xref: /freebsd/sys/kern/subr_taskqueue.c (revision 0698344859516a56ccc2d1577416f36b429b05be)
1 /*-
2  * Copyright (c) 2000 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/bus.h>
33 #include <sys/interrupt.h>
34 #include <sys/kernel.h>
35 #include <sys/kthread.h>
36 #include <sys/limits.h>
37 #include <sys/lock.h>
38 #include <sys/malloc.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/sched.h>
42 #include <sys/taskqueue.h>
43 #include <sys/unistd.h>
44 #include <machine/stdarg.h>
45 #include <net/vnet.h>
46 
47 static MALLOC_DEFINE(M_TASKQUEUE, "taskqueue", "Task Queues");
48 static void	*taskqueue_giant_ih;
49 static void	*taskqueue_ih;
50 static void	 taskqueue_fast_enqueue(void *);
51 static void	 taskqueue_swi_enqueue(void *);
52 static void	 taskqueue_swi_giant_enqueue(void *);
53 
54 struct taskqueue_busy {
55 	struct task	*tb_running;
56 	TAILQ_ENTRY(taskqueue_busy) tb_link;
57 };
58 
59 struct taskqueue {
60 	STAILQ_HEAD(, task)	tq_queue;
61 	taskqueue_enqueue_fn	tq_enqueue;
62 	void			*tq_context;
63 	TAILQ_HEAD(, taskqueue_busy) tq_active;
64 	struct mtx		tq_mutex;
65 	struct thread		**tq_threads;
66 	int			tq_tcount;
67 	int			tq_spin;
68 	int			tq_flags;
69 	int			tq_callouts;
70 	taskqueue_callback_fn	tq_callbacks[TASKQUEUE_NUM_CALLBACKS];
71 	void			*tq_cb_contexts[TASKQUEUE_NUM_CALLBACKS];
72 };
73 
74 #define	TQ_FLAGS_ACTIVE		(1 << 0)
75 #define	TQ_FLAGS_BLOCKED	(1 << 1)
76 #define	TQ_FLAGS_UNLOCKED_ENQUEUE	(1 << 2)
77 
78 #define	DT_CALLOUT_ARMED	(1 << 0)
79 
80 #define	TQ_LOCK(tq)							\
81 	do {								\
82 		if ((tq)->tq_spin)					\
83 			mtx_lock_spin(&(tq)->tq_mutex);			\
84 		else							\
85 			mtx_lock(&(tq)->tq_mutex);			\
86 	} while (0)
87 #define	TQ_ASSERT_LOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_OWNED)
88 
89 #define	TQ_UNLOCK(tq)							\
90 	do {								\
91 		if ((tq)->tq_spin)					\
92 			mtx_unlock_spin(&(tq)->tq_mutex);		\
93 		else							\
94 			mtx_unlock(&(tq)->tq_mutex);			\
95 	} while (0)
96 #define	TQ_ASSERT_UNLOCKED(tq)	mtx_assert(&(tq)->tq_mutex, MA_NOTOWNED)
97 
98 void
99 _timeout_task_init(struct taskqueue *queue, struct timeout_task *timeout_task,
100     int priority, task_fn_t func, void *context)
101 {
102 
103 	TASK_INIT(&timeout_task->t, priority, func, context);
104 	callout_init_mtx(&timeout_task->c, &queue->tq_mutex,
105 	    CALLOUT_RETURNUNLOCKED);
106 	timeout_task->q = queue;
107 	timeout_task->f = 0;
108 }
109 
110 static __inline int
111 TQ_SLEEP(struct taskqueue *tq, void *p, struct mtx *m, int pri, const char *wm,
112     int t)
113 {
114 	if (tq->tq_spin)
115 		return (msleep_spin(p, m, wm, t));
116 	return (msleep(p, m, pri, wm, t));
117 }
118 
119 static struct taskqueue *
