout_task *ttask, int ticks)
344 {
345 
346 	return (taskqueue_enqueue_timeout_sbt(queue, ttask, ticks * tick_sbt,
347 	    0, C_HARDCLOCK));
348 }
349 
350 static void
351 taskqueue_task_nop_fn(void *context, int pending)
352 {
353 }
354 
355 /*
356  * Block until all currently queued tasks in this taskqueue
357  * have begun execution.  Tasks queued during execution of
358  * this function are ignored.
359  */
360 static int
361 taskqueue_drain_tq_queue(struct taskqueue *queue)
362 {
363 	struct task t_barrier;
364 
365 	if (STAILQ_EMPTY(&queue->tq_queue))
366 		return (0);
367 
368 	/*
369 	 * Enqueue our barrier after all current tasks, but with
370 	 * the highest priority so that newly queued tasks cannot
371 	 * pass it.  Because of the high priority, we can not use
372 	 * taskqueue_enqueue_locked directly (which drops the lock
373 	 * anyway) so just insert it at tail while we have the
374 	 * queue lock.
375 	 */
376 	TASK_INIT(&t_barrier, UCHAR_MAX, taskqueue_task_nop_fn, &t_barrier);
377 	STAILQ_INSERT_TAIL(&queue->tq_queue, &t_barrier, ta_link);
378 	queue->tq_hint = &t_barrier;
379 	t_barrier.ta_pending = 1;
380 
381 	/*
382 	 * Once the barrier has executed, all previously queued tasks
383 	 * have completed or are currently executing.
384 	 */
385 	while (t_barrier.ta_pending != 0)
386 		TQ_SLEEP(queue, &t_barrier, "tq_qdrain");
387 	return (1);
388 }
389 
390 /*
391  * Block until all currently executing tasks for this taskqueue
392  * complete.  Tasks that begin execution during the execution
393  * of this function are ignored.
394  */
395 static int
396 taskqueue_drain_tq_active(struct taskqueue *queue)
397 {
398 	struct taskqueue_busy *tb;
399 	u_int seq;
400 
401 	if (LIST_EMPTY(&queue->tq_active))
402 		return (0);
403 
404 	/* Block taskq_terminate().*/
405 	queue->tq_callouts++;
406 
407 	/* Wait for any active task with sequence from the past. */
408 	seq = queue->tq_seq;
409 restart:
410 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
411 		if ((int)(tb->tb_seq - seq) <= 0) {
412 			TQ_SLEEP(queue, tb->tb_running, "tq_adrain");
413 			goto restart;
414 		}
415 	}
416 
417 	/* Release taskqueue_terminate(). */
418 	queue->tq_callouts--;
419 	if ((queue->tq_flags & TQ_FLAGS_ACTIVE) == 0)
420 		wakeup_one(queue->tq_threads);
421 	return (1);
422 }
423 
424 void
425 taskqueue_block(struct taskqueue *queue)
426 {
427 
428 	TQ_LOCK(queue);
429 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
430 	TQ_UNLOCK(queue);
431 }
432 
433 void
434 taskqueue_unblock(struct taskqueue *queue)
435 {
436 
437 	TQ_LOCK(queue);
438 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
439 	if (!STAILQ_EMPTY(&queue->tq_queue))
440 		queue->tq_enqueue(queue->tq_context);
441 	TQ_UNLOCK(queue);
442 }
443 
444 static void
445 taskqueue_run_locked(struct taskqueue *queue)
446 {
447 	struct epoch_tracker et;
448 	struct taskqueue_busy tb;
449 	struct task *task;
450 	bool in_net_epoch;
451 	int pending;
452 
453 	KASSERT(queue != NULL, ("tq is NULL"));
454 	TQ_ASSERT_LOCKED(queue);
455 	tb.tb_running = NULL;
456 	LIST_INSERT_HEAD(&queue->tq_active, &tb, tb_link);
457 	in_net_epoch = false;
458 
459 	while ((task = STAILQ_FIRST(&queue->tq_queue)) != NULL) {
460 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
461 		if (queue->tq_hint == task)
462 			queue->tq_hint = NULL;
463 		pending = task->ta_pending;