120 _taskqueue_create(const char *name __unused, int mflags,
121 		 taskqueue_enqueue_fn enqueue, void *context,
122 		 int mtxflags, const char *mtxname)
123 {
124 	struct taskqueue *queue;
125 
126 	queue = malloc(sizeof(struct taskqueue), M_TASKQUEUE, mflags | M_ZERO);
127 	if (!queue)
128 		return NULL;
129 
130 	STAILQ_INIT(&queue->tq_queue);
131 	TAILQ_INIT(&queue->tq_active);
132 	queue->tq_enqueue = enqueue;
133 	queue->tq_context = context;
134 	queue->tq_spin = (mtxflags & MTX_SPIN) != 0;
135 	queue->tq_flags |= TQ_FLAGS_ACTIVE;
136 	if (enqueue == taskqueue_fast_enqueue ||
137 	    enqueue == taskqueue_swi_enqueue ||
138 	    enqueue == taskqueue_swi_giant_enqueue ||
139 	    enqueue == taskqueue_thread_enqueue)
140 		queue->tq_flags |= TQ_FLAGS_UNLOCKED_ENQUEUE;
141 	mtx_init(&queue->tq_mutex, mtxname, NULL, mtxflags);
142 
143 	return queue;
144 }
145 
146 struct taskqueue *
147 taskqueue_create(const char *name, int mflags,
148 		 taskqueue_enqueue_fn enqueue, void *context)
149 {
150 	return _taskqueue_create(name, mflags, enqueue, context,
151 			MTX_DEF, "taskqueue");
152 }
153 
154 void
155 taskqueue_set_callback(struct taskqueue *queue,
156     enum taskqueue_callback_type cb_type, taskqueue_callback_fn callback,
157     void *context)
158 {
159 
160 	KASSERT(((cb_type >= TASKQUEUE_CALLBACK_TYPE_MIN) &&
161 	    (cb_type <= TASKQUEUE_CALLBACK_TYPE_MAX)),
162 	    ("Callback type %d not valid, must be %d-%d", cb_type,
163 	    TASKQUEUE_CALLBACK_TYPE_MIN, TASKQUEUE_CALLBACK_TYPE_MAX));
164 	KASSERT((queue->tq_callbacks[cb_type] == NULL),
165 	    ("Re-initialization of taskqueue callback?"));
166 
167 	queue->tq_callbacks[cb_type] = callback;
168 	queue->tq_cb_contexts[cb_type] = context;
169 }
170 
171 /*
172  * Signal a taskqueue thread to terminate.
173  */
174 static void
175 taskqueue_terminate(struct thread **pp, struct taskqueue *tq)
176 {
177 
178 	while (tq->tq_tcount > 0 || tq->tq_callouts > 0) {
179 		wakeup(tq);
180 		TQ_SLEEP(tq, pp, &tq->tq_mutex, PWAIT, "taskqueue_destroy", 0);
181 	}
182 }
183 
184 void
185 taskqueue_free(struct taskqueue *queue)
186 {
187 
188 	TQ_LOCK(queue);
189 	queue->tq_flags &= ~TQ_FLAGS_ACTIVE;
190 	taskqueue_terminate(queue->tq_threads, queue);
191 	KASSERT(TAILQ_EMPTY(&queue->tq_active), ("Tasks still running?"));
192 	KASSERT(queue->tq_callouts == 0, ("Armed timeout tasks"));
193 	mtx_destroy(&queue->tq_mutex);
194 	free(queue->tq_threads, M_TASKQUEUE);
195 	free(queue, M_TASKQUEUE);
196 }
197 
198 static int
199 taskqueue_enqueue_locked(struct taskqueue *queue, struct task *task)
200 {
201 	struct task *ins;
202 	struct task *prev;
203 
204 	/*
205 	 * Count multiple enqueues.
206 	 */
207 	if (task->ta_pending) {
208 		if (task->ta_pending < USHRT_MAX)
209 			task->ta_pending++;
210 		TQ_UNLOCK(queue);
211 		return (0);
212 	}
213 
214 	/*
215 	 * Optimise the case when all tasks have the same priority.
216 	 */
217 	prev = STAILQ_LAST(&queue->tq_queue, task, ta_link);
218 	if (!prev || prev->ta_priority >= task->ta_priority) {
219 		STAILQ_INSERT_TAIL(&queue->tq_queue, task, ta_link);
220 	} else {
221 		prev = NULL;
222 		for (ins = STAILQ_FIRST(&queue->tq_queue); ins;
223 		     prev = ins, ins = STAILQ_NEXT(ins, ta_link))
224 			if (ins->ta_priority < task->ta_priority)
225 				break;
226 
227 		if (prev)
228 			STAILQ_INSERT_AFTER(&queue->tq_queue, prev, task, ta_link);
229 		else
230 			STAILQ_INSERT_HEAD(&queue->tq_queue, task, ta_link);
231 	}
232 
233 	task->ta_pending = 1;
234 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) != 0)
235 		TQ_UNLOCK(queue);
236 	if ((queue->tq_flags & TQ_FLAGS_BLOCKED) == 0)
237 		queue->tq_enqueue(queue->tq_context);
238 	if ((queue->tq_flags & TQ_FLAGS_UNLOCKED_ENQUEUE) == 0)
239 		TQ_UNLOCK(queue);
240 
241 	return (0);
242 }
243 int
244 taskqueue_enqueue(struct taskqueue *queue, struct task *task)
245 {
246 	int res;
247 
248 	TQ_LOCK(queue);
249 	res = taskqueue_enqueue_locked(queue, task);
250 
251 	return (res);
252 }
253 
254 static void
255 taskqueue_timeout_func(void *arg)
256 {
257 	struct taskqueue *queue;
258 	struct timeout_task *timeout_task;
259 
260 	timeout_task = arg;
261 	queue = timeout_task->q;
262 	KASSERT((timeout_task->f & DT_CALLOUT_ARMED) != 0, ("Stray timeout"));
263 	timeout_task->f &= ~DT_CALLOUT_ARMED;
264 	queue->tq_callouts--;
265 	taskqueue_enqueue_locked(timeout_task->q, &timeout_task->t);
266 }
267 
268 int
269 taskqueue_enqueue_timeout(struct taskqueue *queue,
270     struct timeout_task *timeout_task, int ticks)
271 {
272 	int res;
273 
274 	TQ_LOCK(queue);
275 	KASSERT(timeout_task->q == NULL || timeout_task->q == queue,
276 	    ("Migrated queue"));
277 	KASSERT(!queue->tq_spin, ("Timeout for spin-queue"));
278 	timeout_task->q = queue;
279 	res = timeout_task->t.ta_pending;
280 	if (ticks == 0) {
281 		taskqueue_enqueue_locked(queue, &timeout_task->t);
282 	} else {
283 		if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
284 			res++;
285 		} else {
286 			queue->tq_callouts++;
287 			timeout_task->f |= DT_CALLOUT_ARMED;
288 			if (ticks < 0)
289 				ticks = -ticks; /* Ignore overflow. */
290 		}
291 		if (ticks > 0) {
292 			callout_reset(&timeout_task->c, ticks,
293 			    taskqueue_timeout_func, timeout_task);
294 		}
295 		TQ_UNLOCK(queue);
296 	}
297 	return (res);
298 }
299 
300 void
301 taskqueue_block(struct taskqueue *queue)
302 {
303 
304 	TQ_LOCK(queue);
305 	queue->tq_flags |= TQ_FLAGS_BLOCKED;
306 	TQ_UNLOCK(queue);
307 }
308 
309 void
310 taskqueue_unblock(struct taskqueue *queue)
311 {
312 
313 	TQ_LOCK(queue);
314 	queue->tq_flags &= ~TQ_FLAGS_BLOCKED;
315 	if (!STAILQ_EMPTY(&queue->tq_queue))
316 		queue->tq_enqueue(queue->tq_context);
317 	TQ_UNLOCK(queue);
318 }
319 
320 static void
321 taskqueue_run_locked(struct taskqueue *queue)
322 {
323 	struct taskqueue_busy tb;
324 	struct task *task;
325 	int pending;
326 
327 	TQ_ASSERT_LOCKED(queue);
328 	tb.tb_running = NULL;
329 	TAILQ_INSERT_TAIL(&queue->tq_active, &tb, tb_link);
330 
331 	while (STAILQ_FIRST(&queue->tq_queue)) {
332 		/*
333 		 * Carefully remove the first task from the queue and
334 		 * zero its pending count.