464 		task->ta_pending = 0;
465 		tb.tb_running = task;
466 		tb.tb_seq = ++queue->tq_seq;
467 		TQ_UNLOCK(queue);
468 
469 		KASSERT(task->ta_func != NULL, ("task->ta_func is NULL"));
470 		if (!in_net_epoch && TASK_IS_NET(task)) {
471 			in_net_epoch = true;
472 			NET_EPOCH_ENTER(et);
473 		} else if (in_net_epoch && !TASK_IS_NET(task)) {
474 			NET_EPOCH_EXIT(et);
475 			in_net_epoch = false;
476 		}
477 		task->ta_func(task->ta_context, pending);
478 
479 		TQ_LOCK(queue);
480 		wakeup(task);
481 	}
482 	if (in_net_epoch)
483 		NET_EPOCH_EXIT(et);
484 	LIST_REMOVE(&tb, tb_link);
485 }
486 
487 void
488 taskqueue_run(struct taskqueue *queue)
489 {
490 
491 	TQ_LOCK(queue);
492 	taskqueue_run_locked(queue);
493 	TQ_UNLOCK(queue);
494 }
495 
496 static int
497 task_is_running(struct taskqueue *queue, struct task *task)
498 {
499 	struct taskqueue_busy *tb;
500 
501 	TQ_ASSERT_LOCKED(queue);
502 	LIST_FOREACH(tb, &queue->tq_active, tb_link) {
503 		if (tb->tb_running == task)
504 			return (1);
505 	}
506 	return (0);
507 }
508 
509 /*
510  * Only use this function in single threaded contexts. It returns
511  * non-zero if the given task is either pending or running. Else the
512  * task is idle and can be queued again or freed.
513  */
514 int
515 taskqueue_poll_is_busy(struct taskqueue *queue, struct task *task)
516 {
517 	int retval;
518 
519 	TQ_LOCK(queue);
520 	retval = task->ta_pending > 0 || task_is_running(queue, task);
521 	TQ_UNLOCK(queue);
522 
523 	return (retval);
524 }
525 
526 static int
527 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
528     u_int *pendp)
529 {
530 
531 	if (task->ta_pending > 0) {
532 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
533 		if (queue->tq_hint == task)
534 			queue->tq_hint = NULL;
535 	}
536 	if (pendp != NULL)
537 		*pendp = task->ta_pending;
538 	task->ta_pending = 0;
539 	return (task_is_running(queue, task) ? EBUSY : 0);
540 }
541 
542 int
543 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
544 {
545 	int error;
546 
547 	TQ_LOCK(queue);
548 	error = taskqueue_cancel_locked(queue, task, pendp);
549 	TQ_UNLOCK(queue);
550 
551 	return (error);
552 }
553 
554 int
555 taskqueue_cancel_timeout(struct taskqueue *queue,
556     struct timeout_task *timeout_task, u_int *pendp)
557 {
558 	u_int pending, pending1;
559 	int error;
560 
561 	TQ_LOCK(queue);
562 	pending = !!(callout_stop(&timeout_task->c) > 0);
563 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
564 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
565 		timeout_task->f &= ~DT_CALLOUT_ARMED;
566 		queue->tq_callouts--;
567 	}
568 	TQ_UNLOCK(queue);
569 
570 	if (pendp != NULL)
571 		*pendp = pending + pending1;
572 	return (error);
573 }
574 
575 void
576 taskqueue_drain(struct taskqueue *queue, struct task *task)
577 {
578 
579 	if (!queue->tq_spin)
580 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
581 
582 	TQ_LOCK(queue);
583 	while (task->ta_pending != 0 || task_is_running(queue, task))
584 		TQ_SLEEP(queue, task, "tq_drain");
585 	TQ_UNLOCK(queue);
586 }
587 
588 void
589 taskqueue_drain_all(struct taskqueue *queue)
590 {
591 
592 	if (!queue->tq_spin)
593 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
594 
595 	TQ_LOCK(queue);
596 	(void)taskqueue_drain_tq_queue(queue);
597 	(void)taskqueue_drain_tq_active(queue);
598 	TQ_UNLOCK(queue);
599 }
600 
601 void