335 		 */
336 		task = STAILQ_FIRST(&queue->tq_queue);
337 		STAILQ_REMOVE_HEAD(&queue->tq_queue, ta_link);
338 		pending = task->ta_pending;
339 		task->ta_pending = 0;
340 		tb.tb_running = task;
341 		TQ_UNLOCK(queue);
342 
343 		CURVNET_SET(task->ta_vnet);
344 		task->ta_func(task->ta_context, pending);
345 		CURVNET_RESTORE();
346 
347 		TQ_LOCK(queue);
348 		tb.tb_running = NULL;
349 		wakeup(task);
350 	}
351 	TAILQ_REMOVE(&queue->tq_active, &tb, tb_link);
352 }
353 
354 void
355 taskqueue_run(struct taskqueue *queue)
356 {
357 
358 	TQ_LOCK(queue);
359 	taskqueue_run_locked(queue);
360 	TQ_UNLOCK(queue);
361 }
362 
363 static int
364 task_is_running(struct taskqueue *queue, struct task *task)
365 {
366 	struct taskqueue_busy *tb;
367 
368 	TQ_ASSERT_LOCKED(queue);
369 	TAILQ_FOREACH(tb, &queue->tq_active, tb_link) {
370 		if (tb->tb_running == task)
371 			return (1);
372 	}
373 	return (0);
374 }
375 
376 static int
377 taskqueue_cancel_locked(struct taskqueue *queue, struct task *task,
378     u_int *pendp)
379 {
380 
381 	if (task->ta_pending > 0)
382 		STAILQ_REMOVE(&queue->tq_queue, task, task, ta_link);
383 	if (pendp != NULL)
384 		*pendp = task->ta_pending;
385 	task->ta_pending = 0;
386 	return (task_is_running(queue, task) ? EBUSY : 0);
387 }
388 
389 int
390 taskqueue_cancel(struct taskqueue *queue, struct task *task, u_int *pendp)
391 {
392 	u_int pending;
393 	int error;
394 
395 	TQ_LOCK(queue);
396 	pending = task->ta_pending;
397 	error = taskqueue_cancel_locked(queue, task, pendp);
398 	TQ_UNLOCK(queue);
399 
400 	return (error);
401 }
402 
403 int
404 taskqueue_cancel_timeout(struct taskqueue *queue,
405     struct timeout_task *timeout_task, u_int *pendp)
406 {
407 	u_int pending, pending1;
408 	int error;
409 
410 	TQ_LOCK(queue);
411 	pending = !!callout_stop(&timeout_task->c);
412 	error = taskqueue_cancel_locked(queue, &timeout_task->t, &pending1);
413 	if ((timeout_task->f & DT_CALLOUT_ARMED) != 0) {
414 		timeout_task->f &= ~DT_CALLOUT_ARMED;
415 		queue->tq_callouts--;
416 	}
417 	TQ_UNLOCK(queue);
418 
419 	if (pendp != NULL)
420 		*pendp = pending + pending1;
421 	return (error);
422 }
423 
424 void
425 taskqueue_drain(struct taskqueue *queue, struct task *task)
426 {
427 
428 	if (!queue->tq_spin)
429 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__);
430 
431 	TQ_LOCK(queue);
432 	while (task->ta_pending != 0 || task_is_running(queue, task))
433 		TQ_SLEEP(queue, task, &queue->tq_mutex, PWAIT, "-", 0);
434 	TQ_UNLOCK(queue);
435 }
436 
437 void
438 taskqueue_drain_timeout(struct taskqueue *queue,
439     struct timeout_task *timeout_task)
440 {
441 
442 	callout_drain(&timeout_task->c);
443 	taskqueue_drain(queue, &timeout_task->t);
444 }
445 
446 static void
447 taskqueue_swi_enqueue(void *context)
448 {
449 	swi_sched(taskqueue_ih, 0);
450 }
451 
452 static void
453 taskqueue_swi_run(void *dummy)
454 {
455 	taskqueue_run(taskqueue_swi);
456 }
457 
458 static void
459 taskqueue_swi_giant_enqueue(void *context)
460 {
461 	swi_sched(taskqueue_giant_ih, 0);
462 }
463 
464 static void
465 taskqueue_swi_giant_run(void *dummy)
466 {
467 	taskqueue_run(taskqueue_swi_giant);
468 }
469 
470 int
471 taskqueue_start_threads(struct taskqueue **tqp, int count, int pri,
472 			const char *name, ...)
473 {
474 	va_list ap;
475 	struct thread *td;
476 	struct taskqueue *tq;
477 	int i, error;
478 	char ktname[MAXCOMLEN + 1];
479 
480 	if (count <= 0)
481 		return (EINVAL);
482 
483 	tq = *tqp;
484 
485 	va_start(ap, name);
486 	vsnprintf(ktname, sizeof(ktname), name, ap);
487 	va_end(ap);
488 
489 	tq->tq_threads = malloc(sizeof(struct thread *) * count, M_TASKQUEUE,
490 	    M_NOWAIT | M_ZERO);
491 	if (tq->tq_threads == NULL) {
492 		printf("%s: no memory for %s threads\n", __func__, ktname);
493 		return (ENOMEM);
494 	}
495 
496 	for (i = 0; i < count; i++) {
497 		if (count == 1)
498 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
499 			    &tq->tq_threads[i], RFSTOPPED, 0, "%s", ktname);
500 		else
501 			error = kthread_add(taskqueue_thread_loop, tqp, NULL,
502 			    &tq->tq_threads[i], RFSTOPPED, 0,
503 			    "%s_%d", ktname, i);
504 		if (error) {
505 			/* should be ok to continue, taskqueue_free will dtrt */
506 			printf("%s: kthread_add(%s): error %d", __func__,
507 			    ktname, error);
508 			tq->tq_threads[i] = NULL;		/* paranoid */
509 		} else
510 			tq->tq_tcount++;
511 	}
512 	for (i = 0; i < count; i++) {
513 		if (tq->tq_threads[i] == NULL)
514 			continue;
515 		td = tq->tq_threads[i];
516 		thread_lock(td);
517 		sched_prio(td, pri);
518 		sched_add(td, SRQ_BORING);
519 		thread_unlock(td);
520 	}
521 
522 	return (0);
523 }
524 
525 static inline void
526 taskqueue_run_callback(struct taskqueue *tq,
527     enum taskqueue_callback_type cb_type)
528 {
529 	taskqueue_callback_fn tq_callback;
530 
531 	TQ_ASSERT_UNLOCKED(tq);
532 	tq_callback = tq->tq_callbacks[cb_type];
533 	if (tq_callback != NULL)
534 		tq_callback(tq->tq_cb_contexts[cb_type]);
535 }
536 
537 void
538 taskqueue_thread_loop(void *arg)
539 {
540 	struct taskqueue **tqp, *tq;
541 
542 	tqp = arg;
543 	tq = *tqp;
544 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_INIT);
545 	TQ_LOCK(tq);
546 	while ((tq->tq_flags & TQ_FLAGS_ACTIVE) != 0) {
547 		taskqueue_run_locked(tq);
548 		/*
549 		 * Because taskqueue_run() can drop tq_mutex, we need to
550 		 * check if the TQ_FLAGS_ACTIVE flag wasn't removed in the
551 		 * meantime, which means we missed a wakeup.