602 taskqueue_drain_timeout(struct taskqueue *queue,
603     struct timeout_task *timeout_task)
604 {
605 
606 	/*
607 	 * Set flag to prevent timer from re-starting during drain:
608 	 */
609 	TQ_LOCK(queue);
610 	KASSERT((timeout_task->f & DT_DRAIN_IN_PROGRESS) == 0,
611 	    ("Drain already in progress"));
612 	timeout_task->f |= DT_DRAIN_IN_PROGRESS;
613 	TQ_UNLOCK(queue);
614 
615 	callout_drain(&timeout_task->c);
616 	taskqueue_drain(queue, &timeout_task->t);
617 
618 	/*
619 	 * Clear flag to allow timer to re-start:
620 	 */
621 	TQ_LOCK(queue);
622 	timeout_task->f &= ~DT_DRAIN_IN_PROGRESS;
623 	TQ_UNLOCK(queue);
624 }
625 
626 void
627 taskqueue_quiesce(struct taskqueue *queue)
628 {
629 	int ret;
630 
631 	TQ_LOCK(queue);
632 	do {
633 		ret = taskqueue_drain_tq_queue(queue);
634 		if (ret == 0)
635 			ret = taskqueue_drain_tq_active(queue);
636 	} while (ret != 0);
637 	TQ_UNLOCK(queue);
638 }
639 
640 static void
641 taskqueue_swi_enqueue(void *context)
642 {
643 	swi_sched(taskqueue_ih, 0);
644 }
645 
646 static void
647 taskqueue_swi_run(void *dummy)
648 {
649 	taskqueue_run(taskqueue_swi);
650 }
651 
652 static void
653 taskqueue_swi_giant_enqueue(void *context)
654 {
655 	swi_sched(taskqueue_giant_ih, 0);
656 }
657 
658 static void
659 taskqueue_swi_giant_run(void *dummy)
660 {
661 	taskqueue_run(taskqueue_swi_giant);
662 }
663 
664 static int
665 _taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
666     cpuset_t *mask, struct proc *p, const char *name, va_list ap)
667 {
668 	char ktname[MAXCOMLEN + 1];
669 	struct thread *td;
670 	struct taskqueue *tq;
671 	int i, error;
672 
673 	if (count <= 0)
674 		return (EINVAL);
675 
676 	vsnprintf(ktname, sizeof(ktname), name, ap);
677 	tq = *tqp;
678 
679 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
680 	    M_NOWAIT | M_ZERO);
681 	if (tq->tq_threads == NULL) {
682 		printf("%s: no memory for %s threads\n", __func__, ktname);
683 		return (ENOMEM);
684 	}
685 
686 	for (i = 0; i < count; i++) {
687 		if (count == 1)
688 			error = kthread_add(taskqueue_thread_loop, tqp, p,
689 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
690 		else
691 			error = kthread_add(taskqueue_thread_loop, tqp, p,
692 			    &tq->tq_threads[i], RFSTOPPED, 0,
693 			    "%s_%d", ktname, i);
694 		if (error) {
695 			/* should be ok to continue, taskqueue_free will dtrt */
696 			printf("%s: kthread_add(%s): error %d", __func__,
697 			    ktname, error);
698 			tq->tq_threads[i] = NULL;		/* paranoid */
699 		} else
700 			tq->tq_tcount++;
701 	}
702 	if (tq->tq_tcount == 0) {
703 		free(tq->tq_threads, M_TASKQUEUE);
704 		tq->tq_threads = NULL;
705 		return (ENOMEM);
706 	}
707 	for (i = 0; i < count; i++) {
708 		if (tq->tq_threads[i] == NULL)
709 			continue;
710 		td = tq->tq_threads[i];
711 		if (mask) {
712 			error = cpuset_setthread(td->td_tid, mask);
713 			/*
714 			 * Failing to pin is rarely an actual fatal error;
715 			 * it'll just affect performance.
716 			 */
717 			if (error)
718 				printf("%s: curthread=%llu: can't pin; "
719 				    "error=%d\n",
720 				    __func__,
721 				    (unsigned long long) td->td_tid,
722 				    error);
723 		}
724 		thread_lock(td);
725 		sched_prio(td, pri);
726 		sched_add(td, SRQ_BORING);
727 	}
728 
729 	return (0);
730 }
731 
732 int
733 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
734     const char *name, ...)