552 		 */
553 		if ((tq->tq_flags & TQ_FLAGS_ACTIVE) == 0)
554 			break;
555 		TQ_SLEEP(tq, tq, &tq->tq_mutex, 0, "-", 0);
556 	}
557 	taskqueue_run_locked(tq);
558 
559 	/*
560 	 * This thread is on its way out, so just drop the lock temporarily
561 	 * in order to call the shutdown callback.  This allows the callback
562 	 * to look at the taskqueue, even just before it dies.
563 	 */
564 	TQ_UNLOCK(tq);
565 	taskqueue_run_callback(tq, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN);
566 	TQ_LOCK(tq);
567 
568 	/* rendezvous with thread that asked us to terminate */
569 	tq->tq_tcount--;
570 	wakeup_one(tq->tq_threads);
571 	TQ_UNLOCK(tq);
572 	kthread_exit();
573 }
574 
575 void
576 taskqueue_thread_enqueue(void *context)
577 {
578 	struct taskqueue **tqp, *tq;
579 
580 	tqp = context;
581 	tq = *tqp;
582 
583 	wakeup_one(tq);
584 }
585 
586 TASKQUEUE_DEFINE(swi, taskqueue_swi_enqueue, NULL,
587 		 swi_add(NULL, "task queue", taskqueue_swi_run, NULL, SWI_TQ,
588 		     INTR_MPSAFE, &taskqueue_ih));
589 
590 TASKQUEUE_DEFINE(swi_giant, taskqueue_swi_giant_enqueue, NULL,
591 		 swi_add(NULL, "Giant taskq", taskqueue_swi_giant_run,
592 		     NULL, SWI_TQ_GIANT, 0, &taskqueue_giant_ih));
593 
594 TASKQUEUE_DEFINE_THREAD(thread);
595 
596 struct taskqueue *
597 taskqueue_create_fast(const char *name, int mflags,
598 		 taskqueue_enqueue_fn enqueue, void *context)
599 {
600 	return _taskqueue_create(name, mflags, enqueue, context,
601 			MTX_SPIN, "fast_taskqueue");
602 }
603 
604 /* NB: for backwards compatibility */
605 int
606 taskqueue_enqueue_fast(struct taskqueue *queue, struct task *task)
607 {
608 	return taskqueue_enqueue(queue, task);
609 }
610 
611 static void	*taskqueue_fast_ih;
612 
613 static void
614 taskqueue_fast_enqueue(void *context)
615 {
616 	swi_sched(taskqueue_fast_ih, 0);
617 }
618 
619 static void
620 taskqueue_fast_run(void *dummy)
621 {
622 	taskqueue_run(taskqueue_fast);
623 }
624 
625 TASKQUEUE_FAST_DEFINE(fast, taskqueue_fast_enqueue, NULL,
626 	swi_add(NULL, "fast taskq", taskqueue_fast_run, NULL,
627 	SWI_TQ_FAST, INTR_MPSAFE, &taskqueue_fast_ih));
628 
629 int
630 taskqueue_member(struct taskqueue *queue, struct thread *td)
631 {
632 	int i, j, ret = 0;
633 
634 	for (i = 0, j = 0; ; i++) {
635 		if (queue->tq_threads[i] == NULL)
636 			continue;
637 		if (queue->tq_threads[i] == td) {
638 			ret = 1;
639 			break;
640 		}
641 		if (++j >= queue->tq_tcount)
642 			break;
643 	}
644 	return (ret);
645 }
646