735 {
736 	va_list ap;
737 	int error;
738 
739 	va_start(ap, name);
740 	error = _taskqueue_start_threads(tqp, count, pri, NULL, NULL, name, ap);
741 	va_end(ap);
742 	return (error);
743 }
744 
745 int
746 taskqueue_start_threads_in_proc(struct taskqueue **tqp, int count, int pri,
747     struct proc *proc, const char *name, ...)
748 {
749 	va_list ap;
750 	int error;
751 
752 	va_start(ap, name);
753 	error = _taskqueue_start_threads(tqp, count, pri, NULL, proc, name, ap);
754 	va_end(ap);
755 	return (error);
756 }
757 
758 int
759 taskqueue_start_threads_cpuset(struct taskqueue **tqp, int count, int pri,
760     cpuset_t *mask, const char *name, ...)
761 {
762 	va_list ap;
763 	int error;
764 
765 	va_start(ap, name);
766 	error = _taskqueue_start_threads(tqp, count, pri, mask, NULL, name, ap);
767 	va_end(ap);
768 	return (error);
769 }
770 
771 static inline void
772 taskqueue_run_callback(struct taskqueue *tq,
773     enum taskqueue_callback_type cb_type)
774 {
775 	taskqueue_callback_fn tq_callback;
776 
777 	TQ_ASSERT_UNLOCKED(tq);
778 	tq_callback = tq->tq_callbacks[cb_type];
779 	if (tq_callback != NULL)
780 		tq_callback(tq->tq_cb_contexts[cb_type]);
781 }
782 
783 void
784 taskqueue_thread_loop(void *arg)
785 {
786 	struct taskqueue **tqp, *tq;
787 
788 	tqp = arg;
789 	tq = *tqp;
790 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
791 	TQ_LOCK(tq);
792 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
793 		/* XXX ? */
794 		taskqueue_run_locked(tq);
795 		/*
796 		 * Because taskqueue_run() can drop tq_mutex, we need to
797 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
798 		 * meantime, which means we missed a wakeup.
799 		 */
800 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
801 			break;
802 		TQ_SLEEP(tq, tq, "-");
803 	}
804 	taskqueue_run_locked(tq);
805 	/*
806 	 * This thread is on its way out, so just drop the lock temporarily
807 	 * in order to call the shutdown callback.  This allows the callback
808 	 * to look at the taskqueue, even just before it dies.
809 	 */
810 	TQ_UNLOCK(tq);
811 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
812 	TQ_LOCK(tq);
813 
814 	/* rendezvous with thread that asked us to terminate */
815 	tq->tq_tcount--;
816 	wakeup_one(tq->tq_threads);
817 	TQ_UNLOCK(tq);
818 	kthread_exit();
819 }
820 
821 void
822 taskqueue_thread_enqueue(void *context)
823 {
824 	struct taskqueue **tqp, *tq;
825 
826 	tqp = context;
827 	tq = *tqp;
828 	wakeup_any(tq);
829 }
830 
831 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
832 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
833 		     INTR_MPSAFE, &taskqueue_ih));
834 
835 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
836 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
837 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
838 
839 TASKQUEUE_DEFINE_THREAD(thread);
840 
841 struct taskqueue *
842 taskqueue_create_fast(const char *name, int mflags,
843 		 taskqueue_enqueue_fn enqueue, void *context)
844 {
845 	return _taskqueue_create(name, mflags, enqueue, context,
846 			MTX_SPIN, "fast_taskqueue");
847 }
848 
849 static void	*taskqueue_fast_ih;
850 
851 static void
852 taskqueue_fast_enqueue(void *context)
853 {
854 	swi_sched(taskqueue_fast_ih, 0);
855 }
856 
857 static void
858 taskqueue_fast_run(void *dummy)
859 {
860 	taskqueue_run(taskqueue_fast);
861 }
862 
863 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
864 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
865 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
866 
867 int
868 taskqueue_member(struct taskqueue *queue, struct thread *td)
869 {
870 	int i, j, ret = 0;
871 
872 	for (i = 0, j = 0; ; i++) {
873 		if (queue->tq_threads[i] == NULL)
874 			continue;
875 		if (queue->tq_threads[i] == td) {
876 			ret = 1;
877 			break;
878 		}
879 		if (++j >= queue->tq_tcount)
880 			break;
881 	}
882 	return (ret);
883 }
884